5.15. Core-Level Spectroscopy with Coupled Cluster Methods

The equation of motion coupled cluster method and its similarity transformed version provides an easy way to directly calculate core-ionization and core-excitation energies. The core-level spectroscopy with EOM-CCSD is only available for closed shell systems.

5.15.1. Core-Ionization

One can obtain core-ionized states if one calculates a large no of roots. The ORCA implementation of IP-EOM-CCSD, however, allows one to directly target the ionization from the core-orbitals. A typical IP-EOM-CCSD input file for the acetic acid will look like

!IP-EOM-CCSD ExtremeSCF cc-pvdz 
!NoFrozencore
%maxcore 5000

%mdci
nroots 4        # no of roots
FollowCIS true  # Follow  the initial guess orbital
DoCVS true      # Core valence separation (currently both the option needs to be true)
DoCore true     # Directly target the core
CoreOrb[0]=0    # The MO from which it will start counting
maxiter 500     # no of iteration, generally requires larger no of roots
end

*xyz 0 1
 C             -6.7624010562   0.1328615492   0.0389382700
 C             -5.3564667033   0.2819965475  -0.5188248498
 H             -6.9983743824   1.0019615710   0.6510029634
 H             -7.4924880320   0.0542210905  -0.7741766747
 H             -6.8380664832  -0.7720291637   0.6519904379
 O             -4.9303467983  -0.7518088469  -1.3223158759
 H             -5.6257914271  -1.4265892921  -1.4015111180
 O             -4.6208051175   1.2132365445  -0.3081931529
*

The output of it will be

----------------------
EOM-CCSD RESULTS (RHS)
----------------------

IROOT=  1: 19.999934 au   544.226 eV 4389478.1 cm**-1
  Amplitude    Excitation
   0.672786     0 -> x
Percentage singles character=     82.70

IROOT=  2: 19.944006 au   542.704 eV 4377203.3 cm**-1
  Amplitude    Excitation
   0.672143     1 -> x
Percentage singles character=     82.41

IROOT=  3: 10.962172 au   298.296 eV 2405918.7 cm**-1
  Amplitude    Excitation
   0.669804     2 -> x
Percentage singles character=     81.37

IROOT=  4: 10.826519 au   294.605 eV 2376146.3 cm**-1
  Amplitude    Excitation
   0.670634     3 -> x
Percentage singles character=     81.74

The option ‘DoCore true’ together with ‘DoCVS true’ and ‘CoreOrb[0]=0’ is enough to enable the calculation for core ionizations in IP-EOM-CCSD. The option ‘CoreOrb[0]=0’ indicates that we will look for core excitations arising from the orbital 0 up to the HOMO, which correspond to the oxygen K-shell. We can also directly access the carbon K-edge by starting from the orbital 2 instead. For this, we use ‘CoreOrb[0]=2’

!IP-EOM-CCSD ExtremeSCF cc-pvdz 
!NoFrozencore
%maxcore 5000

%mdci
nroots 2        # no of roots
FollowCIS true  # Follow  the initial guess orbital
DoCVS true      # Core valence separation (currently both the option needs to be true)
DoCore true     # Directly target the core
CoreOrb[0]=2    # The MO from which it will start counting
maxiter 500     # no of iteration, generally requires larger no of roots
end


*xyz 0 1
 C             -6.7624010562   0.1328615492   0.0389382700
 C             -5.3564667033   0.2819965475  -0.5188248498
 H             -6.9983743824   1.0019615710   0.6510029634
 H             -7.4924880320   0.0542210905  -0.7741766747
 H             -6.8380664832  -0.7720291637   0.6519904379
 O             -4.9303467983  -0.7518088469  -1.3223158759
 H             -5.6257914271  -1.4265892921  -1.4015111180
 O             -4.6208051175   1.2132365445  -0.3081931529
*

