Contact us
  • Products
    • ORCA
    • WEASEL
  • Services
  • About
    • FACCTs
    • Team
    • Publications
    • Careers
  • News
  • Documentation
    • ORCA
    • WEASEL
    • OPI
  • Downloads
  • Contact
Contents Menu Expand Light mode Dark mode Auto light/dark, in light mode Auto light/dark, in dark mode Skip to content
ORCA 6.1 Manual
Logo
ORCA 6.1 Manual

Preface

  • ORCA 6.1 Foreword
  • ORCA 6.1 Highlights
  • How to cite
  • How to use this manual

Main Part

  • 1. Quickstart Guide
    • 1.1. About ORCA
    • 1.2. Installation
    • 1.3. Graphical User Interfaces (GUI)
    • 1.4. Running ORCA
    • 1.5. Hello water! Your first ORCA calculation
    • 1.6. General Recommendations
    • 1.7. Troubleshooting Problems in ORCA
  • 2. Essential Calculation Elements
    • 2.1. General Structure of the Input File
    • 2.2. Input of Coordinates
    • 2.3. Basic Calculation Settings
    • 2.4. Control of Output
    • 2.5. Parallel and Multi-Process Runs
    • 2.6. Self-Consistent-Field (SCF)
    • 2.7. Basis Sets
    • 2.8. Resolution-of-the-Identity (RI)
    • 2.9. Numerical Integration
    • 2.10. Details on the Numerical Integration Grids
    • 2.11. Counterpoise Corrections
    • 2.12. Relativistic Calculations
    • 2.13. Implicit Solvation
    • 2.14. Integral Handling
    • 2.15. The SHARK Integral Package and Task Driver
    • 2.16. SCF Stability Analysis
    • 2.17. Finite Electric Fields
    • 2.18. Fragment Specification
    • 2.19. ORCA and Symmetry
    • 2.20. Choice of Initial Guess and Restart of SCF Calculations
    • 2.21. Frozen Core Options
    • 2.22. CP-SCF Options
    • 2.23. Numerical Gradients
  • 3. Model Chemistries
    • 3.1. Wavefunction Types: RHF/RKS, UHF/UKS, ROKS and more
    • 3.2. UNO, UCO and QROs input
    • 3.3. Hartree Fock Theory
    • 3.4. Density Functional Theory (DFT)
    • 3.5. Dispersion Corrections
    • 3.6. Semiempirical Methods
    • 3.7. Composite Methods (3c methods)
    • 3.8. Analytic Density Functional Theory (ADFT)
    • 3.9. Random Phase Approximation (RPA)
    • 3.10. Perturbation Theory - MP2
    • 3.11. Coupled Cluster and CI Theories (MDCI)
    • 3.12. Correlated Methods using Automatic Code Generation (AUTOCI)
    • 3.13. Arbitrary Order Coupled-Cluster (MRCC interface)
    • 3.14. Complete and Incomplete Active Space Self-Consistent Field (CASSCF and RAS/ORMAS)
    • 3.15. Approximate Full CI Calculations in Subspace: ICE-CI
    • 3.16. Density Matrix Renormalization Group (DMRG)
    • 3.17. N-Electron Valence State Perturbation Theory (NEVPT2)
    • 3.18. Complete Active Space Peturbation Theory (CASPT2 and CASPT2-K)
    • 3.19. CASSCF and DFT
    • 3.20. Multireference Configuration Interaction and Pertubation Theory (uncontracted)
    • 3.21. Multireference Equation of Motion Coupled-Cluster (MR-EOM-CC)
    • 3.22. Dynamic Correlation Dressed CAS
    • 3.23. Full Configuration Interaction
    • 3.24. Molecular Mechanics
  • 4. Structure and Reactivity
    • 4.1. Geometry Optimizations
    • 4.2. Surface Scans
    • 4.3. Transition State Searches
    • 4.4. Intrinsic Reaction Coordinate
    • 4.5. Nudged Elastic Band Method
    • 4.6. Nudged Elastic Band Method
    • 4.7. Vibrational Frequencies
    • 4.8. Thermochemistry
    • 4.9. Conical Intersections
    • 4.10. Minimum Energy Crossing Points (MECP)
    • 4.11. GOAT: global geometry optimization and ensemble generator
    • 4.12. SOLVATOR: Automated Explicit Solvation
    • 4.13. DOCKER: Automated Docking Algorithm
  • 5. Spectroscopy and Properties
    • 5.1. Population Analysis
    • 5.2. Natural Bond Orbital (NBO) Analysis
    • 5.3. Fractional Occupation Number Weighted Density (FOD)
    • 5.4. Excited States Calculations
    • 5.5. Excited State Dynamics
    • 5.6. Excited States via RPA, CIS, TD-DFT and SF-TDA
    • 5.7. Excited States via ROCIS and ROCIS/DFT
    • 5.8. Excited States via MCRPA
    • 5.9. Excited States via EOM-CCSD
    • 5.10. Excited States via STEOM-CCSD
    • 5.11. Excited States via IH-FSMR-CCSD
    • 5.12. Excited States via PNO-based coupled cluster
    • 5.13. Excited States via DLPNO-STEOM-CCSD
    • 5.14. One Photon Spectroscopy
    • 5.15. Core-Level Spectroscopy with Coupled Cluster Methods
    • 5.16. Simulation and Fit of Vibronic Structure in Electronic Spectra, Resonance Raman Excitation Profiles and Spectra with the orca_asa Program
    • 5.17. Absorption and Fluorescence Bandshapes using ORCA_ASA
    • 5.18. Vibrational Spectroscopy
    • 5.19. Anharmonic Analysis and Vibrational Corrections using VPT2/GVPT2 and orca_vpt2
    • 5.20. Electrical Properties - Electric Moments and Polarizabilities
    • 5.21. Nuclear Magnetic Resonance (NMR) Parameters
    • 5.22. Paramagnetic NMR Shielding Tensors
    • 5.23. Spin-rotation Constants
    • 5.24. Electron Paramagnetic Resonance (EPR) Parameters
    • 5.25. MP2 Level Magnetic Properties
    • 5.26. CASSCF Linear Response
    • 5.27. Mössbauer Parameters
    • 5.28. The Spin-Orbit Coupling Operator
    • 5.29. Broken-Symmetry Wavefunctions and Exchange Couplings
    • 5.30. Decomposition of the Magnetic Exchange Coupling
    • 5.31. Magnetic Properties Through Quasi Degenerate Perturbation Theory
    • 5.32. Magnetic Relaxation
    • 5.33. Simulation of (Magnetic) Circular Dichroism and Absorption Spectra
    • 5.34. Interface to SINGLE_ANISO Module
    • 5.35. Interface to POLY_ANISO Module
    • 5.36. DeltaSCF
    • 5.37. Extended Transition State with Natural Orbitals for Chemical Valence (ETS-NOCV/EDA-NOCV)
    • 5.38. Local Energy Decomposition
    • 5.39. The Hartree-Fock plus London Dispersion (HFLD) Method
    • 5.40. ADLD(D): Atomic Decomposition of DFT-D London Dispersion Energy
    • 5.41. Static Ground State DFT (SGS-DFT)
  • 6. Multiscale Simulations
    • 6.1. Overview on ORCA’s Multiscale Implementation
    • 6.2. Multiscale Simulations of molecular systems
    • 6.3. CRYSTAL-QMMM
    • 6.4. QM/MM via Interfaces to ORCA
    • 6.5. Fast Multipole Method
  • 7. Molecular Dynamics
    • 7.1. Ab initio Molecular Dynamics
  • 8. Workflows and Automatization
    • 8.1. ORCA Python Interface (OPI)
    • 8.2. Compound
    • 8.3. More Details on Compound
    • 8.4. Compound Examples
  • 9. Utilities and Visualization
    • 9.1. Orbital and Density Plots
    • 9.2. Utility Programs
    • 9.3. orca_2json
    • 9.4. Property File
  • 10. Architecture of ORCA
    • 10.1. ORCA Structure
    • 10.2. The Architecture of ORCA
    • 10.3. Units and Conversion Factors

