Bibliography¶
Zerner, M. C.; Hehenberger, M. Chem. Phys. Lett., 1979, 62, 550.
Guest, M. F.; Saunders, V. R. Mol. Phys., 1974, 28, 819.
Saunders, V. R.; Hillier, I. H. Int. J. Quant. Chem., 1973, VII, 699.
Pulay, P. Chem. Phys. Lett., 1980, 73, 393.
Pulay, P. Improved SCF Convergence Acceleration. J. Comput. Chem., 0024, 3 (4), 556–560. DOI: 10.1002/jcc.540030413.
Kollmar, Christian. The role of energy denominators in self‐consistent field (SCF) calculations for open shell systems. J. Chem. Phys., 1996, 105 (18), 8204–8212. DOI: 10.1063/1.472674.
Kollmar, Christian. Convergence optimization of restricted open‐shell self‐consistent field calculations. Int. J. Quant. Chem., 1997, 62 (6), 617–637. DOI: 10.1002/(SICI)1097-461X(1997)62:6<617::AID-QUA2>3.0.CO;2-K.
Fischer, T. H.; Almlöf, J. J. Phys. Chem., 1992, 96, 9768.
Neese, F. Approximate Second Order Convergence for Spin Unrestricted Wavefunctions. Chem. Phys. Lett., 2000, 325, 93–98.
Bacskay, George B. A Quadratically Convergent Hartree–Fock (QC-SCF) Method. Application to Closed Shell Systems. Chem. Phys., 1981, 61 (3), 385–404. DOI: 10.1016/0301-0104(81)85156-7.
Sałek, Paweł; Høst, Stinne; Thøgersen, Lea; Jørgensen, Poul; Manninen, Pekka; Olsen, Jeppe; Jansík, Branislav; Reine, Simen; Pawłowski, Filip; Tellgren, Erik; Helgaker, Trygve; Coriani, Sonia. Linear-Scaling Implementation of Molecular Electronic Self-Consistent Field Theory. J. Chem. Phys., 2007, 126 (11), 114110.
Høyvik, Ida-Marie; Jansik, Branislav; Jørgensen, Poul. Trust Region Minimization of Orbital Localization Functions. J. Chem. Theory Comput., 2012, 8 (9), 3137–3146. DOI: 10.1021/ct300473g.
Helmich-Paris, Benjamin. A Trust-Region Augmented Hessian Implementation for Restricted and Unrestricted Hartree–Fock and Kohn–Sham Methods. J. Chem. Phys., 2021, 154 (16), 164104. DOI: 10.1063/5.0040798.
Harding, D. J.; Gruene, P.; Haertelt, M.; Meijer, G.; Fielicke, A.; Hamilton, S. M.; Hopkins, W. S.; Mackenzie, S. R.; Neville, S. P.; Walsh, T. R. Probing the Structures of Gas-Phase Rhodium Cluster Cations by Far-Infrared Spectroscopy. J. Chem. Phys., 2010, 133 (21), 214304. DOI: 10.1063/1.3509778.
Assfeld, X.; Rivail, J.-L. Quantum Chemical Computations on Parts of Large Molecules: The Ab Initio Local Self Consistent Field Method. Chem. Phys. Lett., 1996, 263, 100–106. DOI: 10.1016/S0009-2614(96)01165-7.
Pritchard, Benjamin P.; Altarawy, Doaa; Didier, Brett; Gibson, Tara D.; Windus, Theresa L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model., 2019, 59 (11), 4814–4820. DOI: 10.1021/acs.jcim.9b00725.
Zheng, Jingjing; Xu, Xuefei; Truhlar, Donald G. Theor. Chem. Acc., 2010, 128, 295–305.
Rappoport, Dmitrij; Furche, Filipp. J. Chem. Phys., 2010, 133, 134105.
Rappoport, Dmitrij. Property-optimized Gaussian basis sets for lanthanides. J. Chem. Phys., 2021, 155, 124102. DOI: 10.1063/5.0065611.
Weigend, Florian; Baldes, Alexander. Segmented Contracted Basis Sets for One- and Two-Component Dirac–Fock Effective Core Potentials. J. Chem. Phys., 2010, 133 (17), 174102. DOI: 10.1063/1.3495681.
Jensen, Frank. Polarization Consistent Basis Sets: Principles. J. Chem. Phys., 2001, 115 (20), 9113–9125. DOI: 10.1063/1.1413524.
Jensen, Frank. Polarization Consistent Basis Sets. II. Estimating the Kohn–Sham Basis Set Limit. J. Chem. Phys., 2002, 116 (16), 7372–7379. DOI: 10.1063/1.1465405.
Jensen, Frank; Helgaker, Trygve. Polarization Consistent Basis Sets. V. The Elements Si–Cl. J. Chem. Phys., 2004, 121 (8), 3463–3470. DOI: 10.1063/1.1756866.
Jensen, Frank. Polarization Consistent Basis Sets. 4: The Elements He, Li, Be, B, Ne, Na, Mg, Al, and Ar. J. Phys. Chem. A, 2007, 111 (44), 11198–11204. DOI: 10.1021/jp068677h.
Jensen, Frank. Polarization Consistent Basis Sets. VII. The Elements K, Ca, Ga, Ge, As, Se, Br, and Kr. J. Chem. Phys., 2012, 136 (11), 114107. DOI: 10.1063/1.3690460.
Jensen, Frank. Unifying General and Segmented Contracted Basis Sets: Segmented Polarization Consistent Basis Sets. J. Chem. Theory Comput., 2014, 10 (3), 1074–1085. DOI: 10.1021/ct401026a.
Jensen, Frank. Segmented Contracted Basis Sets Optimized for Nuclear Magnetic Shielding. J. Chem. Theory Comput., 2015, 11 (1), 132–138. DOI: 10.1021/ct5009526.
Lehtola, Susi. Polarized Gaussian Basis Sets from One-Electron Ions. J. Chem. Phys., 2020, 152 (13), 134108. DOI: 10.1063/1.5144964.
Yamamoto, Hironori; Matsuoka, Osamu. Accurately Energy-Optimized Gaussian Basis Sets for Hydrogen 1s through 5g Orbitals. Bulletin of the University of Electro-Communications, 1992, 5, 23–34. In Japanese. Citation at https://ci.nii.ac.jp/naid/40004737908/en/.
Noro, Takeshi; Sekiya, Masahiro; Koga, Toshikatsu. Correlating Basis Sets for the H Atom and the Alkali-Metal Atoms from Li to Rb. Theor. Chem. Acc., 2003, 109, 85–90. DOI: 10.1007/s00214-002-0425-z.
Noro, Takeshi; Sekiya, Masahiro; Koga, Toshikatsu. Segmented Contracted Basis Sets for Atoms H through Xe: Sapporo-(DK)-nZP Sets (n = D, T, Q). Theor. Chem. Acc., 2012, 131, 1124. DOI: 10.1007/s00214-012-1124-z.
Partridge, Harry. Near Hartree–Fock Quality GTO Basis Sets for the Second‐Row Atoms. J. Chem. Phys., 1987, 87 (11), 6643–6647. DOI: 10.1063/1.453450.
Partridge, Harry. Near Hartree–Fock Quality GTO Basis Sets for the First‐ and Third‐Row Atoms. J. Chem. Phys., 1989, 90 (2), 1043–1047. DOI: 10.1063/1.456157.
Pacios, Luis Fernandez; Christiansen, Peter A. Ab initio relativistic effective potentials with spin-orbit operators. I. Li through Ar. J. Chem. Phys., 1985, 82 (6), 2664–2671. DOI: 10.1063/1.448263.
Hurley, M. M.; Pacios, Luis Fernandez; Christiansen, P. A.; Ross, R. B.; Ermler, W. C. Ab initio relativistic effective potentials with spin-orbit operators. II. K through Kr. J. Chem. Phys., 1986, 84 (12), 6840–6853. DOI: 10.1063/1.450689.
LaJohn, L. A.; Christiansen, P. A.; Ross, R. B.; Atashroo, T.; Ermler, W. C. Ab initio relativistic effective potentials with spin-orbit operators. III. Rb through Xe. J. Chem. Phys., 1987, 87 (5), 2812–2824. DOI: 10.1063/1.453069.
Ross, R. B.; Powers, J. M.; Atashroo, T.; Ermler, W. C.; LaJohn, L. A.; Christiansen, P. A. Ab initio relativistic effective potentials with spin-orbit operators. IV. Cs through Rn. J. Chem. Phys., 1990, 93 (9), 6654–6670. DOI: 10.1063/1.458934.
Ross, R. B.; Gayen, Sanjukta; Ermler, W. C. Ab initio relativistic effective potentials with spin-orbit operators. V. Ce through Lu. J. Chem. Phys., 1994, 100 (11), 8145–8155. DOI: 10.1063/1.466809.
Ermler, W. C.; Ross, R. B.; Christiansen, P. A. Ab initio relativistic effective potentials with spin-orbit operators. VI. Fr through Pu. Int. J. Quantum Chem., 1991, 40 (6), 829–846. DOI: 10.1002/qua.560400611.
Nash, Clinton S.; Bursten, Bruce E.; Ermler, Walter C. Ab initio relativistic effective potentials with spin-orbit operators. VII. Am through element 118. J. Chem. Phys., 1997, 106 (12), 5133–5142. DOI: 10.1063/1.473992.
Hay, P. Jeffrey; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys., 1985, 82 (1), 270–283. DOI: 10.1063/1.448799.
Wadt, W. R.; Hay, P. Jeffrey. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys., 1985, 82 (1), 284–298. DOI: 10.1063/1.448800.
Hay, P. Jeffrey; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys., 1985, 82 (1), 299–310. DOI: 10.1063/1.448975.
Ehlers, Andreas W.; Böhme, Mechthild; Dapprich, Stefan; Gobbi, Alberto; Höllwarth, Andreas; Jonas, Volker; Köhler, Karl Friedrich; Stegmann, Rainer; Veldkamp, Andre; Frenking, Gernot. A Set of f-Polarization Functions for Pseudo-Potential Basis Sets of the Transition Metals Sc–Cu, Y–Ag and La–Au. Chem. Phys. Lett, 1993, 208 (1-2), 111–114. DOI: 10.1016/0009-2614(93)80086-5.
Check, Catherine E.; Faust, Timothy O.; Bailey, John M.; Wright, Brian J.; Gilbert, Thomas M.; Sunderlin, Lee S. Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements. J. Phys. Chem. A, 2001, 105 (34), 8111–8116. DOI: 10.1021/jp011945l.
Roy, Lindsay E.; Hay, P. Jeffrey; Martin, Richard L. Revised Basis Sets for the LANL Effective Core Potentials. J. Chem. Theory Comput., 2008, 4 (7), 1029–1031. DOI: 10.1021/ct8000409.
Papajak, Ewa; Truhlar, Donald G. Convergent Partially Augmented Basis Sets for Post-Hartree-Fock Calculations of Molecular Properties and Reaction Barrier Heights. J. Chem. Theory Comput., 2011, 7 (1), 10–18. DOI: 10.1021/ct1005533.
Neese, F.; Valeev, E. F. Revisiting the Atomic Natural Orbital Approach for Basis Sets: Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated ab initio Methods. J. Chem. Theory Comput., 2011, 7, 33–43.
Müller, Marcel; Hansen, Andreas; Grimme, Stefan. ωB97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double-ζ basis set. J. Chem. Phys., 2023, 158 (1), 014103. DOI: 10.1063/5.0133026.
Pantazis, D. A.; Chen, X.-Y.; Landis, C. R.; Neese, F. J. Chem. Theory Comput., 2008, 4, 908–919.
Bühl, M.; Reimann, C.; Pantazis, D. A.; Bredow, T.; Neese, F. Geometries of Third-Row Transition-Metal Complexes from Density-Functional Theory. J. Chem. Theory Comput., 2008, 4, 1449–1459. DOI: 10.1021/ct800172j.
Pantazis, D. A.; Neese, F. J. Chem. Theory Comput., 2009, 5, 2229–2238.
Pantazis, D. A.; Neese, F. J. Chem. Theory Comput., 2011, 7, 677–684.
Pantazis, D. A.; Neese, F. Theor. Chem. Acc., 2012, 131, 1292.
Rolfes, Julian D.; Neese, Frank; Pantazis, Dimitrios A. All-Electron Scalar Relativistic Basis Sets for the Elements Rb–Xe. J. Comput. Chem., 2020, 41, 1842–1849. DOI: 10.1002/jcc.26355.
Aravena, D.; Neese, F.; Pantazis, Dimitrios A. Improved Segmented All-Electron Relativistically Contracted Basis Sets for the Lanthanides. J. Chem. Theory Comput., 2016, 12, 1148–1156. DOI: 10.1021/acs.jctc.5b01048.
Pollak, Patrik; Weigend, Florian. Segmented Contracted Error-Consistent Basis Sets of Double- and Triple-ζ Valence Quality for One- and Two-Component Relativistic All-Electron Calculations. J. Chem. Theory Comput., 2017, 13 (8), 3696–3705. DOI: 10.1021/acs.jctc.7b00593.
Franzke, Yannick J.; Treß, Robert; Pazdera, Tobias M.; Weigend, Florian. Error-Consistent Segmented Contracted All-Electron Relativistic Basis Sets of Double- and Triple-Zeta Quality for NMR Shielding Constants. Phys. Chem. Chem. Phys., 2019, 21 (30), 16658–16664. DOI: 10.1039/C9CP02382H.
Stoychev, Georgi L.; Auer, Alexander A.; Neese, Frank. Automatic Generation of Auxiliary Basis Sets. J. Chem. Theory Comput., 2017, 13 (2), 554. DOI: 10.1021/acs.jctc.6b01041.
Fuentealba, P.; Preuss, H.; Stoll, H.; von Szentpaly, L. Chem. Phys. Lett., 1982, 89, 418–422.
von Szentpaly, L.; Fuentealba, P.; Preuss, H.; Stoll, H. Chem. Phys. Lett., 1982, 93, 555–559.
