2. Publications Related to ORCA¶
The generic references for ORCA are:
Neese, Frank. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2012, 2 (1), 73–78. DOI: http://doi.wiley.com/10.1002/wcms.81.
Neese, Frank. Software update: the ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8 (1), e1327. DOI: http://doi.wiley.com/10.1002/wcms.1327.
Neese, Frank. Software update: The ORCA program system—Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2022, 12 (5), e1606. DOI: 10.1002/wcms.1606.
Neese, Frank. Software Update: The ORCA Program System—Version 6.0. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2025, 15 (2), e70019. DOI: 10.1002/wcms.70019.
Neese, Frank; Wennmohs, Frank; Becker, Ute; Riplinger, Christoph. The ORCA quantum chemistry program package. J. Chem. Phys., 2020, 152 (22), 224108. DOI: https://aip.scitation.org/doi/10.1063/5.0004608.
Please do not only cite the above generic reference, but also cite in addition the original papers that report the development and implementation of the methods you have used in your studies! The following publications describe functionality implemented in . We would highly appreciate if you cite them when you use the program.
2.1. Method development¶
2.1.1. 2025¶
Wittmann, Lukas; Garcia-Ratés, Miquel; Riplinger, Christoph. Analytical First Derivatives of the SCF Energy for the Conductor-like Polarizable Continuum Model with Non-Static Radii. J. Comput. Chem., 2025. DOI: 10.1002/jcc.70099.
Müller, Simon; Nevolianis, Thomas; Garcia-Ratés, Miquel; Riplinger, Christoph; Leonhard, Kai; Smirnova, Irina. Predicting solvation free energies for neutral molecules in any solvent with openCOSMO-RS. Fluid Phase Equilibria, 2025, 589, 114250. DOI: 10.1016/j.fluid.2024.114250.
Kempfer, Emily M.; Sivalingam, Kantharuban; Neese, Frank. Efficient Implementation of Approximate Fourth Order N-Electron Valence State Perturbation Theory. J. Chem. Theory Comput., 2025, 21 (8), 3953–3967. DOI: 10.1021/acs.jctc.4c01735.
Guo, Yang; Sivalingam, Kantharuban; Chilkuri, Vijay Gopal; Neese, Frank. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). III. Large active space calculations with selected configuration interaction reference. J. Chem. Phys., 2025, 162 (14), 144110. DOI: 10.1063/5.0262473.
Helmich-Paris, Benjamin; Kjellgren, Erik Rosendahl; Jensen, Hans Jørgen Aa. Excited-State Methods Based on State-Averaged Long-Range CASSCF Short-Range DFT. under review in Phys. Chem. Chem. Phys., 2025.
de Souza, Bernardo. GOAT: A Global Optimization Algorithm for Molecules and Atomic Clusters. Angew. Chem. Int. Ed., 2025, 64 (18), e202500393. DOI: 10.1002/anie.202500393.
Leyser da Costa Gouveia, Tiago; Maganas, Dimitrios; Neese, Frank. General Spin-Restricted Open-Shell Configuration Interaction Approach: Application to Metal K-Edge X-ray Absorption Spectra of Ferro- and Antiferromagnetically Coupled Dimers. The Journal of Physical Chemistry A, 2025, 129 (1), 330–345. PMID: 39680653. arXiv:https://doi.org/10.1021/acs.jpca.4c05228, DOI: 10.1021/acs.jpca.4c05228.
Casanova-Páez, M.; Neese, F. Core-Excited States for Open-Shell Systems in Similarity-Transformed Equation-of-Motion Theory. J. Chem. Theory Comput., 2025, 21 (3), 1306–1321. DOI: 10.1021/acs.jctc.4c01181.
Regni, Gianluca; Baldinelli, Lorenzo; Bistoni, Giovanni. A Quantum Chemical Method for Dissecting London Dispersion Energy into Atomic Building Blocks (In press). 2025. DOI: 10.1021/acscentsci.5c00356.
Colinet, Pauline; Neese, Frank; Helmich-Paris, Benjamin. Improving the Efficiency of Electrostatic Embedding Using the Fast Multipole Method. J. Comput. Chem., 2025, 46 (1), e27532. DOI: 10.1002/jcc.27532.
Neese, Frank; Colinet, Pauline; DeSouza, Bernardo; Helmich-Paris, Benjamin; Wennmohs, Frank; Becker, Ute. The “Bubblepole” (BUPO) Method for Linear-Scaling Coulomb Matrix Construction with or without Density Fitting. J. Phys. Chem. A, 2025, 129 (10), 2618–2637. DOI: 10.1021/acs.jpca.4c07415.
Lang, Lucas; Chilkuri, Vijay Gopal; Neese, Frank. Treating Spin–Orbit Coupling and Spin–Spin Coupling in the Framework of the Iterative Configuration Expansion Selected CI method (In press). 2025. DOI: 10.1021/acs.jctc.5c00463.
2.1.2. 2024¶
Leyser da Costa Gouveia, Tiago; Maganas, Dimitrios; Neese, Frank. Restricted Open-Shell Hartree–Fock Method for a General Configuration State Function Featuring Arbitrarily Complex Spin-Couplings. J. Phys. Chem. A, 2024, 128 (25), 5041–5053. PMID: 38886177. DOI: 10.1021/acs.jpca.4c00688.
Lechner, M. H.; Papadopoulos, A.; Sivalingam, K.; Auer, A. A.; Koslowski, A.; Becker, U.; Wennmohs, F.; Neese, F. Code generation in ORCA: Progress, Efficiency and Tight integration. Phys. Chem. Chem. Phys., 2024, 26 (21), 15205–15220.
Rao, Shashank V.; Maganas, Dimitrios; Sivalingam, Kantharuban; Atanasov, Mihail; Neese, Frank. Extended Active Space Ab Initio Ligand Field Theory: Applications to Transition-Metal Ions. Inorg. Chem., 2024, 63 (52), 24672–24684. Publisher: American Chemical Society. DOI: 10.1021/acs.inorgchem.4c03893.
Casanova-Páez, M.; Neese, F. Assessment of the similarity-transformed equation of motion (STEOM) for open-shell organic and transition metal molecules. J. Chem. Phys., 2024, 161, 1444120–XXXX. DOI: 10.1063/5.0234225.
Wittmann, Lukas; Gordiy, Igor; Friede, Marvin; Helmich-Paris, Benjamin; Grimme, Stefan; Hansen, Andreas; Bursch, Markus. Extension of the D3 and D4 London dispersion corrections to the full actinides series. Phys. Chem. Chem. Phys., 2024, 26, 21379–21394. DOI: 10.1039/D4CP01514B.
2.1.3. 2023¶
Guo, Yang; Pavošević, Fabijan; Sivalingam, Kantharuban; Becker, Ute; Valeev, Edward F.; Neese, Frank. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. VI. Linear-scaling explicitly correlated N-electron valence state perturbation theory with pair natural orbital. J. Chem. Phys., 2023, 158 (12), 124120. DOI: 10.1063/5.0144260.
Foglia, Nicolás; De Souza, Bernardo; Maganas, Dimitrios; Neese, Frank. Including vibrational effects in magnetic circular dichroism spectrum calculations in the framework of excited state dynamics. J. Chem. Phys., 2023, 158 (15), 154108. DOI: 10.1063/5.0144845.
Neese, Frank. The SHARK integral generation and digestion system. J. Comp. Chem., 2023, 44 (3), 381–396. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.26942, DOI: 10.1002/jcc.26942.
2.1.4. 2022¶
Helmich-Paris, Benjamin. A trust-region augmented Hessian implementation for state-specific and state-averaged CASSCF wave functions. J. Chem. Phys., 2022, 156 (20), 204104. Publisher: American Institute of Physics. DOI: 10.1063/5.0090447.
Guo, Yang; Pavošević, Fabijan; Sivalingam, Kantharuban; Becker, Ute; Valeev, Edward F.; Neese, Frank. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. VI. Linear-scaling explicitly correlated N-electron valence state perturbation theory with pair natural orbital. J. Chem. Phys., 2023, 158 (12), 124120. DOI: 10.1063/5.0144260.
Foglia, Nicolás O.; Maganas, Dimitrios; Neese, Frank. Going beyond the electric-dipole approximation in the calculation of absorption and (magnetic) circular dichroism spectra including scalar relativistic and spin–orbit coupling effects. J. Chem. Phys., 2022, 157 (8), 084120. arXiv:10.1063/5.0094709, DOI: 10.1063/5.0094709.
2.1.5. 2021¶
Helmich-Paris, Benjamin. A Trust-Region Augmented Hessian Implementation for Restricted and Unrestricted Hartree–Fock and Kohn–Sham Methods. J. Chem. Phys., 2021, 154 (16), 164104. DOI: 10.1063/5.0040798.
Helmich-Paris, Benjamin; de Souza, Bernardo; Neese, Frank; Izsák, Róbert. An improved chain of spheres for exchange algorithm. J. Chem. Phys., 2021, 155 (10), 104109. DOI: 10.1063/5.0058766.
Garcia-Ratés, M.; Becker, U.; Neese, F. Implicit Solvation in Domain Based Pair Natural Orbital Coupled Cluster (DLPNO-CCSD) Theory. J. Comput. Chem., 2021, 42 (27), 1959–1973. DOI: 10.1002/jcc.26726.
Stoychev, Georgi L.; Auer, Alexander A.; Gauss, Jürgen; Neese, Frank. DLPNO-MP2 Second Derivatives for the Computation of Polarizabilities and NMR Shieldings. J. Chem. Phys., 2021, 154 (16), 164110. DOI: 10.1063/5.0047125.
Guo, Y.; Li, W.; Li, S. Improved Cluster-in-Molecule Local Correlation Approach for Electron Correlation Calculation of Large Systems. J. Phys. Chem. A, 2014, 118 (39), 8996–9004. DOI: 10.1021/jp501976x.
Guo, Yang; Sivalingam, Kantharuban; Neese, Frank. Approximations of Density Matrices in N-Electron Valence State Second-Order Perturbation Theory (NEVPT2). I. Revisiting the NEVPT2 Construction. J. Chem. Phys., 2021, 154 (21), 214111. DOI: 10.1063/5.0051211.
Guo, Yang; Sivalingam, Kantharuban; Kollmar, Christian; Neese, Frank. Approximations of Density Matrices in N-Electron Valence State Second-Order Perturbation Theory (NEVPT2). II. The Full Rank NEVPT2 (FR-NEVPT2) Formulation. J. Chem. Phys., 2021, 154 (21), 214113. DOI: 10.1063/5.0051218.
Chilkuri, Vijay Gopal; Neese, Frank. Comparison of Many-Particle Representations for Selected-CI I: A Tree Based Approach. J. Comput. Chem., 2021, 42 (14), 982–1005. DOI: 10.1002/jcc.26518.
Chilkuri, Vijay Gopal; Neese, Frank. Comparison of Many-Particle Representations for Selected Configuration Interaction: II. Numerical Benchmark Calculations. J. Chem. Theory Comput., 2021, 17 (5), 2868–2885. DOI: 10.1021/acs.jctc.1c00081.
Kollmar, Christian; Sivalingam, Kantharuban; Guo, Yang; Neese, Frank. An efficient implementation of the NEVPT2 and CASPT2 methods avoiding higher-order density matrices. J. Chem. Phys., 2021, 155 (23), 234104. DOI: 10.1063/5.0072129.
Helmich-Paris, Benjamin. Simulating X-ray absorption spectra with complete active space self-consistent field linear response methods. Int. J. Quantum Chem., 2021, 121 (3), e26559. DOI: 10.1002/qua.26559.
Ni, Z. G.; Guo, Y.; Neese, F.; Li, W.; Li, S. H. Cluster-in-Molecule Local Correlation Method with an Accurate Distant Pair Correction for Large Systems. J. Chem. Theo. Comp., 2021, 17, 756–766.
2.1.6. 2020¶
Rolfes, Julian D.; Neese, Frank; Pantazis, Dimitrios A. All-Electron Scalar Relativistic Basis Sets for the Elements Rb–Xe. J. Comput. Chem., 2020, 41, 1842–1849. DOI: 10.1002/jcc.26355.
Garcia-Ratés, M.; Neese, F. Effect of the Solute Cavity on the Solvation Energy and its Derivatives within the Framework of the Gaussian Charge Scheme. J. Comput. Chem., 2020, 41 (9), 922–939. DOI: 10.1002/jcc.26139.
Tran, Van Anh; Neese, Frank. Double-Hybrid Density Functional Theory for g-Tensor Calculations Using Gauge Including Atomic Orbitals. J. Chem. Phys., 2020, 153 (5), 054105. DOI: 10.1063/5.0013799.
Lang, Lucas; Atanasov, Mihail; Neese, Frank. Improvement of Ab Initio Ligand Field Theory by Means of Multistate Perturbation Theory. J. Phys. Chem. A, 2020, 124 (5), 1025–1037. DOI: 10.1021/acs.jpca.9b11227.
Lang, Lucas; Sivalingam, Kantharuban; Neese, Frank. The Combination of Multipartitioning of the Hamiltonian with Canonical Van Vleck Perturbation Theory Leads to a Hermitian Variant of Quasidegenerate N-Electron Valence Perturbation Theory. J. Chem. Phys., 2020, 152 (1), 014109. DOI: 10.1063/1.5133746.
Kollmar, Christian; Sivalingam, Kantharuban; Neese, Frank. An Alternative Choice of the Zeroth-Order Hamiltonian in CASPT2 Theory. J. Chem. Phys., 2020, 152 (21), 214110. DOI: 10.1063/5.0010019.
Lang, Lucas; Ravera, Enrico; Parigi, Giacomo; Luchinat, Claudio; Neese, Frank. Solution of a Puzzle: High-Level Quantum-Chemical Treatment of Pseudocontact Chemical Shifts Confirms Classic Semiempirical Theory. J. Phys. Chem. Lett., 2020, 11 (20), 8735–8744.
Altun, A.; Neese, F.; Bistoni, G. Extrapolation to the Limit of a Complete Pair Natural Orbital Space in Local Coupled-Cluster Calculations. J. Chem. Theory Comput., 2020, 16 (10), 6142–6149. DOI: 10.1021/acs.jctc.0c00344.
Auer, A. A.; Tran, V. A.; Sharma, B.; Stoychev, G. L.; Marx, D.; Neese, F. A case study of density functional theory and domain-based local pair natural orbital coupled cluster for vibrational effects on EPR hyperfine coupling constants: vibrational perturbation theory versus ab initio molecular dynamics. Mol. Phys., 2020, 118 (19-20), e1797916. DOI: 10.1080/00268976.2020.1797916.
Datta, Dipayan; Saitow, Masaaki; Sandhöfer, Barbara; Neese, Frank. 57Fe Mössbauer parameters from domain based local pair-natural orbital coupled-cluster theory. J. Chem. Phys., 2020, 153 (20), 204101. DOI: 10.1063/5.0022215.
Dittmer, A.; Stoychev, G. L.; Maganas, D.; Auer, A. A.; Neese, F. Computation of NMR Shielding Constants for Solids Using an Embedded Cluster Approach with DFT, Double-Hybrid DFT, and MP2. J. Chem. Theory Comput., 2020, 16 (11), 6950–6967. DOI: 10.1021/acs.jctc.0c00067.
Guo, Yang; Riplinger, Christoph; Liakos, Dimitrios G.; Becker, Ute; Saitow, Masaaki; Neese, Frank. Linear scaling perturbative triples correction approximations for open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory [DLPNO-CCSD(T/T)]. J. Chem. Phys., 2020, 152 (2), 024116. DOI: 10.1063/1.5127550.
Kumar, A.; Neese, F.; Valeev, E. F. Explicitly correlated coupled cluster method for accurate treatment of open-shell molecules with hundreds of atoms. J. Chem. Phys., 2020, 153 (9), 17. DOI: 10.1063/5.0012753.
Liakos, D. G.; Guo, Y.; Neese, F. Comprehensive Benchmark Results for the Domain Based Local Pair Natural Orbital Coupled Cluster Method (DLPNO-CCSD(T)) for Closed- and Open-Shell Systems. J. Phys. Chem. A, 2020, 124 (1), 90–100. DOI: 10.1021/acs.jpca.9b05734.
Neese, Frank; Wennmohs, Frank; Becker, Ute; Riplinger, Christoph. The ORCA quantum chemistry program package. J. Chem. Phys., 2020, 152 (22), 224108. DOI: https://aip.scitation.org/doi/10.1063/5.0004608.
2.1.7. 2019¶
Pinski, Peter; Neese, Frank. Analytical Gradient for the Domain-Based Local Pair Natural Orbital Second Order Møller-Plesset Perturbation Theory Method (DLPNO-MP2). J. Chem. Phys., 2019, 150, 164102.
Kollmar, Christian; Sivalingam, Kantharuban; Helmich-Paris, Benjamin; Angeli, Celestino; Neese, Frank. A perturbation-based super-CI approach for the orbital optimization of a CASSCF wave function. J. Comput. Chem., 2019, 40 (14), 1463–1470. DOI: 10.1002/jcc.25801.
Lang, Lucas; Neese, Frank. Spin-Dependent Properties in the Framework of the Dynamic Correlation Dressed Complete Active Space Method. J. Chem. Phys., 2019, 150 (10), 104104. DOI: 10.1063/1.5085203.
Maganas, Dimitrios; Kowalska, Joanna K.; Nooijen, Marcel; DeBeer, Serena; Neese, Frank. Comparison of Multireference Ab Initio Wavefunction Methodologies for X-Ray Absorption Edges: A Case Study on [Fe(II/III)Cl₄]²⁻/¹⁻ Molecules. J. Chem. Phys., 2019, 150 (10), 104106. DOI: 10.1063/1.5051613.
Helmich-Paris, Benjamin. CASSCF Linear Response Calculations for Large Open-Shell Molecules. J. Chem. Phys., 2019, 150 (17), 174121. DOI: 10.1063/1.5092613.
de Souza, Bernardo; Farias, Giliandro; Neese, Frank; Izsak, Robert. Efficient Simulation of Overtones and Combination Bands in Resonant Raman Spectra. J. Chem. Phys., 2019, 150 (21), 044105. DOI: 10.1063/1.5099247.
Altun, Ahmet; Neese, Frank; Bistoni, Giovanni. HFLD: A Nonempirical London Dispersion-Corrected Hartree–Fock Method for the Quantification and Analysis of Noncovalent Interaction Energies of Large Molecular Systems. J. Chem. Theory Comput., 2019, 15 (11), 5894–5907. arXiv:10.1021/acs.jctc.9b00425, DOI: 10.1021/acs.jctc.9b00425.
Altun, A.; Neese, F.; Bistoni, G. Open-Shell Variant of the London Dispersion-Corrected Hartree-Fock Method HFLD for the Quantification and Analysis of Noncovalent Interaction Energies. J. Chem. Theory Comput., 2022, 18 (4), 2292–2307. DOI: 10.1021/acs.jctc.1c01295.
Dutta, Achintya Kumar; Saitow, Masaaki; Demoulin, Baptiste; Neese, Frank; Izsák, Róbert. A domain-based local pair natural orbital implementation of the equation of motion coupled cluster method for electron attached states. J. Chem. Phys., 2019, 150 (16), 164123. DOI: 10.1063/1.5089637.
Garcia-Ratés, M.; Neese, F. Efficient implementation of the analytical second derivatives of hartree-fock and hybrid DFT energies within the framework of the conductor-like polarizable continuum model. J. Comput. Chem., 2019, 40 (20), 1816–1828. DOI: 10.1002/jcc.25833.
Haldar, S.; Riplinger, C.; Demoulin, B.; Neese, F.; Izsak, R.; Dutta, A. K. Multilayer Approach to the IP-EOM-DLPNO-CCSD Method: Theory, Implementation, and Application. J. Chem. Theory Comput., 2019, 15 (4), 2265–2277. DOI: 10.1021/acs.jctc.8b01263.
Lang, J.; Brabec, J.; Saitow, M.; Pittner, J.; Neese, F.; Demel, O. Perturbative triples correction to domain-based local pair natural orbital variants of Mukherjee's state specific coupled cluster method. Phys. Chem. Chem. Phys., 2019, 21 (9), 5022–5038. DOI: 10.1039/c8cp03577f.
Saitow, M.; Dutta, A. K.; Neese, F. Accurate Ionization Potentials, Electron Affinities and Electronegativities of Single-Walled Carbon Nanotubes by State-of-the-Art Local Coupled-Cluster Theory. Bull. Chem. Soc. Jpn., 2019, 92 (1), 170–174. DOI: 10.1246/bcsj.20180254.
2.1.8. 2018¶
Stoychev, Georgi L.; Auer, Alexander A.; Neese, Frank. Efficient and Accurate Prediction of Nuclear Magnetic Resonance Shielding Tensors with Double-Hybrid Density Functional Theory. J. Chem. Theory Comput., 2018, 14 (9), 4756–4771. DOI: 10.1021/acs.jctc.8b00624.
Pinski, Peter; Neese, Frank. Communication: Exact Analytical Derivatives for the Domain-Based Local Pair Natural Orbital MP2 Method (DLPNO-MP2). J. Chem. Phys., 2018, 148, 031101. DOI: 10.1063/1.5011204.
Guo, Yang; Becker, Ute; Neese, Frank. Comparison and Combination of “Direct” and Fragment Based Local Correlation Methods: Cluster in Molecules and Domain Based Local Pair Natural Orbital Perturbation and Coupled Cluster Theories. J. Chem. Phys., 2018, 148 (12), 124117. DOI: 10.1063/1.5021898.
Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G.; Minenkov, Yury; Cavallo, Luigi; Neese, Frank. Communication: An Improved Linear Scaling Perturbative Triples Correction for the Domain Based Local Pair-Natural Orbital Based Singles and Doubles Coupled Cluster Method [DLPNO-CCSD(T)]. J. Chem. Phys., 2018, 148 (1), 011101. DOI: 10.1063/1.5011798.
de Souza, Bernardo; Neese, Frank; Izsak, Robert. On the Theoretical Prediction of Fluorescence Rates from First Principles Using the Path Integral Approach. J. Chem. Phys., 2018, 148 (3), 034104. DOI: 10.1063/1.5010895.
