5. Spectroscopy and Properties¶
Spectroscopy and Properties
- 5.1. Population Analysis
- 5.1.1. Mulliken Population Analysis
- 5.1.2. Löwdin Population Analysis
- 5.1.3. Frontier Molecular Orbital Populations
- 5.1.4. Mayer Population Analysis
- 5.1.5. Natural Population Analysis
- 5.1.6. Hirshfeld Population Analysis
- 5.1.7. MBIS Charges
- 5.1.8. CHELPG Charges
- 5.1.9. RESP Charges
- 5.1.10. Local Spin Analysis
- 5.1.11. Population Analysis of UNOs
- 5.1.12. Keywords
- 5.2. Natural Bond Orbital (NBO) Analysis
- 5.3. Fractional Occupation Number Weighted Density (FOD)
- 5.4. Excited States Calculations
- 5.4.1. Excited States with RPA, CIS, TD-DFT and SF-TDA
- 5.4.2. Excited States with Restricted Open-shell CIS - ROCIS
- 5.4.3. Excited States for Open-Shell Molecules with CASSCF Linear Response (MC-RPA)
- 5.4.4. Excited States with ADC2
- 5.4.5. Excited States with STEOM-CCSD
- 5.4.6. Excited States with IH-FSMR-CCSD
- 5.4.7. Excited States with PNO based coupled cluster methods
- 5.4.8. Excited States with DLPNO based coupled cluster methods
- 5.5. Excited State Dynamics
- 5.5.1. Absorption Spectrum
- 5.5.2. Fluorescence Rates and Spectrum
- 5.5.3. Phosphorescence Rates and Spectrum
- 5.5.4. Intersystem Crossing Rates (unpublished)
- 5.5.5. Internal Conversion Rates (unpublished)
- 5.5.6. Resonant Raman Spectrum
- 5.5.7. ESD and STEOM-CCSD or other higher level methods - the APPROXADEN option
- 5.5.8. Circularly Polarized Spectroscopies
- 5.5.9. Magnetic Circular Dichroism
- 5.5.10. Tips, Tricks and Troubleshooting
- 5.5.11. More on the Excited State Dynamics module
- 5.5.12. Complete Keyword List for the ESD Module
- 5.6. Excited States via RPA, CIS, TD-DFT and SF-TDA
- 5.6.1. General Features
- 5.6.2. Semiempirical Methods
- 5.6.3. Hartree-Fock Wavefunctions
- 5.6.4. Non-Hybrid and Hybrid DFT
- 5.6.5. Collinear Spin-Flip TDA (SF-TD-DFT)
- 5.6.6. Including solvation effects via LR-CPCM theory
- 5.6.7. Population Analysis of Excited States
- 5.6.8. Simplified TDA and TD-DFT
- 5.6.9. Double-hybrid functionals and Doubles Correction
- 5.6.10. Spin-orbit coupling
- 5.6.11. Natural Transition Orbitals
- 5.6.12. Computational Aspects
- 5.6.13. Restarting TD-DFT Calculations
- 5.6.14. Use of TD-DFT for the Calculation of X-ray Absorption Spectra
- 5.6.15. Transient spectra
- 5.6.16. Excited State Geometry Optimization
- 5.6.17. Potential Energy Surface Scans
- 5.6.18. Non-adiabatic coupling matrix elements
- 5.6.19. Keyword List
- 5.7. Excited States via ROCIS and ROCIS/DFT
- 5.8. Excited States via MCRPA
- 5.9. Excited States via EOM-CCSD
- 5.10. Excited States via STEOM-CCSD
- 5.10.1. General Description
- 5.10.2. Selection of Active space
- 5.10.3. Active space selection using TD-DFT densities
- 5.10.4. The reliability of the calculated excitation energy
- 5.10.5. Removal of IP and EA states with double excitation character
- 5.10.6. Transition and difference densities
- 5.10.7. Properties
- 5.10.8. Solvation (Experimental)
- 5.10.9. Spin-Orbit Coupling (Experimental)
- 5.10.10. Core excitation
- 5.10.11. Transient absorption
- 5.11. Excited States via IH-FSMR-CCSD
- 5.12. Excited States via PNO-based coupled cluster
- 5.13. Excited States via DLPNO-STEOM-CCSD
- 5.14. One Photon Spectroscopy
- 5.15. Core-Level Spectroscopy with Coupled Cluster Methods
- 5.16. Simulation and Fit of Vibronic Structure in Electronic Spectra, Resonance Raman Excitation Profiles and Spectra with the orca_asa Program
- 5.16.1. General Description of the Program