Fuentealba, P.; Stoll, H.; von Szentpaly, L.; Schwerdtfeger, P.; Preuss, H. J. Phys. B: At. Mol. Opt. Phys., 1983, 16, L323.
Stoll, H.; P. Fuentealba, P. Schwerdtfeger; Flad, J.; von Szentpaly, L.; Preuss, H. J. Chem. Phys., 1984, 81, 2732–2736.
Fuentealba, P.; von Szentpaly, L.; Preuss, H.; Stoll, H. J. Phys. B: At. Mol. Opt. Phys., 1985, 18, 1287.
Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys., 1987, 86, 866–872.
Igel-Mann, G.; Stoll, H.; Preuss, H. Pseudopotentials for Main Group Elements (IIIA through VIIA). Mol. Phys., 1988, 65 (6), 1321–1328. DOI: 10.1080/00268978800101811.
Dolg, M.; Stoll, H.; Preuss, H. J. Chem. Phys., 1989, 90, 1730–1734.
Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G. A.; Boyd, P. D. W. J. Chem. Phys., 1989, 91, 1762–1774.
Dolg, M.; Stoll, H.; Savin, A.; Preuss, H. Theor. Chim. Acta, 1989, 75, 173–194.
Andrae, D.; Häu\ssermann , U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-Adjusted ab\textendashinitio Pseudopotentials for the Second and Third Row Transition Elements. Theor. Chim. Acta, 1990, 77, 123–141. DOI: 10.1007/BF01114537.
Kaupp, Martin; Schleyer, Paul v. R.; Stoll, Hermann; Preuss, Horst. Pseudopotential Approaches to Ca, Sr, and Ba Hydrides. Why Are Some Alkaline-Earth MX₂ Compounds Bent? J. Chem. Phys., 1991, 94 (2), 1360–1366. DOI: 10.1063/1.459993.
Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the rare earth elements. Mol. Phys., 1991, 74 (6), 1245–1263. DOI: 10.1063/1.456066.
Dolg, M.; Fulde, P.; Küchle, W.; Neumann, C.-S.; Stoll, H. J. Chem. Phys., 1991, 94, 3011–3017.
Dolg, M.; Stoll, H.; Flad, H.-J.; Preuss, H. J. Chem. Phys., 1992, 97, 1162–1173.
Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuss, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys., 1993, 80, 1431–1441. DOI: 10.1080/00268979300103121.
Dolg, M.; Stoll, H.; Preuss, H.; Pitzer, R. M. J. Phys. Chem., 1993, 97, 5852–5859.
Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta, 1993, 85, 441–450.
Häuß ermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Mol. Phys., 1993, 78, 1211–1224.
Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted pseudopotentials for the actinides: Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys., 1994, 100 (10), 7535–7542. DOI: 10.1063/1.466847.
Nicklass, A.; Dolg, M.; Stoll, H.; Preuss, H. J. Chem. Phys., 1995, 102, 8942–8952.
Leininger, T.; Nicklass, A.; Stoll, H.; Dolg, M.; Schwerdtfeger, P. The accuracy of the pseudopotential approximation. II. A comparison of various core sizes for indium pseudopotentials in calculations for spectroscopic constants of InH, InF, and InCl. J. Chem. Phys., 1996, 105 (3), 1052–1059. DOI: 10.1063/1.471950.
Leininger, T.; Nicklass, A.; Küchle, W.; Stoll, H.; Dolg, M.; Bergner, A. The accuracy of the pseudopotential approximation: Non-frozen-core effects for spectroscopic constants of alkali fluorides XF (X=K, Rb, Ca). Chem. Phys. Lett., 1996, 255 (4-6), 274–280. DOI: 10.1016/0009-2614(96)00382-X.
Leininger, T.; Berning, A.; Nicklass, A.; Stoll, H.; Werner, H.-J.; Flad, H.-J. Spin-orbit interaction in heavy group 13 atoms and TlAr. Chem. Phys., 1997, 217 (1), 19–34. DOI: 10.1016/S0301-0104(97)00043-8.
Schautz, F.; Flad, H.-J.; Dolg, M. Theor. Chem. Acc., 1998, 99, 231.
Wang, Y.; Dolg, M. Theor. Chem. Acc., 1998, 100, 124.
Metz, Bernhard; Stoll, Hermann; Dolg, Michael. Small-Core Multiconfiguration-Dirac–Hartree–Fock-Adjusted Pseudopotentials for Post-d Main Group Elements: Application to PbH and PbO. J. Chem. Phys., 2000, 113, 2563–2569. DOI: 10.1063/1.1305880.
Metz, Bernhard; Schweizer, Markus; Stoll, Hermann; Dolg, Michael; Liu, Wenjian. Relativistic Energy-Consistent Pseudopotentials: Adjustments to Multi-Configuration Dirac–Hartree–Fock Data. Theor. Chem. Acc., 2000, 104, 22–28. DOI: 10.1007/s002140000187.
Martin, Jan M. L.; Sundermann, Andreas. Correlation Consistent Valence Basis Sets for Use with the Stuttgart–Dresden–Bonn Relativistic Effective Core Potentials: The Atoms Ga–Kr and In–Xe. J. Chem. Phys., 2001, 114 (8), 3408–3420. DOI: 10.1063/1.1337864.
Cao, X.; Dolg, M. Valence basis sets for relativistic energy-consistent small-core lanthanide pseudopotentials. J. Chem. Phys., 2001, 115, 7348. DOI: 10.1063/1.1406535.
Stoll, H.; Metz, B.; Dolg, M. J. Comput. Chem., 2002, 23, 767.
Cao, X.; Dolg, M. Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J. Mol. Struct.: THEOCHEM, 2002, 581, 139. DOI: 10.1016/S0166-1280(01)00751-5.
Peterson, K. A. J. Chem. Phys., 2003, 119, 11099.
Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys., 2003, 119, 11113.
Figgen, D.; Rauhut, G.; Dolg, M.; Stoll, H. Chem. Phys., 2005, 311, 227.
Lim, I. S.; Schwerdtfeger, P.; Metz, B.; Stoll, H. All-electron and relativistic pseudopotential studies for the group 1 element polarizabilities from K to element 119. J. Chem. Phys., 2005, 122 (10), 104103. DOI: 10.1063/1.1856451.
Peterson, K. A.; Puzzarini, C. Theor. Chem. Acc., 2005, 114, 283.
Yang, J.; Dolg, M. Theor. Chem. Acc., 2005, 113, 212.
Lim, I. S.; Stoll, H.; Schwerdtfeger, P. Relativistic small-core energy-consistent pseudopotentials for the alkaline-earth elements from Ca to Ra. J. Chem. Phys., 2006, 124 (3), 034107. DOI: 10.1063/1.2148945.
Peterson, K. A.; Shepler, B. C.; Figgen, D.; Stoll, H. J. Phys. Chem. A, 2006, 110, 13877.
Peterson, K. A.; Figgen, D.; Dolg, M.; Stoll, H. J. Chem. Phys., 2007, 126, 124101.
Moritz, Anna; Cao, Xiaoyan; Dolg, Michael. Quasirelativistic Energy-Consistent 5f-in-Core Pseudopotentials for Trivalent Actinide Elements. Theor. Chem. Acc., 2007, 117, 473–481. DOI: 10.1007/s00214-006-0180-7.
Moritz, Anna; Dolg, Michael. Quasirelativistic Energy-Consistent 4f-in-Core Pseudopotentials for Trivalent Lanthanide Elements. Theor. Chem. Acc., 2008, 121, 297–304. DOI: 10.1007/s00214-008-0439-2.
Hülsen, M.; Weigand, A.; Dolg, M. Theor. Chem. Acc., 2009, 122, 23.
Figgen, D.; Peterson, K. A.; Dolg, M.; Stoll, H. J. Chem. Phys., 2009, 130, 164108.
Weigand, A.; Cao, X.; Yang, J.; Dolg, M. Theor. Chem. Acc., 2010, 126, 117–127.
Flores-Moreno, R.; Alvares-Mendez, R. J.; Vela, A.; Köster, A. M. J. Comput. Chem., 2006, 27, 1009.
Giordano, L.; Pacchioni, G.; Bredow, T.; Sanz, J. F. Surf. Sci., 2001, 471, 21.
Facility, Molecular Science Computing. Extensible Computational Chemistry Environment Basis Set Database. 2000. URL: http://www.emsl.pnl.gov:2080/forms/basisform.html.
Mitin, Alexander V.; Hirsch, Gernot; Buenker, Robert J. A Mean-Field Spin–Orbit Method Applicable to Correlated Wavefunctions. Chem. Phys. Lett., 1996, 259, 151–158. DOI: 10.1016/0009-2614(96)00119-4.
Mitin, Alexander V.; Hirsch, Gernot; Buenker, Robert J. A Mean-Field Spin–Orbit Method Applicable to Correlated Wavefunctions. J. Comput. Chem., 1997, 18, 1200–1210. DOI: 10.1002/(SICI)1096-987X(19970715)18:9<1200::AID-JCC8>3.0.CO;2-2.
Whitten, J. L. J. Chem. Phys., 1973, 58, 4496. DOI: 10.1063/1.1679012.
Baerends, E. J.; Ellis, D. E.; Ros, P. Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure. Chem. Phys., 1973, 2, 41. DOI: 10.1016/0301-0104(73)80059-X.
Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. J. Chem. Phys., 1979, 71, 3396.
Van Alsenoy, C. J. Comput. Chem., 1988, 9, 620.
Kendall, Rick A.; Früchtl, Herbert A. The Impact of the Resolution of the Identity Approximate Integral Method on Modern Ab Initio Algorithm Development. Theor. Chem. Acc., 1997, 97, 158–163. DOI: 10.1007/s002140050249.
Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Chem. Phys. Lett., 1995, 240, 283.
Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Theor. Chem. Acc., 1997, 97, 119.
Vahtras, O.; Almlöf, J.; Feyereisen, M. W. Chem. Phys. Lett., 1993, 213, 514.
Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Chem. Phys., 2009, 356, 98–109.
Helmich-Paris, Benjamin; de Souza, Bernardo; Neese, Frank; Izsák, Róbert. An improved chain of spheres for exchange algorithm. J. Chem. Phys., 2021, 155 (10), 104109. DOI: 10.1063/5.0058766.
Helmich-Paris, Benjamin. A trust-region augmented Hessian implementation for state-specific and state-averaged CASSCF wave functions. J. Chem. Phys., 2022, 156 (20), 204104. arXiv:10.1063/5.0090447, DOI: 10.1063/5.0090447.
Kossmann, Simone; Neese, Frank. Comparison of two efficient approximate Hartee–Fock approaches. Chem. Phys. Lett., 2009, 481 (4-6), 240–243. DOI: 10.1016/j.cplett.2009.10.007.
Treutler, O.; Ahlrichs, R. J. J. Chem. Phys., 1994, 102, 346.
Kruse, Holger; Grimme, Stefan. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. J. Chem. Phys., 2012, 136 (15), 154101. DOI: 10.1063/1.3700154.
Kruse, Holger; Goerigk, Lars; Grimme, Stefan. Why the Standard B3LYP/6-31G* Model Chemistry Should Not Be Used in DFT Calculations of Molecular Thermochemistry: Understanding and Correcting the Problem. J. Org. Chem., 2012, 77 (23), 10824–10834. DOI: 10.1021/jo301927e.
van Lenthe, E.; Baerends, E. J.; Snijders, J. G. J. Chem. Phys., 1994, 101, 9783–9792.
van Wüllen, C. J. Chem. Phys., 1998, 109, 392–399.
Sandhoefer, B.; Neese, F. One-electron contributions to the g-tensor for second-order Douglas–Kroll–Hess theory. J. Chem. Phys., 2012, 137, 094102.
Peng, Daoling; Middendorf, Nils; Weigend, Florian; Reiher, Markus. An efficient implementation of two-component relativistic exact-decoupling methods for large molecules. J. Chem. Phys., 2013, 138 (18), 184105. DOI: 10.1063/1.4803693.
Franzke, Yannick J.; Middendorf, Nils; Weigend, Florian. Efficient implementation of one- and two-component analytical energy gradients in exact two-component theory. J. Chem. Phys., 2018, 148 (10), 104110. DOI: 10.1063/1.5022153.
Franzke, Yannick J.; Yu, Jason M. Hyperfine Coupling Constants in Local Exact Two-Component Theory. J. Chem. Theory Comput., 2022, 18 (1), 323–343. DOI: 10.1021/acs.jctc.1c01027.
Franzke, Yannick J.; Mack, Fabian; Weigend, Florian. NMR Indirect Spin–Spin Coupling Constants in a Modern Quasi-Relativistic Density Functional Framework. J. Chem. Theory Comput., 2021, 17 (7), 3974–3994. DOI: 10.1021/acs.jctc.1c00167.
Franzke, Yannick J; Weigend, Florian. NMR Shielding Tensors and Chemical Shifts in Scalar-Relativistic Local Exact Two-Component Theory. J. Chem. Theory Comput., 2019, 15 (2), 1028–1043. DOI: 10.1021/acs.jctc.8b01084.
Cheng, Lan; Gauss, Jürgen. Analytic energy gradients for the spin-free exact two-component theory using an exact block diagonalization for the one-electron Dirac Hamiltonian. J. Chem. Phys., 2011, 135 (8), 084114. DOI: 10.1063/1.3624397.
Cheng, Lan; Gauss, Jürgen. Analytic second derivatives for the spin-free exact two-component theory. J. Chem. Phys., 2011, 135 (24), 244104. DOI: 10.1063/1.3667202.
Cheng, Lan; Gauss, Jürgen; Stanton, John F. Treatment of scalar-relativistic effects on nuclear magnetic shieldings using a spin-free exact-two-component approach. J. Chem. Phys., 2013, 139 (5), 054105. DOI: 10.1063/1.4816130.