Maganas, D.; DeBeer, S.; Neese, F. Pair Natural Orbital Restricted Open-Shell Configuration Interaction (PNO-ROCIS) Approach for Calculating x-Ray Absorption Spectra of Large Chemical Systems. J. Phys. Chem. A, 2018, 122 (5), 1215–1227. DOI: 10.1021/acs.jpca.7b10880.
Stoychev, Georgi L; Auer, Alexander A; Izsák, Róbert; Neese, Frank. Self-Consistent Field Calculation of Nuclear Magnetic Resonance Chemical Shielding Constants Using Gauge-Including Atomic Orbitals and Approximate Two-Electron Integrals. J. Chem. Theory Comput., 2018, 14 (2), 619–637. DOI: 10.1021/acs.jctc.7b01006.
Saitow, Masaaki; Neese, Frank. Accurate Spin-Densities Based on the Domain-Based Local Pair-Natural Orbital Coupled-Cluster Theory. J. Chem. Phys., 2018, 149, 034104. DOI: 10.1063/1.5027114.
Bistoni, G.; Polyak, I.; Sparta, M.; Thiel, W.; Neese, F. Toward Accurate QM/MM Reaction Barriers with Large QM Regions Using Domain Based Pair Natural Orbital Coupled Cluster Theory. J. Chem. Theory Comput., 2018, 14 (7), 3524–3531. DOI: 10.1021/acs.jctc.8b00348.
Brabec, J.; Lang, J.; Saitow, M.; Pittner, J.; Neese, F.; Demel, O. Domain-Based Local Pair Natural Orbital Version of Mukherjee's State-Specific Coupled Cluster Method. J. Chem. Theory Comput., 2018, 14 (3), 1370–1382. DOI: 10.1021/acs.jctc.7b01184.
Dutta, A. K.; Neese, F.; Izsak, R. Accelerating the Coupled-Cluster Singles and Doubles Method Using the Chain-of-Sphere Approximation. Mol. Phys., 2018, 116 (11), 1428–1434. DOI: 10.1080/00268976.2017.1416201.
Dutta, A. K.; Saitow, M.; Riplinger, C.; Neese, F.; Izsak, R. A Nearlinear Scaling Equation of Motion Coupled Cluster Method for Ionized States. J. Chem. Phys., 2018, 148 (24), 13. DOI: 10.1063/1.5029470.
Dutta, A. K.; Nooijen, M.; Neese, F.; Izsak, R. Exploring the Accuracy of a Low Scaling Similarity Transformed Equation of Motion Method for Vertical Excitation Energies. J. Chem. Theory Comput., 2018, 14 (1), 72–91. DOI: 10.1021/acs.jctc.7b00802.
Melo, M. C. R.; Bernardi, R. C.; Rudack, T.; Scheurer, M.; Riplinger, C.; Phillips, J. C.; Maia, J. D. C.; Rocha, G. B.; Ribeiro, J. V.; Stone, J. E.; Neese, F.; Schulten, K.; Luthey-Schulten, Z. NAMD Goes Quantum: An Integrative Suite for Hybrid Simulations. Nat. Methods, 2018, 15 (5), 351–354. DOI: 10.1038/nmeth.4638.
Neese, Frank. Software update: the ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8 (1), e1327. DOI: http://doi.wiley.com/10.1002/wcms.1327.
Sen, Avijit; de Souza, Bernardo; Huntington, Lee M. J.; Krupička, Martin; Neese, Frank; Izsák, Róbert. An Efficient Pair Natural Orbital Based Configuration Interaction Scheme for the Calculation of Open-Shell Ionization Potentials. J. Chem. Phys., 2018, 149 (11), 114108.
2.1.9. 2017¶
Stoychev, Georgi L.; Auer, Alexander A.; Neese, Frank. Automatic Generation of Auxiliary Basis Sets. J. Chem. Theory Comput., 2017, 13 (2), 554. DOI: 10.1021/acs.jctc.6b01041.
Sparta, Manuel; Retegan, Marius; Pinski, Peter; Riplinger, Christoph; Becker, Ute; Neese, Frank. Multilevel Approaches within the Local Pair Natural Orbital Framework. J. Chem. Theory Comput., 2017, 13 (7), 3198–3207. DOI: 10.1021/acs.jctc.7b00260.
Krupička, Martin; Sivalingam, Kantharuban; Huntington, Lee; Auer, Alexander A.; Neese, Frank. A toolchain for the automatic generation of computer codes for correlated wavefunction calculations. J. Comput. Chem., 2017, 38 (21), 1853–1868. DOI: 10.1002/jcc.24833.
Saitow, M.; Becker, U.; Riplinger, C.; Valeev, E. F.; Neese, F. J. Chem. Phys., 2017, 146, 164105.
Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F.; Neese, Frank. Explicitly Correlated N-Electron Valence State Perturbation Theory (NEVPT2-F12). J. Chem. Phys., 2017, 147 (6), 064110. DOI: 10.1063/1.4996560.
Pathak, Shubhrodeep; Lang, Lucas; Neese, Frank. A Dynamic Correlation Dressed Complete Active Space Method: Theory, Implementation, and Preliminary Applications. J. Chem. Phys., 2017, 147, 234109.
Huntington, L .M. J.; Krupička, M.; Neese, F.; Izsák, R. Similarity transformed equation of motion coupled-cluster theory based on an unrestricted Hartree-Fock reference for applications to high-spin open-shell systems. J. Chem. Phys., 2017, 147, 174104.
Dutta, Achintya Kumar; Nooijen, Marcel; Neese, Frank; Izsák, Róbert. Automatic active space selection for the similarity transformed equations of motion coupled cluster method. J. Chem. Phys., 2017, 146 (7), 074103.
Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert. A simple scheme for calculating approximate transition moments within the equation of motion expectation value formalism. J. Chem. Phys., 2017, 146 (21), 214111.
Grimme, Stefan; Bannwarth, Christoph; Dohm, Sebastian; Hansen, Andreas; Pisarek, Jana; Pracht, Philipp; Seibert, Jakob; Neese, Frank. Fully Automated Quantum-Chemistry-Based Computation of Spin–Spin-Coupled Nuclear Magnetic Resonance Spectra. Angew. Chem. Int. Ed., 2017, 56 (46), 14763–14769. DOI: 10.1002/anie.201708266.
Kalinowski, Jaroslaw; Wennmohs, Frank; Neese, Frank. Arbitrary angular momentum electron repulsion integrals with graphical processing units: Application to the resolution of identity hartree–fock method. J. Chem. Theory Comput., 2017, 13 (7), 3160–3170.
Maganas, Dimitrios; DeBeer, Serena; Neese, Frank. A Restricted Open Configuration Interaction with Singles Method To Calculate Valence-to-Core Resonant X-ray Emission Spectra: A Case Study. Inorg. Chem., 2017, 56 (19), 11819–11836. DOI: 10.1021/acs.inorgchem.7b01810.
Mai, Sebastian; Plasser, Felix; Pabst, Mathias; Neese, Frank; Köhn, Andreas; González, Leticia. Surface Hopping Dynamics Including Intersystem Crossing Using the Algebraic Diagrammatic Construction Method. J. Chem. Phys., 2017, 147 (18), 184109. DOI: 10.1063/1.4999687.
Pavošević, Fabijan; Peng, Chong; Pinski, Peter; Riplinger, Christoph; Neese, Frank; Valeev, Edward F. SparseMaps—A systematic infrastructure for reduced scaling electronic structure methods. V. Linear scaling explicitly correlated coupled-cluster method with pair natural orbitals. J. Chem. Phys., 2017, 146 (17), 174108.
Veis, Libor; Antalík, Andrej; Brabec, Jiri; Neese, Frank; Legeza, Ors; Pittner, Jiri. Coupled cluster method with single and double excitations tailored by matrix product state wave functions. J. Phys. Chem. Lett., 2016, 7 (20), 4072–4078.
2.2. Relevant Applications, Benchmarks and Reviews¶
2.2.1. 2024¶
Gray, Montgomery; Herbert, John M. Assessing the domain-based local pair natural orbital (DLPNO) approximation for non-covalent interactions in sizable supramolecular complexes. J. Chem. Phys., 2024, 161 (5), 054114. arXiv:https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0206533/20096343/054114\_1\_5.0206533.pdf, DOI: 10.1063/5.0206533.
2.2.2. 2023¶
Neugebauer, Hagen; Pinski, Peter; Grimme, Stefan; Neese, Frank; Bursch, Markus. Assessment of DLPNO-MP2 Approximations in Double-Hybrid DFT. J. Chem. Theory Comput., 2023, 19 (21), 7695–7703. DOI: 10.1021/acs.jctc.3c00896.
Wappett, Dominique A.; Goerigk, Lars. Exploring CPS-Extrapolated DLPNO–CCSD(T1) Reference Values for Benchmarking DFT Methods on Enzymatically Catalyzed Reactions. J. Phys. Chem. A, 2024, 128 (1), 62–72. DOI: 10.1021/acs.jpca.3c05086.
Wang, Zikuan; Neese, Frank. Development of NOTCH, an all-electron, beyond-NDDO semiempirical method: Application to diatomic molecules. The Journal of Chemical Physics, 2023, 158 (18), 184102. DOI: 10.1063/5.0141686.
2.2.3. 2022¶
Bursch, Markus; Mewes, Jan-Michael; Hansen, Andreas; Grimme, Stefan. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry. Angew. Chem. Int. Ed., 2022, 61 (42), e202205735. DOI: 10.1002/anie.202205735.
2.2.4. 2021¶
Brémond, Éric; Sancho-García, Juan Carlos; Pérez-Jiménez, Ángel José; Adamo, Carlo. J. Chem. Phys., 2014, 141, 031101.
Beck, M. E.; Riplinger, C.; Neese, F.; Bistoni, G. Unraveling Individual Host-Guest Interactions in Molecular Recognition from First Principles Quantum Mechanics: Insights into the Nature of Nicotinic Acetylcholine Receptor Agonist Binding. J. Comput. Chem., 2021, 42 (5), 293–302. DOI: 10.1002/jcc.26454.
Berraud-Pache, R.; Santamaria-Aranda, E.; de Souza, B.; Bistoni, G.; Neese, F.; Sampedro, D.; Izsak, R. Redesigning Donor-Acceptor Stenhouse Adduct Photoswitches through a Joint Experimental and Computational Study. Chem. Sci., 2021, 12 (8), 2916–2924. DOI: 10.1039/d0sc06575g.
Bursch, Markus; Hansen, Andreas; Pracht, Philipp; Kohn, Julia T.; Grimme, Stefan. Theoretical study on conformational energies of transition metal complexes. Phys. Chem. Chem. Phys., 2021, 23, 287–299. DOI: 10.1039/D0CP04696E.
Daniel, C.; Gonzalez, L.; Neese, F. Quantum Theory: The Challenge of Transition Metal Complexes. Phys. Chem. Chem. Phys., 2021, 23 (4), 2533–2534. DOI: 10.1039/d0cp90278k.
Maurer, Leonard R.; Bursch, Markus; Grimme, Stefan; Hansen, Andreas. Assessing Density Functional Theory for Chemically Relevant Open-Shell Transition Metal Reactions. J. Chem. Theory Comput., 2021, 17 (10), 6134–6151. DOI: 10.1021/acs.jctc.1c00659.
Schulz, C. E.; van Gastel, M.; Pantazis, D. A.; Neese, F. Converged Structural and Spectroscopic Properties for Refined QM/MM Models of Azurin. Inorg. Chem., 2021, 60 (10), 7399–7412. DOI: 10.1021/acs.inorgchem.1c00640.
Schulz, C. E.; Castillo, R. G.; Pantazis, D. A.; DeBeer, S.; Neese, F. Structure-Spectroscopy Correlations for Intermediate q of Soluble Methane Monooxygenase: Insights from QM/MM Calculations. J. Am. Chem. Soc., 2021, 143 (17), 6560–6577. DOI: 10.1021/jacs.1c01180.
Sirohiwal, A.; Neese, F.; Pantazis, D. A. How Can We Predict Accurate Electrochromic Shifts for Biochromophores? A Case Study on the Photosynthetic Reaction Center. J. Chem. Theory Comput., 2021, 17 (3), 1858–1873. DOI: 10.1021/acs.jctc.0c01152.
Sirohiwal, A.; Neese, F.; Pantazis, D. A. Chlorophyll excitation energies and structural stability of the CP47 antenna of photosystem II: a case study in the first-principles simulation of light-harvesting complexes. Chem. Sci., 2021, 12 (12), 4463–4476. DOI: 10.1039/d0sc06616h.
Tarrago, M.; Romelt, C.; Nehrkorn, J.; Schnegg, A.; Neese, F.; Bill, E.; Ye, S. F. Experimental and Theoretical Evidence for an Unusual Almost Triply Degenerate Electronic Ground State of Ferrous Tetraphenylporphyrin. Inorg. Chem., 2021, 60 (7), 4966–4985. DOI: 10.1021/acs.inorgchem.1c00031.
2.2.5. 2020¶
Rolfes, Julian D.; Neese, Frank; Pantazis, Dimitrios A. All-Electron Scalar Relativistic Basis Sets for the Elements Rb–Xe. J. Comput. Chem., 2020, 41, 1842–1849. DOI: 10.1002/jcc.26355.
Chilkuri, Vijay Gopal; DeBeer, Serena; Neese, Frank. Ligand Field Theory and Angular Overlap Model Based Analysis of the Electronic Structure of Homovalent Iron–Sulfur Dimers. Inorg. Chem., 2020, 59 (2), 984–995. DOI: 10.1021/acs.inorgchem.9b00974.
Sirohiwal, Abhishek; Berraud-Pache, Romain; Neese, Frank; Izsák, Róbert; Pantazis, Dimitrios A. Accurate Computation of the Absorption Spectrum of Chlorophyll a with Pair Natural Orbital Coupled Cluster Methods. J. Phys. Chem. B, 2020, 124 (40), 8761–8771. DOI: 10.1021/acs.jpcb.0c05761.
Chakarawet, K.; Atanasov, M.; Marbey, J.; Bunting, P. C.; Neese, F.; Hill, S.; Long, J. R. Strong Electronic and Magnetic Coupling in M-4 (m = Ni, Cu) Clusters via Direct Orbital Interactions between Low-Coordinate Metal Centers. J. Am. Chem. Soc., 2020, 142 (45), 19161–19169. DOI: 10.1021/jacs.0c08460.
Dittmer, A.; Stoychev, G. L.; Maganas, D.; Auer, A. A.; Neese, F. Computation of NMR Shielding Constants for Solids Using an Embedded Cluster Approach with DFT, Double-Hybrid DFT, and MP2. J. Chem. Theory Comput., 2020, 16 (11), 6950–6967. DOI: 10.1021/acs.jctc.0c00067.
Floser, B. M.; Guo, Y.; Riplinger, C.; Tuczek, F.; Neese, F. Detailed Pair Natural Orbital-Based Coupled Cluster Studies of Spin Crossover Energetics. J. Chem. Theory Comput., 2020, 16 (4), 2224–2235. DOI: 10.1021/acs.jctc.9b01109.
Gottschalk, H. C.; Poblotzki, A.; Fatima, M.; Obenchain, D. A.; Perez, C.; Antony, J.; Auer, A. A.; Baptista, L.; Benoit, D. M.; Bistoni, G.; Bohle, F.; Dahmani, R.; Firaha, D.; Grimme, S.; Hansen, A.; Harding, M. E.; Hochlaf, M.; Holzer, C.; Jansen, G.; Klopper, W.; Kopp, W. A.; Kroger, L. C.; Leonhard, K.; Al-Mogren, M. M.; Mouhib, H.; Neese, F.; Pereira, X. N.; Prakash, M.; Ulusoy, I. S.; Mata, R. A.; Suhm, M. A.; Schnell, M. The First Microsolvation Step for Furans: New Experiments and Benchmarking Strategies. J. Chem. Phys., 2020, 152 (16), 17. DOI: 10.1063/5.0004465.
Neugebauer, Hagen; Bohle, Fabian; Bursch, Markus; Hansen, Andreas; Grimme, Stefan. Benchmark Study of Electrochemical Redox Potentials Calculated with Semiempirical and DFT Methods. J. Phys. Chem. A, 2020, 124 (35), 7166–7176. DOI: 10.1021/acs.jpca.0c05052.
Hillenbrand, J.; van Gastel, M.; Bill, E.; Neese, F.; Furstner, A. Isolation of a Homoleptic Non-Oxo Mo(V) Alkoxide Complex: Synthesis, Structure, and Electronic Properties of Penta-Tert-Butoxymolybdenum. J. Am. Chem. Soc., 2020, 142 (38), 16392–16402. DOI: 10.1021/jacs.0c07073.
Jung, J.; Loffler, S. T.; Langmann, J.; Heinemann, F. W.; Bill, E.; Bistoni, G.; Scherer, W.; Atanasov, M.; Meyer, K.; Neese, F. Dispersion Forces Drive the Formation of Uranium-Alkane Adducts. J. Am. Chem. Soc., 2020, 142 (4), 1864–1870. DOI: 10.1021/jacs.9b10620.
Maganas, D.; Kowalska, J. K.; Van Stappen, C.; DeBeer, S.; Neese, F. Mechanism of L-2,L-3-Edge x-Ray Magnetic Circular Dichroism Intensity from Quantum Chemical Calculations and Experiment-A Case Study on V-(IV)/V-(III) Complexes. J. Chem. Phys., 2020, 152 (11), 15. DOI: 10.1063/1.5129029.
Meyer, F.; Neese, F. Impact of Modern Spectroscopy in Inorganic Chemistry. Inorg. Chem., 2020, 59 (19), 13805–13806. DOI: 10.1021/acs.inorgchem.0c02755.
Reza Ghafarian Shirazi, Dimitrios A. Pantazis; Neese, Frank. Performance of density functional theory and orbital-optimised second-order perturbation theory methods for geometries and singlet–triplet state splittings of aryl-carbenes. Mol. Phys., 2020, 118 (21-22), e1764644. DOI: 10.1080/00268976.2020.1764644.
Sirohiwal, A.; Neese, F.; Pantazis, D. A. Protein Matrix Control of Reaction Center Excitation in Photosystem II. J. Am. Chem. Soc., 2020, 142 (42), 18174–18190. DOI: 10.1021/jacs.0c08526.
Spiller, N.; Chilkuri, V. G.; DeBeer, S.; Neese, F. Sulfur vs. Selenium as Bridging Ligand in Di-Iron Complexes: A Theoretical Analysis. Eur. J. Inorg. Chem., 2020, 2020 (15-16), 1525–1538. DOI: 10.1002/ejic.202000033.
Yepes, D.; Neese, F.; List, B.; Bistoni, G. Unveiling the Delicate Balance of Steric and Dispersion Interactions in Organocatalysis Using High-Level Computational Methods. J. Am. Chem. Soc., 2020, 142 (7), 3613–3625. DOI: 10.1021/jacs.9b13725.
2.2.6. 2019¶
Maganas, Dimitrios; Kowalska, Joanna K.; Nooijen, Marcel; DeBeer, Serena; Neese, Frank. Comparison of Multireference Ab Initio Wavefunction Methodologies for X-Ray Absorption Edges: A Case Study on [Fe(II/III)Cl₄]²⁻/¹⁻ Molecules. J. Chem. Phys., 2019, 150 (10), 104106. DOI: 10.1063/1.5051613.
Helmich-Paris, Benjamin. Benchmarks for Electronically Excited States with CASSCF Methods. J. Chem. Theory Comput., 2019, 15 (7), 4170–4179. DOI: 10.1021/acs.jctc.9b00325.
Dittmer, Anneke; Izsák, Róbert; Neese, Frank; Maganas, Dimitrios. Accurate Band Gap Predictions of Semiconductors in the Framework of the Similarity Transformed Equation of Motion Coupled Cluster Theory. Inorg. Chem., 2019, 58 (14), 9303–9315. DOI: 10.1021/acs.inorgchem.9b00994.
Altun, Ahmet; Neese, Frank; Bistoni, Giovanni. Effect of Electron Correlation on Intermolecular Interactions: A Pair Natural Orbitals Coupled Cluster Based Local Energy Decomposition Study. J. Chem. Theory Comput., 2019, 15 (1), 215–228. DOI: 10.1021/acs.jctc.8b00915.
Berraud-Pache, R.; Neese, F.; Bistoni, G.; Izsak, R. Computational Design of Near-Infrared Fluorescent Organic Dyes Using an Accurate New Wave Function Approach. J. Phys. Chem. Lett., 2019, 10 (17), 4822–4828. DOI: 10.1021/acs.jpclett.9b02240.
Chang, H. C.; Lin, Y. H.; Werle, C.; Neese, F.; Lee, W. Z.; Bill, E.; Ye, S. F. Conversion of a Fleeting Open-Shell Iron Nitride into an Iron Nitrosyl. Angew. Chem. Int. Ed., 2019, 58 (49), 17589–17593. DOI: 10.1002/anie.201908689.
Chang, H. C.; Mondal, B.; Fang, H. Y.; Neese, F.; Bill, E.; Ye, S. F. Electron Paramagnetic Resonance Signature of Tetragonal Low Spin Iron(V)-Nitrido and -Oxo Complexes Derived from the Electronic Structure Analysis of Heme and Non-Heme Archetypes. J. Am. Chem. Soc., 2019, 141 (6), 2421–2434. DOI: 10.1021/jacs.8b11429.
Bursch, Markus; Caldeweyher, Eike; Hansen, Andreas; Neugebauer, Hagen; Ehlert, Sebastian; Grimme, Stefan. Understanding and Quantifying London Dispersion Effects in Organometallic Complexes. Acc. Chem. Res., 2019, 52 (1), 258–266. DOI: 10.1021/acs.accounts.8b00505.
Keilwerth, M.; Hohenberger, J.; Heinemann, F. W.; Sutter, J.; Scheurer, A.; Fang, H. Y.; Bill, E.; Neese, F.; Ye, S. F.; Meyer, K. A Series of Iron Nitrosyl Complexes Fe-NO(6-9) and a Fleeting Fe-NO(10) Intermediate En Route to a Metalacyclic Iron Nitrosoalkane. J. Am. Chem. Soc., 2019, 141 (43), 17217–17235. DOI: 10.1021/jacs.9b08053.