Appendix

  • 1. Detailed change log
  • 2. Publications Related to ORCA
  • 3. Glossary

Bibliography & Index

  • Bibliography
  • Index
Back to top
View this page

10. Architecture of ORCA¶

Architecture of ORCA

  • 10.1. ORCA Structure
    • 10.1.1. Program Components
  • 10.2. The Architecture of ORCA
    • 10.2.1. The structure of the ORCA source code
    • 10.2.2. The shell structure of ORCA
    • 10.2.3. The master/slave concept and the calling sequence
    • 10.2.4. The calculation of molecular properties
      • 10.2.4.1. Response properties
      • 10.2.4.2. QDPT properties
      • 10.2.4.3. Excited state properties
  • 10.3. Units and Conversion Factors
Next
10.1. ORCA Structure
Previous
9.4. Property File
  • Products
    • ORCA
    • WEASEL
  • Services
  • News
  • About
  • Documentation
  • Downloads
  • Contact
  • Customers for registered users

Subscribe to our
newsletter

By entering your email address, you agree to receive our newsletter. After registration you will receive an email with a confirmation link which you must click to receive the newsletter. You can unsubscribe at any time by using the link directly in the newsletter. We use the service Cleverreach. You can find more detailed information in our privacy policy.

© 2025 FACCTs
  • Imprint
  • Privacy policy