Peng, Daoling; Reiher, Markus. Local relativistic exact decoupling. J. Chem. Phys., 2012, 136 (24), 244108. DOI: 10.1063/1.4729788.
Visscher, L.; Dyall, K. G. Atom. Data Nucl. Data Tabl., 1997, 67, 207.
Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A, 1998, 102, 1995–2001. DOI: 10.1021/jp9716997.
Garcia-Ratés, M.; Neese, F. Effect of the Solute Cavity on the Solvation Energy and its Derivatives within the Framework of the Gaussian Charge Scheme. J. Comput. Chem., 2020, 41 (9), 922–939. DOI: 10.1002/jcc.26139.
Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B, 2009, 113 (18), 6378–6396. DOI: 10.1021/jp810292n.
Gerlach, Thomas; Müller, Simon; González de Castilla, Andrés; Smirnova, Irina. An Open Source COSMO-RS Implementation and Parameterization Supporting the Efficient Implementation of Multiple Segment Descriptors. Fluid Phase Equil., 2022, 560, 113472.
York, D. M.; Karplus, M. J. Phys. Chem. A, 1999, 103, 11060–11079.
Pascual-Ahuir, J. L.; Silla, E. J. Comput. Chem., 1990, 11, 1047–1060.
Pascual-Ahuir, J. L.; Silla, E.; Tunon, I. J. Comput. Chem., 1991, 12, 1077–1088.
Pascual-Ahuir, J. L.; Silla, E.; Tunon, I. J. Comput. Chem., 1994, 15, 1127–1138.
Lange, Adrian W.; Herbert, John M. A smooth, nonsingular, and faithful discretization scheme for polarizable continuum models: The switching/Gaussian approach. J. Chem. Phys., 2010, 133 (24), 244111. DOI: 10.1063/1.3511297.
Haynes, W. M.; Lide, D. R.; Bruno, T. J. Handbook of Chemistry and Physics. CRC Press, 95th edition, 2014. ISBN 978-1-4822-0868-9.
Stahn, M.; Ehlert, S.; Grimme, S. Extended Conductor-like Polarizable Continuum Solvation Model (CPCM-X) for Semiempirical Methods. J. Phys. Chem. A, 2023, 127, 7036–7043. DOI: 10.1021/acs.jpca.3c04382.
Bondi, A. J. Phys. Chem., 1964, 68, 441–451.
Mantina, M.; Chamberlin, A. C.; Valero, R.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. A, 2009, 113, 5806–5812.
Klamt, A.; Eckert, F. COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equil., 2000, 172, 43–72. DOI: 10.1016/S0378-3812(00)00357-5.
Truong, T. N.; Stefanovich, E. V. Chem. Phys. Lett., 1995, 240, 253–260.
Pierotti, R. A. Chem. Rev., 1976, 76, 717.
Claverie, P.; Daudey, J. P.; Langlet, J.; Pullman, B.; Plazzola, D.; Huron, M. J. Studies of solvent effects. 1. Discrete, continuum, and discrete –continuum models and their comparison for some simple cases: ammonium(1+) ion, methanol, and substituted ammonium(1+) ion. J. Phys. Chem., 1978, 82, 405–418. DOI: 10.1021/j100493a008.
Pye, C. C.; Ziegler, T. Theor. Chem. Acc., 1999, 101, 396.
Engelage, Elric.; Schulz, Nils; Flemming, Heinen; Huber, Stefan M.; Truhlar, Donald G.; Cramer, Christopher J. Refined SMD Parameters for Bromine and Iodine Accurately Model Halogen-Bonding Interactions in Solution. Chem. Eur. J., 2018, 24, 15983.
Plett, Christoph; Stahn, Marcel; Bursch, Markus; Mewes, Jan-Michael; Grimme, Stefan. Improving Quantum Chemical Solvation Models by Dynamic Radii Adjustment for Continuum Solvation Method (DRACO). J. Phys. Chem. Lett., 2024, 15, 2462.
Caldeweyher, Eike; Ehlert, Sebastian; Hansen, Andreas; Neugebauer, Hagen; Spicher, Sebastian; Bannwarth, Christoph; Grimme, Stefan. A Generally Applicable Atomic-Charge Dependent London Dispersion Correction. J. Chem. Phys., 2019, 150 (15), 154122. arXiv:10.1063/1.5090222, DOI: 10.1063/1.5090222.
Müller, Marcel; Hansen, Andreas; Grimme, Stefan. An atom-in-molecule adaptive polarized valence single-ζ atomic orbital basis for electronic structure calculations. J. Chem. Phys., 2023, 159, 164108.
Bannwarth, Christoph; Ehlert, Sebastian; Grimme, Stefan. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput., 2019, 15 (3), 1652–1671. DOI: 10.1021/acs.jctc.8b01176.
Wittmann, Lukas; Garcia-Ratés, Miquel; Riplinger, Christoph. Analytical First Derivatives of the SCF Energy for the Conductor-like Polarizable Continuum Model with Non-Static Radii. J. Comput. Chem., 2025. DOI: 10.1002/jcc.70099.
Müller, Simon; Nevolianis, Thomas; Garcia-Ratés, Miquel; Riplinger, Christoph; Leonhard, Kai; Smirnova, Irina. Predicting solvation free energies for neutral molecules in any solvent with openCOSMO-RS. Fluid Phase Equilibria, 2025, 589, 114250. DOI: 10.1016/j.fluid.2024.114250.
Klamt, Andreas. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem., 1995, 99, 2224–2235.
Klamt, Andreas; Volker, Jonas; Bürger, Thorsten; Lohrenz, John C. W. Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A, 1998, 102, 5074–5085.
Cammi, R. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives. J. Chem. Phys, 2009, 131, 164104. DOI: 10.1063/1.3245400.
Caricato, M. CCSD-PCM: Improving upon the reference reaction field approximation at no cost. J. Chem. Phys, 2011, 135, 074113. DOI: 10.1063/1.3624373.
Garcia-Ratés, M.; Becker, U.; Neese, F. Implicit Solvation in Domain Based Pair Natural Orbital Coupled Cluster (DLPNO-CCSD) Theory. J. Comput. Chem., 2021, 42 (27), 1959–1973. DOI: 10.1002/jcc.26726.
Almlöf, J. Faegri, K.; Korsell, K. Principles for a direct SCF approach to LICAO-MO ab-initio calculations. J. Comput. Chem., 1982, 3, 385. DOI: 10.1002/jcc.540030314.
Almlöf, J.; Taylor, P. R. Computational Aspects of Direct SCF and MCSCF Methods. In Dykstra, C. E., editor, Advanced Theories and Computational Approaches to the Electronic Structure of Molecules, pages 107. Springer, 1984. DOI: 10.1007/97S-94-009-6451-S.
Almlöf, J. Direct Methods in Electronic Structure Theory. In Yarkony, D. R., editor, Modern Electronic Structure Theory, pages 110. World Scientific, 1995. DOI: 10.1142/1957.
Häser, M.; Ahlrichs, R. J. Comput. Chem., 1989, 10, 104.
Seeger, R.; Pople, J. A. J. Chem. Phys., 1977, 66, 3045.
Bauernschmitt, R.; Ahlrichs, R. Stability analysis for solutions of the closed shell Kohn\textendashSham equation. J. Chem. Phys., 1996, 104, 9047. DOI: 10.1063/1.471637.
Shaik, Sason; Ramanan, Rajeev; Danovich, David; Mandal, Debasish. Structure and reactivity/selectivity control by oriented-external electric fields. Chem. Soc. Rev., 2018, 47, 5125–5145. DOI: 10.1039/C8CS00354H.
Mulliken, R. S. Report on Notation for the Spectra of Polyatomic Molecules. J. Chem. Phys., 1955, 23 (11), 1997–2011. DOI: 10.1063/1.1740655.
Schutte, C. J. H.; Bertie, J. E.; Bunker, P. R.; Hougen, J. T.; Mills, I. M.; Watson, J. K. G.; Winnewisser, B. P. Notations and conventions in molecular spectroscopy: Part 2. Symmetry notation (IUPAC Recommendations 1997). Pure & Appl. Chem., 1997, 69 (8), 1641–1649. DOI: 10.1351/pac199769081641.
Amos, A. T.; Hall, G. G. Single determinant wave functions. Proc. R. Soc. Ser. A., 1961, 263, 483. DOI: 10.1098/rspa.1961.0175.
King, Harry F.; Stanton, Richard E.; Kim, Hojing; Wyatt, Robert E.; Parr, Robert G. Corresponding Orbitals and the Nonorthogonality Problem in Molecular Quantum Mechanics. J. Chem. Phys., 1967, 47, 1936–1941. DOI: 10.1063/1.1712221.
Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications, 1989. ISBN 978-0-486-69186-2.
Dewar, M. J. S.; Hashmall, J. A.; Venier, C. G. J. Am. Chem. Soc., 1968, 90, 1953.
McWeeny, R. SCF Theory for Excited States. I. Mol. Phys., 1974, 28 (5), 1273–1282. DOI: 10.1080/00268977400102581.
Brobowicz, F. W.; Goddard, W. A. In III, H. F. Schaefer, editor, Methods of Electronic Structure Theory, pages 79. Plenum Press, 1977.
Carbo, R.; Riera, J. M. A General SCF Theory. Lecture Notes in Chemistry. Springer Verlag, 1978.
Binkley, J. S.; Pople, J. A.; Dobosh, P. A. The calculation of spin-restricted single-determinant wavefunctions. Mol. Phys., 1974, 28, 1423. DOI: 10.1080/00268977400102701.
Edwards, W. D.; Zerner, M. C. Theor. Chim. Acta, 1987, 72, 347.
Muller, R. P.; Langlois, J. M.; Ringnalda, M. N.; Friesner, R. A.; Goddard, W. A. A Generalized Direct Inversion in the Iterative Subspace Approach for Generalized Valence Bond Wavefunctions. J. Chem. Phys., 1994, 100, 1226–1239. DOI: 10.1063/1.466639.
Bofill, J. M.; Bono, H.; Rubio, J. Analysis of the convergence of the general coupling operator method for one-configuration-type wave functions. J. Comput. Chem., 1998, 19, 368. DOI: 10.1002/(SICI)1096-987X(199802)19:3<368::AID-JCC10>3.0.CO;2-E.
Stavrev, K. K.; Zerner, M. C. Spin-averaged Hartree–Fock procedure for spectroscopic calculations: The absorption spectrum of Mn2+ in ZnS crystals. Int. J. Quant. Chem., 1997, 65 (5), 877–884. DOI: 10.1002/(SICI)1097-461X(1997)65:5<877::AID-QUA51>3.0.CO;2-T.
Zerner, M. C. Int. J. Quant. Chem., 1989, 35, 567.
Leyser da Costa Gouveia, Tiago; Maganas, Dimitrios; Neese, Frank. Restricted Open-Shell Hartree–Fock Method for a General Configuration State Function Featuring Arbitrarily Complex Spin-Couplings. J. Phys. Chem. A, 2024, 128 (25), 5041–5053. PMID: 38886177. DOI: 10.1021/acs.jpca.4c00688.
Hartree, D. R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Proc. Cambridge Phil. Soc., 1928, 24, 89–110. DOI: 10.1017/S0305004100011919.
Slater, J. C. The Theory of Complex Spectra. Phys. Rev., 1929, 34, 1293–1322. DOI: 10.1103/PhysRev.34.1293.
Fock, V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys., 1930, 61, 126–148. DOI: 10.1007/BF01340294.
Perdew, John P.; Schmidt, Karla. Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf. Proc., 2001, 577 (1), 1–20. DOI: 10.1063/1.1390175.
Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys., 1980, 58, 1200.
Perdew, J. P.; Wang, Y. Phys. Rev. B, 1992, 45, 13244.
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, 38, 3098. DOI: 10.1103/PhysRevA.38.3098.
Perdew, J. P. Phys. Rev. B, 1986, 33, 8822.
Miehlich, Burkhard; Savin, Andreas; Stoll, Hermann; Preuss, Heinzwerner. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett, 1989, 157 (3), 200–206. DOI: 10.1016/0009-2614(89)87234-3.
Handy, Nicholas C.; Cohen, Aron J. Left-right correlation energy. Mol. Phys., 2001, 99 (5), 403–412. DOI: 10.1080/00268970010018431.
Gill, P. M. W. Mol. Phys., 1996, 89, 433. DOI: 10.1080/002689796173813.
Xu, Xin; Goddard, III, William A. Proc. Nat. Acad. Sci., 2004, 101, 2673.
Germany), W. E. Heraeus Seminar (75th 1991 Gaussig. Electronic structure of solids '91: proceedings of the 75. WE-Heraeus-Seminar and 21st Annual International Symposium on Electronic Structure of Solids held in Gaussig (Germany), March 11-15, 1991. Akademie Verlag, Berlin, 1st ed. edition, 1991. ISBN 978-3-05-501504-5. Open Library ID: OL1778449M.
Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys., 1998, 108, 664. DOI: 10.1063/1.475428.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett., 1996, 77, 3865.
Hammer, B.; Hansen, L. B.; Nørskov, J. K. Phys. Rev. B, 1999, 59, 7413.
Zhang, Y.; Yang, W. Phys. Rev. Lett., 1998, 80, 890.
Murray, Éamonn D.; Lee, Kyuho; Langreth, David C. Investigation of Exchange Energy Density Functional Accuracy for Interacting Molecules. J. Chem. Theory Comput., 2009, 5 (10), 2754–2762. DOI: 10.1021/ct900365q.
Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas; Grimme, Stefan. B97-3c: A Revised Low-Cost Variant of the B97-D Density Functional Method. J. Chem. Phys., 2018, 148 (6), 064104. DOI: 10.1063/1.5012601.
Mardirossian, Narbe; Head-Gordon, Martin. Mapping the genome of meta-generalized gradient approximation density functionals: The search for B97M-V. J. Chem. Phys., 2015, 142, 074111. DOI: 10.1063/1.4907719.