Krewald, Vera; Neese, Frank; Pantazis, Dimitrios A. Implications of structural heterogeneity for the electronic structure of the final oxygen-evolving intermediate in photosystem II. J. Inorg. Biochem., 2019, 199, 110797. DOI: 10.1016/j.jinorgbio.2019.110797.
Lu, Q.; Neese, F.; Bistoni, G. London Dispersion Effects in the Coordination and Activation of Alkanes in Sigma-Complexes: A Local Energy Decomposition Study. Phys. Chem. Chem. Phys., 2019, 21 (22), 11569–11577. DOI: 10.1039/c9cp01309a.
Neese, F.; Atanasov, M.; Bistoni, G.; Maganas, D.; Ye, S. F. Chemistry and Quantum Mechanics in 2019: Give Us Insight and Numbers. J. Am. Chem. Soc., 2019, 141 (7), 2814–2824. DOI: 10.1021/jacs.8b13313.
Saitow, M.; Dutta, A. K.; Neese, F. Accurate Ionization Potentials, Electron Affinities and Electronegativities of Single-Walled Carbon Nanotubes by State-of-the-Art Local Coupled-Cluster Theory. Bull. Chem. Soc. Jpn., 2019, 92 (1), 170–174. DOI: 10.1246/bcsj.20180254.
Salla, Cristian A. M.; Teixeira dos Santos, Jéssica; Farias, Giliandro; Bortoluzi, Adailton J.; Curcio, Sergio F.; Cazati, Thiago; Izsák, Róbert; Neese, Frank; de Souza, Bernardo; Bechtold, Ivan H. New Boron(III) Blue Emitters for All-Solution Processed OLEDs: Molecular Design Assisted by Theoretical Modeling. Eur. J. Inorg. Chem., 2019, 2019 (17), 2247–2257. DOI: 10.1002/ejic.201900265.
Shirazi, R. G.; Neese, F.; Pantazis, D. A.; Bistoni, G. Physical Nature of Differential Spin-State Stabilization of Carbenes by Hydrogen and Halogen Bonding: A Domain-Based Pair Natural Orbital Coupled Cluster Study. J. Phys. Chem. A, 2019, 123 (24), 5081–5090. DOI: 10.1021/acs.jpca.9b01051.
Sirohiwal, A.; Neese, F.; Pantazis, D. A. Microsolvation of the Redox-Active Tyrosine-d in Photosystem II: Correlation of Energetics with EPR Spectroscopy and Oxidation-Induced Proton Transfer. J. Am. Chem. Soc., 2019, 141 (7), 3217–3231. DOI: 10.1021/jacs.8b13123.
Stavretis, Shelby E.; Cheng, Yongqiang; Daemen, Luke L.; Brown, Craig M.; Moseley, Duncan H.; Bill, Eckhard; Atanasov, Mihail; Ramirez-Cuesta, Anibal J.; Neese, Frank; Xue, Zi-Ling. Probing Magnetic Excitations in CoII Single-Molecule Magnets by Inelastic Neutron Scattering. Eur. J. Inorg. Chem., 2019, 2019 (8), 1119–1127. DOI: 10.1002/ejic.201801088.
Thomsen, M. K.; Nyvang, A.; Walsh, J. P. S.; Bunting, P. C.; Long, J. R.; Neese, F.; Atanasov, M.; Genoni, A.; Oyergaard, J. Insights into Single-Molecule-Magnet Behavior from the Experimental Electron Density of Linear Two-Coordinate Iron Complexes. Inorg. Chem., 2019, 58 (5), 3211–3218. DOI: 10.1021/acs.inorgchem.8b03301.
2.2.7. 2018¶
Altun, A.; Neese, F.; Bistoni, G. Local Energy Decomposition Analysis of Hydrogen-Bonded Dimers within a Domain-Based Pair Natural Orbital Coupled Cluster Study. Beilstein J. Org. Chem., 2018, 14, 919–929. DOI: 10.3762/bjoc.14.79.
Bistoni, G.; Polyak, I.; Sparta, M.; Thiel, W.; Neese, F. Toward Accurate QM/MM Reaction Barriers with Large QM Regions Using Domain Based Pair Natural Orbital Coupled Cluster Theory. J. Chem. Theory Comput., 2018, 14 (7), 3524–3531. DOI: 10.1021/acs.jctc.8b00348.
Bunting, P. C.; Atanasov, M.; Damgaard-Moller, E.; Perfetti, M.; Crassee, I.; Orlita, M.; Overgaard, J.; van Slageren, J.; Neese, F.; Long, J. R. A Linear Cobalt(II) Complex with Maximal Orbital Angular Momentum from a Non-Aufbau Ground State. Science, 2018, 362 (6421), A Linear Cobalt(II) Complex with Ma. DOI: 10.1126/science.aat7319.
Chantzis, A.; Kowalska, J. K.; Maganas, D.; DeBeer, S.; Neese, F. Ab Initio Wave Function-Based Determination of Element Specific Shifts for the Efficient Calculation of x-Ray Absorption Spectra of Main Group Elements and First Row Transition Metals. J. Chem. Theory Comput., 2018, 14 (7), 3686–3702. DOI: 10.1021/acs.jctc.8b00249.
Collins, L. R.; van Gastel, M.; Neese, F.; Furstner, A. Enhanced Electrophilicity of Heterobimetallic Bi-Rh Paddlewheel Carbene Complexes: A Combined Experimental, Spectroscopic, and Computational Study. J. Am. Chem. Soc., 2018, 140 (40), 13042–13055. DOI: 10.1021/jacs.8b08384.
David, G.; Wennmohs, F.; Neese, F.; Ferre, N. Chemical Tuning of Magnetic Exchange Couplings Using Broken-Symmetry Density Functional Theory. Inorg. Chem., 2018, 57 (20), 12769–12776. DOI: 10.1021/acs.inorgchem.8b01970.
Gatzenmeier, T.; Turberg, M.; Yepes, D.; Xie, Y. W.; Neese, F.; Bistoni, G.; List, B. Scalable and Highly Diastereo- and Enantioselective Catalytic Diels-Alder Reaction of Alpha,Beta-Unsaturated Methyl Esters. J. Am. Chem. Soc., 2018, 140 (40), 12671–12676. DOI: 10.1021/jacs.8b07092.
Gottschalk, H. C.; Poblotzki, A.; Suhm, M. A.; Al-Mogren, M. M.; Antony, J.; Auer, A. A.; Baptista, L.; Benoit, D. M.; Bistoni, G.; Bohle, F.; Dahmani, R.; Firaha, D.; Grimme, S.; Hansen, A.; Harding, M. E.; Hochlaf, M.; Holzer, C.; Jansen, G.; Klopper, W.; Kopp, W. A.; Kroger, L. C.; Leonhard, K.; Mouhib, H.; Neese, F.; Pereira, M. N.; Ulusoy, I. S.; Wuttke, A.; Mata, R. A. The Furan Microsolvation Blind Challenge for Quantum Chemical Methods: First Steps. J. Chem. Phys., 2018, 148 (1), 13. DOI: 10.1063/1.5009011.
Kubas, Adam; Verkamp, Max; Vura-Weis, Josh; Neese, Frank; Maganas, Dimitrios. Restricted open-shell configuration interaction singles study on M- and L-edge x-ray absorption spectroscopy of solid chemical systems. J. Chem. Theory Comput., 2018, 14 (8), 4320–4334. DOI: 10.1021/acs.jctc.8b00302.
Lu, Q.; Neese, F.; Bistoni, G. Formation of Agostic Structures Driven by London Dispersion. Angew. Chem. Int. Ed., 2018, 57 (17), 4760–4764. DOI: 10.1002/anie.201801531.
Mondal, B.; Neese, F.; Bill, E.; Ye, S. F. Electronic Structure Contributions of Non-Herne Oxo-Iron(v) Complexes to the Reactivity. J. Am. Chem. Soc., 2018, 140 (30), 9531–9544. DOI: 10.1021/jacs.8b04275.
Moseley, D. H.; Stavretis, S. E.; Thirunavukkuarasu, K.; Ozerov, M.; Cheng, Y. Q.; Daemen, L. L.; Ludwig, J.; Lu, Z. G.; Smirnov, D.; Brown, C. M.; Pandey, A.; Ramirez-Cuesta, A. J.; Lamb, A. C.; Atanasov, M.; Bill, E.; Neese, F.; Xue, Z. L. Spin-Phonon Couplings in Transition Metal Complexes with Slow Magnetic Relaxation. Nature Comm., 2018, 9, 11. DOI: 10.1038/s41467-018-04896-0.
Romelt, C.; Ye, S. F.; Bill, E.; Weyhermuller, T.; van Gastel, M.; Neese, F. Electronic Structure and Spin Multiplicity of Iron Tetraphenylporphyrins in Their Reduced States as Determined by a Combination of Resonance Raman Spectroscopy and Quantum Chemistry. Inorg. Chem., 2018, 57 (4), 2141–2148. DOI: 10.1021/acs.inorgchem.7b03018.
Scheibe, B.; Pietzonka, C.; Mustonen, O.; Karppinen, M.; Karttunen, A. J.; Atanasov, M.; Neese, F.; Conrad, M.; Kraus, F. The U2F12 (2-) Anion of Sr U2F12. Angew. Chem. Int. Ed., 2018, 57 (11), 2914–2918. DOI: 10.1002/anie.201800743.
Shirazi, R. G.; Neese, F.; Pantazis, D. A. Accurate Spin-State Energetics for Aryl Carbenes. J. Chem. Theory Comput., 2018, 14 (9), 4733–4746. DOI: 10.1021/acs.jctc.8b00587.
Singh, Saurabh Kumar; Atanasov, Mihail; Neese, Frank. Challenges in multireference perturbation theory for the calculations of the g-tensor of first-row transition-metal complexes. J. Chem. Theory Comput., 2018, 14 (9), 4662–4677.
Van Stappen, C.; Maganas, D.; DeBeer, S.; Bill, E.; Neese, F. Investigations of the Magnetic and Spectroscopic Properties of V(III) and V(IV) Complexes. Inorg. Chem., 2018, 57 (11), 6421–6438. DOI: 10.1021/acs.inorgchem.8b00486.
Yamamoto, K.; Li, J. K.; Garber, J. A. O.; Rolfes, J. D.; Boursalian, G. B.; Borghs, J. C.; Genicot, C.; Jacq, J.; van Gastel, M.; Neese, F.; Ritter, T. Palladium-Catalysed Electrophilic Aromatic C-H Fluorination. Nature, 2018, 554 (7693), 511–514. DOI: 10.1038/nature25749.
2.2.8. 2017¶
Jung, Julie; Atanasov, Mihail; Neese, Frank. Ab Initio Ligand-Field Theory Analysis and Covalency Trends in Actinide and Lanthanide Free Ions and Octahedral Complexes. Inorg. Chem., 2017, 56 (15), 8802–8816. DOI: 10.1021/acs.inorgchem.7b00642.
Singh, Saurabh Kumar; Eng, Julien; Atanasov, Mihail; Neese, Frank. Covalency and Chemical Bonding in Transition Metal Complexes: An Ab Initio Based Ligand Field Perspective. Coordin. Chem. Rev., 2017, 344, 2–25. DOI: 10.1016/j.ccr.2017.03.018.
Chakraborty, Uttam; Demeshko, Serhiy; Meyer, Franc; Rebreyend, Christophe; de Bruin, Bas; Atanasov, Mihail; Neese, Frank; Mühldorf, Bernd; Wolf, Robert. Electronic Structure and Magnetic Anisotropy of an Unsaturated Cyclopentadienyl Iron(I) Complex with 15 Valence Electrons. Angew. Chem. Int. Ed., 2017, 56 (27), 7995–7999. DOI: 10.1002/anie.201702454.
Chilkuri, Vijay Gopal; DeBeer, Serena; Neese, Frank. Revisiting the Electronic Structure of FeS Monomers Using Ab Initio Ligand Field Theory and the Angular Overlap Model. Inorg. Chem., 2017, 56 (17), 10418–10436. DOI: 10.1021/acs.inorgchem.7b01371.
Bistoni, Giovanni; Auer, Alexander A.; Neese, Frank. Understanding the Role of Dispersion in Frustrated Lewis Pairs and Classical Lewis Adducts: A Domain-Based Local Pair Natural Orbital Coupled Cluster Study. Chem. Eur. J., 2017, 23 (4), 865–873.
Bistoni, Giovanni; Riplinger, Christoph; Minenkov, Yury; Cavallo, Luigi; Auer, Alexander A.; Neese, Frank. Treating Subvalence Correlation Effects in Domain Based Pair Natural Orbital Coupled Cluster Calculations: An Out-of-the-Box Approach. J. Chem. Theory Comput., 2017, 13 (7), 3220–3227. DOI: 10.1021/acs.jctc.7b00352.
Caldararu, Octav; Olsson, Martin A; Riplinger, Christoph; Neese, Frank; Ryde, Ulf. Binding free energies in the SAMPL5 octa-acid host–guest challenge calculated with DFT-D3 and CCSD (T). J. Comput.-Aided Mol. Des., 2017, 31 (1), 87–106. DOI: 10.1007/s10822-016-9957-5.
Kubas, Adam; Noak, Johannes; Trunschke, Annette; Schlögl, Robert; Neese, Frank; Maganas, Dimitrios. A combined experimental and theoretical spectroscopic protocol for determination of the structure of heterogeneous catalysts: developing the information content of the resonance Raman spectra of M1 MoVOx. Chem. Sci., 2017, 8 (9), 6338–6353. DOI: 10.1039/C7SC01771E.
Minenkov, Yury; Bistoni, Giovanni; Riplinger, Christoph; Auer, Alexander A; Neese, Frank; Cavallo, Luigi. Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation. Phys. Chem. Chem. Phys., 2017, 19 (14), 9374–9391.
Neese, Frank. High-Level Spectroscopy, Quantum Chemistry, and Catalysis: Not just a Passing Fad. Angew. Chem. Int. Ed., 2017, 56 (37), 11003–11010.
Neese, Frank. Quantum Chemistry and EPR Parameters, chapter, pages 1–22. John Wiley & Sons, Ltd, 2017. DOI: 10.1002/9780470034590.emrstm1505.
Pedersen, Kasper S; Woodruff, Daniel N; Singh, Saurabh Kumar; Tressaud, Alain; Durand, Etienne; Atanasov, Mihail; Perlepe, Panagiota; Ollefs, Katharina; Wilhelm, Fabrice; Mathonière, Corine; others. [OsF6] x-: Molecular Models for Spin-Orbit Entangled Phenomena. Chem. Eur. J., 2017, 23 (47), 11244–11248.
Suturina, Elizaveta A; Nehrkorn, Joscha; Zadrozny, Joseph M; Liu, Junjie; Atanasov, Mihail; Weyhermüller, Thomas; Maganas, Dimitrios; Hill, Stephen; Schnegg, Alexander; Bill, Eckhard; others. Magneto-structural correlations in pseudotetrahedral forms of the [Co (SPh) 4] 2–complex probed by magnetometry, MCD spectroscopy, advanced EPR techniques, and ab initio electronic structure calculations. Inorg. Chem., 2017, 56 (5), 3102–3118.
2.3. Classification by Topic¶
2.3.1. Ab initio Ligand Field Analyis¶
Atanasov, Mihail; Ganyushin, Dmitry; Sivalingam, Kantharuban; Neese, Frank. A Modern First-Principles View on Ligand Field Theory Through the Eyes of Correlated Multireference Wavefunctions. In Mingos, David Michael P.; Day, Peter; Dahl, Jens Peder, editors, Molecular Electronic Structures of Transition Metal Complexes II, number 143 in Structure and Bonding, pages 149–220. Springer Berlin Heidelberg, 2011. DOI: 10.1007/430_2011_57.
Lang, Lucas; Atanasov, Mihail; Neese, Frank. Improvement of Ab Initio Ligand Field Theory by Means of Multistate Perturbation Theory. J. Phys. Chem. A, 2020, 124 (5), 1025–1037. DOI: 10.1021/acs.jpca.9b11227.
Rao, Shashank V.; Maganas, Dimitrios; Sivalingam, Kantharuban; Atanasov, Mihail; Neese, Frank. Extended Active Space Ab Initio Ligand Field Theory: Applications to Transition-Metal Ions. Inorg. Chem., 2024, 63 (52), 24672–24684. Publisher: American Chemical Society. DOI: 10.1021/acs.inorgchem.4c03893.
2.3.2. Absorption, Resonance Raman and Fluorescence Spectra¶
Sirohiwal, Abhishek; Berraud-Pache, Romain; Neese, Frank; Izsák, Róbert; Pantazis, Dimitrios A. Accurate Computation of the Absorption Spectrum of Chlorophyll a with Pair Natural Orbital Coupled Cluster Methods. J. Phys. Chem. B, 2020, 124 (40), 8761–8771. DOI: 10.1021/acs.jpcb.0c05761.
Petrenko, Taras; Neese, Frank. Analysis and prediction of absorption band shapes, fluorescence band shapes, resonance Raman intensities, and excitation profiles using the time-dependent theory of electronic spectroscopy. J. Chem. Phys., 2007, 127 (16), 164319. DOI: 10.1063/1.2770706.
Petrenko, T.; Neese, F. Efficient and automatic calculation of optical band shapes and resonance Raman spectra for larger molecules within the independent mode displaced harmonic oscillator model. J. Chem. Phys., 2012, 137, 234107.
Petrenko, T.; Krylova, O.; Neese, F.; Sokolowski, M. Optical Absorption and Emission Properties of Rubrene: Insight by a Combined Experimental and Theoretical Study. New J. Phys., 2009, 11, 015001.
2.3.3. Analytic Hessian Implementation¶
Garcia-Ratés, M.; Neese, F. Efficient implementation of the analytical second derivatives of hartree-fock and hybrid DFT energies within the framework of the conductor-like polarizable continuum model. J. Comput. Chem., 2019, 40 (20), 1816–1828. DOI: 10.1002/jcc.25833.
Bykov, D.; Petrenko, T.; Izsák, R.; Kossmann, S.; Becker, U.; Valeev, E.; Neese, F. Efficient implementation of the analytic second derivatives of Hartree-Fock and hybrid DFT energies: a detailed analysis of different approximations. Mol. Phys., 2015, 113, 1961.
2.3.4. ANO basis sets¶
Neese, F.; Valeev, E. F. Revisiting the Atomic Natural Orbital Approach for Basis Sets: Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated ab initio Methods. J. Chem. Theory Comput., 2011, 7, 33–43.
2.3.5. Applications¶
Mondal, B.; Neese, F.; Ye, S. F. Toward Rational Design of 3d Transition Metal Catalysts for CO2 Hydrogenation Based on Insights into Hydricity-Controlled Rate-Determining Steps. Inorg. Chem., 2016, 55, 5438–5444.
Mondal, B.; Neese, F.; Ye, S. F. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study. Inorg. Chem., 2015, 54, 7192–7198.
Krewald, V.; Retegan, M.; Cox, N.; Messinger, J.; Lubitz, W.; DeBeer, S.; Neese, F.; Pantazis, D. A. Metal oxidation states in biological water splitting. Chem. Sci., 2015, 6, 1676–1695.
Kochem, A.; Weyhermuller, T.; Neese, F.; van Gastel, M. EPR and Quantum Chemical Investigation of a Bioinspired Hydrogenase Model with a Redox-Active Ligand in the First Coordination Sphere. Organometallics, 2015, 34, 995–1000.
Kochem, A.; Bill, E.; Neese, F.; van Gastel, M. Mossbauer and computational investigation of a functional NiFe hydrogenase model complex. Chem. Comm., 2015, 51, 2099–2102.
2.3.6. Approximate FCI¶
Chilkuri, V. G.; Neese, F. Comparison of many-particle representations for selected-CI I: A tree based approach. J. Comput. Chem., 2021, 42, 982–1005.
Chilkuri, V. G.; Neese, F. Comparison of Many-Particle Representations for Selected Configuration Interaction: II. Numerical Benchmark Calculations. J. Chem. Theory Comput., 2021, 17, 2868–2885.
Lang, Lucas; Chilkuri, Vijay Gopal; Neese, Frank. Treating Spin–Orbit Coupling and Spin–Spin Coupling in the Framework of the Iterative Configuration Expansion Selected CI method (In press). 2025. DOI: 10.1021/acs.jctc.5c00463.
2.3.7. CASSCF/NEVPT2/MRCI & Magnetism¶
Krupička, Martin; Sivalingam, Kantharuban; Huntington, Lee; Auer, Alexander A.; Neese, Frank. A toolchain for the automatic generation of computer codes for correlated wavefunction calculations. J. Comput. Chem., 2017, 38 (21), 1853–1868. DOI: 10.1002/jcc.24833.
Lechner, M. H.; Papadopoulos, A.; Sivalingam, K.; Auer, A. A.; Koslowski, A.; Becker, U.; Wennmohs, F.; Neese, F. Code generation in ORCA: Progress, Efficiency and Tight integration. Phys. Chem. Chem. Phys., 2024, 26 (21), 15205–15220.
Guo, Yang; Sivalingam, Kantharuban; Neese, Frank. Approximations of Density Matrices in N-Electron Valence State Second-Order Perturbation Theory (NEVPT2). I. Revisiting the NEVPT2 Construction. J. Chem. Phys., 2021, 154 (21), 214111. DOI: 10.1063/5.0051211.
Guo, Yang; Sivalingam, Kantharuban; Kollmar, Christian; Neese, Frank. Approximations of Density Matrices in N-Electron Valence State Second-Order Perturbation Theory (NEVPT2). II. The Full Rank NEVPT2 (FR-NEVPT2) Formulation. J. Chem. Phys., 2021, 154 (21), 214113. DOI: 10.1063/5.0051218.
Kempfer, Emily M.; Sivalingam, Kantharuban; Neese, Frank. Efficient Implementation of Approximate Fourth Order N-Electron Valence State Perturbation Theory. J. Chem. Theory Comput., 2025, 21 (8), 3953–3967. DOI: 10.1021/acs.jctc.4c01735.