The output of it will be

----------------------
EOM-CCSD RESULTS (RHS)
----------------------

IROOT=  1: 10.962172 au   298.296 eV 2405918.7 cm**-1
  Amplitude    Excitation
   0.669804     2 -> x
Percentage singles character=     81.37

IROOT=  2: 10.826519 au   294.605 eV 2376146.3 cm**-1
  Amplitude    Excitation
   0.670634     3 -> x
Percentage singles character=     81.74

Now, the core-ionized states remains embedded in the high density of doubly ionized valence states that form the continuum. This leads to severe convergence problems. One easy way to overcome this is to use the core-valence separation approximation which is turned on by setting an upper limit to the possible core excitations. The orbitals from which the contributions are not neglected for the core-valence separation are set by ‘CoreOrb[0]= initial,final’. It is generally a good idea to include all the core orbitals corresponding to a particular element if one is interested in the ionization from any of the core orbitals for the particular element. In the second example both the carbon core-orbitals are also included, which is equivalent to set ‘CoreOrb[0] = 0,3’. A ‘bt-PNO-IP-EOM-CCSD’ input file for the same example will look like

!bt-PNO-IP-EOM-CCSD ExtremeSCF cc-pvdz cc-pvdz/c
!NoFrozencore
%maxcore 5000

%mdci
nroots 4        # no of roots
FollowCIS true  # Follow  the initial guess orbital
DoCVS true      # Core valence separation (currently both the option needs to be true)
DoCore true     # Directly target the core
CoreOrb[0]=0,3  # The MO from which it will start counting
maxiter 500     # no of iteration, generally requires larger no of roots
end


*xyz 0 1
 C             -6.7624010562   0.1328615492   0.0389382700
 C             -5.3564667033   0.2819965475  -0.5188248498
 H             -6.9983743824   1.0019615710   0.6510029634
 H             -7.4924880320   0.0542210905  -0.7741766747
 H             -6.8380664832  -0.7720291637   0.6519904379
 O             -4.9303467983  -0.7518088469  -1.3223158759
 H             -5.6257914271  -1.4265892921  -1.4015111180
 O             -4.6208051175   1.2132365445  -0.3081931529
*

The output of it will be

----------------------
EOM-CCSD RESULTS (RHS)
----------------------

IROOT=  1: 19.999730 au   544.220 eV 4389433.3 cm**-1
  Amplitude    Excitation
   0.672774     0 -> x
Percentage singles character=     82.69

IROOT=  2: 19.943800 au   542.698 eV 4377158.2 cm**-1
  Amplitude    Excitation
   0.672139     1 -> x
Percentage singles character=     82.41

IROOT=  3: 10.962316 au   298.300 eV 2405950.3 cm**-1
  Amplitude    Excitation
   0.669787     2 -> x
Percentage singles character=     81.36

IROOT=  4: 10.826562 au   294.606 eV 2376155.7 cm**-1
  Amplitude    Excitation
   0.670612     3 -> x
Percentage singles character=     81.73

The results are in excellent agreement with the canonical one. A DLPNO variant for the same example will look like

!IP-EOM-DLPNO-CCSD ExtremeSCF cc-pvdz cc-pvdz/c 
!NoFrozencore
%maxcore 5000

%mdci
nroots 4        # no of roots
FollowCIS true  # Follow  the initial guess orbital
DoCVS true      # Core valence separation (currently both the option needs to be true)
DoCore true     # Directly target the core
CoreOrb[0]=0,3  # The MO from which it will start counting
maxiter 500     # no of iteration, generally requires larger no of roots
end

*xyz 0 1
 C             -6.7624010562   0.1328615492   0.0389382700
 C             -5.3564667033   0.2819965475  -0.5188248498
 H             -6.9983743824   1.0019615710   0.6510029634
 H             -7.4924880320   0.0542210905  -0.7741766747
 H             -6.8380664832  -0.7720291637   0.6519904379
 O             -4.9303467983  -0.7518088469  -1.3223158759
 H             -5.6257914271  -1.4265892921  -1.4015111180
 O             -4.6208051175   1.2132365445  -0.3081931529
*