Najibi, A.; Goerigk, L. J. Chem. Theory Comput., 2018, 14, 5725.
Najibi, A.; Goerigk, L. DFT-D4 Counterparts of Leading Meta-Generalized-Gradient Approximation and Hybrid Density Functionals for Energetics and Geometries. J. Comput. Chem., 2020, 41, 2562–2572. DOI: 10.1002/jcc.26411.
Sun, Jianwei; Ruzsinszky, Adrienn; Perdew, John P. Strongly Constrained and Appropriately Normed Semilocal Density Functional. Phys. Rev. Lett., 2015, 115 (3), 036402. DOI: 10.1103/PhysRevLett.115.036402.
Bartók, Albert P; Yates, Jonathan R. Regularized SCAN Functional. J. Chem. Phys., 2019, 150 (16), 161101. DOI: 10.1063/1.5094646.
Furness, James W; Kaplan, Aaron D; Ning, Jinliang; Perdew, John P; Sun, Jianwei. Accurate and Numerically Efficient r²SCAN Meta-Generalized Gradient Approximation. J. Phys. Chem. Lett., 2020, 11 (19), 8208–8215. DOI: 10.1021/acs.jpclett.0c02405.
Zhao, Yan; Truhlar, Donald G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys., 2006, 125 (19), 194101. DOI: 10.1063/1.2370993.
Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. J. Chem. Phys., 2003, 119, 12129.
Perdew, John P.; Ruzsinszky, Adrienn; Csonka, Gábor I.; Constantin, Lucian A.; Sun, Jianwei. Workhorse Semilocal Density Functional for Condensed Matter Physics and Quantum Chemistry. Phys. Rev. Lett., 2009, 103, 026403. DOI: 10.1103/PhysRevLett.103.026403.
Perdew, John P.; Ruzsinszky, Adrienn; Csonka, Gábor I.; Constantin, Lucian A.; Sun, Jianwei. Erratum: Workhorse Semilocal Density Functional for Condensed Matter Physics and Quantum Chemistry [Phys. Rev. Lett. 103, 026403 (2009)]. Phys. Rev. Lett., 2011, 106, 179902. DOI: 10.1103/PhysRevLett.106.179902.
Grimme, Stefan; Hansen, Andreas; Ehlert, Sebastian; Mewes, Jan-Michael. r2SCAN-3c: A “Swiss Army Knife” Composite Electronic-Structure Method. J. Chem. Phys., 2021, 154 (6), 064103. arXiv:10.1063/5.0040021, DOI: 10.1063/5.0040021.
Ahlrichs, R.; Bär, M.; Baron, H. P.; Bauernschmitt, R.; Böcker, S.; Ehrig, M.; Eichkorn, K.; Elliott, S.; Furche, F.; Haase, F.; Häser, M.; Horn, H.; Huber, C.; Huniar, U.; Kattanek, M.; Kölmel, C.; Kollwitz, M.; May, K.; Ochsenfeld, C.; Öhm, H.; Schäfer, A.; Schneider, U.; Treutler, O.; von Arnim, M.; Weigend, F.; Weis, P.; Weiss, H. TurboMole - Program System for Ab Initio Electronic Structure Calculations, Version 5.2. Universität Karlsruhe, Karlsruhe, Germany, 2000.
Ahlrichs, R. In Schleyer, P. v. R., editor, Encyclopedia of Computational Chemistry, pages 3123. John Wiley and Sons, 1998. DOI: 10.1002/0470845015.
Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett., 1989, 162, 165. DOI: 10.1016/0009-2614(89)85118-8.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, Jr., J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.8. Gaussian, Inc., Pittsburgh PA, 1998.
Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37 (2), 785–789. DOI: 10.1103/PhysRevB.37.785.
Becke, A. D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys., 1993, 98, 1372. DOI: 10.1063/1.464304.
Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648. DOI: 10.1063/1.464913.
Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys., 1999, 110, 6158. DOI: 10.1063/1.478522.
Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem., 1994, 98, 11623. DOI: 10.1021/j100096a001.
Ernzerhof, M. In Joubert, D. P., editor, Density Functionals: Theory and Applications. Springer Verlag, 1998.
Adamo, C.; Barone, V. Toward reliable adiabatic connection models free from adjustable parameters. Chem. Phys. Lett, 1997, 274 (1), 242–250. DOI: 10.1016/S0009-2614(97)00651-9.
aron J. Cohen; Handy, Nicholas C. Dynamic correlation. Mol. Phys., 2001, 99 (7), 607–615. DOI: 10.1080/00268970010023435.
Goerigk, Lars; Grimme, Stefan. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys., 2011, 13, 6670–6688. DOI: 10.1039/C0CP02984J.
Grimme, Stefan. Accurate Calculation of the Heats of Formation for Large Main Group Compounds with Spin-Component Scaled MP2 Methods. J. Phys. Chem. A, 2005, 109 (13), 3067–3077. DOI: 10.1021/jp050036j.
Bursch, Markus; Neugebauer, Hagen; Ehlert, Sebastian; Grimme, Stefan. Dispersion corrected r²SCAN based global hybrid functionals: r²SCANh, r²SCAN0, and r²SCAN50. J. Chem. Phys., 2022, 156 (13), 134105. DOI: 10.1063/5.0086040.
Grimme, S.; Brandenburg, J. G.; Bannwarth, C.; Hansen, A. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys., 2015, 143, 054107. DOI: 10.1063/1.4927476.
Pracht, Philipp; Grant, David F.; Grimme, Stefan. Comprehensive Assessment of GFN Tight-Binding and Composite Density Functional Theory Methods for Calculating Gas-Phase Infrared Spectra. J. Chem. Theory Comput., 2020, 16 (11), 7044–7060. DOI: 10.1021/acs.jctc.0c00877.
Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys., 2001, 115, 3540–3544. DOI: 10.1063/1.1383587.
Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett., 2004, 393, 51–57.
Chai, J.-D.; Head-Gordon, M. J. Chem. Phys., 2008, 128, 084106.
Mardirossian, Narbe; Head-Gordon, Martin. ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Phys. Chem. Chem. Phys., 2014, 16 (21), 9904–9924. DOI: 10.1039/C3CP54374A.
Lin, Y.-S.; Li, G.-D.; Mao, S.-P.; Chai, J.-D. Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. J. Chem. Theory Comput., 2013, 9, 263–272. DOI: 10.1021/ct300715s.
Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. J. Chem. Phys., 2004, 120, 8425–8433.
Mardirossian, Narbe; Head-Gordon, Martin. ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys., 2016, 144, 214110. DOI: 10.1063/1.4952647.
Wittmann, Lukas; Neugebauer, Hagen; Grimme, Stefan; Bursch, Markus. Dispersion-corrected r²SCAN based double-hybrid functionals. J. Chem. Phys., 2023, 159 (22), 224103. DOI: 10.1063/5.0174988.
Grimme, S. J. Chem. Phys., 2006, 124, 034108.
Goerigk, L.; Grimme, S. J. Chem. Theory Comput., 2011, 7, 291–309.
Kozuch, Sebastian; Gruzman, David; Martin, Jan M. L. DSD-BLYP: A General Purpose Double Hybrid Density Functional Including Spin Component Scaling and Dispersion Correction. J. Phys. Chem. C, 2010, 114 (48), 20801–20808. DOI: 10.1021/jp1070852.
Kozuch, Sebastian; Martin, Jan M. L. DSD-PBEP86: In Search of the Best Double-Hybrid DFT with Spin-Component Scaled MP2 and Dispersion Corrections. Phys. Chem. Chem. Phys., 2011, 13 (45), 20104–20107. DOI: 10.1039/C1CP22592H.
Kozuch, Sebastian; Martin, Jan M. L. Spin-component-scaled Double Hybrids: An Extensive Search for the Best Fifth-rung Functionals Blending DFT and Perturbation Theory. J. Comput. Chem., 2013, 34 (27), 2327–2344. DOI: 10.1002/jcc.23391.
Santra, Golokesh; Cho, Minsik; Martin, Jan M. L. Exploring Avenues beyond Revised DSD Functionals: I. Range Separation, with xDSD as a Special Case. J. Phys. Chem. A, 2021, 125 (21), 4614–4627. DOI: 10.1021/acs.jpca.1c01294.
Zhang, Ying; Xu, Xin; Goddard, William A. Doubly hybrid density functional for accurate descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics. Proc. Natl. Acad. Sci. USA, 2009, 106 (13), 4963–4968. DOI: 10.1073/pnas.0901093106.
Mardirossian, Narbe; Head-Gordon, Martin. Survival of the most transferable at the top of Jacob's ladder: Defining and testing the ωB97M(2) double hybrid density functional. J. Chem. Phys., 2018, 148 (24), 241736. DOI: 10.1063/1.5025226.
Neugebauer, Hagen; Pinski, Peter; Grimme, Stefan; Neese, Frank; Bursch, Markus. Assessment of DLPNO-MP2 Approximations in Double-Hybrid DFT. J. Chem. Theory Comput., 2023, 19 (21), 7695–7703. DOI: 10.1021/acs.jctc.3c00896.
Neese, F.; Schwabe, T.; Grimme, S. J. Chem. Phys., 2007, 126, 124115.
Najibi, A.; Casanova-Páez, M.; Goerigk, L. Analysis of Recent BLYP- and PBE-Based Range-Separated Double-Hybrid Density Functional Approximations for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Phys. Chem. A, 2021, 125, 4026–4035.
Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys., 2006, 8, 4398.
Karton, A.; Tarnopolsky, A; Lamère, J.-F.; Schatz, G. C.; Martin, J. M. L. Highly Accurate First-Principles Benchmark Data Sets for the Parametrization and Validation of Density Functional and Other Approximate Methods. Derivation of a Robust, Generally Applicable, Double-Hybrid Functional for Thermochemistry and Thermochemical Kinetics. J. Phys. Chem. A, 2008, 112, 12868. DOI: 10.1021/jp801805p.
Tarnopolsky, Alex; Karton, Amir; Sertchook, Rotem; Vuzman, Dana; Martin, Jan M L. Double-Hybrid Functionals for Thermochemical Kinetics. J. Phys. Chem. A, 2008, 112 (1), 3–8. DOI: 10.1021/jp710179r.
Yu, Feng. Double-Hybrid Density Functionals Free of Dispersion and Counterpoise Corrections for Non-Covalent Interactions. J. Phys. Chem. A, 2014, 118 (17), 3175–3182. DOI: 10.1021/jp5005506.
Brémond, Éric; Sancho-García, Juan Carlos; Pérez-Jiménez, Ángel José; Adamo, Carlo. J. Chem. Phys., 2014, 141, 031101.
Brémond, Éric; Adamo, Carlo. Seeking for Parameter-Free Double-Hybrid Functionals: The PBE0-DH Model. J. Chem. Phys., 2011, 135 (2), 024106.
Casanova-Páez, Marcos; Goerigk, Lars. Time-Dependent Long-Range-Corrected Double-Hybrid Density Functionals with Spin-Component and Spin-Opposite Scaling: A Comprehensive Analysis of Singlet-Singlet and Singlet-Triplet Excitation Energies. J. Chem. Theory Comput., 2021, 17 (8), 5165–5186. DOI: 10.1021/acs.jctc.1c00535.
Chai, Jeng-Da; Head-Gordon, Martin. Long-Range Corrected Double-Hybrid Density Functionals. J. Chem. Phys., 2009, 131 (17), 174105. DOI: 10.1063/1.3244209.
Brémond, Éric; Savarese, Marika; Pérez-Jiménez, Ángel José; Sancho-García, Juan Carlos; Adamo, Carlo. J. Chem. Theory Comput., 2018, 14, 4052–4062.
Brémond, Éric; Pérez-Jiménez, Ángel José; Sancho-García, Juan Carlos; Adamo, Carlo. J. Chem. Phys., 2019, 150, 201102.
Casanova-Páez, Marcos; Dardis, Michael B.; Goerigk, Lars. ωB2PLYP & ωB2GPPLYP: The First Two Double-Hybrid Density Functionals with Long-Range Correction Optimized for Excitation Energies. J. Chem. Theory Comput., 2019, 15, 4735. DOI: 10.1021/acs.jctc.9b00013.
Lehtola, S.; Steigemann, C.; Oliveira, MJT; Marques, MAL. Recent Developments in Libxc – A Comprehensive Library of Functionals for Density Functional Theory. SoftwareX, 2019, 7, 1–5. DOI: 10.1016/j.softx.2017.11.002.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys., 2010, 132, 154104.
Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem., 2011, 32, 1456.
Caldeweyher, Eike; Bannwarth, Christoph; Grimme, Stefan. Extension of the D3 Dispersion Coefficient Model. J. Chem. Phys., 2017, 147 (3), 034112. DOI: 10.1063/1.4993215.
Vydrov, O. A.; Van Voorhis, T. J. Chem. Phys., 2010, 133, 244103.
Hujo, Waldemar; Grimme, Stefan. Performance of Dispersion-Corrected Density Functional Theory for Thermochemistry and Noncovalent Interactions. J. Chem. Theory Comput., 2011, 7 (12), 3866–3871. DOI: 10.1021/ct200644w.
Becke, A. D.; Johnson, E. R. A density-functional model of the dispersion interaction. J. Chem. Phys., 2005, 123, 154101. DOI: 10.1063/1.2065267.
Johnson, Erin R.; Becke, Axel D. A Post-Hartree–Fock Model of Intermolecular Interactions. J. Chem. Phys., 2005, 123, 024101. DOI: 10.1063/1.1949201.
Johnson, Erin R.; Becke, Axel D. A Post-Hartree–Fock Model of Intermolecular Interactions: Inclusion of Higher-Order Corrections. J. Chem. Phys., 2006, 124, 174104. DOI: 10.1063/1.2190220.
Grimme, S. Chem. Eur. J., 2012, 18, 9955–9964.
Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem., 2004, 25, 1463. DOI: 10.1002/jcc.20078.