Kollmar, Christian; Sivalingam, Kantharuban; Helmich-Paris, Benjamin; Angeli, Celestino; Neese, Frank. A perturbation-based super-CI approach for the orbital optimization of a CASSCF wave function. J. Comput. Chem., 2019, 40 (14), 1463–1470. DOI: 10.1002/jcc.25801.
Guo, Yang; Sivalingam, Kantharuban; Chilkuri, Vijay Gopal; Neese, Frank. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). III. Large active space calculations with selected configuration interaction reference. J. Chem. Phys., 2025, 162 (14), 144110. DOI: 10.1063/5.0262473.
Lang, Lucas; Sivalingam, Kantharuban; Neese, Frank. The Combination of Multipartitioning of the Hamiltonian with Canonical Van Vleck Perturbation Theory Leads to a Hermitian Variant of Quasidegenerate N-Electron Valence Perturbation Theory. J. Chem. Phys., 2020, 152 (1), 014109. DOI: 10.1063/1.5133746.
Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F.; Neese, Frank. Explicitly Correlated N-Electron Valence State Perturbation Theory (NEVPT2-F12). J. Chem. Phys., 2017, 147 (6), 064110. DOI: 10.1063/1.4996560.
Guo, Yang; Pavošević, Fabijan; Sivalingam, Kantharuban; Becker, Ute; Valeev, Edward F.; Neese, Frank. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. VI. Linear-scaling explicitly correlated N-electron valence state perturbation theory with pair natural orbital. J. Chem. Phys., 2023, 158 (12), 124120. DOI: 10.1063/5.0144260.
Kollmar, Christian; Sivalingam, Kantharuban; Guo, Yang; Neese, Frank. An efficient implementation of the NEVPT2 and CASPT2 methods avoiding higher-order density matrices. J. Chem. Phys., 2021, 155 (23), 234104. DOI: 10.1063/5.0072129.
Kollmar, Christian; Sivalingam, Kantharuban; Neese, Frank. An Alternative Choice of the Zeroth-Order Hamiltonian in CASPT2 Theory. J. Chem. Phys., 2020, 152 (21), 214110. DOI: 10.1063/5.0010019.
Pathak, Shubhrodeep; Lang, Lucas; Neese, Frank. A Dynamic Correlation Dressed Complete Active Space Method: Theory, Implementation, and Preliminary Applications. J. Chem. Phys., 2017, 147, 234109.
Chilkuri, V. G.; DeBeer, S.; Neese, F. Revisiting the Electronic Structure of FeS Monomers Using ab Initio Ligand Field Theory and the Angular Overlap Model. Inorg. Chem., 2017, 56, 10418.
Singh, S. K.; Eng, J.; Atanasov, M.; Neese, F. Covalency and chemical bonding in transition metal complexes: An ab initio based ligand field perspective. Coord. Chem. Rev., 2017, 344, 225.
Jung, J.; Atanasov, M.; Neese, F. Ab Initio Ligand-Field Theory Analysis and Covalency Trends in Actinide and Lanthanide Free Ions and Octahedral Complexes. Inorg. Chem., 2017, 56, 8802.
Werncke, C. G.; Suturina, E.; Bunting, P. C.; Vendier, L.; Long, J. R.; Atanasov, M.; Neese, F.; Sabo-Etienne, S.; Bontemps, S. Homoleptic Two-Coordinate Silylamido Complexes of Chromium(I), Manganese(I), and Cobalt(I). Chem. Eur. J., 2016, 22, 1668–1674.
Rechkemmer, Y.; Breitgoff, F. D.; van der Meer, M.; Atanasov, M.; Hakl, M.; Orlita, M.; Neugebauer, P.; Neese, F.; Sarkar, B.; van Slageren, J. A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier. Nat. Commun., 2016, 7, 10467.
Aravena, D.; Atanasov, M.; Neese, F. Periodic Trends in Lanthanide Compounds through the Eyes of Multireference ab Initio Theory. Inorg. Chem., 2016, 55, 4457–4469.
Suturina, E. A.; Maganas, D.; Bill, E.; Atanasov, M.; Neese, F. Magneto-Structural Correlations in a Series of Pseudotetrahedral Co-II(XR)(4) (2-) Single Molecule Magnets: An ab Initio Ligand Field Study. Inorg. Chem., 2015, 54, 9948–9961.
Schweinfurth, D.; Sommer, M. G.; Atanasov, M.; Demeshko, S.; Hohloch, S.; Meyer, F.; Neese, F.; Sarkar, B. The Ligand Field of the Azido Ligand: Insights into Bonding Parameters and Magnetic Anisotropy in a Co(II)-Azido Complex. J. Am. Chem. Soc., 2015, 137, 1993–2005.
Lang, Lucas; Chilkuri, Vijay Gopal; Neese, Frank. Treating Spin–Orbit Coupling and Spin–Spin Coupling in the Framework of the Iterative Configuration Expansion Selected CI method (In press). 2025. DOI: 10.1021/acs.jctc.5c00463.
2.3.8. Corresponding Orbital Transformation¶
Neese, F. Definition of Corresponding Orbitals and the Diradical Character in Broken Symmetry DFT Calculations on Spin Coupled Systems. J. Phys. Chem. Solids, 2004, 65, 781–785.
2.3.9. COSMO Implementation¶
Sinnecker, S.; Rajendran, A.; Klamt, A.; Diedenhofen, M.; Neese, F. Calculation of Solvent Shifts on Electronic G-Tensors with the Conductor-Like Screening Model (COSMO) and its Self-Consistent Generalization to Real Solvents (COSMO-RS). J. Phys. Chem. A, 2006, 110, 2235–2245.
2.3.10. COSX¶
Dutta, A. K.; Neese, F.; Izsak, R. Speeding up equation of motion coupled cluster theory with the chain of spheres approximation. J. Chem. Phys., 2016, 144, 034102.
Christian, G. J.; Neese, F.; Ye, S. F. Unravelling the Molecular Origin of the Regiospecificity in Extradiol Catechol Dioxygenases. Inorg. Chem., 2016, 55, 3853–3864.
2.3.11. Coupled-Cluster and Coupled Pair Implementation (MDCI module)¶
Pavošević, F.; Neese, F.; Valeev, E. F. Geminal-spanning orbitals make explicitly correlated reduced-scaling coupled-cluster methods robust, yet simple. J. Chem. Phys., 2014, 141, 054106.
Kollmar, C.; Neese, F. The coupled electron pair approximation: variational formulation and spin adaptation. Mol. Phys., 2010, 108, 2449–2458.
Neese, F.; Wennmohs, F.; Hansen, A.; Grimme, S. Accurate Theoretical Chemistry with Coupled Electron Pair Models. Acc. Chem. Res., 2009, 42 (5), 641–648.
Wennmohs, F.; Neese, F. A Comparative Study of Single Reference Correlation Methods of the Coupled-Pair Type. Chem. Phys., 2008, 343, 217–230.
2.3.12. EPR/NMR¶
Tran, Van Anh; Neese, Frank. Double-Hybrid Density Functional Theory for g-Tensor Calculations Using Gauge Including Atomic Orbitals. J. Chem. Phys., 2020, 153 (5), 054105. DOI: 10.1063/5.0013799.
Lang, Lucas; Ravera, Enrico; Parigi, Giacomo; Luchinat, Claudio; Neese, Frank. Solution of a Puzzle: High-Level Quantum-Chemical Treatment of Pseudocontact Chemical Shifts Confirms Classic Semiempirical Theory. J. Phys. Chem. Lett., 2020, 11 (20), 8735–8744.
Auer, A. A.; Tran, V. A.; Sharma, B.; Stoychev, G. L.; Marx, D.; Neese, F. A case study of density functional theory and domain-based local pair natural orbital coupled cluster for vibrational effects on EPR hyperfine coupling constants: vibrational perturbation theory versus ab initio molecular dynamics. Mol. Phys., 2020, 118 (19-20), e1797916. DOI: 10.1080/00268976.2020.1797916.
Dittmer, A.; Stoychev, G. L.; Maganas, D.; Auer, A. A.; Neese, F. Computation of NMR Shielding Constants for Solids Using an Embedded Cluster Approach with DFT, Double-Hybrid DFT, and MP2. J. Chem. Theory Comput., 2020, 16 (11), 6950–6967. DOI: 10.1021/acs.jctc.0c00067.
Schulz, C. E.; van Gastel, M.; Pantazis, D. A.; Neese, F. Converged Structural and Spectroscopic Properties for Refined QM/MM Models of Azurin. Inorg. Chem., 2021, 60 (10), 7399–7412. DOI: 10.1021/acs.inorgchem.1c00640.
Sirohiwal, A.; Neese, F.; Pantazis, D. A. Microsolvation of the Redox-Active Tyrosine-d in Photosystem II: Correlation of Energetics with EPR Spectroscopy and Oxidation-Induced Proton Transfer. J. Am. Chem. Soc., 2019, 141 (7), 3217–3231. DOI: 10.1021/jacs.8b13123.
Stoychev, G. L.; Auer, A. A.; Gauss, J.; Neese, F. DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings. J. Chem. Phys., 2021, 154, 164110.
2.3.13. ESD Module¶
2.3.13.1. Fluorescence¶
de Souza, Bernardo; Neese, Frank; Izsak, Robert. On the Theoretical Prediction of Fluorescence Rates from First Principles Using the Path Integral Approach. J. Chem. Phys., 2018, 148 (3), 034104. DOI: 10.1063/1.5010895.
2.3.13.2. Phosphorescence¶
de Souza, Bernardo; Farias, Giliandro; Neese, Frank; Izsak, Robert. Predicting Phosphorescence Rates of Light Organic Molecules Using Time-Dependent Density Functional Theory and the Path Integral Approach to Dynamics. J. Chem. Theory Comput., 2019, 15 (3), 1896–1904. DOI: 10.1021/acs.jctc.8b00841.
2.3.13.3. Resonance Raman¶
de Souza, Bernardo; Farias, Giliandro; Neese, Frank; Izsak, Robert. Efficient Simulation of Overtones and Combination Bands in Resonant Raman Spectra. J. Chem. Phys., 2019, 150 (21), 044105. DOI: 10.1063/1.5099247.
2.3.14. DFT/Hartree–Fock Theory of EPR Parameters¶
Sandhoefer, B.; Neese, F. One-electron contributions to the g-tensor for second-order Douglas–Kroll–Hess theory. J. Chem. Phys., 2012, 137, 094102.
Neese, F. Importance of Direct Spin-Spin Coupling and Spin-Flip Excitations for the Zero-Field Splittings of Transition Metal Complexes: A Case Study. J. Am. Chem. Soc., 2006, 128, 10213.
Neese, F. J. Chem. Phys., 2007, 127, 164112.
Sinnecker, S.; Neese, F. Spin-Spin Contributions to the Zero-Field Splitting Tensor in Organic Triplets, Carbenes and Biradicals – A Density Functional and \it ab initio Study. J. Phys. Chem. A, 2006, 110, 12267.
Neese, F. Efficient and Accurate Approximations to the Molecular Spin-Orbit Coupling Operator and their use in Molecular g-Tensor Calculations. J. Chem. Phys., 2005, 122, 034107.
Sinnecker, S.; Rajendran, A.; Klamt, A.; Diedenhofen, M.; Neese, F. Calculation of Solvent Shifts on Electronic G-Tensors with the Conductor-Like Screening Model (COSMO) and its Self-Consistent Generalization to Real Solvents (COSMO-RS). J. Phys. Chem. A, 2006, 110, 2235–2245.
Ganyushin, D.; Gilka, N.; Taylor, P. R.; Marian, C. M.; Neese, F. The resolution of the identity approximation for calculations of spin-spin contribution to zero-field splitting parameters. J. Chem. Phys., 2010, 132, 144111.
Duboc, C.; Ganyushin, D.; Sivalingam, K.; Collomb, M. N.; Neese, F. Systematic Theoretical Study of the Zero-Field Splitting in Coordination Complexes of Mn(III). Density Functional Theory versus Multireference Wave Function Approaches. J. Phys. Chem. A, 2010, 114, 10750–10758.
Neese, F. First principles approach to Spin-Hamiltonian Parameters. In Misra, S. K., editor, Multifrequency EPR: Theory and Applications, pages 297–326. Wiley-VCH, 2009.
Pantazis, D. A.; Orio, M.; Petrenko, T.; Messinger, J.; Lubitz, W.; Neese, F. A new quantum chemical approach to the magnetic properties of oligonuclear transition metal clusters: Application to a model for the tetranuclear manganese cluster of Photosystem II. Chem. Eur. J., 2009, 15 (20), 5108–5123.
Riplinger, C.; Kao, J. P. Y.; Rosen, G. M.; Kathirvelu, V.; Eaton, G. R.; Eaton, S. S.; Kutateladze, A.; Neese, F. Interaction of Radical Pairs Through-Bond and Through-Space: Scope and Limitations of the Point-Dipole Approximation in Electron Paramagnetic Resonance Spectroscopy. J. Am. Chem. Soc., 2009, 131, 10092–10106.
Cirera, J.; Ruiz, E.; Alvarez, S.; Neese, F.; Kortus, J. How to Build Molecules with Large Magnetic Anisotropy. Chem. Eur. J., 2009, 15 (16), 4078–4087.
Neese, F. Spin Hamiltonian Parameters from First Principle Calculations: Theory and Application. In Hanson, G.; Berliner, L., editors, Biological Magnetic Resonance, pages 175–232. 2008.
Kossmann, S.; Kirchner, B.; Neese, F. Performance of modern density functional theory for the prediction of hyperfine structure: meta-GGA and double hybrid functionals. Molec. Phys., 2007, 105, 2049–2071.
Neese, F.; Wolf, A.; Reiher, M.; Fleig, T.; Hess, B. A. Higher Order Douglas-Kroll Calculation of Electric Field Gradients. J. Chem. Phys., 2005, 122, 204107.
Ray, K.; Begum, A.; Weyhermüller, T.; Piligkos, S.; van Slageren, J.; Neese, F.; Wieghardt, K. The Electronic Structure of the Isoelectronic, Square Planar Complexes [Feᴵᴵ(L)₂]²⁻ and [Coᴵᴵᴵ(Lᴮᵘ)₂]⁻ (L²⁻ and (Lᴮᵘ)²⁻ = benzene-1,2-dithiolates): an Experimental and Density Functional Theoretical Study. J. Am. Chem. Soc., 2005, 127, 4403–4415. DOI: 10.1021/ja042803i.
Neese, Frank. Metal and Ligand Hyperfine Couplings in Transition Metal Complexes: The Effect of Spin–Orbit Coupling as Studied by Coupled Perturbed Kohn–Sham Theory. J. Chem. Phys., 2003, 118 (9), 3939–3948. DOI: 10.1063/1.1540619.
Neese, F. Prediction of Electron Paramagnetic Resonance g-values by Coupled Perturbed Hartree-Fock and Kohn-Sham Theory. J. Chem. Phys., 2001, 115, 11080–11096.
Neese, F. Theoretical Study of Ligand Superhyperfine Structure. Application to Cu(II) Complexes. J. Phys. Chem. A, 2001, 105, 4290–4299.
2.3.15. Dispersion Corrections to DFT¶
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys., 2010, 132, 154104.
Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem., 2011, 32, 1456.
Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem., 2004, 25, 1463. DOI: 10.1002/jcc.20078.
Wittmann, Lukas; Gordiy, Igor; Friede, Marvin; Helmich-Paris, Benjamin; Grimme, Stefan; Hansen, Andreas; Bursch, Markus. Extension of the D3 and D4 London dispersion corrections to the full actinides series. Phys. Chem. Chem. Phys., 2024, 26, 21379–21394. DOI: 10.1039/D4CP01514B.
Grimme, S. Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem., 2006, 27, 1787. DOI: 10.1002/jcc.20495.
2.3.16. DLPNO¶
Pinski, P.; Riplinger, C.; Valeev, E. F.; Neese, Frank. J. Chem. Phys., 2015, 143, 034108.
Pavošević, F.; Pinski, P.; Riplinger, C.; Neese, F.; Valeev, E.F. SparseMaps – A systematic infrastructure for reduced-scaling electronic structure methods. IV. Linear-scaling second-order explicitly correlated energy with pair natural orbitals. J. Chem. Phys., 2016, 144, 144109.
Pinski, Peter; Neese, Frank. Communication: Exact Analytical Derivatives for the Domain-Based Local Pair Natural Orbital MP2 Method (DLPNO-MP2). J. Chem. Phys., 2018, 148, 031101. DOI: 10.1063/1.5011204.
Pinski, Peter; Neese, Frank. Analytical Gradient for the Domain-Based Local Pair Natural Orbital Second Order Møller-Plesset Perturbation Theory Method (DLPNO-MP2). J. Chem. Phys., 2019, 150, 164102.
Sparta, Manuel; Retegan, Marius; Pinski, Peter; Riplinger, Christoph; Becker, Ute; Neese, Frank. Multilevel Approaches within the Local Pair Natural Orbital Framework. J. Chem. Theory Comput., 2017, 13 (7), 3198–3207. DOI: 10.1021/acs.jctc.7b00260.
Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, Frank. J. Chem. Phys., 2016, 144, 024109.
Datta, D.; Kossmann, S.; Neese, F. Analytic energy derivatives for the calculation of the first-order molecular properties using the domain-based local pair-natural orbital coupled-cluster theory. J. Chem. Phys., 2016, 175, 114101. DOI: 10.1063/1.4962369.
Liakos, Dimitrios G.; Sparta, Manuel; Kesharwani, Manoj K.; Martin, Jan M. L.; Neese, Frank. Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster Theory. J. Chem. Theory Comput., 2015, 11 (4), 1525–1539. DOI: 10.1021/acs.jctc.5b00078.
Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F.; Neese, Frank. SparseMaps—A Systematic Infrastructure for Reduced-Scaling Electronic Structure Methods. III. Linear-Scaling Multireference Domain-Based Pair Natural Orbital N-Electron Valence Perturbation Theory. J. Chem. Phys., 2016, 144 (9), 094111. DOI: 10.1063/1.4942769.
Guo, Yang; Pavošević, Fabijan; Sivalingam, Kantharuban; Becker, Ute; Valeev, Edward F.; Neese, Frank. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. VI. Linear-scaling explicitly correlated N-electron valence state perturbation theory with pair natural orbital. J. Chem. Phys., 2023, 158 (12), 124120. DOI: 10.1063/5.0144260.
Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert. Towards a Pair Natural Orbital Coupled Cluster Method for Excited States. J. Chem. Phys., 2016, 145 (3), 034102.
Schneider, W.; Bistoni, G.; Sparta., M.; Riplinger, C.; Saitow, M.; Auer, A.; Neese, F. Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework. J. Chem. Theory Comput., 2016, 12 (10), 4778–4792. DOI: 10.1021/acs.jctc.6b00523.
Kubas, A.; Berger, D.; Oberhofer, H.; Maganas, D.; Reuter, K.; Neese, F. Surface Adsorption Energetics Studied with “Gold Standard” Wave Function-Based Ab Initio Methods: Small-Molecule Binding to TiO2(110). J. Phys. Chem. Lett., 2016, 7, 4207–4212.
Altun, Ahmet; Neese, Frank; Bistoni, Giovanni. Extrapolation to the Limit of a Complete Pair Natural Orbital Space in Local Coupled-Cluster Calculations. J. Chem. Theory Comput., 2020, 16 (10), 6142–6149. DOI: 10.1021/acs.jctc.0c00344.
Guo, Yang; Riplinger, Christoph; Liakos, Dimitrios G.; Becker, Ute; Saitow, Masaaki; Neese, Frank. Linear scaling perturbative triples correction approximations for open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory [DLPNO-CCSD(T/T)]. J. Chem. Phys., 2020, 152 (2), 024116. DOI: 10.1063/1.5127550.
Liakos, D. G.; Guo, Y.; Neese, F. Comprehensive Benchmark Results for the Domain Based Local Pair Natural Orbital Coupled Cluster Method (DLPNO-CCSD(T)) for Closed- and Open-Shell Systems. J. Phys. Chem. A, 2020, 124 (1), 90–100. DOI: 10.1021/acs.jpca.9b05734.
Pavošević, Fabijan; Peng, Chong; Pinski, Peter; Riplinger, Christoph; Neese, Frank; Valeev, Edward F. SparseMaps—A systematic infrastructure for reduced scaling electronic structure methods. V. Linear scaling explicitly correlated coupled-cluster method with pair natural orbitals. J. Chem. Phys., 2017, 146 (17), 174108.
Mondal, B.; Neese, F.; Ye, S. F. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study. Inorg. Chem., 2015, 54, 7192–7198.
Stoychev, G. L.; Auer, A. A.; Gauss, J.; Neese, F. DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings. J. Chem. Phys., 2021, 154, 164110.
Isegawa, M.; Neese, F.; Pantazis, D. A. Ionization Energies and Aqueous Redox Potentials of Organic Molecules: Comparison of DFT, Correlated ab Initio Theory and Pair Natural Orbital Approaches. J. Chem. Theory Comput., 2016, 12, 2272–2284.
Liakos, D. G.; Neese, F. Domain Based Pair Natural Orbital Coupled Cluster Studies on Linear and Folded Alkane Chains. J. Chem. Theory Comput., 2015, 11, 2137–2143.
Liakos, D. G.; Neese, F. Is It Possible To Obtain Coupled Cluster Quality Energies at near Density Functional Theory Cost? Domain-Based Local Pair Natural Orbital Coupled Cluster vs Modern Density Functional Theory. J. Chem. Theory Comput., 2015, 11, 4054–4063.
Demel, O.; Pittner, J.; Neese, F. A Local Pair Natural Orbital-Based Multireference Mukherjee's Coupled Cluster Method. J. Chem. Theory Comput., 2015, 11, 3104–3114.
Ni, Z. G.; Guo, Y.; Neese, F.; Li, W.; Li, S. H. Cluster-in-Molecule Local Correlation Method with an Accurate Distant Pair Correction for Large Systems. J. Chem. Theo. Comp., 2021, 17, 756–766.