The output of it will be

----------------------
EOM-CCSD RESULTS (RHS)
----------------------

IROOT=  1: 20.051396 au   545.626 eV 4400772.7 cm**-1
  Amplitude    Excitation
  -0.678316     0 -> x
Percentage singles character=    101.08

IROOT=  2: 19.986869 au   543.870 eV 4386610.6 cm**-1
  Amplitude    Excitation
  -0.677491     1 -> x
Percentage singles character=    101.14

IROOT=  3: 11.034622 au   300.267 eV 2421819.6 cm**-1
  Amplitude    Excitation
  -0.674692     2 -> x
  -0.108213     1 -> x    13 ->  16
  -0.108195     1 -> x    15 ->  16
Percentage singles character=    101.21

IROOT=  4: 10.890773 au   296.353 eV 2390248.3 cm**-1
  Amplitude    Excitation
   0.679269     3 -> x
Percentage singles character=    101.04

Although the error in the absolute IP values are as large as 1 eV, the so-called ‘chemical shift’ i.e. the difference between the IP value of two different atoms of the same elements are reasonably correct.

5.15.2. Core-Ionization (UHF)

Starting from ORCA 6.0.1 it is also possible to perform core-ionized states on open-shell systems.[669] This is a direct extension of the closed-shell implementation and the syntax is kept almost identical to that of closed-shell. Now, we need to define ‘CoreOrb’ for each one of the spin channels using ‘CoreOrb[0]= min,max’ for spin up and ‘CoreOrb[1]=min,max’ for spin down electrons.

   CoreOrb[0]= min,max	#The MO from which it will start counting (spin up)
   CoreOrb[1]= min,max	#The MO from which it will start counting (spin down)

In the following example, we perform a core-ionization on the dyoxygen molecule on its triplet ground-state for ‘DoAlpha’ and ‘DoBeta’ using ORCA’s compound.

%compound

new_step

  !UHF IP-EOM-CCSD cc-pVDZ ExtremeSCF KDIIS nofrozencore

  %mdci
  DoAlpha true
  NRoots 4
  DTol 1e-6
  DoCore true
  DoCVS  true
  CoreOrb[0]=0,1
  CoreOrb[1]=0,1
  end

  *xyz 0 3
    O      0.0 0.0 0.0
    O      0.0 0.0 1.207
  *
step_end

new_step
  !UHF IP-EOM-CCSD cc-pVDZ ExtremeSCF KDIIS nofrozencore

  %mdci
  DoBeta true
  NRoots 4
  DTol 1e-6
  DoCore true
  DoCVS  true
  CoreOrb[0]=0,1
  CoreOrb[1]=0,1
  end

  *xyz 0 3
    O      0.0 0.0 0.0
    O      0.0 0.0 1.207
  *
step_end

end

The output for ‘DoAlpha’ looks like

-------------------------------
UHF IP-EOM-CCSD RESULTS (RHS)
-------------------------------

IROOT=  1: 20.137719 au   547.975 eV 4419718.6 cm**-1
  Amplitude    Excitation
   0.894649     0a -> x
   0.115737     0a -> x     5b ->  12b
   0.115737     0a -> x     6b ->  13b
  -0.123325     1a -> x     5b ->   7b
  -0.120347     1a -> x     5b ->   8b
  -0.120347     1a -> x     6b ->   7b
   0.123325     1a -> x     6b ->   8b
Percentage singles character=     80.04

IROOT=  2: 20.137008 au   547.956 eV 4419562.4 cm**-1
  Amplitude    Excitation
   0.894673     1a -> x
  -0.123144     0a -> x     5b ->   7b
  -0.120171     0a -> x     5b ->   8b
  -0.120171     0a -> x     6b ->   7b
   0.123144     0a -> x     6b ->   8b
   0.115678     1a -> x     5b ->  12b
   0.115678     1a -> x     6b ->  13b
Percentage singles character=     80.04