Lee, K.; Murray, É. D.; Kong, L.; Lundqvist, B. I.; Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B, 2010, 82 (8), 081101. DOI: 10.1103/PhysRevB.82.081101.
Goerigk, L.; Grimme, S. J. Chem. Theory Comput., 2010, 6, 107.
Goerigk, L.; Grimme, S. Phys. Chem. Chem. Phys., 2011, 13, 6670.
Řezáč, Jan; Riley, Kevin E.; Hobza, Pavel. S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures. J. Chem. Theory Comput., 2011, 7, 2427–2438. DOI: 10.1021/ct2002946.
Hujo, W.; Grimme, S. Phys. Chem. Chem. Phys., 2011, 13, 13942.
Iron, Mark A.; Janes, Trevor. Evaluating Transition Metal Barrier Heights with the Latest Density Functional Theory Exchange–Correlation Functionals: The MOBH35 Benchmark Database. J. Phys. Chem. A, 2019, 123 (17), 3761–3781. DOI: 10.1021/acs.jpca.9b01546.
Jurečka, Petr; Šponer, Jiří; Černý, Jiří; Hobza, Pavel. Benchmark Database of Accurate (MP2 and CCSD(T) Complete Basis Set Limit) Interaction Energies of Small Model Complexes, DNA Base Pairs, and Amino Acid Pairs. Phys. Chem. Chem. Phys., 2006, 8, 1985–1993. DOI: 10.1039/B600027D.
Arago, Juan; Orti, Enrique; Sancho-Garcia, Juan C. Nonlocal van Der Waals Approach Merged with Double-Hybrid Density Functionals: Toward the Accurate Treatment of Noncovalent Interactions. J. Chem. Theory Comput., 2013, 9 (8), 3437–3443. DOI: 10.1021/ct4003527.
Yu, Feng. Spin-Component-Scaled Double-Hybrid Density Functionals with Nonlocal van Der Waals Correlations for Noncovalent Interactions. J. Chem. Theory Comput., 2014, 10 (10), 4400–4407. DOI: 10.1021/ct500642x.
Pople, J. A.; Beveridge, D. L. Approximate Molecular Orbital Theory. McGraw Hill Inc, 1970.
Sedlej, J.; Cooper, I. L. Semi-Emipirical Methods of Quantum Chemistry. 1985, John Wiley and Sons.
Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. P. J. Am. Chem. Soc., 1985, 107, 3902.
Stewart, J. P. J. Comput. Chem., 1989, 10, 209 & 221.
Dewar, M. J. S.; Thiel, W. Theor. Chim. Acta, 1977, 46, 89.
Thiel, W.; Voityuk, A. A. Theor. Chim. Acta, 1992, 81, 391.
Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc., 1977, 99, 4899.
Pople, J. A.; Segal, G. A. J. Chem. Phys., 1965, 43, 136.
Pople, J. A.; Segal, G. A. J. Chem. Phys., 1966, 44, 3289.
Santry, D. P. J. Am. Chem. Soc., 1968, 90, 3309.
Santry, D. P.; Segal, G. A. J. Chem. Phys., 1967, 47, 158.
Pople, J. A.; Beveridge, D. L.; Dobosh, P. A. J. Chem. Phys., 1967, 47, 2026.
Clack, D. W.; Hush, N. S.; Yandle, J. R. All\textendashValence Electron CNDO Calculations on Transition Metal Complexes. J. Chem. Phys., 1972, 57, 3503. DOI: 10.1063/1.1678785.
Clack, D. W. INDO MO calculations for first row transition metal complexes. Mol. Phys., 1974, 27, 1513–1519. DOI: 10.1080/00268977400101281.
Clack, D. W.; Smith, W. Clack, D.W., Smith, W. Molecular orbital calculations on transition metal complexes. Theor. Chim. Acta, 1974, 36, 87–92. DOI: 10.1007/BF00554339.
Böhm, M. C.; Gleiter, R. A CNDO/INDO molecular orbital formalism for the elements H to Br. theory. Theor. Chim. Acta, 1981, 59, 127 & 153. DOI: 10.1007/BF00552536.
Ridley, J.; Zerner, M. C. Theor. Chim. Acta, 1973, 32, 111.
Bacon, A. D.; Zerner, M. C. An intermediate neglect of differential overlap theory for transition metal complexes: Fe, Co and Cu chlorides. Theor. Chim. Acta, 1979, 53, 21. DOI: 10.1007/BF00547605.
Zerner, M. C.; Loew, G. H.; Kirchner, R. F.; Mueller-Westerhoff, U. T. J. Am. Chem. Soc., 1980, 102, 589.
Anderson, W. P.; Edwards, W. D.; Zerner, M. C. Calculated spectra of hydrated ions of the first transition-metal series. Inorg. Chem., 1986, 25, 2728. DOI: 10.1021/ic00236a015.
Anderson, W. P.; Cundari, T. R.; Drago, R. S.; Zerner, M. C. Utility of the semiempirical INDO/1 method for the calculation of the geometries of second-row transition-metal species. Inorg. Chem., 1990, 29, 3. DOI: 10.1021/ic00326a001.
Anderson, W. P.; Cundari, T. R.; Zerner, M. C. An intermediate neglect of differential overlap model for second-row transition metal species. Int. J. Quant. Chem., 1991, 39, 31. DOI: 10.1002/qua.560390106.
Zerner, M. C. In Lipkowitz, K. B.; Boyd, D. B., editors, Reviews in Computational Chemistry, volume 2, pages 313. Wiley-VCH, 1990.
Zerner, M. C. In Salahub, D. R.; Russo, N., editors, Metal-Ligand Interactions: From Atoms to Clusters to Surfaces, pages 101. Kluwer Academic Publishers, 1992.
Zerner, M. C. In Salahub, D. R.; Russo, N., editors, Metal-Ligand Interactions: Structure and Reactivity, pages 493. Kluwer Academic Publishers, 1992.
Cory, M. G.; Zerner, M. C. Metal-ligand exchange coupling in transition-metal complexes. Chem. Rev., 1991, 91, 813. DOI: 10.1021/cr00005a009.
Kotzian, M.; Rösch, N.; Zerner, M. C. Intermediate neglect of differential overlap spectroscopic studies on lanthanide complexes. I. Spectroscopic parametrization and application to diatomic lanthanide oxides LnO (Ln=La, Ce, Gd, and Lu). Theor. Chim. Acta, 1992, 81 (3-4), 201–222. DOI: 10.1007/BF01118562.
Nieke, C.; Reinhold, J. Theor. Chim. Acta, 1984, 65, 99.
Köhler, H. J.; Birnstock, F. Title not provided. Z. Chem., 1972, 12 (5), 196.
Grimme, Stefan; Bannwarth, Christoph; Shushkov, Philip. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All Spd-Block Elements (z = 1-86). J. Chem. Theory Comput., 2017, 13 (5), 1989–2009. DOI: 10.1021/acs.jctc.7b00118.
Pracht, Philipp; Caldeweyher, Eike; Ehlert, Sebastian; Grimme, Stefan. A Robust Non-Self-Consistent Tight-Binding Quantum Chemistry Method for Large Molecules. ChemRxiv, 2019. DOI: 10.26434/chemrxiv.8326202.v1.
Ehlert, Sebastian; Stahn, Marcel; Spicher, Sebastian; Grimme, Stefan. Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods. J. Chem. Theory Comput., 2021, 17 (7), 4250–4261. DOI: 10.1021/acs.jctc.1c00471.
Cancès, E.; Maday, Y.; Stamm, B. Domain decomposition for implicit solvation models. J. Chem. Phys, 2013, 139, 054111. DOI: 10.1063/1.4816767.
Neugebauer, Hagen; Bädorf, Benedikt; Ehlert, Sebastian; Hansen, Andreas; Grimme, Stefan. High-throughput screening of spin states for transition metal complexes with spin-polarized extended tight-binding methods. J. Comput. Chem., 2023, 44 (27), 2120–2129. DOI: https://doi.org/10.1002/jcc.27185.
Sure, R.; Grimme, S. J. Comput. Chem., 2013, 34, 1672–1685.
Brandenburg, J. G.; Bannwarth, C.; Hansen, A.; Grimme, S. B97-3c: A Revised Low-Cost Variant of the B97-D Density Functional Method. J. Chem. Phys., 2018, 148 (6), 064104.
Ehlert, Sebastian; Huniar, Uwe; Ning, Jinliang; Furness, James W.; Sun, Jianwei; Kaplan, Aaron D.; Perdew, John P.; Brandenburg, Jan Gerit. r²SCAN-D4: Dispersion Corrected Meta-Generalized Gradient Approximation for General Chemical Applications. J. Chem. Phys., 2021, 154 (6), 061101. arXiv:10.1063/5.0041008, DOI: 10.1063/5.0041008.
Langreth, D.C.; Perdew, J.P. The exchange-correlation energy of a metallic surface. Solid State Communications, 1975, 17 (11), 1425–1429. DOI: 10.1016/0038-1098(75)90618-3.
Furche, Filipp. Molecular tests of the random phase approximation to the exchange-correlation energy functional. Phys. Rev. B, 2001, 64, 195120. DOI: 10.1103/PhysRevB.64.195120.
Furche, Filipp. Developing the random phase approximation into a practical post-Kohn–Sham correlation model. The Journal of Chemical Physics, 2008, 129 (11), 114105. arXiv:https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.2977789/13579843/114105\_1\_online.pdf, DOI: 10.1063/1.2977789.
Trushin, Egor; Thierbach, Adrian; Görling, Andreas. Toward chemical accuracy at low computational cost: Density-functional theory with σ-functionals for the correlation energy. The Journal of Chemical Physics, 2021, 154 (1), 014104. arXiv:https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0026849/15583499/014104\_1\_online.pdf, DOI: 10.1063/5.0026849.
Lochan, Rohini C.; Head-Gordon, Martin. Orbital-Optimized Opposite-Spin Scaled Second-Order Correlation: An Economical Method to Improve the Description of Open-Shell Molecules. J. Chem. Phys., 2007, 126 (16), 164101. DOI: 10.1063/1.2718952.
McWeeny, R. Methods of Molecular Quantum Mechanics. 2nd Edition. Academic Press, 1992.
Cremer, D. In Schleyer, P. v. R., editor, Encyclopedia of Computational Chemistry, pages 1706. John Wiley and Sons, 1998.
Saebo, S.; Almlöf, J. Chem. Phys. Lett., 1989, 154, 83.
Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett., 1988, 153, 503.
Lauderdale, W. J.; Stanton, J. F.; Gauss, J.; Watts, J. D.; Bartlett, R. J. Many-body perturbation theory with a restricted open-shell Hartree–Fock reference. Chem. Phys. Lett., 1991, 187 (1-2), 21–28. DOI: 10.1016/0009-2614(91)90478-R.
Knowles, Peter J.; Andrews, James S.; Amos, Roger D.; Handy, Nicholas C.; Pople, John A. Restricted Møller–Plesset Theory for Open-Shell Molecules. Chem. Phys. Lett., 1991, 186 (2-3), 130–136. DOI: 10.1016/0009-2614(91)85118-G.
Pople, J. A.; Binkley, J. S.; Seeger, R. Int. J. Quant. Chem. Symp., 1976, 10, 1.
Krishnan, R.; Frisch, M. J.; Pople, J. A. Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory. J. Chem. Phys., 1980, 72 (7), 4244–4245. DOI: 10.1063/1.439657.
Handy, N. C.; Knowles, P. J.; Somasundram, K. Theor. Chem. Acc., 1985, 68, 87.
Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. Chem. Phys. Lett., 1998, 294, 143.
Weigend, F.; Häser, M. Theor. Chem. Acc., 1997, 97, 331.
Feyereisen, M.; Fitzerald, G.; Komornicki, A. Chem. Phys. Lett., 1993, 208, 359.
Bernholdt, D. E.; Harrison, R. J. Large-scale correlated electronic structure calculations: the RI-MP2 method on parallel computers. Chem. Phys. Lett., 1996, 250, 477. DOI: 10.1016/0009-2614(96)00054-1.
Grimme, S. J. Chem. Phys., 2003, 118, 9095–9102.
Stoychev, Georgi L.; Auer, Alexander A.; Neese, Frank. Efficient and Accurate Prediction of Nuclear Magnetic Resonance Shielding Tensors with Double-Hybrid Density Functional Theory. J. Chem. Theory Comput., 2018, 14 (9), 4756–4771. DOI: 10.1021/acs.jctc.8b00624.
Tran, Van Anh; Neese, Frank. Double-Hybrid Density Functional Theory for g-Tensor Calculations Using Gauge Including Atomic Orbitals. J. Chem. Phys., 2020, 153 (5), 054105. DOI: 10.1063/5.0013799.
Pinski, P.; Riplinger, C.; Valeev, E. F.; Neese, Frank. J. Chem. Phys., 2015, 143, 034108.
Pavošević, F.; Pinski, P.; Riplinger, C.; Neese, F.; Valeev, E.F. SparseMaps – A systematic infrastructure for reduced-scaling electronic structure methods. IV. Linear-scaling second-order explicitly correlated energy with pair natural orbitals. J. Chem. Phys., 2016, 144, 144109.
Pinski, Peter; Neese, Frank. Communication: Exact Analytical Derivatives for the Domain-Based Local Pair Natural Orbital MP2 Method (DLPNO-MP2). J. Chem. Phys., 2018, 148, 031101. DOI: 10.1063/1.5011204.
Pinski, Peter; Neese, Frank. Analytical Gradient for the Domain-Based Local Pair Natural Orbital Second Order Møller-Plesset Perturbation Theory Method (DLPNO-MP2). J. Chem. Phys., 2019, 150, 164102.
Scheurer, P.; Schwarz, W. H. E. Continuous Degeneracy of Sets of Localized Orbitals. Int. J. Quantum Chem., 2000, 76, 428–433.