2.3.17. Density Functionals¶
Bursch, Markus; Neugebauer, Hagen; Ehlert, Sebastian; Grimme, Stefan. Dispersion corrected r²SCAN based global hybrid functionals: r²SCANh, r²SCAN0, and r²SCAN50. J. Chem. Phys., 2022, 156 (13), 134105. DOI: 10.1063/5.0086040.
Wittmann, Lukas; Neugebauer, Hagen; Grimme, Stefan; Bursch, Markus. Dispersion-corrected r²SCAN based double-hybrid functionals. J. Chem. Phys., 2023, 159 (22), 224103. DOI: 10.1063/5.0174988.
Neese, F.; Schwabe, T.; Grimme, S. J. Chem. Phys., 2007, 126, 124115.
Ehlert, Sebastian; Huniar, Uwe; Ning, Jinliang; Furness, James W.; Sun, Jianwei; Kaplan, Aaron D.; Perdew, John P.; Brandenburg, Jan Gerit. r²SCAN-D4: Dispersion Corrected Meta-Generalized Gradient Approximation for General Chemical Applications. J. Chem. Phys., 2021, 154 (6), 061101. arXiv:10.1063/5.0041008, DOI: 10.1063/5.0041008.
Grimme, S.; Neese, F. J. Phys. Chem., 2007, 127, 154116.
Kossmann, S.; Kirchner, B.; Neese, F. Performance of modern density functional theory for the prediction of hyperfine structure: meta-GGA and double hybrid functionals. Molec. Phys., 2007, 105, 2049–2071.
2.3.18. Composite Methods¶
Müller, Marcel; Hansen, Andreas; Grimme, Stefan. ωB97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double-ζ basis set. J. Chem. Phys., 2023, 158 (1), 014103. DOI: 10.1063/5.0133026.
Grimme, Stefan; Hansen, Andreas; Ehlert, Sebastian; Mewes, Jan-Michael. r2SCAN-3c: A “Swiss Army Knife” Composite Electronic-Structure Method. J. Chem. Phys., 2021, 154 (6), 064103. arXiv:10.1063/5.0040021, DOI: 10.1063/5.0040021.
Grimme, S.; Brandenburg, J. G.; Bannwarth, C.; Hansen, A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys., 2015, 143, 054107. DOI: 10.1063/1.4927476.
Pracht, Philipp; Grant, David F.; Grimme, Stefan. Comprehensive Assessment of GFN Tight-Binding and Composite Density Functional Theory Methods for Calculating Gas-Phase Infrared Spectra. J. Chem. Theory Comput., 2020, 16 (11), 7044–7060. DOI: 10.1021/acs.jctc.0c00877.
Sure, R.; Grimme, S. J. Comput. Chem., 2013, 34, 1672–1685.
Brandenburg, J. G.; Bannwarth, C.; Hansen, A.; Grimme, S. B97-3c: A Revised Low-Cost Variant of the B97-D Density Functional Method. J. Chem. Phys., 2018, 148 (6), 064104.
2.3.19. Extended Tight-Binding Methods¶
Bannwarth, Christoph; Ehlert, Sebastian; Grimme, Stefan. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput., 2019, 15 (3), 1652–1671. DOI: 10.1021/acs.jctc.8b01176.
Grimme, Stefan; Bannwarth, Christoph; Shushkov, Philip. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All Spd-Block Elements (z = 1-86). J. Chem. Theory Comput., 2017, 13 (5), 1989–2009. DOI: 10.1021/acs.jctc.7b00118.
Pracht, Philipp; Caldeweyher, Eike; Ehlert, Sebastian; Grimme, Stefan. A Robust Non-Self-Consistent Tight-Binding Quantum Chemistry Method for Large Molecules. ChemRxiv, 2019. DOI: 10.26434/chemrxiv.8326202.v1.
Ehlert, Sebastian; Stahn, Marcel; Spicher, Sebastian; Grimme, Stefan. Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods. J. Chem. Theory Comput., 2021, 17 (7), 4250–4261. DOI: 10.1021/acs.jctc.1c00471.
Plett, Christoph; Katbashev, Abylay; Ehlert, Sebastian; Grimme, Stefan; Bursch, Markus. ONIOM meets xtb: efficient, accurate, and robust multi-layer simulations across the periodic table. Phys. Chem. Chem. Phys., 2023, 25, 17860–17868. DOI: 10.1039/D3CP02178E.
Bursch, Markus; Hansen, Andreas; Grimme, Stefan. Fast and Reasonable Geometry Optimization of Lanthanoid Complexes with an Extended Tight Binding Quantum Chemical Method. Inorg. Chem., 2017, 56 (20), 12485–12491. DOI: 10.1021/acs.inorgchem.7b01950.
Bursch, Markus; Neugebauer, Hagen; Grimme, Stefan. Structure Optimisation of Large Transition-Metal Complexes with Extended Tight-Binding Methods. Angew. Chem. Int. Ed., 2019, 58 (32), 11078–11087. DOI: 10.1002/anie.201904021.
Neugebauer, Hagen; Bohle, Fabian; Bursch, Markus; Hansen, Andreas; Grimme, Stefan. Benchmark Study of Electrochemical Redox Potentials Calculated with Semiempirical and DFT Methods. J. Phys. Chem. A, 2020, 124 (35), 7166–7176. DOI: 10.1021/acs.jpca.0c05052.
Bannwarth, Christoph; Caldeweyher, Eike; Ehlert, Sebastian; Hansen, Andreas; Pracht, Philipp; Seibert, Jakob; Spicher, Sebastian; Grimme, Stefan. Extended tight-binding quantum chemistry methods. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2021, 11 (2), e1493. DOI: 10.1002/wcms.1493.
2.3.20. Excited States Methods and Resonance Raman Spectra¶
Schapiro, Igor; Sivalingam, Kantharuban; Neese, Frank. Assessment of N-Electron Valence State Perturbation Theory for Vertical Excitation Energies. J. Chem. Theory Comput., 2013, 9 (8), 3567–3580. DOI: 10.1021/ct400136y.
Roemelt, M.; Neese, F. Excited States of Large Open-Shell Molecules: An Efficient, General, and Spin-Adapted Approach Based on a Restricted Open-Shell Ground State Wave function. J. Phys. Chem. A, 2013, 117, 3069–3082. DOI: 10.1021/jp3126126.
Petrenko, T.; Kossmann, S.; Neese, F. J. Chem. Phys., 2011, 134, 054116.
Grimme, S.; Neese, F. J. Phys. Chem., 2007, 127, 154116.
Petrenko, T.; Ray, K.; Wieghardt, K.; Neese, F. Vibrational Markers for the Open-Shell Character of Metal bis-Dithiolenes: An Infrared, resonance Raman and Quantum Chemical Study. J. Am. Chem. Soc., 2006, 128, 4422–4436.
Neese, F.; Olbrich, G. Efficient use of the Resolution of the Identity Approximation in Time-Dependent Density Functional Calculations with Hybrid Functionals. Chem. Phys. Lett., 2002, 362, 170–178.
2.3.21. F12¶
Pavošević, F.; Pinski, P.; Riplinger, C.; Neese, F.; Valeev, E.F. SparseMaps – A systematic infrastructure for reduced-scaling electronic structure methods. IV. Linear-scaling second-order explicitly correlated energy with pair natural orbitals. J. Chem. Phys., 2016, 144, 144109.
Liakos, Dimitrios G.; Izsák, Róbert; Valeev, Edward F.; Neese, Frank. What is the most efficient way to reach the canonical MP2 basis set limit? Mol. Phys., 2013, 111 (19-20), 2653–2662. DOI: 10.1080/00268976.2013.811812.
Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F.; Neese, Frank. Explicitly Correlated N-Electron Valence State Perturbation Theory (NEVPT2-F12). J. Chem. Phys., 2017, 147 (6), 064110. DOI: 10.1063/1.4996560.
Guo, Yang; Pavošević, Fabijan; Sivalingam, Kantharuban; Becker, Ute; Valeev, Edward F.; Neese, Frank. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. VI. Linear-scaling explicitly correlated N-electron valence state perturbation theory with pair natural orbital. J. Chem. Phys., 2023, 158 (12), 124120. DOI: 10.1063/5.0144260.
2.3.22. FOD analysis and FOD plots¶
Grimme, S.; Hansen, A. A Practicable Real-Space Measure and Visualization of Static Electron-Correlation Effects. Angew. Chem. Int. Ed., 2015, 54, 12308–12313.
2.3.23. Gaussian Charge Scheme (C-PCM) Implementation¶
Garcia-Ratés, M.; Neese, F. Effect of the Solute Cavity on the Solvation Energy and its Derivatives within the Framework of the Gaussian Charge Scheme. J. Comput. Chem., 2020, 41 (9), 922–939. DOI: 10.1002/jcc.26139.
2.3.24. gCP correction to HF and DFT¶
Kruse, Holger; Grimme, Stefan. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. J. Chem. Phys., 2012, 136 (15), 154101. DOI: 10.1063/1.3700154.
2.3.25. Internally Contracted Multireference CI¶
Sivalingam, K.; Krupicka, M.; Auer, A. A.; Neese, F. Comparison of fully internally and strongly contracted multireference configuration interaction procedures. J. Chem. Phys., 2016, 145, 054104. DOI: 10.1063/1.4950161.
2.3.26. Magnetic Circular Dichroism Spectra¶
Ganyushin, D.; Neese, F. J. Chem. Phys., 2008, 128, 114117.
Westphal, A.; Broda, H.; Kurz, P.; Neese, F.; Tuczek, F. Magnetic Circular Dichroism Spectrum of the Molybdenum(V) Complex (Mo(O)Cl₃dppe): C-Term Signs and Intensities for Multideterminant Excited Doublet States. Inorg. Chem., 2012, 51, 5748–5763.
van Slageren, J.; Piligkos, S.; Neese, F. Magnetic circular dichroism spectroscopy on the Cr(8) antiferromagnetic ring. Dalton Trans., 2010, 39, 4999–5004.
Sundararajan, M.; Ganyushin, D.; Ye, S.; Neese, F. Multireference \it ab initio studies of Zero-Field Splitting and Magnetic Circular Dichroism Spectra of Tetrahedral Co(II) Complexes. Dalton Trans., 2009, 30, 6021–6036.
Piligkos, S.; Slep, L.; Weyhermüller, T.; Chaudhuri, P.; Bill, E.; Neese, F. Magnetic Circular Dichroism Spectroscopy of weakly exchange coupled dimers. A model study. Coord. Chem. Rev., 2009, 253, 2352–2362.
Neese, F.; Solomon, E. I. MCD C-term Signs, Saturation Behavior and Determination of Band Polarizations in Randomly Oriented Systems with Spin S ⩾ 1/2. Applications to S=1/2 and S=5/2. Inorg. Chem., 1999, 38, 1847–1865.
2.3.27. MCD¶
Ye, S. F.; Kupper, C.; Meyer, S.; Andris, E.; Navratil, R.; Krahe, O.; Mondal, B.; Atanasov, M.; Bill, E.; Roithova, J.; Meyer, F.; Neese, F. Magnetic Circular Dichroism Evidence for an Unusual Electronic Structure of a Tetracarbene-Oxoiron(IV) Complex. J. Am. Chem. Soc., 2016, 138, 14312–14325.
Ye, S. F.; Xue, G. Q.; Krivokapic, I.; Petrenko, T.; Bill, E.; Que, L.; Neese, F. Magnetic circular dichroism and computational study of mononuclear and dinuclear iron(IV) complexes. Chem. Sci., 2015, 6, 2909–2921.
2.3.28. MDCI¶
Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert. Speeding up Equation of Motion Coupled Cluster Theory with the Chain of Spheres Approximation. J. Chem. Phys., 2016, 144 (3), 034102.
Veis, Libor; Antalík, Andrej; Brabec, Jiri; Neese, Frank; Legeza, Ors; Pittner, Jiri. Coupled cluster method with single and double excitations tailored by matrix product state wave functions. J. Phys. Chem. Lett., 2016, 7 (20), 4072–4078.
2.3.29. Mössbauer Spectroscopy¶
Neese, F. Inorg. Chim. Acta, 2002, 337C, 181–192.
Römelt, M.; Ye, S.; Neese, F. Inorg. Chem., 2009, 48, 784.
Datta, D.; Saitow, M.; Sandhofer, B.; Neese, F. Fe-57 Mossbauer parameters from domain based local pair-natural orbital coupled-cluster theory. J. Chem. Phys., 2020, 153, 064104.
Sinnecker, S.; Slep, L.; Bill, E.; Neese, F. Performance of Nonrelativistic and Quasirelativistic Hybrid DFT for the Prediction of Electric and Magnetic Hyperfine Parameters in ⁵⁷Fe Mössbauer Spectra. Inorg. Chem., 2005, 44, 2245–2254.
2.3.30. Multireference CI Module and its application to EPR properties and optical spectra¶
Neese, F. Importance of Direct Spin-Spin Coupling and Spin-Flip Excitations for the Zero-Field Splittings of Transition Metal Complexes: A Case Study. J. Am. Chem. Soc., 2006, 128, 10213.
Atanasov, Mihail; Ganyushin, Dmitry; Pantazis, Dimitrios A.; Sivalingam, Kantharuban; Neese, Frank. Detailed Ab Initio First-Principles Study of the Magnetic Anisotropy in a Family of Trigonal Pyramidal Iron(II) Pyrrolide Complexes. Inorg. Chem., 2011, 50 (16), 7460–7477. DOI: 10.1021/ic200196k.
Neese, Frank; Petrenko, Taras; Ganyushin, Dmitry; Olbrich, Gottfried. Advanced Aspects of Ab Initio Theoretical Optical Spectroscopy of Transition Metal Complexes: Multiplets, Spin-Orbit Coupling and Resonance Raman Intensities. Coordin. Chem. Rev., 2007, 251 (3-4), 288–327. DOI: 10.1016/j.ccr.2006.05.019.
Neese, F. Chem. Phys. Lett., 2003, 380, 721–728.
Ganyushin, D.; Neese, F. J. Chem. Phys., 2008, 128, 114117.
Nooijen, Marcel; Demel, Ondrej; Datta, Dipayan; Kong, Liguo; Shamasundar, K. R.; Lotrich, V.; Huntington, Lee M.; Neese, Frank. Communication: Multireference Equation of Motion Coupled Cluster: A Transform and Diagonalize Approach to Electronic Structure. J. Chem. Phys., 2014, 140 (8), 081102.
Neese, F.; Solomon, E. I. Inorg. Chem., 1998, 37, 6568–6582.
Petrenko, Taras; Neese, Frank. Analysis and prediction of absorption band shapes, fluorescence band shapes, resonance Raman intensities, and excitation profiles using the time-dependent theory of electronic spectroscopy. J. Chem. Phys., 2007, 127 (16), 164319. DOI: 10.1063/1.2770706.
Ganyushin, D.; Neese, F. J. Chem. Phys., 2013, 138, 104113.
Duboc, C.; Ganyushin, D.; Sivalingam, K.; Collomb, M. N.; Neese, F. Systematic Theoretical Study of the Zero-Field Splitting in Coordination Complexes of Mn(III). Density Functional Theory versus Multireference Wave Function Approaches. J. Phys. Chem. A, 2010, 114, 10750–10758.
Demel, O.; Pittner, J.; Neese, F. A Local Pair Natural Orbital-Based Multireference Mukherjee's Coupled Cluster Method. J. Chem. Theory Comput., 2015, 11, 3104–3114.
Sundararajan, M.; Ganyushin, D.; Ye, S.; Neese, F. Multireference \it ab initio studies of Zero-Field Splitting and Magnetic Circular Dichroism Spectra of Tetrahedral Co(II) Complexes. Dalton Trans., 2009, 30, 6021–6036.
Lang, L.; Sivalingam, K.; Neese, F. The combination of multipartitioning of the Hamiltonian with canonical Van Vleck perturbation theory leads to a Hermitian variant of quasidegenerate N-electron valence perturbation theory. J. Chem. Phys., 2020, 152, 034106.
Atanasov, M.; Zadrozny, J. M.; Long, J. R.; Neese, F. A theoretical analysis of chemical bonding, vibronic coupling, and magnetic anisotropy in linear iron(II) complexes with single-molecule magnet behavior. Chem. Sci., 2013, 4, 139–156.
Neese, F.; Pantazis, D. A. What is not required to make a single molecule magnet. Faraday Discuss., 2011, 148, 229–238.
Neese, F. Analytic Derivative Calculation of Electronic g-Tensors based on Multireference Configuration Interaction Wavefunctions. Mol. Phys., 2007, 105, 2507–2514.
Neese, Frank. Theoretical spectroscopy of model-nonheme [Fe(IV)OL5]2+ complexes in their lowest triplet and quintet states using multireference ab initio and density functional theory methods. J. Inorg. Biochem., 2006, 100 (4), 716–726. High-valent iron intermediates in biology. DOI: 10.1016/j.jinorgbio.2006.01.020.
Ganyushin, D.; Neese, F. First Principle Calculation of Zero-Field Splittings. J. Chem. Phys., 2006, 125, 024103.
Ray, K.; Weyhermüller, T.; Neese, F.; Wieghardt, K. Electronic Structure of Square-Planar Bis(benzene-1,2-dithiolate)metal Complexes [M(L)₂]ᶻ (z=2-,1-,0; M = Ni, Pd, Pt, Cu, Au): An experimental, Density Functional and Correlated \it ab initio Study. Inorg. Chem., 2005, 44, 5345–5360.
Schöneboom, J.; Neese, F.; Thiel, W. Towards Identification of the Compound I Reactive Intermediate in Cytochrome P450 Chemistry: A QM/MM Study of its EPR and Mössbauer Parameters. J. Am. Chem. Soc., 2005, 127, 5840–5853.
Wanko, M.; Hoffmann, M.; Strodel, P.; Thiel, W.; Neese, F.; Frauenheim, T.; Elstner, M. Calculating Absorption Shifts for Retinal Proteins: Computational Challenges. J. Phys. Chem. B, 2005, 109, 3606–3615.
Neese, F. Sum Over States Based Multireference \it ab initio Calculation of EPR Spin Hamiltonian Parameters for Transition Metal Complexes. A Case Study. Mag. Res. Chem., 2004, 42, S187–S198.
Neese, F. A Spectroscopy Oriented Configuration Interaction Procedure. J. Chem. Phys., 2003, 119, 9428–9443.
Neese, F. Configuration Interaction Calculation of Electronic g-Tensors in Transition Metal Complexes. Int. J. Quant. Chem., 2001, 83, 104–114.
Chalupský, J.; Neese, F.; Solomon, E. I.; Ryde, U.; Rulíšek, L. Identification of intermediates in the reaction cycle of multicopper oxidases by quantum chemical calculations of spectroscopic parameters. Inorg. Chem., 2006, 45, 11051–11059.
2.3.31. NRVS¶
Ogata, H.; Kramer, T.; Wang, H. X.; Schilter, D.; Pelmenschikov, V.; van Gastel, M.; Neese, F.; Rauchfuss, T. B.; Gee, L. B.; Scott, A. D.; Yoda, Y.; Tanaka, Y.; Lubitz, W.; Cramer, S. P. Hydride bridge in NiFe-hydrogenase observed by nuclear resonance vibrational spectroscopy. Nat. Commun., 2015, 6, 7890.
2.3.32. Nuclear Resonance Vibrational Spectra¶
Petrenko, Taras; DeBeer-George, Serena; Aliaga-Alcalde, Núria; Bill, Eckhard; Mienert, Bernd; Xiao, Yuming; Guo, YiSong; Sturhahn, Wolfgang; Cramer, Stephen P.; Wieghardt, Karl; Neese, Frank. Characterization of a Genuine Iron(V)-Nitrido Species by Nuclear Resonant Vibrational Spectroscopy Coupled to Density Functional Calculations. J. Am. Chem. Soc., 2007, 129, 11053–11060.
Petrenko, T.; Sturhahn, W.; Neese, F. First principles calculation of Nuclear Resonance Vibrational Spectra. Hyperfine Interact., 2008, 175, 165–174.
2.3.33. Orbital Optimized MP2¶
Neese, F.; Schwabe, T.; Kossmann, S.; Schirmer, B.; Grimme, S. J. Chem. Theory Comput., 2009, 5, 3060.
Shirazi, R. G.; Pantazis, D. A.; Neese, F. Performance of density functional theory and orbital-optimised second-order perturbation theory methods for geometries and singlet-triplet state splittings of aryl-carbenes. Mol. Phys., 2020, 118, e1750456.
Sandhoefer, B.; Kossmann, S.; Neese, F. Derivation and assessment of relativistic hyperfine-coupling tensors on the basis of orbital-optimized second-order Møller-Plesset perturbation theory and the second-order Douglas–Kroll–Hess transformation. J. Chem. Phys., 2013, 138, 104102.
Kossmann, S.; Neese, F. Correlated ab Initio Spin Densities for Larger Molecules: Orbital-Optimized Spin-Component-Scaled MP2 Method. J. Phys. Chem. A, 2010, 114, 11768–11781.
2.3.34. Pair Natural Orbital Local Correlation Methods¶
Kollmar, Christian; Neese, Frank. The relationship between double excitation amplitudes and Z vector components in some post-Hartree-Fock correlation methods. J. Chem. Phys., 2011, 135 (6), 064103. DOI: 10.1063/1.3618720.
Kollmar, Christian; Neese, Frank. An orbital-invariant and strictly size extensive post-Hartree-Fock correlation functional. J. Chem. Phys., 2011, 135 (8), 084102. DOI: 10.1063/1.3624567.
Huntington, Lee M. J.; Hansen, Andreas; Neese, Frank; Nooijen, Marcel. Accurate Thermochemistry from a Parameterized Coupled-Cluster Singles and Doubles Model and a Local Pair Natural Orbital Based Implementation for Applications to Larger Systems. J. Chem. Phys., 2012, 136, 064101. DOI: 10.1063/1.3682325.
Neese, F.; Hansen, A.; Liakos, D. G. J. Chem. Phys., 2009, 131, 064103.
Hansen, A.; Liakos, D. G.; Neese, F. J. Chem. Phys., 2011, 135, 214102.