IROOT=  3:  1.418592 au    38.602 eV  311344.9 cm**-1
  Amplitude    Excitation
   0.531451     2a -> x
   0.266889     4a -> x     3b ->   7b
   0.431978     4a -> x     3b ->   8b
   0.116970     4a -> x     3b ->  14b
  -0.431978     5a -> x     3b ->   7b
   0.266889     5a -> x     3b ->   8b
  -0.116970     5a -> x     3b ->  15b
  -0.112676     7a -> x     2b ->   8b
   0.105473     7a -> x     4b ->   8b
  -0.112676     8a -> x     2b ->   7b
   0.105473     8a -> x     4b ->   7b
Percentage singles character=     29.23

IROOT=  4:  0.964260 au    26.239 eV  211630.5 cm**-1
  Amplitude    Excitation
   0.825207     3a -> x
   0.147947     6a -> x     5b ->   7b
   0.144375     6a -> x     5b ->   8b
   0.144375     6a -> x     6b ->   7b
  -0.147947     6a -> x     6b ->   8b
  -0.267515     7a -> x     3b ->   8b
  -0.267515     8a -> x     3b ->   7b
Percentage singles character=     68.10

and for ‘DoBeta’

-------------------------------
UHF IP-EOM-CCSD RESULTS (RHS)
-------------------------------

IROOT=  1: 20.102122 au   547.007 eV 4411905.8 cm**-1
  Amplitude    Excitation
   0.904712     0b -> x
Percentage singles character=     81.85

IROOT=  2: 20.100495 au   546.962 eV 4411548.8 cm**-1
  Amplitude    Excitation
   0.904679     1b -> x
Percentage singles character=     81.84

IROOT=  3:  1.482975 au    40.354 eV  325475.4 cm**-1
  Amplitude    Excitation
   0.911468     2b -> x
  -0.437544     2b -> x     3b ->  10b
   0.117502     2b -> x     3b ->  17b
  -0.181512     2b -> x     3b ->  27b
  -0.150802     2b -> x     4b ->  16b
   0.155724     3b -> x     4b ->   9b
  -0.362017     3b -> x     4b ->  10b
   0.170790     3b -> x     4b ->  27b
   0.414703     2b -> x     5b ->  18b
  -0.477670     3b -> x     5b ->  15b
   0.121834     4b -> x     5b ->  13b
  -0.266578     4b -> x     5b ->  19b
  -0.414703     2b -> x     6b ->  19b
   0.477670     3b -> x     6b ->  14b
   0.121834     4b -> x     6b ->  12b
  -0.266578     4b -> x     6b ->  18b
  -0.132721     5b -> x     6b ->  20b
   0.918380     5b -> x     6b ->  21b
   0.170340     3b -> x     6a ->   9a
  -0.124771     5b -> x     7a ->   9a
  -0.124771     6b -> x     8a ->   9a
Percentage singles character=     83.16

IROOT=  4:  0.889071 au    24.193 eV  195128.5 cm**-1
  Amplitude    Excitation
   0.946265     3b -> x
   0.272057     4b -> x     5b ->   7b
  -0.223370     4b -> x     5b ->   8b
   0.223370     4b -> x     6b ->   7b
   0.272057     4b -> x     6b ->   8b
Percentage singles character=     89.54

5.15.3. Core-Excitation

The STEOM-CCSD approach provides an efficient and accurate way to do the K-edge core-excitation spectroscopy. A typical input file for the STEOM-CCSD will look like

!STEOM-CCSD ExtremeSCF cc-pCVTZ Bohrs NoFrozencore

%mdci
nroots 5
FollowCIS true
DoSimpleDens False # use exact STEOM transition moment
maxiter 500
DoCVS true
DoCore true
CoreOrb[0]=0,0
end