Stoychev, Georgi L.; Auer, Alexander A.; Gauss, Jürgen; Neese, Frank. DLPNO-MP2 Second Derivatives for the Computation of Polarizabilities and NMR Shieldings. J. Chem. Phys., 2021, 154 (16), 164110. DOI: 10.1063/5.0047125.
Sparta, Manuel; Retegan, Marius; Pinski, Peter; Riplinger, Christoph; Becker, Ute; Neese, Frank. Multilevel Approaches within the Local Pair Natural Orbital Framework. J. Chem. Theory Comput., 2017, 13 (7), 3198–3207. DOI: 10.1021/acs.jctc.7b00260.
Jensen, F. Introduction to Computational Chemistry. Wiley, 1999.
Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory. Wiley-VCH, 2000.
Neese, F.; Schwabe, T.; Kossmann, S.; Schirmer, B.; Grimme, S. J. Chem. Theory Comput., 2009, 5, 3060.
Shee, James; Loipersberger, Matthias; Rettig, Adam; Lee, Joonho; Head-Gordon, Martin. Regularized Second-Order Møller–Plesset Theory: A More Accurate Alternative to Conventional MP2 for Noncovalent Interactions and Transition Metal Thermochemistry for the Same Computational Cost. J. Phys. Chem. Lett., 2021, 12 (50), 12084–12097. DOI: 10.1021/acs.jpclett.1c03468.
Neese, F. Importance of Direct Spin-Spin Coupling and Spin-Flip Excitations for the Zero-Field Splittings of Transition Metal Complexes: A Case Study. J. Am. Chem. Soc., 2006, 128, 10213.
Krupička, Martin; Sivalingam, Kantharuban; Huntington, Lee; Auer, Alexander A.; Neese, Frank. A toolchain for the automatic generation of computer codes for correlated wavefunction calculations. J. Comput. Chem., 2017, 38 (21), 1853–1868. DOI: 10.1002/jcc.24833.
Lechner, M. H.; Papadopoulos, A.; Sivalingam, K.; Auer, A. A.; Koslowski, A.; Becker, U.; Wennmohs, F.; Neese, F. Code generation in ORCA: Progress, Efficiency and Tight integration. Phys. Chem. Chem. Phys., 2024, 26 (21), 15205–15220.
Parr, R. G. Density Functional Theory of Atoms and Molecules. International Series of Monographs on Chemistry. Oxford University Press, 1994. ISBN 978-0-19-509276-9.
Ahlrichs, R. Many body perturbation calculations and coupled electron pair models. Comp. Phys. Comm., 1979, 17, 31. DOI: 10.1016/0010-4655(79)90067-5.
Gdanitz, R. J. Int. J. Quant. Chem., 2001, 85, 281.
Gdanitz, R. J.; Ahlrichs, R. Chem. Phys. Lett., 0143, 1988, 413.
Szalay, P. G.; Bartlett, R. J. Chem. Phys. Lett., 1993, 214, 481.
Ahlrichs, R.; Scharf, P.; Ehrhardt, C. The coupled pair functional (CPF). A size consistent modification of the CI(SD) based on an energy functional. J. Chem. Phys., 1985, 82, 890. DOI: 10.1063/1.448517.
Kollmar, Christian; Neese, Frank. The coupled electron pair approximation: Variational formulation and spin adaptation. Mol. Phys., 2010, 108 (19-20), 2449–2458. DOI: 10.1080/00268976.2010.496743.
Kollmar, Christian; Neese, Frank. The relationship between double excitation amplitudes and Z vector components in some post-Hartree-Fock correlation methods. J. Chem. Phys., 2011, 135 (6), 064103. DOI: 10.1063/1.3618720.
Chong, D. P.; Langhoff, S. R. A modified coupled pair functional approach. J. Chem. Phys., 1986, 84, 5606–5610. DOI: 10.1063/1.449920.
Scuseria, G. E.; III, H. F. Schaefer. Chem. Phys. Lett., 1987, 142, 354.
Handy, N. C.; Pople, J. A.; Head-Gordon, M.; Raghavachari, K.; Trucks, G. W. Chem. Phys. Lett., 1989, 164, 185.
Kollmar, Christian; Hesselmann, Andreas. The role of orbital transformations in coupled-pair functionals. Theor. Chem. Acc., 2010, 127 (5-6), 311–320. DOI: 10.1007/s00214-010-0846-z.
Salter, E. A.; Trucks, G. W.; Bartlett, R. J. J. Chem. Phys., 1989, 90, 1752.
Kollmar, Christian; Neese, Frank. An orbital-invariant and strictly size extensive post-Hartree-Fock correlation functional. J. Chem. Phys., 2011, 135 (8), 084102. DOI: 10.1063/1.3624567.
Huntington, L. M. J.; Nooijen, M. J. Chem. Phys., 2010, 133, 184109.
Huntington, Lee M. J.; Hansen, Andreas; Neese, Frank; Nooijen, Marcel. Accurate Thermochemistry from a Parameterized Coupled-Cluster Singles and Doubles Model and a Local Pair Natural Orbital Based Implementation for Applications to Larger Systems. J. Chem. Phys., 2012, 136, 064101. DOI: 10.1063/1.3682325.
Pulay, P.; Saebo, S.; Meyer, W. J. Chem. Phys., 1984, 81, 1901.
Hampel, C.; Peterson, K. A.; Werner, H. J. Chem. Phys. Lett., 1992, 190, 1.
Scuseria, G. E.; Janssen, C. L.; III, H. F. Schaefer. J. Chem. Phys., 1988, 89, 7382.
Heully, J. L.; Malrieu, J.-P. J. Mol. Struct.: THEOCHEM, 2006, 768, 53.
Neese, F.; Hansen, A.; Liakos, D. G. J. Chem. Phys., 2009, 131, 064103.
Hansen, A.; Liakos, D. G.; Neese, F. J. Chem. Phys., 2011, 135, 214102.
Neese, F.; Hansen, A.; Wennmohs, F.; Grimme, S. Acc. Chem. Res., 2009, 42, 641.
Neese, F.; Liakos, D. G.; Ye, S. F. J. Biol. Inorg. Chem., 2011, 16, 821.
Semidalas, Emmanouil; Martin, Jan M. L. Automatic generation of complementary auxiliary basis sets for explicitly correlated methods. J. Comput. Chem., 2022, 43 (25), 1690–1700. DOI: 10.1002/jcc.26970.
Liakos, Dimitrios G.; Izsák, Róbert; Valeev, Edward F.; Neese, Frank. What is the most efficient way to reach the canonical MP2 basis set limit? Mol. Phys., 2013, 111 (19-20), 2653–2662. DOI: 10.1080/00268976.2013.811812.
Liakos, D. G.; Neese, F. Improved correlation energy extrapolation schemes based on local pair natural orbital methods. J. Phys. Chem. A, 2012, 116 (19), 4801–4816. DOI: 10.1021/jp300997x.
Li, S.; Ma, J.; Jiang, Y. Linear Scaling Local Correlation Approach for Solving the Coupled Cluster Equations of Large Systems. J. Comput. Chem., 2002, 23, 237–244. DOI: 10.1002/jcc.10003.
Li, S.; Shen, J.; Li, W.; Jiang, Y. An Efficient Implementation of the “Cluster-in-Molecule” Approach for Local Electron Correlation Calculations. J. Chem. Phys., 2006, 125, 074109. DOI: 10.1063/1.2244566.
Li, W.; Piecuch, P.; Gour, J.; Li, S. Local Correlation Calculations Using Standard and Renormalized Coupled-Cluster Approaches. J. Chem. Phys., 2009, 131, 114109. DOI: 10.1063/1.3218842.
Rolik, Z.; Kallay, M. A General-Order Local Coupled-Cluster Method Based on the Cluster-in-Molecule Approach. J. Chem. Phys., 2011, 135, 104111. DOI: 10.1063/1.3632085.
Guo, Y.; Li, W.; Li, S. Improved Cluster-in-Molecule Local Correlation Approach for Electron Correlation Calculation of Large Systems. J. Phys. Chem. A, 2014, 118 (39), 8996–9004. DOI: 10.1021/jp501976x.
Guo, Yang; Becker, Ute; Neese, Frank. Comparison and Combination of “Direct” and Fragment Based Local Correlation Methods: Cluster in Molecules and Domain Based Local Pair Natural Orbital Perturbation and Coupled Cluster Theories. J. Chem. Phys., 2018, 148 (12), 124117. DOI: 10.1063/1.5021898.
Förner, W.; Ladik, J.; Otto, P.; Čížek, J. Coupled-Cluster Studies. II. The Role of Localization in Correlation Calculations on Extended Systems. Chem. Phys., 1985, 97, 251–262. DOI: 10.1016/0301-0104(85)87035-X.
Riplinger, C.; Neese, F. J. Chem. Phys., 2013, 138, 034106.
Neese, F.; Wennmohs, F.; Hansen, A. J. Chem. Phys., 2009, 130, 114108.
Liakos, Dimitrios G.; Hansen, Andreas; Neese, Frank. Weak molecular interactions studied with parallel implementations of the local pair natural orbital coupled pair and coupled cluster methods. J. Chem. Theory Comput., 2011, 7 (1), 76–87. DOI: 10.1021/ct100529u.
Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. J. Chem. Phys., 2013, 139, 134101.
Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, Frank. J. Chem. Phys., 2016, 144, 024109.
Datta, D.; Kossmann, S.; Neese, F. Analytic energy derivatives for the calculation of the first-order molecular properties using the domain-based local pair-natural orbital coupled-cluster theory. J. Chem. Phys., 2016, 175, 114101. DOI: 10.1063/1.4962369.
Saitow, M.; Becker, U.; Riplinger, C.; Valeev, E. F.; Neese, F. J. Chem. Phys., 2017, 146, 164105.
Guo, Yang; Riplinger, Christoph; Becker, Ute; Liakos, Dimitrios G.; Minenkov, Yury; Cavallo, Luigi; Neese, Frank. Communication: An Improved Linear Scaling Perturbative Triples Correction for the Domain Based Local Pair-Natural Orbital Based Singles and Doubles Coupled Cluster Method [DLPNO-CCSD(T)]. J. Chem. Phys., 2018, 148 (1), 011101. DOI: 10.1063/1.5011798.
Schütz, M.; Werner, H. J. Chem. Phys. Lett., 2000, 318, 370.
Schütz, M.; Werner, H. J. J. Chem. Phys., 2001, 114, 661.
Schütz, Martin; Manby, Frederick R. Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals. Phys. Chem. Chem. Phys., 2003, 5 (16), 3349–3358.
Schütz, Martin. A new, fast, semi-direct implementation of linear scaling local coupled cluster theory. Phys. Chem. Chem. Phys., 2002, 4 (16), 3941–3947.
Meyer, Wilfried. Ionization energies of water from PNO-CI calculations. Int. J. Quantum Chem., 1971, 5 (S5), 341–348.
Ahlrichs, R; Lischka, H; Staemmler, V; Kutzelnigg, W. PNO–CI (pair natural orbital configuration interaction) and CEPA–PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. I. Outline of the method for closed-shell states. J. Chem. Phys., 1975, 62 (4), 1225–1234.
Meyer, Wilfried. PNO–CI Studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane. J. Chem. Phys., 1973, 58 (3), 1017–1035.
Werner, Hans-Joachim; Meyer, Wilfried. PNO-CI and PNO-CEPA studies of electron correlation effects: V. Static dipole polarizabilities of small molecules. Mol. Phys., 1976, 31 (3), 855–872.
Liakos, Dimitrios G.; Sparta, Manuel; Kesharwani, Manoj K.; Martin, Jan M. L.; Neese, Frank. Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster Theory. J. Chem. Theory Comput., 2015, 11 (4), 1525–1539. DOI: 10.1021/acs.jctc.5b00078.
Altun, Ahmet; Riplinger, Christoph; Neese, Frank; Bistoni, Giovanni. Exploring the Accuracy Limits of PNO-Based Local Coupled-Cluster Calculations for Transition-Metal Complexes. J. Chem. Theory Comput., 2023, 19 (7), 2039–2047.
Lee, T. J.; Taylor, P. R. A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quant. Chem. Symp., 1989, 23, 199–207. DOI: 10.1002/qua.560360824.
Wennmohs, F.; Neese, F. Chem. Phys., 2008, 343, 217–230. DOI: .
Ahlrichs, R.; Scharf, P. The Coupled Pair Approximation. In Lawley, K. P., editor, Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry, Part I, Advances in Chemical Physics, pages 1–42. Wiley, 1987.
Siegbahn, Per E. M. Direct Configuration Interaction with a Reference State Composed of Many Reference Configurations. Int. J. Quant. Chem., 1980, 18 (5), 1229–1242. DOI: 10.1002/qua.560180510.
Meyer, Wilfried. Configuration Expansion by Means of Pseudonatural Orbitals. In Schaefer III, Henry F., editor, Methods of Electronic Structure Theory, pages 413–446. Springer US, 1977.
Sivalingam, K.; Krupicka, M.; Auer, A. A.; Neese, F. Comparison of fully internally and strongly contracted multireference configuration interaction procedures. J. Chem. Phys., 2016, 145, 054104. DOI: 10.1063/1.4950161.
Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi. Multireference Configuration Interaction Theory Using Cumulant Reconstruction with Internal Contraction of Density Matrix Renormalization Group Wave Function. J. Chem. Phys., 2013, 139, 044118. DOI: 10.1063/1.4816627.
Guo, Yang; Sivalingam, Kantharuban; Neese, Frank. Approximations of Density Matrices in N-Electron Valence State Second-Order Perturbation Theory (NEVPT2). I. Revisiting the NEVPT2 Construction. J. Chem. Phys., 2021, 154 (21), 214111. DOI: 10.1063/5.0051211.
Lyakh, Dmitry I.; Musiał, Monika; Lotrich, Victor F.; Bartlett, Rodney J. Multireference Nature of Chemistry: The Coupled-Cluster View. Chem. Rev., 2012, 112 (1), 182–243. DOI: 10.1021/cr2001417.