Liakos, D. G.; Neese, F. Improved correlation energy extrapolation schemes based on local pair natural orbital methods. J. Phys. Chem. A, 2012, 116 (19), 4801–4816. DOI: 10.1021/jp300997x.
Riplinger, C.; Neese, F. J. Chem. Phys., 2013, 138, 034106.
Neese, F.; Wennmohs, F.; Hansen, A. J. Chem. Phys., 2009, 130, 114108.
Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. J. Chem. Phys., 2013, 139, 134101.
Izsák, R.; Hansen, A.; Neese, F. The resolution of identity and chain of spheres approximations for the LPNO-CCSD singles Fock term. Mol. Phys., 2012, 110, 2413–2417.
Liakos, D. G.; Hansen, A.; Neese, F. Weak Molecular Interactions Studied with Parallel Implementations of the Local Pair Natural Orbital Coupled Pair and Coupled Cluster Methods. J. Chem. Theory Comput., 2011, 7, 76–87.
2.3.35. PBEh-3c method¶
Grimme, S.; Brandenburg, J. G.; Bannwarth, C.; Hansen, A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys., 2015, 143, 054107. DOI: 10.1063/1.4927476.
2.3.36. QM/MM¶
Rokhsana, D.; Large, T. A. G.; Dienst, M. C.; Retegan, M.; Neese, F. A realistic in silico model for structure/function studies of molybdenum-copper CO dehydrogenase. Inorg. Chem., 2016, 21, 491–499.
Retegan, M.; Krewald, V.; Mamedov, F.; Neese, F.; Lubitz, W.; Cox, N.; Pantazis, D. A. A five-coordinate Mn(IV) intermediate in biological water oxidation: spectroscopic signature and a pivot mechanism for water binding. Chem. Sci., 2016, 7, 72–84.
Sundararajan, M.; Neese, F. Distal Histidine Modulates the Unusual O-Binding of Nitrite to Myoglobin: Evidence from the Quantum Chemical Analysis of EPR Parameters. Inorg. Chem., 2015, 54, 7209–7217.
2.3.37. QM/MM calculations with ORCA¶
Schulz, C. E.; van Gastel, M.; Pantazis, D. A.; Neese, F. Converged Structural and Spectroscopic Properties for Refined QM/MM Models of Azurin. Inorg. Chem., 2021, 60 (10), 7399–7412. DOI: 10.1021/acs.inorgchem.1c00640.
Schulz, C. E.; Castillo, R. G.; Pantazis, D. A.; DeBeer, S.; Neese, F. Structure-Spectroscopy Correlations for Intermediate q of Soluble Methane Monooxygenase: Insights from QM/MM Calculations. J. Am. Chem. Soc., 2021, 143 (17), 6560–6577. DOI: 10.1021/jacs.1c01180.
Schöneboom, J.; Neese, F.; Thiel, W. Towards Identification of the Compound I Reactive Intermediate in Cytochrome P450 Chemistry: A QM/MM Study of its EPR and Mössbauer Parameters. J. Am. Chem. Soc., 2005, 127, 5840–5853.
Wanko, M.; Hoffmann, M.; Strodel, P.; Thiel, W.; Neese, F.; Frauenheim, T.; Elstner, M. Calculating Absorption Shifts for Retinal Proteins: Computational Challenges. J. Phys. Chem. B, 2005, 109, 3606–3615.
Sundararajan, M.; Neese, F. Detailed QM/MM study of the Electron Paramagnetic Resonance Parameters of Nitrosyl Myoglobin. J. Chem. Theory Comput., 2012, 8, 563–574.
Radoul, M.; Sundararajan, M.; Potapov, A.; Riplinger, C.; Neese, F.; Goldfarb, D. Revisiting the nitrosyl complex of myoglobin by high-field pulse EPR spectroscopy and quantum mechanical calculations. Phys. Chem. Chem. Phys., 2010, 12, 7276–7289.
Sundararajan, M.; Riplinger, C.; Orio, M.; Wennmohs, F.; Neese, F. Spectroscopic Properties of Protein-Bound Cofactors: Calculation by Combined Quantum Mechanical/Molecular Mechanical (QM/MM) Approaches. In Encyclopedia of Inorganic Chemistry. 2009.
Altun, A.; Kumar, D.; Neese, F.; Thiel, W. Multi-reference Ab Initio QM/MM Study on Intermediates in the Catalytic Cycle of Cytochrome P450cam. J. Phys. Chem., 2008, 112, 12904–12910.
Sinnecker, S.; Neese, F. QM/MM Calculations with DFT for Taking into Account Protein Effects on the EPR and Optical Spectra of Metalloproteins. Plastocyanin as a Case Study. J. Comp. Chem., 2006, 27, 1463–1475.
Riplinger, C.; Neese, F. The Reaction Mechanism of Cytochrome P450 NO Reductase: A Detailed Quantum Mechanics/Molecular Mechanics Study. ChemPhysChem, 2011, 12, 3192–3203.
Chalupský, J.; Neese, F.; Solomon, E. I.; Ryde, U.; Rulíšek, L. Identification of intermediates in the reaction cycle of multicopper oxidases by quantum chemical calculations of spectroscopic parameters. Inorg. Chem., 2006, 45, 11051–11059.
2.3.38. Relativity and SARC Basis Sets¶
Pantazis, D. A.; Chen, X.-Y.; Landis, C. R.; Neese, F. J. Chem. Theory Comput., 2008, 4, 908–919.
Bühl, M.; Reimann, C.; Pantazis, D. A.; Bredow, T.; Neese, F. Geometries of Third-Row Transition-Metal Complexes from Density-Functional Theory. J. Chem. Theory Comput., 2008, 4, 1449–1459. DOI: 10.1021/ct800172j.
Pantazis, D. A.; Neese, F. J. Chem. Theory Comput., 2009, 5, 2229–2238.
Pantazis, D. A.; Neese, F. J. Chem. Theory Comput., 2011, 7, 677–684.
Pantazis, D. A.; Neese, F. Theor. Chem. Acc., 2012, 131, 1292.
Rolfes, Julian D.; Neese, Frank; Pantazis, Dimitrios A. All-Electron Scalar Relativistic Basis Sets for the Elements Rb–Xe. J. Comput. Chem., 2020, 41, 1842–1849. DOI: 10.1002/jcc.26355.
Aravena, D.; Neese, F.; Pantazis, Dimitrios A. Improved Segmented All-Electron Relativistically Contracted Basis Sets for the Lanthanides. J. Chem. Theory Comput., 2016, 12, 1148–1156. DOI: 10.1021/acs.jctc.5b01048.
2.3.39. Resonance Raman¶
de Souza, Bernardo; Farias, Giliandro; Neese, Frank; Izsak, Robert. Efficient Simulation of Overtones and Combination Bands in Resonant Raman Spectra. J. Chem. Phys., 2019, 150 (21), 044105. DOI: 10.1063/1.5099247.
Maganas, D.; Trunschke, A.; Schlogl, R.; Neese, F. A unified view on heterogeneous and homogeneous catalysts through a combination of spectroscopy and quantum chemistry. Faraday Discuss., 2016, 188, 181–197.
2.3.40. SOC on TD-DFT¶
de Souza, Bernardo; Farias, Giliandro; Neese, Frank; Izsak, Robert. Predicting Phosphorescence Rates of Light Organic Molecules Using Time-Dependent Density Functional Theory and the Path Integral Approach to Dynamics. J. Chem. Theory Comput., 2019, 15 (3), 1896–1904. DOI: 10.1021/acs.jctc.8b00841.
2.3.41. SOSCF Method¶
Neese, F. Approximate Second Order Convergence for Spin Unrestricted Wavefunctions. Chem. Phys. Lett., 2000, 325, 93–98.
2.3.42. The Split-J, Split-RI-J, RIJCOSX and RI-JK methods¶
Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Chem. Phys., 2009, 356, 98–109.
Kossmann, Simone; Neese, Frank. Comparison of two efficient approximate Hartee–Fock approaches. Chem. Phys. Lett., 2009, 481 (4-6), 240–243. DOI: 10.1016/j.cplett.2009.10.007.
Izsák, Róbert; Neese, Frank. An Overlap Fitted Chain of Spheres Exchange Method. J. Chem. Phys., 2011, 135, 144105. DOI: 10.1063/1.3644029.
Izsák, R.; Neese, F. Speeding up spin-component-scaled third-order pertubation theory with the chain of spheres approximation: the COSX-SCS-MP3 method. Mol. Phys., 2013, 111, 1190.
Kossmann, S.; Neese, F. Efficient Structure Optimization with Second-Order Many-Body Perturbation Theory: The RIJCOSX-MP2 Method. J. Chem. Theory Comput., 2010, 6, 2325–2338.
Neese, F. An Improvement of the Resolution of the Identity Approximation for the Calculation of the Coulomb Matrix. J. Comp. Chem., 2003, 24, 1740–1747.
2.3.43. sTDA and sTD-DFT approaches for electronic spectra¶
Grimme, S. A simplified Tamm–Dancoff density functional approach for the electronic excitation spectra of very large molecules. J. Chem. Phys., 2013, 138, 244104. DOI: 10.1063/1.4811330.
Bannwarth, C.; Grimme, S. A simplified time-dependent density functional theory approach for electronic ultraviolet and circular dichroism spectra of very large molecules. Comp. Theor. Chem., 2014, 1040 –1041, 45–53. DOI: 10.1016/j.comptc.2014.02.023.
Risthaus, T.; Hansen, A.; Grimme, S. Phys. Chem. Chem. Phys., 2014, 16, 14408–14419.
2.3.44. XAS/XES¶
Van Kuiken, B. E.; Hahn, A. W.; Maganas, D.; DeBeer, S. Measuring Spin-Allowed and Spin-Forbidden d-d Excitations in Vanadium Complexes with 2p3d Resonant Inelastic X-ray Scattering. Inorg. Chem., 2016, 55, 11497–11501.
Rees, J. A.; Wandzilak, A.; Maganas, D.; Wurster, N. I. C.; Hugenbruch, S.; Kowalska, J. K.; Pollock, C. J.; Lima, F. A.; Finkelstein, K. D.; DeBeer, S. Experimental and theoretical correlations between vanadium K-edge X-ray absorption and K emission spectra. J. Biol. Inorg. Chem., 2016, 21, 793–805.
Martin-Diaconescu, V.; Chacon, K. N.; Delgado-Jaime, M. U.; Sokaras, D.; Weng, T. C.; DeBeer, S.; Blackburn, N. J. K β Valence to Core X-ray Emission Studies of Cu(I) Binding Proteins with Mixed Methionine - Histidine Coordination. Relevance to the Reactivity of the M- and H-sites of Peptidylglycine Monooxygenase. Inorg. Chem., 2016, 55, 3431–3439.
Kowalska, J. K.; Hahn, A. W.; Albers, A.; Schiewer, C. E.; Bjornsson, R.; Lima, F. A.; Meyer, F.; DeBeer, S. X-ray Absorption and Emission Spectroscopic Studies of L2Fe2S2 (n) Model Complexes: Implications for the Experimental Evaluation of Redox States in Iron-Sulfur Clusters. Inorg. Chem., 2016, 55, 4485–4497.
Rees, J. A.; Martin-Diaconescu, V.; Kovacs, J. A.; DeBeer, S. X-ray Absorption and Emission Study of Dioxygen Activation by a Small-Molecule Manganese Complex. Inorg. Chem., 2015, 54, 6410–6422.
Rees, J. A.; Bjornsson, R.; Schlesier, J.; Sippel, D.; Einsle, O.; DeBeer, S. The Fe-V Cofactor of Vanadium Nitrogenase Contains an Interstitial Carbon Atom. Angew. Chem. Int. Ed., 2015, 54, 13249–13252.
Maganas, D.; Trunschke, A.; Schlogl, R.; Neese, F. A unified view on heterogeneous and homogeneous catalysts through a combination of spectroscopy and quantum chemistry. Faraday Discuss., 2016, 188, 181–197.
2.3.45. X-Ray Absorption and X-Ray Emission Spectra¶
Maganas, Dimitrios; Kowalska, Joanna K.; Nooijen, Marcel; DeBeer, Serena; Neese, Frank. Comparison of Multireference Ab Initio Wavefunction Methodologies for X-Ray Absorption Edges: A Case Study on [Fe(II/III)Cl₄]²⁻/¹⁻ Molecules. J. Chem. Phys., 2019, 150 (10), 104106. DOI: 10.1063/1.5051613.
Roemelt, M.; Beckwith, M. A.; Duboc, C.; Collomb, M.-N.; Neese, F.; DeBeer, S. Manganese K-Edge X-Ray Absorption Spectroscopy as a Probe of the Metal-Ligand Interactions in Coordination Compounds. Inorg. Chem., 2012, 51, 680–687.
Chandrasekaran, P.; Stieber, S. C. E.; Collins, T. J.; Que, L.; Neese, F.; DeBeer, S. Prediction of high-valent iron K-edge absorption spectra by time-dependent Density Functional Theory. Dalton Trans., 2011, 40, 11070–11079.
Beckwith, M. A.; Roemelt, M.; Collomb, M. N.; Duboc, C.; Weng, T. C.; Bergmann, U.; Glatzel, P.; Neese, F.; DeBeer, S. Manganese K beta X-ray Emission Spectroscopy As a Probe of Metal-Ligand Interactions. Inorg. Chem., 2011, 50, 8397–8409.
Lee, N.; Petrenko, T.; Bergmann, U.; Neese, F.; DeBeer, S. Probing Valence Orbital Composition with Iron K beta X-ray Emission Spectroscopy. J. Am. Chem. Soc., 2010, 132, 9715–9727.
DeBeer-George, S.; Neese, F. Calibration of Scalar Relativistic Density Functional Theory for the Calculation of Sulfur K-Edge X-ray Absorption Spectra. Inorg. Chem., 2010, 49, 1849–1853.
DeBeer-George, S.; Petrenko, T.; Neese, F. Prediction of Iron- K-edge Absorption Spectra using Time-Dependent Density Functional Theory. J. Phys. Chem. A, 2008, 112, 12936–12943.
DeBeer-George, S.; Petrenko, T.; Neese, F. Time-dependent density functional calculations of ligand K-edge X-ray absorption spectra. Inorg. Chim. Acta, 2008, 361, 965–972.
2.4. Applications that make use of or include the following¶
Atanasov, Mihail; Ganyushin, Dmitry; Pantazis, Dimitrios A.; Sivalingam, Kantharuban; Neese, Frank. Detailed Ab Initio First-Principles Study of the Magnetic Anisotropy in a Family of Trigonal Pyramidal Iron(II) Pyrrolide Complexes. Inorg. Chem., 2011, 50 (16), 7460–7477. DOI: 10.1021/ic200196k.
Maganas, Dimitrios; Sottini, Silvia; Kyritsis, Panayotis; Groenen, Edgar J. J.; Neese, Frank. Theoretical Analysis of the Spin Hamiltonian Parameters in Co(II)S₄ Complexes, Using Density Functional Theory and Correlated ab initio Methods. Inorg. Chem., 2011, 50 (18), 8741–8754. DOI: 10.1021/ic200299y.
Petrenko, T.; Ray, K.; Wieghardt, K.; Neese, F. Vibrational Markers for the Open-Shell Character of Metal bis-Dithiolenes: An Infrared, resonance Raman and Quantum Chemical Study. J. Am. Chem. Soc., 2006, 128, 4422–4436.
Neese, F.; Pantazis, D. A. What is not required to make a single molecule magnet. Faraday Discuss., 2011, 148, 229–238.
Kruse, H.; Mladek, A.; Gkionis, K.; Hansen, A.; Grimme, S.; Sponer, J. Quantum Chemical Benchmark Study on 46 RNA Backbone Families Using a Dinucleotide Unit. J. Chem. Theory Comput., 2015, 11, 4972.
Qu, Z.-W.; Hansen, A.; Grimme, S. Co-C Bond Dissociation Energies in Cobalamin Derivatives and Dispersion Effects: Anomaly or Just Challenging? J. Chem. Theory Comput., 2015, 11, 1037.
Hansen, A.; Bannwarth, C.; Grimme, S.; Petrović, P.; Werlé, C.; Djukic, J.-P. The Thermochemistry of London Dispersion-Driven Transition Metal Reactions: Getting the 'Right Answer for the Right Reason'. ChemistryOpen, 2014, 3, 177.
Krewald, V.; Neese, F.; Pantazis, D. A. On the magnetic and spectroscopic properties of high-valent Mn₃CaO₄ cubanes as structural units of natural and artificial water oxidizing catalysts. J. Am. Chem. Soc., 2013, 135, 5726–5739.
Kampa, M.; Pandelia, M.-E.; Lubitz, W.; van Gastel, M.; Neese, F. A Metal-Metal Bond in the Light-Induced State of [NiFe] Hydrogenases with Relevance to Hydrogen Evolution. J. Am. Chem. Soc., 2013, 135, 3915–3925.
Pandelia, M.-E.; Bykov, D.; Izsák, R.; Infossi, P.; Giudici-Orticoni, M.-T.; Bill, E.; Neese, F.; Lubitz, W. Electronic structure of the unique [4Fe-3S] cluster in O₂-tolerant hydrogenases characterized by Fe-57 Mossbauer and EPR spectroscopy. Proc. Natl. Acad. Sci. USA, 2013, 110, 483–488.
Atanasov, M.; Surawatanawong, P.; Wieghardt, K.; Neese, F. A theoretical study of zero-field splitting in Fe(IV)S₆ (S = 1) and Fe(III)S₆ (S = 1/2) core complexes, [Feᴵⱽ(Et₂dtc)₃₋ₙ(mnt)ₙ]⁽ⁿ⁻¹⁾⁻ and [Feᴵᴵᴵ(Et₂dtc)₃₋ₙ(mnt)ₙ]ⁿ⁻ (n=0, 1, 2, 3): The origin of the magnetic anisotropy. Coord. Chem. Rev., 2013, 257 (1), 27–41.
Retegan, M.; Collomb, M.-N.; Neese, F.; Duboc, C. A combined high-field EPR and quantum chemical study on a weakly ferromagnetically coupled dinuclear Mn(III) complex. A complete analysis of the EPR spectrum beyond the strong coupling limit. Phys. Chem. Chem. Phys., 2013, 15, 223–234.
Zadrozny, J. M.; Atanasov, M.; Bryan, A. M.; Lin, C. Y.; Rekken, B. D.; Power, P. P.; Neese, F.; Long, J. R. Slow magnetization dynamics in a series of two-coordinate iron(II) complexes. Chem. Sci., 2013, 4, 125–138.
Weber, K.; Krämer, T.; Shafaat, H. S.; Weyhermüller, T.; Bill, E.; van Gastel, M.; Neese, F.; Lubitz, W. A Functional [NiFe]-Hydrogenase Model Compound That Undergoes Biologically Relevant Reversible Thiolate Protonation. J. Am. Chem. Soc., 2012, 134, 20745–20755.
Kampa, M.; Lubitz, W.; van Gastel, M.; Neese, F. Computational study of the electronic structure and magnetic properties of the Ni-C state in [NiFe] hydrogenases including the second coordination sphere. J. Biol. Inorg. Chem., 2012, 17, 1269–1281.
Atanasov, M.; Comba, P.; Helmle, S.; Müller, D.; Neese, F. Zero-Field Splitting in a Series of Structurally Related Mononuclear Niᴵᴵ-Bispidine Complexes. Inorg. Chem., 2012, 51, 12324–12335.
Shafaat, H. S.; Weber, K.; Petrenko, T.; Neese, F.; Lubitz, W. Key Hydride Vibrational Modes in [NiFe] Hydrogenase Model Compounds Studied by Resonance Raman Spectroscopy and Density Functional Calculations. Inorg. Chem., 2012, 51, 11787–11797.
Argirevic, T.; Riplinger, C.; Stubbe, J.; Neese, F.; Bennati, M. ENDOR Spectroscopy and DFT Calculations: Evidence for the Hydrogen-Bond Network Within α2 in the PCET of E. coli Ribonucleotide Reductase. J. Am. Chem. Soc., 2012, 134, 17661–17670.
Albrecht, C.; Shi, L. L.; Perez, J. M.; van Gastel, M.; Schwieger, S.; Neese, F.; Streubel, R. Deoxygenation of Coordinated Oxaphosphiranes: A New Route to P=C Double-Bond Systems. Chem. Eur. J., 2012, 18, 9780–9783.
Maganas, D.; Krzystek, J.; Ferentinos, E.; Whyte, A. M.; Robertson, N.; Psycharis, V.; Terzis, A.; Neese, F.; Kyritsis, P. Investigating Magnetostructural Correlations in the Pseudooctahedral trans-Niᴵᴵ(OPPh₂) (EPPh₂)N₂(sol)₂ Complexes (E = S, Se; sol = DMF, THF) by Magnetometry, HFEPR, and ab Initio Quantum Chemistry. Inorg. Chem., 2012, 51, 7218–7231.
Ye, S. F.; Neese, F. How Do Heavier Halide Ligands Affect the Signs and Magnitudes of the Zero-Field Splittings in Halogenonickel(II) Scorpionate Complexes? A Theoretical Investigation Coupled to Ligand-Field Analysis. J. Chem. Theory Comput., 2012, 8, 2344–2351.
Nesterov, V.; Ozbolat-Schon, A.; Schnakenburg, G.; Shi, L. L.; Cangonul, A.; van Gastel, M.; Neese, F.; Streubel, R. An Unusal Case of Facile Non-Degenerate P-C Bond Making and Breaking. Chem. Asian J., 2012, 7, 1708–1712.
Bykov, D.; Neese, F. Reductive activation of the heme iron-nitrosyl intermediate in the reaction mechanism of cytochrome c nitrite reductase: a theoretical study. J. Biol. Inorg. Chem., 2012, 17, 741–760.
Lancaster, K. M.; Zaballa, M. E.; Sproules, S.; Sundararajan, M.; DeBeer, S.; Richards, J. H.; Vila, A. J.; Neese, F.; Gray, H. B. Outer-Sphere Contributions to the Electronic Structure of Type Zero Copper Proteins. J. Am. Chem. Soc., 2012, 134, 8241–8253.