- 5.16.2. Spectral Simulation Procedures: Input Structure and Model Parameters
- 5.16.2.1. Example: Simple Mode
- 5.16.2.2. Example: Modelling of Absorption and Fluorescence Spectra within the IMDHO Model
- 5.16.2.3. Example: Modelling of Absorption and Fluorescence Spectra within the IMDHOFA Model
- 5.16.2.4. Example: Modelling of Effective Broadening, Effective Stokes Shift and Temperature Effects in Absorption and Fluorescence Spectra within the IMDHO Model
- 5.16.2.5. Example: Modelling of Absorption and Resonance Raman Spectra for the 1-
A 1- B Transition in trans-1,3,5-Hexatriene - 5.16.2.6. Example: Modelling of Absorption Spectrum and Resonance Raman Profiles for the 1-
A 1- B Transition in trans-1,3,5-Hexatriene
- 5.16.3. Fitting of Experimental Spectra
- 5.16.4. Quantum-Chemically Assisted Simulations and Fits of Optical Bandshapes and Resonance Raman Intensities
- 5.16.4.1. Example: Quantum-Chemically Assisted Analysis and Fit of the Absorption and Resonance Raman Spectra for 1-
A 1- B Transition in trans-1,3,5-Hexatriene - 5.16.4.2. Important Notes about Proper Comparison of Experimental and Quantum Chemically Calculated Resonance Raman Spectra
- 5.16.4.3. Example: Normal Mode Scan Calculations of Model Parameters for 1-
A 1- B Transition in trans-1,3,5-Hexatriene
- 5.16.4.1. Example: Quantum-Chemically Assisted Analysis and Fit of the Absorption and Resonance Raman Spectra for 1-
- 5.17. Absorption and Fluorescence Bandshapes using
ORCA_ASA
- 5.18. Vibrational Spectroscopy
- 5.19. Anharmonic Analysis and Vibrational Corrections using VPT2/GVPT2 and
orca_vpt2
- 5.20. Electrical Properties - Electric Moments and Polarizabilities
- 5.21. Nuclear Magnetic Resonance (NMR) Parameters
- 5.21.1. NMR Chemical Shifts
- 5.21.2. NMR Spin-Spin Coupling Constants
- 5.21.3. Simulating NMR Spectra
- 5.21.4. Visualizing shielding tensors using
orca_plot
- 5.21.5. Nucleus-independent chemical shielding
- 5.21.6. Shielding tensor orbital decomposition
- 5.21.7. Treatment of Tau in Meta-GGA Functionals
- 5.21.8. Cartesian Index Conventions for EPR and NMR Tensors
- 5.21.9. EPRNMR - keywords for magnetic properties
- 5.22. Paramagnetic NMR Shielding Tensors
- 5.23. Spin-rotation Constants
- 5.24. Electron Paramagnetic Resonance (EPR) Parameters
- 5.25. MP2 Level Magnetic Properties
- 5.26. CASSCF Linear Response
- 5.27. Mössbauer Parameters
- 5.28. The Spin-Orbit Coupling Operator
- 5.29. Broken-Symmetry Wavefunctions and Exchange Couplings
- 5.30. Decomposition of the Magnetic Exchange Coupling
- 5.31. Magnetic Properties Through Quasi Degenerate Perturbation Theory
- 5.32. Magnetic Relaxation
- 5.33. Simulation of (Magnetic) Circular Dichroism and Absorption Spectra
- 5.34. Interface to SINGLE_ANISO Module
- 5.35. Interface to POLY_ANISO Module
- 5.36. DeltaSCF
- 5.37. Extended Transition State with Natural Orbitals for Chemical Valence (ETS-NOCV/EDA-NOCV)
- 5.38. Local Energy Decomposition
- 5.38.1. Closed shell LED
- 5.38.2. Example: LED analysis of intermolecular interactions
- 5.38.3. Open shell LED
- 5.38.4. COVALED
- 5.38.5. Dispersion Interaction Density plot
- 5.38.6. Automatic Fragmentation
- 5.38.7. Additional Features, Defaults and List of Keywords
- 5.38.8. Atomic Decomposition Methods
- 5.38.9. Fragment-Pairwise Local Energy Decomposition
- 5.39. The Hartree-Fock plus London Dispersion (HFLD) Method
- 5.40. ADLD(D): Atomic Decomposition of DFT-D London Dispersion Energy
- 5.41. Static Ground State DFT (SGS-DFT)