Evangelista, Francesco A.; Gauss, Jürgen. An Orbital-Invariant Internally Contracted Multireference Coupled Cluster Approach. J. Chem. Phys., 2011, 134 (11), 114102. DOI: 10.1063/1.3559149.
Hanauer, Matthias; Köhn, Andreas. Pilot Applications of Internally Contracted Multireference Coupled Cluster Theory, and How to Choose the Cluster Operator Properly. J. Chem. Phys., 2011, 134 (20), 204111. DOI: 10.1063/1.3592786.
Jankowski, K.; Paldus, J. Applicability of Coupled-Pair Theories to Quasidegenerate Electronic States: A Model Study. Int. J. Quantum Chem., 1980, 18 (5), 1243–1269. DOI: 10.1002/qua.560180511.
Guo, Yang; Sivalingam, Kantharuban; Kollmar, Christian; Neese, Frank. Approximations of Density Matrices in N-Electron Valence State Second-Order Perturbation Theory (NEVPT2). II. The Full Rank NEVPT2 (FR-NEVPT2) Formulation. J. Chem. Phys., 2021, 154 (21), 214113. DOI: 10.1063/5.0051218.
Angeli, Celestino; Bories, Benoît; Cavallini, Alex; Cimiraglia, Renzo. Third-order multireference perturbation theory: The n-electron valence state perturbation-theory approach. J. Chem. Phys., 2006, 124 (5), 054108. DOI: 10.1063/1.2148946.
Kempfer, Emily M.; Sivalingam, Kantharuban; Neese, Frank. Efficient Implementation of Approximate Fourth Order N-Electron Valence State Perturbation Theory. J. Chem. Theory Comput., 2025, 21 (8), 3953–3967. DOI: 10.1021/acs.jctc.4c01735.
Kollmar, Christian; Sivalingam, Kantharuban; Helmich-Paris, Benjamin; Angeli, Celestino; Neese, Frank. A perturbation-based super-CI approach for the orbital optimization of a CASSCF wave function. J. Comput. Chem., 2019, 40 (14), 1463–1470. DOI: 10.1002/jcc.25801.
Helmich-Paris, Benjamin. A trust-region augmented Hessian implementation for state-specific and state-averaged CASSCF wave functions. J. Chem. Phys., 2022, 156 (20), 204104. Publisher: American Institute of Physics. DOI: 10.1063/5.0090447.
Lang, Lucas; Neese, Frank. Spin-Dependent Properties in the Framework of the Dynamic Correlation Dressed Complete Active Space Method. J. Chem. Phys., 2019, 150 (10), 104104. DOI: 10.1063/1.5085203.
Atanasov, Mihail; Ganyushin, Dmitry; Sivalingam, Kantharuban; Neese, Frank. A Modern First-Principles View on Ligand Field Theory Through the Eyes of Correlated Multireference Wavefunctions. In Mingos, David Michael P.; Day, Peter; Dahl, Jens Peder, editors, Molecular Electronic Structures of Transition Metal Complexes II, number 143 in Structure and Bonding, pages 149–220. Springer Berlin Heidelberg, 2011. DOI: 10.1007/430_2011_57.
Lang, Lucas; Atanasov, Mihail; Neese, Frank. Improvement of Ab Initio Ligand Field Theory by Means of Multistate Perturbation Theory. J. Phys. Chem. A, 2020, 124 (5), 1025–1037. DOI: 10.1021/acs.jpca.9b11227.
Atanasov, Mihail; Ganyushin, Dmitry; Pantazis, Dimitrios A.; Sivalingam, Kantharuban; Neese, Frank. Detailed Ab Initio First-Principles Study of the Magnetic Anisotropy in a Family of Trigonal Pyramidal Iron(II) Pyrrolide Complexes. Inorg. Chem., 2011, 50 (16), 7460–7477. DOI: 10.1021/ic200196k.
Suturina, Elizaveta A.; Maganas, Dimitrios; Bill, Eckhard; Atanasov, Mihail; Neese, Frank. Magneto-Structural Correlations in a Series of Pseudotetrahedral [CoII(XR)4]2– Single Molecule Magnets: An Ab Initio Ligand Field Study. Inorg. Chem., 2015, 54 (20), 9948–9961. DOI: 10.1021/acs.inorgchem.5b01706.
Aravena, Daniel; Atanasov, Mihail; Neese, Frank. Periodic Trends in Lanthanide Compounds through the Eyes of Multireference Ab Initio Theory. Inorg. Chem., 2016, 55 (9), 4457–4469. DOI: 10.1021/acs.inorgchem.6b00244.
Jung, Julie; Atanasov, Mihail; Neese, Frank. Ab Initio Ligand-Field Theory Analysis and Covalency Trends in Actinide and Lanthanide Free Ions and Octahedral Complexes. Inorg. Chem., 2017, 56 (15), 8802–8816. DOI: 10.1021/acs.inorgchem.7b00642.
Singh, Saurabh Kumar; Eng, Julien; Atanasov, Mihail; Neese, Frank. Covalency and Chemical Bonding in Transition Metal Complexes: An Ab Initio Based Ligand Field Perspective. Coordin. Chem. Rev., 2017, 344, 2–25. DOI: 10.1016/j.ccr.2017.03.018.
Chakraborty, Uttam; Demeshko, Serhiy; Meyer, Franc; Rebreyend, Christophe; de Bruin, Bas; Atanasov, Mihail; Neese, Frank; Mühldorf, Bernd; Wolf, Robert. Electronic Structure and Magnetic Anisotropy of an Unsaturated Cyclopentadienyl Iron(I) Complex with 15 Valence Electrons. Angew. Chem. Int. Ed., 2017, 56 (27), 7995–7999. DOI: 10.1002/anie.201702454.
Chilkuri, Vijay Gopal; DeBeer, Serena; Neese, Frank. Revisiting the Electronic Structure of FeS Monomers Using Ab Initio Ligand Field Theory and the Angular Overlap Model. Inorg. Chem., 2017, 56 (17), 10418–10436. DOI: 10.1021/acs.inorgchem.7b01371.
Chilkuri, Vijay Gopal; DeBeer, Serena; Neese, Frank. Ligand Field Theory and Angular Overlap Model Based Analysis of the Electronic Structure of Homovalent Iron–Sulfur Dimers. Inorg. Chem., 2020, 59 (2), 984–995. DOI: 10.1021/acs.inorgchem.9b00974.
Chilkuri, Vijay Gopal; Neese, Frank. Comparison of Many-Particle Representations for Selected-CI I: A Tree Based Approach. J. Comput. Chem., 2021, 42 (14), 982–1005. DOI: 10.1002/jcc.26518.
Chilkuri, Vijay Gopal; Neese, Frank. Comparison of Many-Particle Representations for Selected Configuration Interaction: II. Numerical Benchmark Calculations. J. Chem. Theory Comput., 2021, 17 (5), 2868–2885. DOI: 10.1021/acs.jctc.1c00081.
Chan, G. K.-L.; Head-Gordon, M. Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group. J. Chem. Phys., 2002, 116, 4462–4476. DOI: 10.1063/1.1449459.
Chan, G. K.-L. An algorithm for large scale density matrix renormalization group calculations. J. Chem. Phys., 2004, 120, 3172. DOI: 10.1063/1.1638734.
Ghosh, D.; Hachmann, J.; Yanai, T.; Chan, G. K.-L. J. Chem. Phys., 2008, 128, 144117.
Sharma, S.; Chan, G. K.-L. J. Chem. Phys., 2012, 136, 124121.
Sayfutyarova, Elvira R.; Sun, Qiming; Chan, Garnet Kin-Lic; Knizia, Gerald. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals. J. Chem. Theory Comput., 2017, 13 (9), 4063–4078. DOI: 10.1021/acs.jctc.7b00128.
Sayfutyarova, Elvira R.; Hammes-Schiffer, Sharon. Constructing Molecular π-Orbital Active Spaces for Multireference Calculations of Conjugated Systems. J. Chem. Theory Comput., 2019, 15 (3), 1679–1689. DOI: 10.1021/acs.jctc.8b01196.
Robin, Melvin B. Higher Excited States of Polyatomic Molecules. Academic Press, 1974. ISBN 978-0-12-589901-7.
Walzl, K. N.; Koerting, C. F.; Kuppermann, A. Electron-impact Spectroscopy of Acetaldehyde. J. Chem. Phys., 1987, 87, 3796–3803. DOI: 10.1063/1.452935.
Müller, Thomas; Lischka, Hans. Simultaneous Calculation of Rydberg and Valence Excited States of Formaldehyde. Theor. Chem. Acc., 2001, 106, 369–378. DOI: 10.1007/s002140100264.
Lewin, Mathieu. J. Math. Chem., 2008, 44, 967.
Lang, Lucas. Development of New Multistate Multireference Perturbation Theory Methods and Their Application. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2020.
Rao, Shashank V.; Maganas, Dimitrios; Sivalingam, Kantharuban; Atanasov, Mihail; Neese, Frank. Extended Active Space Ab Initio Ligand Field Theory: Applications to Transition-Metal Ions. Inorg. Chem., 2024, 63 (52), 24672–24684. Publisher: American Chemical Society. DOI: 10.1021/acs.inorgchem.4c03893.
Chatzis, A.; Kowalska, J. K.; Maganas, D.; DeBeer, S.; Neese, F. Ab Initio Wave Function-Based Determination of Element Specific Shifts for the Efficient Calculation of X-Ray Absorption Spectra of Main Group Elements and First Row Transition Metals. J. Chem. Theory Comput., 2018, 14 (7), 3686–3702. DOI: https://dx.doi.org/10.1021/acs.jctc.8b00249.
Mathe, Zachary; Maganas, Dimitrios; Neese, Frank; DeBeer, Serena. Coupling experiment and theory to push the state-of-the-art in x-ray spectroscopy. Nature Reviews Chemistry, 2025, 2397–3358. DOI: 10.1038/s41570-025-00718-2.
Guo, Yang; Sivalingam, Kantharuban; Chilkuri, Vijay Gopal; Neese, Frank. Approximations of density matrices in N-electron valence state second-order perturbation theory (NEVPT2). III. Large active space calculations with selected configuration interaction reference. J. Chem. Phys., 2025, 162 (14), 144110. DOI: 10.1063/5.0262473.
Chan, G. K.-L.; Sharma, S. Ann. Rev. Phys. Chem., 2011, 62, 465.
Chan, G. K.-L. DMRG Homepage. URL: https://www.chan-lab.caltech.edu/software.
Fiedler, M. Czech. Math. J., 1973, 23, 298.
Fiedler, M. Czech. Math. J., 1975, 25, 619.
Atkins, J. E.; Boman, E. G.; Hendrickson, B. A Spectral Algorithm for Seriation and the Consecutive Ones Problem. SIAM J. Computing., 1998, 28 (1), 297–310. DOI: 10.1137/S0097539795285771.
Barcza, G.; Legeza, Ö.; Marti, K. H.; Reiher, M. Quantum-information analysis of electronic states of different molecular structures. Phys. Rev. A, 2011, 83, 012508. DOI: 10.1103/PhysRevA.83.012508.
Angeli, C.; Cimiraglia, R.; Evangelisti, S.; Leininger, T.; Malrieu, J.P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys., 2001, 114, 10252–10264. DOI: 10.1063/1.1361246.
Angeli, C.; Cimiraglia, R.; Malrieu, J.P. N-electron valence state perturbation theory: a fast implementation of the strongly contracted variant. Chem. Phys. Lett., 2001, 350, 297–305. DOI: 10.1016/S0009-2614(01)01303-3.
Angeli, C.; Cimiraglia, R.; Malrieu, J.P. n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys., 2002, 117, 9138–9153. DOI: 10.1063/1.1515317.
Dyall, K. G. J. Chem. Phys., 1995, 102, 4909–4918.
Havenith, Remco W. A.; Taylor, Peter R.; Angeli, Celestino; Cimiraglia, Renzo; Ruud, Kenneth. Calibration of the N-Electron Valence State Perturbation Theory Approach. J. Chem. Phys., 2004, 120, 4619. DOI: 10.1063/1.1645243.
Schapiro, Igor; Sivalingam, Kantharuban; Neese, Frank. Assessment of N-Electron Valence State Perturbation Theory for Vertical Excitation Energies. J. Chem. Theory Comput., 2013, 9 (8), 3567–3580. DOI: 10.1021/ct400136y.
Angeli, Celestino; Borini, Stefano; Cestari, Mirko; Cimiraglia, Renzo. A Quasidegenerate Formulation of the Second Order N-Electron Valence State Perturbation Theory Approach. J. Chem. Phys., 2004, 121, 4043–4049. DOI: 10.1063/1.1778711.
Lang, Lucas; Sivalingam, Kantharuban; Neese, Frank. The Combination of Multipartitioning of the Hamiltonian with Canonical Van Vleck Perturbation Theory Leads to a Hermitian Variant of Quasidegenerate N-Electron Valence Perturbation Theory. J. Chem. Phys., 2020, 152 (1), 014109. DOI: 10.1063/1.5133746.
Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F.; Neese, Frank. SparseMaps—A Systematic Infrastructure for Reduced-Scaling Electronic Structure Methods. III. Linear-Scaling Multireference Domain-Based Pair Natural Orbital N-Electron Valence Perturbation Theory. J. Chem. Phys., 2016, 144 (9), 094111. DOI: 10.1063/1.4942769.
Guo, Yang; Sivalingam, Kantharuban; Valeev, Edward F.; Neese, Frank. Explicitly Correlated N-Electron Valence State Perturbation Theory (NEVPT2-F12). J. Chem. Phys., 2017, 147 (6), 064110. DOI: 10.1063/1.4996560.
Guo, Yang; Pavošević, Fabijan; Sivalingam, Kantharuban; Becker, Ute; Valeev, Edward F.; Neese, Frank. SparseMaps—A systematic infrastructure for reduced-scaling electronic structure methods. VI. Linear-scaling explicitly correlated N-electron valence state perturbation theory with pair natural orbital. J. Chem. Phys., 2023, 158 (12), 124120. DOI: 10.1063/5.0144260.