Benkhauser-Schunk, C.; Wezisla, B.; Urbahn, K.; Kiehne, U.; Daniels, J.; Schnakenburg, G.; Neese, F.; Lutzen, A. Synthesis, Chiral Resolution, and Absolute Configuration of Functionalized Troger's Base Derivatives: Part II. ChemPlusChem, 2012, 77, 396–403.
Ye, S. F.; Riplinger, C.; Hansen, A.; Krebs, C.; Bollinger, J. M.; Neese, F. Electronic Structure Analysis of the Oxygen-Activation Mechanism by Feᴵᴵ- and α-Ketoglutarate (αKG)-Dependent Dioxygenases. Chem. Eur. J., 2012, 18, 6555–6567.
Desrochers, P. J.; Sutton, C. A.; Abrams, M. L.; Ye, S. F.; Neese, F.; Telser, J.; Ozarowski, A.; Krzystek, J. Electronic Structure of Nickel(II) and Zinc(II) Borohydrides from Spectroscopic Measurements and Computational Modeling. Inorg. Chem., 2012, 51, 2793–2805.
Torres-Alacan, J.; Krahe, O.; Filippou, A. C.; Neese, F.; Schwarzer, D.; Vöhringer, P. The Photochemistry of [FeᴵᴵᴵN₃(cyclam-ac)]PF₆ at 266 nm. Chem. Eur. J., 2012, 18, 3043–3055.
Maekawa, M.; Römelt, M.; Daniliuc, C. G.; Jones, P. G.; White, P. S.; Neese, F.; Walter, M. D. Reactivity studies on [Cp'MnX(thf)]₂: manganese amide and polyhydride synthesis. Chem. Sci., 2012, 3, 2972–2979.
Pantazis, D. A.; Ames, W.; Cox, N.; Lubitz, W.; Neese, F. Two interconvertible structures that explain the spectroscopic properties of the oxygen-evolving complex of photosystem II in the S₂ state. Angew. Chem. Int. Ed., 2012, 51, 9935–9940. selected as cover article and VIP paper.
Vennekate, H.; Schwarzer, D.; Torres-Alacan, J.; Krahe, O.; Filippou, A. C.; Neese, F.; Vöhringer, P. Ultrafast primary processes of an iron-(III) azido complex in solution induced with 266 nm light. Phys. Chem. Chem. Phys., 2012, 14, 6165–6172.
Christian, G. J.; Ye, S.; Neese, F. Oxygen activation in extradiol catecholate dioxygenases – a density functional study. Chem. Sci., 2012, 3, 1600–1611.
Cowley, Ryan E.; Christian, Gemma J.; Brennessel, William W.; Neese, Frank; Holland, Patrick L. A Reduced (β-Diketiminato)iron Complex with End-On and Side-On Nitriles: Strong Backbonding or Ligand Non-Innocence? Eur. J. Inorg. Chem., 2012, 2012 (3), 479–483. DOI: 10.1002/ejic.201100787.
Thiessen, A.; Wettach, H.; Meerholz, K.; Neese, F.; Hoger, S.; Hertel, D. Control of electronic properties of triphenylene by substitution. Organic Electronics, 2012, 13, 71–83.
Lancaster, K. M.; Roemelt, M.; Ettenhuber, P.; Hu, Y. L.; Ribbe, M. W.; Neese, F.; Bergmann, U.; DeBeer, S. X-ray Emission Spectroscopy Evidences a Central Carbon in the Nitrogenase Iron-Molybdenum Cofactor. Science, 2011, 334, 974–977.
Ames, W.; Pantazis, D. A.; Krewald, V.; Cox, N.; Messinger, J.; Lubitz, W.; Neese, F. Theoretical Evaluation of Structural Models of the S₂ State in the Oxygen Evolving Complex of Photosystem II: Protonation States and Magnetic Interactions. J. Am. Chem. Soc., 2011, 133, 19743–19757.
Antony, J.; Grimme, S.; Liakos, D. G.; Neese, F. Protein-Ligand Interaction Energies with Dispersion Corrected Density Functional Theory and High-Level Wave Function Based Methods. J. Phys. Chem. A, 2011, 115, 11210–11220.
Radoul, M.; Bykov, D.; Rinaldo, S.; Cutruzzola, F.; Neese, F.; Goldfarb, D. Dynamic Hydrogen-Bonding Network in the Distal Pocket of the Nitrosyl Complex of Pseudomonas aeruginosa cd(1) Nitrite Reductase. J. Am. Chem. Soc., 2011, 133, 3043–3055.
Liakos, D. G.; Neese, F. Interplay of Correlation and Relativistic Effects in Correlated Calculations on Transition-Metal Complexes: The Cu₂O₂²⁺ Core Revisited. J. Chem. Theory Comput., 2011, 7, 1511–1523.
Riplinger, C.; Neese, F. The Reaction Mechanism of Cytochrome P450 NO Reductase: A Detailed Quantum Mechanics/Molecular Mechanics Study. ChemPhysChem, 2011, 12, 3192–3203.
Surawatanawong, P.; Sproules, S.; Neese, F.; Wieghardt, K. Electronic Structures and Spectroscopy of the Electron Transfer Series Fe(NO)L₂ᶻ (z=1+, 0, 1-, 2-, 3-; L = Dithiolene). Inorg. Chem., 2011, 50, 12064–12074.
Cox, N.; Ames, W.; Epel, B.; Kulik, L. V.; Rapatskiy, L.; Neese, F.; Messinger, J.; Wieghardt, K.; Lubitz, W. Electronic Structure of a Weakly Antiferromagnetically Coupled Mn(II)Mn(III) Model Relevant to Manganese Proteins: A Combined EPR, ⁵⁵Mn-ENDOR, and DFT Study. Inorg. Chem., 2011, 50, 8238–8251.
Rota, J. B.; Knecht, S.; Fleig, T.; Ganyushin, D.; Saue, T.; Neese, F.; Bolvin, H. Zero field splitting of the chalcogen diatomics using relativistic correlated wave-function methods. J. Chem. Phys., 2011, 135, 114106.
Cox, N.; Rapatskiy, L.; Su, J. H.; Pantazis, D. A.; Sugiura, M.; Kulik, L.; Dorlet, P.; Rutherford, A. W.; Neese, F.; Boussac, A.; Lubitz, W.; Messinger, J. Effect of Ca²⁺/Sr²⁺ Substitution on the Electronic Structure of the Oxygen-Evolving Complex of Photosystem II: A Combined Multifrequency EPR, ⁵⁵Mn-ENDOR, and DFT Study of the S₂ State. J. Am. Chem. Soc., 2011, 133, 3635–3648.
Maurice, R.; Sivalingam, K.; Ganyushin, D.; Guihery, N.; de Graaf, C.; Neese, F. Theoretical Determination of the Zero-Field Splitting in Copper Acetate Monohydrate. Inorg. Chem., 2011, 50, 6229–6236.
Su, J. H.; Cox, N.; Ames, W.; Pantazis, D. A.; Rapatskiy, L.; Lohmiller, T.; Kulik, L. V.; Dorlet, P.; Rutherford, A. W.; Neese, F.; Boussac, A.; Lubitz, W.; Messinger, J. The electronic structures of the S₂ states of the oxygen-evolving complexes of photosystem II in plants and cyanobacteria in the presence and absence of methanol. Biochim. Biophys. Acta-Bioenergetics, 2011, 1807, 829–840.
Bykov, D.; Neese, F. Substrate binding and activation in the active site of cytochrome c nitrite reductase: a density functional study. J. Biol. Inorg. Chem., 2011, 16, 417–430.
Gennari, M.; Orio, M.; Pecaut, J.; Bothe, E.; Neese, F.; Collomb, M. N.; Duboc, C. Influence of Mixed Thiolate/Thioether versus Dithiolate Coordination on the Accessibility of the Uncommon +I and +III Oxidation States for the Nickel Ion: An Experimental and Computational Study. Inorg. Chem., 2011, 50, 3707–3716.
Ye, S. F.; Neese, F. Nonheme oxo-iron(IV) intermediates form an oxyl radical upon approaching the C-H bond activation transition state. Proc. Natl. Acad. Sci. USA, 2011, 108, 1228–1233.
Gennari, M.; Pecaut, J.; DeBeer, S.; Neese, F.; Collomb, M. N.; Duboc, C. A Fully Delocalized Mixed-Valence Bis-µ-(Thiolato) Dicopper Complex: A Structural and Functional Model of the Biological Cu(A) Center. Angew. Chem., Int. Ed., 2011, 50, 5661–5665.
Gennari, M.; Retegan, M.; DeBeer, S.; Pecaut, J.; Neese, F.; Collomb, M. N.; Duboc, C. Experimental and Computational Investigation of Thiolate Alkylation in Ni(II) and Zn(II) Complexes: Role of the Metal on the Sulfur Nucleophilicity. Inorg. Chem., 2011, 50, 10047–10055.
Atanasov, M.; Delley, B.; Neese, F.; Tregenna-Piggott, P. L.; Sigrist, M. Theoretical Insights into the Magnetostructural Correlations in Mn(3)-Based Single-Molecule Magnets. Inorg. Chem., 2011, 50, 2112–2124.
Lassalle-Kaiser, B.; Hureau, C.; Pantazis, D. A.; Pushkar, Y.; Guillot, R.; Yachandra, V. K.; Yano, J.; Neese, F.; Anxolabéhère-Mallart, E. Activation of a water molecule using a mononuclear Mn complex: from Mn-aquo, to Mn-hydroxo, to Mn-oxyl via charge compensation. Energy Environ. Sci., 2010, 3, 924–938.
Pantazis, D. A.; Krewald, V.; Orio, M.; Neese, F. Theoretical magnetochemistry of dinuclear manganese complexes: broken symmetry density functional theory investigation on the influence of bridging motifs on structure and magnetism. Dalton Trans., 2010, 39, 4959–4967.
Woertink, J. S.; Tian, L.; Maiti, D.; Lucas, H. R.; Himes, R. A.; Karlin, K. D.; Neese, F.; Wurtele, C.; Holthausen, M. C.; Bill, E.; Sundermeyer, J.; Schindler, S.; Solomon, E. I. Spectroscopic and Computational Studies of an End-on Bound Superoxo-Cu(II) Complex: Geometric and Electronic Factors That Determine the Ground State. Inorg. Chem., 2010, 49, 9450–9459.
McNaughton, R. L.; Roemelt, M.; Chin, J. M.; Schrock, R. R.; Neese, F.; Hoffman, B. M. Experimental and Theoretical EPR Study of Jahn–Teller-Active HIPTN(3)N MoL Complexes (L = N₂, CO, NH₃). J. Am. Chem. Soc., 2010, 132, 8645–8656.
Geng, C. Y.; Ye, S. F.; Neese, F. Analysis of Reaction Channels for Alkane Hydroxylation by Nonheme Iron(IV)-Oxo Complexes. Angew. Chem., Int. Ed., 2010, 49, 5717–5720.
Orio, M.; Jarjayes, O.; Kanso, H.; Philouze, C.; Neese, F.; Thomas, F. X-Ray Structures of Copper(II) and Nickel(II) Radical Salen Complexes: The Preference of Galactose Oxidase for Copper(II). Angew. Chem., Int. Ed., 2010, 49, 4989–4992.
Gennari, M.; Orio, M.; Pecaut, J.; Neese, F.; Collomb, M. N.; Duboc, C. Reversible Apical Coordination of Imidazole between the Ni(III) and Ni(II) Oxidation States of a Dithiolate Complex: A Process Related to the Ni Superoxide Dismutase. Inorg. Chem., 2010, 49, 6399–6401.
Ye, S. F.; Price, J. C.; Barr, E. W.; Green, M. T.; Bollinger, J. M.; Krebs, C.; Neese, F. Cryoreduction of the NO-Adduct of Taurine:alpha-Ketoglutarate Dioxygenase (TauD) Yields an Elusive FeNO Species. J. Am. Chem. Soc., 2010, 132, 4739–4751.
Maganas, D.; Grigoropoulos, A.; Staniland, S. S.; Chatziefthimiou, S. D.; Harrison, A.; Robertson, N.; Kyritsis, P.; Neese, F. Tetrahedral and Square Planar Ni(SPR₂)₂N₂ complexes, R = Ph & iPr Revisited: Experimental and Theoretical Analysis of Interconversion Pathways, Structural Preferences, and Spin Delocalization. Inorg. Chem., 2010, 49, 5079–5093.
Anoop, A.; Thiel, W.; Neese, F. A Local Pair Natural Orbital Coupled Cluster Study of Rh Catalyzed Asymmetric Olefin Hydrogenation. J. Chem. Theory Comput., 2010, 6, 3137–3144.
Duboc, C.; Collomb, M.-N.; Pecaut, J.; Deronzier, A.; Neese, F. Understanding the Zero-Field Splitting of Mononuclear Manganese(II) Complexes from Combined EPR Spectroscopy and Quantum Chemistry. Appl. Magn. Res., 2010, 37, 229–245.
Ye, S. F.; Neese, F. The Unusual Electronic Structure of Dinitrosyl Iron Complexes. J. Am. Chem. Soc., 2010, 132, 3646–3647.
Kochem, A.; Orio, M.; Jarjayes, O.; Neese, F.; Thomas, F. Unsymmetrical one-electron oxidized Ni(II)-bis(salicylidene) complexes: a protonation-induced shift of the oxidation site. Chem. Commun., 2010, 46, 6765–6767.
Ozbolat-Schon, A.; Bode, M.; Schnakenburg, G.; Anoop, A.; van Gastel, M.; Neese, F.; Streubel, R. Insights into the Chemistry of Transient P-Chlorophosphanyl Complexes. Angew. Chem., Int. Ed., 2010, 49, 6894–6898.
Vancoillie, S.; Chalupsky, J.; Ryde, U.; Solomon, E. I.; Pierloot, K.; Neese, F.; Rulisek, L. Multireference Ab Initio Calculations of g tensors for Trinuclear Copper Clusters in Multicopper Oxidases. J. Phys. Chem. B, 2010, 114, 7692–7702.
Grote, D.; Finke, C.; Kossmann, S.; Neese, F.; Sander, W. 3,4,5,6-Tetrafluorophenylnitren-2-yl: A Ground-State Quartet Triradical. Chem. Eur. J., 2010, 16, 4496–4506.
Ye, S. F.; Neese, F.; Ozarowski, A.; Smirnov, D.; Krzystek, J.; Telser, J.; Liao, J. H.; Hung, C. H.; Chu, W. C.; Tsai, Y. F.; Wang, R. C.; Chen, K. Y.; Hsu, H. F. Family of V(III)-Tristhiolato Complexes Relevant to Functional Models of Vanadium Nitrogenase: Synthesis and Electronic Structure Investigations by Means of High-Frequency and -Field Electron Paramagnetic Resonance Coupled to Quantum Chemical Computations. Inorg. Chem., 2010, 49, 977–988.
Hegele, P.; Santhamma, B.; Schnakenburg, G.; Frohlich, R.; Kataeva, O.; Nieger, M.; Kotsis, K.; Neese, F.; Dotz, K. H. Hydroquinoid Chromium Complexes Bearing an Acyclic Conjugated Bridge: Chromium-Templated Synthesis, Molecular Structure, and Haptotropic Metal Migration. Organometallics, 2010, 29, 6172–6185.
Ye, S. F.; Neese, F. Accurate Modeling of Spin-State Energetics in Spin-Crossover Systems with Modern Density Functional Theory. Inorg. Chem., 2010, 49, 772–774.
Orio, M.; Philouze, C.; Jarjayes, O.; Neese, F.; Thomas, F. Spin Interaction in Octahedral Zinc Complexes of Mono- and Diradical Schiff and Mannich Bases. Inorg. Chem., 2010, 49, 646–658.
Pantazis, D. A.; Orio, M.; Petrenko, T.; Zein, S.; Lubitz, W.; Messinger, J.; Neese, F. Structure of the Oxygen-Evolving Complex of Photosystem II: Information on the S₂ state through Quantum Chemical Calculation of its Magnetic Properties. Phys. Chem. Chem. Phys., 2009, 11, 6788–6798.
Baffert, C.; Orio, M.; Pantazis, D. A.; Duboc, C.; Blackman, A. G.; Blondin, G.; Neese, F.; Deronzier, A.; Collomb, M.-N. A trinuclear terpyridine frustrated spin system with a Mnᴵⱽ₃O₄ core: synthesis, physical characterization and quantum chemical modeling of its magnetic properties. Inorg. Chem., 2009, 48, 10281–10288.
Liakos, D.; Neese, F. A multiconfigurational ab initio study of the zero-field splitting in the di- and trivalent hexaquo-chromium complexes. Inorg. Chem., 2009, 48, 10572–10580.
Astashkin, A. V.; Klein, E. C.; Ganyushin, D.; Johnson.Winters, K.; Neese, F.; Kappler, U.; Enemark, J. H. Exchangeable oxygens in the vicinity of the molybdenum center of the high-pH form of sulfite oxidase and sulfite dehydrogenase. Phys. Chem. Chem. Phys., 2009, 11, 6733–6742.
Orio, M.; Pantazis, D. A.; Petrenko, T.; Neese, F. Magnetic and spectroscopic properties of mixed valence manganese(III,IV) dimers: a systematic study using broken symmetry density functional theory. Inorg. Chem., 2009, 48, 7251–7260.
Klein, E. L.; Astashkin, A. V.; Ganyushin, D.; Johnson-Winters, K.; Wilson, H. L.; Rajagopalan, K. V.; Neese, F.; Enemark, J. H. Direct Detection and Characterization of Chloride in the Active Site of the Low-pH Form of Sulfite Oxidase Using ESEEM Spectroscopy, Isotopic Labeling, and DFT Calculations. Inorg. Chem., 2009, 48 (11), 4743–4752.
Vancoillie, S.; Rulisek, L.; Neese, F.; Pierloot, K. Theoretical description of the structure and magnetic properties of nitroxide-Cu(II)-nitroxide spin triads. J. Phys. Chem., 2009, 113, 6149–6157.
Cowley, R. E.; Bill, E.; Neese, F.; Brennessel, W. W.; Holland, P. L. Iron(II) Complexes With Redox-Active Tetrazene (RNNNNR) Ligands. Inorg. Chem., 2009, 48, 4828–4836.
Gansäuer, A.; Fleckhaus, A.; Lafon, A.; Okkel, M.; Anakuthil, A.; Kotsis, K.; Neese, F. Catalysis via Homolytic Substitutions with C-O and Ti-O Bonds: Oxidative Additions and Reductive Eliminations in Single Electron Steps. J. Am. Chem. Soc., 2009, 131, 16989–16999.
Ye, S.; Neese, F. Quantum Chemical Studies of C-H Activation Reactions by High-Valent Nonheme Iron Centers. Curr. Op. Chem. Biol., 2009, 13 (1), 89–98.
Krahe, O.; Neese, F.; Streubel, R. The quest for ring-opening of oxaphosphirane complexes: a coupled cluster and density functional study of CH₃PO isomers and their Cr(CO)₅ complexes. Chem. Eur. J., 2009, 15, 2594–2601.
Romain, S.; Duboc, C.; Neese, F.; Riviere, E.; Hanton, L. R.; Blackman, A. G.; Philouze, C.; Lepretre, J. C.; Deronzier, A.; Collomb, M. N. An Unusual Stable Mononuclear Mn(III) Bis-terpyridine Complex Exhibiting Jahn-Teller Compression: Electrochemical Synthesis, Physical Characterisation and Theoretical Study. Chem. Eur. J., 2009, 15, 980–988.
Zein, S.; Neese, F. Ab initio and Coupled Perturbed DFT Calculation of Zero-Field Splittings in Mn(II) Transition Metal complexes. J. Phys. Chem. A, 2008, 112, 7976–7983.
Ye, S.; Tuttle, T.; Bill, E.; Gross, Z.; Thiel, W.; Neese, F. The Noninnocence of Iron Corroles: A combined Experimental and Quantum Chemical Study. Chem. Eur. J., 2008, 34, 10839–10851. selected as very important paper.
Duboc, C.; Collomb, M.-N.; Pecaut, J.; Deronzier, A.; Neese, F. Definition of Magneto-Structural Correlations for the Mn(II) Ion. Chem. Eur. J., 2008, 21, 6498–6509.
Berry, J. F.; DeBeer-George, S.; Neese, F. Electronic Structure and Spectroscopy of "Superoxidized" Iron Centers in Model Systems: Theoretical and Experimental Trends. Phys. Chem. Chem. Phys., 2008, 10, 4361–4374.
Sander, W.; Grote, D.; Kossmann, S.; Neese, F. 2.3.5.6-Tetrafluorophenylnitren-4-yl: EPR Spectroscopic Characterization of a Quartet Ground State Nitreno Radical. J. Am. Chem. Soc., 2008, 130, 4396–4403.
Scheifele, Q.; Riplinger, C.; Neese, F.; Weihe, H.; Barra, A. L.; Jurany, F.; Podlesnyak, A.; Tregenna-Piggot, P. W. L. Spectroscopic and Theoretical Study of a Mononuclear Mn(III) Bioinorganic Complex Exhibiting a Compressed Jahn-Teller Octahedron. Inorg. Chem., 2008, 47, 439–447.
Zein, S.; Kulik, L. V.; Yano, J.; Kern, J.; Zouni, A.; Yachandra, V. K.; Lubitz, W.; Neese, F.; Messinger, J. Focussing the View on Nature's Water Splitting Catalyst. Phil. Trans. Roy. Soc. London B, 2008, 363, 1167–1177.
Zein, S.; Duboc, C.; Lubitz, W.; Neese, F. Theoretical Characterization of zero-Field Splittings in Mn(II) Complexes. Inorg. Chem., 2008, 47, 134–142.
Parker, D. J.; Hammond, D.; Davies, E. S.; Garner, C. D.; Benisvy, L.; McMaster, J.; Wilson, C.; Neese, F.; Bothe, E.; Bittl, R.; Teutloff, C. A stable H-bonded ortho-Thioether Phenoxyl-Radical: A Chemical and Spectroscopic Analogue of •Tyr₂₇₂ in apo-Galactose Oxidase. J. Biol. Inorg. Chem., 2007, 101, 1859–1864.