*xyz 0 1
O 0 0 0.913973
C 0 0 -1.218243
*

The output will be

-------------------------------
STEOM-CCSD RESULTS (SINGLETS)
-------------------------------

IROOT=  1: 19.685582 au   535.672 eV 4320485.8 cm**-1
  Amplitude    Excitation
  -0.932683     6 ->   8
   0.281517     6 ->  12
  -0.211943     6 ->  14
  Ground state amplitude:  0.000000

Percentage Active Character     99.41

  Amplitude    Excitation in Canonical Basis
  -0.846006     0 ->   7
  -0.428151     0 ->   8
   0.252869     0 ->  12
   0.151677     0 ->  15

IROOT=  2: 19.685582 au   535.672 eV 4320485.9 cm**-1
  Amplitude    Excitation
  -0.932691     6 ->   7
   0.281484     6 ->  11
   0.211959     6 ->  15
  Ground state amplitude:  0.000000

Percentage Active Character     99.41

  Amplitude    Excitation in Canonical Basis
  -0.428151     0 ->   7
   0.846006     0 ->   8
  -0.252868     0 ->  11
  -0.151677     0 ->  14

IROOT=  3: 19.964529 au   543.262 eV 4381707.6 cm**-1
  Amplitude    Excitation
   0.978863     6 ->   9
   0.157708     6 ->  10
  -0.101384     6 ->  16
  Ground state amplitude: -0.001155

Percentage Active Character     99.39

  Amplitude    Excitation in Canonical Basis
  -0.978751     0 ->   9
   0.125406     0 ->  10
  -0.112036     0 ->  18
   0.102538     0 ->  21

IROOT=  4: 20.091389 au   546.714 eV 4409550.1 cm**-1
  Amplitude    Excitation
   0.269952     6 ->   8
   0.958312     6 ->  12
  Ground state amplitude: -0.000000

Percentage Active Character     99.78

  Amplitude    Excitation in Canonical Basis
   0.218969     0 ->   7
   0.110818     0 ->   8
  -0.210211     0 ->  11
   0.940678     0 ->  12

IROOT=  5: 20.091389 au   546.714 eV 4409550.1 cm**-1
  Amplitude    Excitation
   0.269914     6 ->   7
   0.958327     6 ->  11
  Ground state amplitude: -0.000000

Percentage Active Character     99.78

  Amplitude    Excitation in Canonical Basis
   0.110818     0 ->   7
  -0.218969     0 ->   8
  -0.940678     0 ->  11
  -0.210211     0 ->  12

MultiCore excitations are also available by setting ‘CoreOrb[0]=0,1’. In following example, we directly access the oxygen 1S and carbon 1S core excitations

!STEOM-CCSD ExtremeSCF cc-pCVTZ Bohrs NoFrozencore

%mdci
nroots 5
FollowCIS true
DoSimpleDens False # use exact STEOM transition moment
maxiter 500
DoCVS true
DoCore true
CoreOrb[0]=0,1
end

*xyz 0 1
O 0 0 0.913973
C 0 0 -1.218243
*

It will give the oxygen and carbon K-edge spectrum as follows

-------------------------------
STEOM-CCSD RESULTS (SINGLETS)
-------------------------------

IROOT=  1: 10.577651 au   287.833 eV 2321526.1 cm**-1
  Amplitude    Excitation
  -0.508570     6 ->   7
   0.849534     6 ->   8
   0.127575     6 ->  10
  Ground state amplitude: -0.000000

Percentage Active Character     99.67

  Amplitude    Excitation in Canonical Basis
   0.803788     1 ->   7
   0.418299     1 ->   8
  -0.381488     1 ->  12
  -0.116973     1 ->  15

IROOT=  2: 10.577651 au   287.833 eV 2321526.1 cm**-1
  Amplitude    Excitation
   0.849534     6 ->   7
   0.508570     6 ->   8
   0.127575     6 ->  11
  Ground state amplitude:  0.000000

Percentage Active Character     99.67

  Amplitude    Excitation in Canonical Basis
   0.418299     1 ->   7
  -0.803788     1 ->   8
   0.381488     1 ->  11
   0.116973     1 ->  14