Chlopek, K.; Muresan, N.; Neese, F.; Wieghardt, K. Electronic Structures of Five-Coordinate Complexes of Iron Containing Zero, One, or Two π Radical Ligands: A Broken Symmetry Density Functional Theoretical Study. Chem. Eur. J., 2007, 13, 8391–8403.
Muresan, N.; Chlopek, K.; Weyhermüller, T.; Neese, F.; Wieghardt, K. Bis(α-diimine)nickel Complexes: Molecular and Electronic Structure of Three Members of the Electron-Transfer Series [Ni(L)₂]ᶻ (z = 0, 1+, 2+) (L = 2-Phenyl-1,4-bis(isopropyl)-1,4-diazabutadiene). A Combined Experimental and Theoretical Study. Inorg. Chem., 2007, 46, 4905–4916.
Ray, K.; Petrenko, T.; Wieghardt, K.; Neese, F. Joint Spectroscopic and Theoretical Investigations of Transition Metal Complexes Involving Non-Innocent Ligands. Dalton Trans., 2007, 16, 1552–1566. DOI: 10.1039/B700096K.
Sinnecker, S.; Svensen, N.; Barr, E. W.; Ye, S.; Bollinger, J. M.; Neese, F.; Krebs, C. Spectroscopic and Theoretical Evaluation of the Structure of the High-Spin Fe(IV)-Oxo Intermediates in Taurine:α-Ketoglutarate Dioxygenase from Escherichia coli and its His99Ala Ligand Variant. J. Am. Chem. Soc., 2007, 129, 6168–6179.
Duboc, C.; Phoeung, T.; Zein, S.; Pécaut, J.; Collomb, M.-N.; Neese, F. Origin of the zero field splitting in mononuclear dihalide Mn(II) complexes: an investigation by multifrequency high-field EPR and density functional theory (DFT). Inorg. Chem., 2007, 46, 4905–4916.
DeBeer-George, S.; Petrenko, T.; Aliaga-Alcade, N.; Bill, E.; Mienert, B.; Sturhan, W.; Ming, Y.; Wieghardt, K.; Neese, F. Characterization of a Genuine Iron(V)Nitrido Species by Nuclear Resonant Vibrational Spectroscopy Coupled to Density Functional Calculations. J. Am. Chem. Soc., 2007, 129, 11053–11060.
Lehnert, N. M.; Cornelissen, U.; Neese, F.; Ono, T.; Noguchi, Y.; Okamoto, K.-I.; Fujisawa, K. Synthesis and Spectroscopic Characterization of Cu(II)-Nitrite Complexes with Hydrotris(pyrazolyl)borate and Related Ligands. Inorg. Chem., 2007, 46, 3916–3933.
Carmieli, R.; Larsen, T.; Reed, G. H.; Zein, S.; Neese, F.; Goldfarb, D. The Catalytic Mn²⁺ Sites in the Enolase-Inhibitor Complex - Crystallography, Single Crystal EPR and DFT calculations. J. Am. Chem. Soc., 2007, 129, 4240–4252.
Kokatam, S.; Ray, K.; Pap, J.; Bill, E.; Geiger, W. E.; LeSuer, R. J.; Rieger, P. H.; Weyhermüller, T.; Neese, F.; Wieghardt, K. Molecular and Electronic Structure of Square Planar Gold Complexes Containing Two 1,2-di(4-tert-butylphenyl)ethylene-1,2-dithiolato Ligands: [Au(L)₂]¹⁺/⁰/¹⁻/²⁻. A Combined Experimental and Computational Study. Inorg. Chem., 2007, 46, 1100–1111.
Ray, K.; DeBeer-George, S.; Solomon, E. I.; Wieghardt, K.; Neese, F. Description of the Ground State Covalencies of the Bis(dithiolato)Transition Metal Complexes Using X-ray Absorption Spectral and Time-Dependent-Density-Functional Studies. Chem. Eur. Journal, 2007, 13 (10), 2753. selected for cover picture.
Chalupský, J.; Neese, F.; Solomon, E. I.; Ryde, U.; Rulíšek, L. Identification of intermediates in the reaction cycle of multicopper oxidases by quantum chemical calculations of spectroscopic parameters. Inorg. Chem., 2006, 45, 11051–11059.
Bart, S. C.; Chłopek, K.; Bill, E.; Bouwkamp, B. W.; Lobkovsky, E.; Neese, F.; Wieghardt, K.; Chirik, P. J. Electronic Structure of Bis(imino)pyridine Iron Dichloride, Monochloride and Neutral Ligand Complexes: A Combined Structural, Spectroscopic and Computational Study. J. Am. Chem. Soc., 2006, 128, 13901–13912.
Patra, A. K.; Bill, E.; Bothe, E.; Chlopek, K.; Neese, F.; Weyhermüller, T.; Stobie, K.; Ward, M. D.; McCleverty, J. A.; Wieghardt, K. The Electronic Structure of Mononuclear Bis(1,2-diaryl-1,2-ethylenedithiolate)iron Complexes Containing a Fifth Cyanide or Phosphite Ligand: A Combined Experimental and Computational Study. Inorg. Chem., 2006, 45, 7877–7890.
Berry, J. F.; Bill, E.; Bothe, E.; DeBeer-George, S.; Mienert, B.; Neese, F.; Wieghardt, K. An Octahedral Coordination Complex of Iron(VI) – One Step Ahead of Nature? Science, 2006, 312, 1937–1941.
Chłopek, K.; Bothe, E.; Neese, F.; Weyhermüller, T.; Wieghardt, K. The Molecular and Electronic Structures of Tetrahedral Complexes of Nickel and Cobalt Containing N,N'-Disubstituted, Bulky o-Diiminobenzosemiquinonate(1-) π-Radical Ligands. Inorg. Chem., 2006, 45, 6298–6307.
Kababya, S.; Nelson, J.; Calle, C.; Neese, F.; Goldfarb, D. The electronic structure of bi-nuclear mixed valent copper azacryptates derived from integrated advanced EPR and DFT calculations. J. Am. Chem. Soc., 2006, 128, 2017–2029.
Berry, J. F.; Bill, E.; Neese, F.; Garcia-Serres, R.; Weyhermüller, T.; Wieghardt, K. Effect of N-Methylation of Macrocyclic Amine Ligands on the Spin State of Fe(III): A Tale of Two Fluoro Complexes. Inorg. Chem., 2006, 45, 2027–2037.
Kapre, R.; Ray, K.; Sylvestre, I.; Weyhermüller, T.; DeBeer-George, S.; Neese, F.; Wieghardt, K. The Molecular and Electronic Structure of Oxo-bis(benzene-1,2-dithiolato)chromate(V) Monoanions. A Combined Experimental and Density Functional Study. Inorg. Chem., 2006, 45, 3499–3509.
Zhu, W.; Marr, A. C.; Wang, Q.; Neese, F.; Spencer, J. E.; Blake, A. J.; Cooke, P. A.; Wilson, C.; Schröder, M. Modulation of the Electronic Structure and the Ni-Fe Distance in Heterobimetallic Models for the Active Site in [NiFe]Hydrogenase: Is there a Ni-Fe Bond? Proc. Natl. Acad. Sci. (USA), 2005, 102, 18280–18285.
Astashkin, A. V.; Neese, F.; Raitsimaring, A. M.; Cooney, J. J. A.; Bultman, E.; Enemark, J. H. Pulsed EPR investigation of systems modelling molybdenum enzymes: hyperfine and quadrupole parameters of oxo-¹⁷O in [Mo¹⁷O(SPh)₄]⁻. J. Am. Chem. Soc., 2005, 127, 16713–16722.
Benisvy, L.; Bittl, R.; Bothe, E.; Garner, C. D.; McMaster, J.; Ross, S.; Teutloff, C.; Neese, F. Phenoxyl Radicals Hydrogen-Bonded to Imidazolium – Analogues of Tyrosyl D• of Photosystem II: High-Field EPR and DFT Studies. Angew. Chem. Int. Ed., 2005, 44, 5314–5317.
Praneeth, V. K. K.; Neese, F.; Lehnert, N. Spin Density Distribution in Five- and Six-Coordinate Iron(II)-Porphyrin NO Complexes Evidenced by Magnetic Circular Dichroism Spectroscopy. Inorg. Chem., 2005, 44, 2570–2572.
Sinnecker, S.; Neese, F.; Lubitz, W. Dimanganese Catalase – Spectroscopic Parameters from Broken Symmetry Density Functional Theory of the Superoxidized Mnᴵᴵᴵ/Mnᴵⱽ state. J. Biol. Inorg. Chem., 2005, 10, 231–238.
Blanchard, S.; Neese, F.; Bothe, E.; Bill, E.; Weyhermüller, T.; Wieghardt, K. Square Planar vs. Tetrahedral Coordination in Diamagnetic Complexes of Nickel(II) Containing Two Bidentate π Radical Monoanions. Inorg. Chem., 2005, 44, 3636–3656.
Mader-Cosper, M.; Neese, F.; Astashkin, A. V.; Carducci, M. A.; Raitsimring, A. M.; Enemark, J. H. Determination of the Magnitude and Orientation of the g-Tensors for cis,trans-(L-N₂S₂)MoⱽOX (X = Cl, SCH₂Ph) by Single Crystal EPR and Molecular Orbital Calculations. Inorg. Chem., 2005, 44, 1290–1301.
Fouqueau, A.; Casida, M. E.; Lawson, L. M.; Hauser, A.; Neese, F. Comparison of Density Functionals for Energy and Structural Differences Between the High-⁵T2g: (t2g⁴)(eg²) and Low-¹A1g: (t2g⁶)(eg⁰) Spin States of Iron(II) Coordination Compounds: II. Comparison of Results for More than Ten Modern Functionals with Ligand Field Theory and Ab Initio Results for Hexaquoferrous Dication, [Fe(H₂O)₆]²⁺ and Hexaminoferrous Dication [Fe(NH₃)₆]²⁺. J. Chem. Phys., 2005, 122, 044110.
Aliaga-Alcade, N.; DeBeer George, S.; Bill, E.; Wieghardt, K.; Neese, F. The Geometric and Electronic Structure of [(Cyclam-acetato)Fe(N)]⁺: a Genuine Iron(V) Species with Ground State Spin S = 1/2. Angew. Chem. Int. Ed., 2005, 44, 2908–2912.
Bill, E.; Bothe, E.; Chaudhuri, P.; Chlopek, K.; Herebian, D.; Kokatam, S.; Ray, K.; Weyhermüller, T.; Neese, F.; Wieghardt, K. Molecular and Electronic Structure of Four- and Five-Coordinate Cobalt Complexes Containing Two o-Phenylendiamine- or Two o-Aminophenol-Type Ligands at Various Oxidation Levels: An Experimental, Density Functional and Correlated ab initio Study. Chem. Eur. J., 2004, 11, 204–224.
Paine, T.; Bothe, W.; Bill, E.; Weyhermüller, T.; Slep, L.; Neese, F.; Chaudhuri, P. Nonoxo Vanadium(IV) and Vanadyl(V) Complexes with Mixed O,X,O-Donor Ligand (X = S, Se, P, PO). Inorg. Chem., 2004, 43, 7324–7338.
Baute, D.; Arieli, D.; Zimmermann, H.; Neese, F.; Weckhuysen, B.; Goldfarb, D. The Structure of Copper Histidine Complexes in Solution and in Zeolite Y: A Combined X- and W-Band Pulsed EPR/ENDOR and DFT Study. J. Am. Chem. Soc., 2004, 126, 11733–11745.
Garcia Serres, R.; Grapperhaus, C. A.; Bothe, E.; Bill, E.; Weyhermüller, T.; Neese, F.; Wieghardt, K. Structural, Spectroscopic and Computational Study of an Octahedral, Non-heme FeNO⁶ ⁷ ⁸ Series: [Fe(NO)(cyclam-ac)]²⁺/¹⁺/⁰. J. Am. Chem. Soc., 2004, 126, 5138–5153.
Sinnecker, S.; Noodleman, L.; Neese, F.; Lubitz, W. Calculation of the EPR Parameters of a Mixed Valence Mn(III)/Mn(IV) Model Complex with Broken Symmetry Density Functional Theory. J. Am. Chem. Soc., 2004, 126, 2613–2622.
Sinnecker, S.; Neese, F.; Lubitz, W. Benzosemichinone Solvent Interactions. A Density Functional Study of Electric and Magnetic Properties for Probing Hydrogen Bond Strengths and Geometries. J. Am. Chem. Soc., 2004, 126, 3280–3290.
van Gastel, M.; Fichtner, C.; Neese, F.; Lubitz, W. EPR Experiments to Elucidate the Structure of the Ready and Unready States of the [NiFe] Hydrogenase of Desulfovibrio vulgaris Miyazaki F. Biochem. Soc. Trans., 2005, 33, 7–11.
van Gastel, M.; Lassman, G.; Lubitz, W.; Neese, F. The unusual EPR parameters of the cysteine radical: a DFT and correlated ab initio study. J. Am. Chem. Soc., 2004, 126, 2237–2246.
Fouqueau, A.; Mer, S.; Casida, M. E.; Daku, L. M. L.; Hauser, A.; Mieva, T.; Neese, F. Comparison of Density Functionals for Energy and Structural Differences between the High-⁵T2g: t2g⁴eg² and Low-¹A1g: t2g⁶eg⁰ Spin States of the Hexaquo-Ferrous Ion, [Fe(H²O)⁶]²⁺. J. Chem. Phys., 2004, 120, 9473–9486.
Slep, L. D.; Mijovilovich, A.; Meyer-Klaucke, W.; Weyhermüller, T.; Bill, E.; Bothe, E.; Neese, F.; Wieghardt, K. The Mixed-valent Feᴵⱽ(µ-O)(µ-carboxylato)₂Feᴵᴵᴵ³⁺ Core. J. Am. Chem. Soc., 2003, 125, 15554–15570.
Herebian, D.; Wieghardt, K.; Neese, F. Analysis and Interpretation of Metal-Radical Coupling in a Series of Square Planar Nickel Complexes. Correlated Ab Initio and Density Functional Investigation of [Ni(L(ISQ))₂] (L(ISQ)=3,5-di-tert-butyl-odiiminobenzosemquinone). J. Am. Chem. Soc., 2003, 125, 10997–11005.
Herebian, D.; Bothe, E.; Neese, F.; Weyhermüller, T.; Wieghardt, K. The Molecular and Electronic Structures of Bis(o-diiminobenzosemiquinonato)metal(II) Complexes (Ni, Pd, Pt), their Monocations and Anions, and their Dimeric Dications Containing Weak Metal-Metal Bonds. J. Am. Chem. Soc., 2003, 125, 9116–9128.
Ghosh, P.; Bill, E.; Weyhermüller, T.; Neese, F.; Wieghardt, K. The non-Innocence of the Ligand Glyoxal-bis (2-mercaptoanil). The Electronic Structures of [Fe(gma)]₂, [Fe(gma)(py)]•py, [Fe(gma)(CN)]¹⁻/⁰, [Fe(gma)I], [Fe(gma)(PR₃)ₙ] (n=1,2). Experimental and Theoretical Evidence for 'Excited State' Coordination. J. Am. Chem. Soc., 2003, 125, 1293–1308.
Einsle, O.; Messerschmidt, A.; Huber, R.; Kroneck, P. M. H.; Neese, F. Mechanism of the Six Electron Reduction of Nitrite to Ammonia by Cytochrome c Nitrite Reductase (CCNIR). J. Am. Chem. Soc., 2002, 124, 11737–11745.
Sun, X.; Chun, H.; Hildenbrand, K.; Bothe, E.; Weyhermüller, T.; Neese, F.; Wieghardt, K. o-Iminobenzosemiquinonato(1-) and o-Amidophenolato(2-) Complexes of Palladium(II) and Plantinum(II): A Combined Experimental and Density Functional Theoretical Study. Inorg. Chem., 2002, 41, 4295–4303.
Li, M.; Bonnet, D.; Bill, E.; Neese, F.; Weyhermüller, T.; Blum, N.; Sellmann, D.; Wieghardt, K. Tuning the Electronic Structure of Octahedral Iron Complexes [FeL(X)] (L = 1-alkyl-4,7-bis(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclo-nonane, X = Cl, CH₃O, CN, CO). The S=1/2 to S=3/2 Spin-Equilibrium of [FeL(Pr)(NO)]. Inorg. Chem., 2002, 41, 3444–3456.
Lehnert, N.; Neese, F.; Ho, R. Y. N.; Que Jr., L.; Solomon, E. I. Electronic Structure and Reactivity of Low-Spin Fe(III)-Hydroperoxo Complexes: Comparison to Activated Bleomycin. J. Am. Chem. Soc., 2002, 124, 10810–10822.
Grapperhaus, C. A.; Bill, E.; Weyhermüller, T.; Neese, F.; Wieghardt, K. Electronic and Geometric Structure and Spectroscopy of a High Valent Manganese(V) Nitrido Complex. An Experimental and DFT Study. Inorg. Chem., 2001, 41, 4191–4198.
Neese, F.; Solomon, E. I. Detailed Spectroscopic and Theoretical Studies on [Fe(EDTA)(O₂)]³⁻: the Electronic Structure of the Side-On Ferric Peroxide Bond and its Relevance to Reactivity. J. Am. Chem. Soc., 1998, 120, 12829–12848.
2.5. Reviews of interest¶
Bursch, Markus; Mewes, Jan-Michael; Hansen, Andreas; Grimme, Stefan. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry. Angew. Chem. Int. Ed., 2022, 61 (42), e202205735. DOI: 10.1002/anie.202205735.
Bannwarth, Christoph; Caldeweyher, Eike; Ehlert, Sebastian; Hansen, Andreas; Pracht, Philipp; Seibert, Jakob; Spicher, Sebastian; Grimme, Stefan. Extended tight-binding quantum chemistry methods. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2021, 11 (2), e1493. DOI: 10.1002/wcms.1493.
Ray, K.; Petrenko, T.; Wieghardt, K.; Neese, F. Joint Spectroscopic and Theoretical Investigations of Transition Metal Complexes Involving Non-Innocent Ligands. Dalton Trans., 2007, 16, 1552–1566. DOI: 10.1039/B700096K.
Atanasov, M.; Aravena, D.; Suturina, E.; Bill, E.; Maganas, D.; Neese, F. First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coord. Chem. Rev., 2015, 289, 177–214.
Neese, F.; Liakos, D. G.; Ye, S. F. Correlated Wavefunction Methods in Bioinorganic Chemistry. J. Biol. Inorg. Chem., 2011, 16, 821–829.
Neese, F.; Ames, W.; Christian, G.; Kampa, M.; Liakos, D. G.; Pantazis, D. A.; Roemelt, M.; Surawatanawong, P.; Ye, S. F. Dealing with Complexity in Open-Shell Transition Metal Chemistry from a Theoretical Perspective: Reaction Pathways, Bonding, Spectroscopy, and Magnetic Properties. Adv. Inorg. Chem., 2010, 62, 301–349.
Orio, M.; Pantazis, D. A.; Neese, F. Density Functional Theory. Photosynth. Res., 2009, 102, 443–453.
Neese, F. Density Functional Theory and EPR Spectroscopy: a guided tour. EPR Newsletter, 2009, 18 (4), Pro & Contra section. Pro & Contra section.
Neese, F. Prediction of Molecular Spectra and Molecular Properties with Density Functional Theory: from Fundamental Theory to Exchange Coupling. Coord. Chem. Rev., 2009, 253, 526–563.
Neese, Frank. Spin-Hamiltonian Parameters from First Principle Calculations: Theory and Application, pages 175–229. Springer New York, New York, NY, 2009. DOI: 10.1007/978-0-387-84856-3_5.
Kirchner, B.; Wennmohs, F.; Ye, S.; Neese, F. Theoretical Bioinorganic Chemistry: Electronic Structure Makes a Difference. Curr. Op. Chem. Biol., 2007, 11, 131–141.
Neese, F.; Petrenko, T.; Ganyushin, D.; Olbrich, G. Advanced Aspects of ab initio Theoretical Spectroscopy of Open-Shell Transition Metal Ions. Coord. Chem. Rev., 2007, 205, 288–327.
Ye, S.; Neese, F. Combined Quantum Chemical and Spectroscopic Studies on Transition Metal Complexes with Coordinating Radicals. Chemtracts (Special Volume on Computational Inorganic Chemistry), 2006, 19, 77–86.
Sinnecker, S.; Neese, F. Theoretical Bioinorganic Spectroscopy. In Reiher, M., editor, Current Topics in Chemistry. Springer, Heidelberg, 2006.
Neese, F. Quantum Chemical Approaches to Spin-Hamiltonian Parameters. Specialist Periodical Reports on EPR Spectroscopy Vol. 20, (Ed. B. Gilbert) Royal Society Press, 2006.
Neese, F. A Critical Evaluation of DFT, including Time-Dependent DFT, Applied to Bioinorganic Chemistry. J. Biol. Inorg. Chem., 2006, 11, 702–711. commentary on invitation.
Neese, F.; Munzarova, M. L. Historical Aspects of EPR Parameter Calculations. In Kaupp, M.; Bühl, M.; Malkin, V., editors, Calculation of NMR and EPR Parameters. Theory and Applications, pages 21–32. Wiley-VCH, 2004.
Neese, F. Zero-Field Splitting. In Kaupp, M.; Bühl, M.; Malkin, V., editors, Calculation of NMR and EPR Parameters. Theory and Applications, pages 541–564. Wiley-VCH, 2004.
Neese, F. Application of EPR Parameter Calculations in Bioinorganic Chemistry. In Kaupp, M.; Bühl, M.; Malkin, V., editors, Calculation of NMR and EPR Parameters. Theory and Applications, pages 581–591. Wiley-VCH, 2004.
Neese, F. Quantum Chemical Calculations of Spectroscopic Properties of Metalloproteins and Model Compounds: EPR and Mössbauer Properties. Curr. Op. Chem. Biol., 2003, 7, 125–135.
Neese, F.; Solomon, E. I. Calculation and Interpretation of Spin-Hamiltonian Parameters in Transition Metal Complexes. In Miller, J. S.; Drillon, M., editors, Magnetoscience – From Molecules to Materials, volume IV, pages 345–466. Wiley, 2003.