IROOT=  3: 10.900722 au   296.624 eV 2392431.9 cm**-1
  Amplitude    Excitation
  -0.893589     6 ->   9
   0.426665     6 ->  12
  Ground state amplitude:  0.000202

Percentage Active Character     79.85

Warning:: the state may have not converged with respect to active space
-------------------- Handle with Care --------------------

  Amplitude    Excitation in Canonical Basis
  -0.972609     1 ->   9
   0.135434     1 ->  10
  -0.157896     1 ->  18

IROOT=  4: 19.690061 au   535.794 eV 4321468.9 cm**-1
  Amplitude    Excitation
   0.677274     5 ->   7
  -0.726090     5 ->   8
  Ground state amplitude: -0.000000

Percentage Active Character     98.89

  Amplitude    Excitation in Canonical Basis
  -0.733267     0 ->   7
  -0.606483     0 ->   8
   0.247689     0 ->  12
   0.137742     0 ->  15

IROOT=  5: 19.690061 au   535.794 eV 4321468.9 cm**-1
  Amplitude    Excitation
  -0.726090     5 ->   7
  -0.677274     5 ->   8
  Ground state amplitude:  0.000000

Percentage Active Character     98.89

  Amplitude    Excitation in Canonical Basis
  -0.606483     0 ->   7
   0.733267     0 ->   8
  -0.247689     0 ->  11
  -0.137742     0 ->  14

The core-valence separation should be used similar to that in the core-ionization. The only difference is that the natural orbital based active space selection scheme in STEOM-CCSD always rotate the particular core orbital to the HOMO. Now ORCA will automatically set the core orbitals to be the HOMO in STEOM-CCSD irrespective of the core-hole. One should use the exact STEOM-CCSD transition moment by using DoSimpleDens False. Fig. 5.32 presents the STEOM-CCSD oxygen K-edge spectra in thymine.

../../_images/Thymine_O_kedge_STEOM.svg

Fig. 5.31 Comparison of theoretical and experimental X-ray absorption spectra of oxygen K-edge in thymine. The simulated spectrum is shifted by -3.7 eV to align with the experimental spectrum.

One can interpret the results in terms of NTOs caculated from STEOM-CC eigen vectors

../../_images/Thymine_O_kedge_STEOM_NTO.png

Fig. 5.32 Natural transition orbitals (ntos) for the oxygen K edge spectrum of thymine. All the core EE values mentioned are in eV and provided in the format (EE,Oscillator Strength).

5.15.4. Core-Excitation (UHF)

ORCA is now able to also perform core-excitations using the open-shell STEOM-CCSD method in a similar way to that of closed-shell.[669] By setting ‘CoreOrb’ for each spin channel we can perform a single core or a multicore calculation. In the following example, we determine the nitrogen and oxygen K-Shell excitations in the NO radical.

!UHF STEOM-CCSD ExtremeSCF nofrozencore usesym
!cc-pCVDZ

%mdci
nroots 10
DoCVS true
DoCore true
CoreOrb[0]=0,1	#N and O core orbitals (spin up)
CoreOrb[1]=0,1  #N and O core orbitals (spin down)
end

*xyz 0 2
  N           0.00000000000000      0.00000000000000      0.00490803701002
  O           0.00000000000000      0.00000000000000      1.14109196298998
*

and its corresponding output

----------------------
UHF STEOM-CCSD RESULTS
----------------------

IROOT=  1: 14.743862 au   401.201 eV 3235903.7 cm**-1 <S**2>= 0.877361  Sym: A2
  Amplitude    Excitation
   0.637991     7a ->   8a
   0.750732     6b ->   7b
   0.136839     6b ->  10b

Percentage Active Character     99.93

  Amplitude    Excitation in Canonical Basis
  -0.613647     1a ->   8a
  -0.186064     1a ->  11a
  -0.722892     1b ->   7b
  -0.225768     1b ->  10b

IROOT=  2: 14.786433 au   402.359 eV 3245247.0 cm**-1 <S**2>= 0.849392  Sym: A1
  Amplitude    Excitation
   0.985414     6b ->   8b
   0.154505     6b ->  11b

Percentage Active Character     99.49

  Amplitude    Excitation in Canonical Basis
  -0.954188     1b ->   8b
   0.267334     1b ->  12b
  -0.121297     1b ->  16b

IROOT=  3: 14.794166 au   402.570 eV 3246944.1 cm**-1 <S**2>= 2.669487  Sym: A2
  Amplitude    Excitation
  -0.772273     7a ->   8a
   0.623458     6b ->   7b

Percentage Active Character     99.47

  Amplitude    Excitation in Canonical Basis
   0.754282     1a ->   8a
   0.166288     1a ->  11a
  -0.611046     1b ->   7b
  -0.132336     1b ->  10b

IROOT=  4: 15.243078 au   414.785 eV 3345469.0 cm**-1 <S**2>= 1.387083  Sym: B1
  Amplitude    Excitation
  -0.682643     7a ->   9a
  -0.101529     7a ->  11a
  -0.697873     6b ->   9b
  -0.133350     6b ->  12b

Percentage Active Character     98.11

  Amplitude    Excitation in Canonical Basis
   0.573243     1a ->   9a
   0.237647     1a ->  12a
  -0.265168     1a ->  13a
  -0.165128     1a ->  14a
   0.583678     1b ->   9b
   0.348965     1b ->  11b
   0.201568     1b ->  14b

IROOT=  5: 15.285144 au   415.930 eV 3354701.4 cm**-1 <S**2>= 2.434830  Sym: B1
  Amplitude    Excitation
  -0.690438     7a ->   9a
  -0.146046     7a ->  13a
   0.676597     6b ->   9b
   0.173127     6b ->  13b

Percentage Active Character     93.48


------------------------- Handle with Care ----------------------------

Warning:: State   5 may have not converged with respect to active space
-----------------------------------------------------------------------
  Amplitude    Excitation in Canonical Basis
   0.645706     1a ->   9a
   0.148300     1a ->  12a
  -0.211256     1a ->  13a
  -0.147915     1a ->  14a
  -0.643471     1b ->   9b
  -0.207585     1b ->  11b
  -0.158649     1b ->  14b

IROOT=  6: 19.682450 au   535.587 eV 4319798.5 cm**-1 <S**2>= 2.233840  Sym: A2
  Amplitude    Excitation
  -0.952369     6a ->   8a
  -0.128170     6a ->  10a
  -0.262026     5b ->   7b

Percentage Active Character     99.52

  Amplitude    Excitation in Canonical Basis
  -0.940546     0a ->   8a
   0.202713     0a ->  16a
  -0.254077     0b ->   7b

IROOT=  7: 19.714860 au   536.469 eV 4326911.7 cm**-1 <S**2>= 1.012274  Sym: A2
  Amplitude    Excitation
  -0.427285     6a ->   8a
   0.895703     5b ->   7b

Percentage Active Character     99.27

  Amplitude    Excitation in Canonical Basis
  -0.425513     0a ->   8a
   0.883394     0b ->   7b
  -0.176873     0b ->  15b

IROOT=  8: 19.746849 au   537.339 eV 4333932.5 cm**-1 <S**2>= 0.787890  Sym: A1
  Amplitude    Excitation
   0.992767     5b ->   8b

Percentage Active Character     99.45

  Amplitude    Excitation in Canonical Basis
   0.973851     0b ->   8b
   0.215849     0b ->  16b

IROOT=  9: 20.119392 au   547.476 eV 4415696.1 cm**-1 <S**2>= 2.441183  Sym: B1
  Amplitude    Excitation
   0.771305     6a ->   9a
  -0.127276     6a ->  11a
   0.122051     6a ->  13a
   0.592132     5b ->   9b

Percentage Active Character     96.84