Kong, Liguo; Valeev, Edward F. Perturbative correction for the basis set incompleteness error of complete-active-space self-consistent field. The Journal of Chemical Physics, 2010, 133 (17), 174126. DOI: 10.1063/1.3499600.
Dyall, Kenneth G. The choice of a zeroth‐order Hamiltonian for second‐order perturbation theory with a complete active space self‐consistent‐field reference function. The Journal of Chemical Physics, 1995, 102 (12), 4909–4918. DOI: 10.1063/1.469539.
Kollmar, Christian; Sivalingam, Kantharuban; Guo, Yang; Neese, Frank. An efficient implementation of the NEVPT2 and CASPT2 methods avoiding higher-order density matrices. J. Chem. Phys., 2021, 155 (23), 234104. DOI: 10.1063/5.0072129.
Chatterjee, Koushik; Sokolov, Alexander Yu. Extended Second-Order Multireference Algebraic Diagrammatic Construction Theory for Charged Excitations. J. Chem. Theory Comput., 2020, 16 (10), 6343–6357. DOI: 10.1021/acs.jctc.0c00778.
Zgid, Dominika; Ghosh, Debashree; Neuscamman, Eric; Chan, Garnet Kin-Lic. A Study of Cumulant Approximations to N-Electron Valence Multireference Perturbation Theory. J. Chem. Phys., 2009, 130, 194107.
Forsberg, Niclas; Malmqvist, Per-Åke. Multiconfiguration perturbation theory with imaginary level shift. Chem. Phys. Lett., 1997, 274 (1–3), 196–204. DOI: 10.1016/S0009-2614(97)00669-6.
Guo, Sheng; Watson, Mark A.; Hu, Weifeng; Sun, Qiming; Chan, Garnet Kin-Lic. N-Electron Valence State Perturbation Theory Based on a Density Matrix Renormalization Group Reference Function, with Applications to the Chromium Dimer and a Trimer Model of Poly(p-Phenylenevinylene). J. Chem. Theory Comput., 2016, 12 (4), 1583–1591. DOI: 10.1021/acs.jctc.5b01225.
Khedkar, Abhishek; Roemelt, Michael. Active Space Selection Based on Natural Orbital Occupation Numbers from N-Electron Valence Perturbation Theory. J. Chem. Theory Comput., 2019, 15, 3522–3536.
Domingo, A.; Carvajal, M.-A.; de Graaf, C.; Sivalingam, K.; Neese, F.; Angeli, C. Theor. Chem. Acc., 2012, 131 (9), 1264.
Angeli, C.; Borini, S.; Cestari, M.; Cimigraglia, R. A quasidegenerate formulation of the second order n-electron valence state perturbation theory approach. J. Chem. Phys., 2004, 121, 4043. DOI: 10.1063/1.1778711.
Shavir, I.; Redmon, L. T. J. Chem. Phys., 1980, 73, 5711.
Brandow, B.H.". Effective Interactions and Operators in Nuclei. Volume 40. Springer, 1974.
Andersson, Kerstin.; Malmqvist, Per Aake.; Roos, Bjoern O.; Sadlej, Andrzej J.; Wolinski, Krzysztof. Second-Order Perturbation Theory with a CASSCF Reference Function. J. Phys. Chem., 1990, 94, 5483–5488. DOI: 10.1021/j100377a012.
Roos, Björn O.; Andersson, Kerstin. Multiconfigurational Perturbation Theory with Level Shift — the Cr2 Potential Revisited. Chem. Phys. Lett., 1995, 245, 215–223. DOI: 10.1016/0009-2614(95)01010-7.
Forsberg, Niclas; Malmqvist, Per-Å ke. Multiconfiguration Perturbation Theory with Imaginary Level Shift. Chem. Phys. Lett., 1997, 274, 196–204. DOI: 10.1016/S0009-2614(97)00669-6.
Fdez. Galván, Ignacio; Vacher, Morgane; Alavi, Ali; Angeli, Celestino; Aquilante, Francesco; Autschbach, Jochen; Bao, Jie J.; Bokarev, Sergey I.; Bogdanov, Nikolay A.; Carlson, Rebecca K.; Chibotaru, Liviu F.; Creutzberg, Joel; Dattani, Nike; Delcey, Mickaël G.; Dong, Sijia S.; Dreuw, Andreas; Freitag, Leon; Frutos, Luis Manuel; Gagliardi, Laura; Gendron, Frédéric; Giussani, Angelo; González, Leticia; Grell, Gilbert; Guo, Meiyuan; Hoyer, Chad E.; Johansson, Marcus; Keller, Sebastian; Knecht, Stefan; Kovačević, Goran; Källman, Erik; Manni, Giovanni Li; Lundberg, Marcus; Ma, Yingjin; Mai, Sebastian; Malhado, João Pedro; Malmqvist, Per Åke; Marquetand, Philipp; Mewes, Stefanie A.; Norell, Jesper; Olivucci, Massimo; Oppel, Markus; Phung, Quan Manh; Pierloot, Kristine; Plasser, Felix; Reiher, Markus; Sand, Andrew M.; Schapiro, Igor; Sharma, Prachi; Stein, Christopher J.; Sørensen, Lasse Kragh; Truhlar, Donald G.; Ugandi, Mihkel; Ungur, Liviu; Valentini, Alessio; Vancoillie, Steven; Veryazov, Valera; Weser, Oskar; Wesołowski, Tomasz A.; Widmark, Per-Olof; Wouters, Sebastian; Zech, Alexander; Zobel, J. Patrick; Lindh, Roland. OpenMolcas: From Source Code to Insight. J. Chem. Theory Comput., 2019, 15 (11), 5925–5964.
Kepenekian, Mikaël; Robert, Vincent; Le Guennic, Boris. What Zeroth-Order Hamiltonian for CASPT2 Adiabatic Energetics of Fe(II)N6 Architectures? J. Chem. Phys., 2009, 131, 114702. DOI: 10.1063/1.3211020.
Zobel, J. Patrick; Nogueira, Juan J.; González, Leticia. The IPEA Dilemma in CASPT2. Chem. Sci., 2017, 8 (2), 1482–1499. DOI: 10.1039/C6SC03759C.
Kollmar, Christian; Sivalingam, Kantharuban; Neese, Frank. An Alternative Choice of the Zeroth-Order Hamiltonian in CASPT2 Theory. J. Chem. Phys., 2020, 152 (21), 214110. DOI: 10.1063/5.0010019.
Shiozaki, Toru; Győrffy, Werner; Celani, Paolo; Werner, Hans-Joachim. Communication: Extended Multi-State Complete Active Space Second-Order Perturbation Theory: Energy and Nuclear Gradients. J. Chem. Phys., 2011, 135, 081106–081106–4.
Li Manni, Giovanni; Carlson, Rebecca K.; Luo, Sijie; Ma, Dongxia; Olsen, Jeppe; Truhlar, Donald G.; Gagliardi, Laura. Multiconfiguration Pair-Density Functional Theory. J. Chem. Theory Comput., 2014, 10 (9), 3669–3680. PMID: 26588512. DOI: 10.1021/ct500483t.
Becke, A. D.; Savin, A.; Stoll, H. Extension of the local-spin-density exchange-correlation approximation to multiplet states. Theor. Chim. Acta, 1995, 91 (3), 147–156. DOI: 10.1007/BF01114982.
Rodrigues, Gabriel L. S.; Scott, Mikael; Delcey, Mickael G. Multiconfigurational Pair-Density Functional Theory Is More Complex than You May Think. J. Phys. Chem. A, 2023, 127 (44), 9381–9388. DOI: 10.1021/acs.jpca.3c05663.
Scott, Mikael; Rodrigues, Gabriel L. S.; Li, Xin; Delcey, Mickael G. Variational Pair-Density Functional Theory: Dealing with Strong Correlation at the Protein Scale. J. Chem. Theory Comput., 2024, 20 (6), 2423–2432. PMID: 38217859. DOI: 10.1021/acs.jctc.3c01240.
Fromager, Emmanuel; Toulouse, Julien; Jensen, Hans Jørgen Aa. On the universality of the long-/short-range separation in multiconfigurational density-functional theory. J. Chem. Phys., 2007, 126 (7), 074111. DOI: 10.1063/1.2566459.
Hedegård, Erik Donovan; Toulouse, Julien; Jensen, Hans Jørgen Aagaard. Multiconfigurational short-range density-functional theory for open-shell systems. J. Chem. Phys., 2018, 148 (21), 214103. DOI: 10.1063/1.5013306.
Paziani, Simone; Moroni, Saverio; Gori-Giorgi, Paola; Bachelet, Giovanni B. Local-spin-density functional for multideterminant density functional theory. Phys. Rev. B, 2006, 73, 155111. DOI: 10.1103/PhysRevB.73.155111.
Goll, Erich; Werner, Hans-Joachim; Stoll, Hermann. A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers. Phys. Chem. Chem. Phys., 2005, 7, 3917–3923. DOI: 10.1039/B509242F.
Goll, Erich; Werner, Hans-Joachim; Stoll, Hermann; Leininger, Thierry; Gori-Giorgi, Paola; Savin, Andreas. A short-range gradient-corrected spin density functional in combination with long-range coupled-cluster methods: Application to alkali-metal rare-gas dimers. Chem. Phys., 2006, 329 (1), 276 – 282. DOI: https://doi.org/10.1016/j.chemphys.2006.05.020.
Helmich-Paris, Benjamin; Kjellgren, Erik Rosendahl; Jensen, Hans Jørgen Aa. Excited-State Methods Based on State-Averaged Long-Range CASSCF Short-Range DFT. under review in Phys. Chem. Chem. Phys., 2025.
Pedersen, Jesper Kielberg. Description of correlation and relativistic effects in calculations of molecular properties. PhD thesis, University of Southern Denmark, 2004.
Neese, Frank; Petrenko, Taras; Ganyushin, Dmitry; Olbrich, Gottfried. Advanced Aspects of Ab Initio Theoretical Optical Spectroscopy of Transition Metal Complexes: Multiplets, Spin-Orbit Coupling and Resonance Raman Intensities. Coordin. Chem. Rev., 2007, 251 (3-4), 288–327. DOI: 10.1016/j.ccr.2006.05.019.
Retegan, Marius; Cox, Nicholas; Pantazis, Dimitrios A.; Neese, Frank. A First-Principles Approach to the Calculation of the on-Site Zero-Field Splitting in Polynuclear Transition Metal Complexes. Inorg. Chem., 2014, 53 (21), 11785–11793. DOI: 10.1021/ic502081c.
Neese, F. Chem. Phys. Lett., 2003, 380, 721–728.
Maganas, Dimitrios; Sottini, Silvia; Kyritsis, Panayotis; Groenen, Edgar J. J.; Neese, Frank. Theoretical Analysis of the Spin Hamiltonian Parameters in Co(II)S₄ Complexes, Using Density Functional Theory and Correlated ab initio Methods. Inorg. Chem., 2011, 50 (18), 8741–8754. DOI: 10.1021/ic200299y.
Jiang, Shang-Da; Maganas, Dimitrios; Levesanos, Nikolaos; Ferentinos, Eleftherios; Haas, Sabrina; Thirunavukkuarasu, Komalavalli; Krzystek, Jurek; Dressel, Martin; Bogani, Lapo; Neese, Frank; Kyritsis, Panayotis. Direct Observation of Very Large Zero-Field Splitting in a Tetrahedral Ni(II)Se₄ Coordination Complex. J. Am. Chem. Soc., 2015, 137 (40), 12923–12928. DOI: 10.1021/jacs.5b06716.
Ganyushin, D.; Neese, F. J. Chem. Phys., 2008, 128, 114117.
Maganas, Dimitrios; Kowalska, Joanna K.; Nooijen, Marcel; DeBeer, Serena; Neese, Frank. Comparison of Multireference Ab Initio Wavefunction Methodologies for X-Ray Absorption Edges: A Case Study on [Fe(II/III)Cl₄]²⁻/¹⁻ Molecules. J. Chem. Phys., 2019, 150 (10), 104106. DOI: 10.1063/1.5051613.
Pollock, Christopher J.; Delgado-Jaime, Mario Ulises; Atanasov, Mihail; Neese, Frank; DeBeer, Serena. Kβ Mainline X-Ray Emission Spectroscopy as an Experimental Probe of Metal–Ligand Covalency. J. Am. Chem. Soc., 2014, 136 (26), 9453–9463. DOI: 10.1021/ja504182n.
Datta, Dipayan; Kong, Liguo; Nooijen, Marcel. A State-Specific Partially Internally Contracted Multireference Coupled Cluster Approach. J. Chem. Phys., 2011, 134 (21), 214116. DOI: 10.1063/1.3592494.
Datta, Dipayan; Nooijen, Marcel. Multireference Equation-of-Motion Coupled Cluster Theory. J. Chem. Phys., 2012, 137 (20), 204107. DOI: 10.1063/1.4766361.
Demel, Ondrej; Datta, Dipayan; Nooijen, Marcel. Additional Global Internal Contraction in Variations of Multireference Equation of Motion Coupled Cluster Theory. J. Chem. Phys., 2013, 138 (13), 134108.
Nooijen, Marcel; Demel, Ondrej; Datta, Dipayan; Kong, Liguo; Shamasundar, K. R.; Lotrich, V.; Huntington, Lee M.; Neese, Frank. Communication: Multireference Equation of Motion Coupled Cluster: A Transform and Diagonalize Approach to Electronic Structure. J. Chem. Phys., 2014, 140 (8), 081102.
Huntington, L. M. J.; Nooijen, M. J. Chem. Phys., 2015, 142, 194111.
Huntington, L. M. J.; Nooijen, M. J. Chem. Theory Comput., 2016, 12, 114.
Liu, Z.; Demel, O.; Nooijen, M. Multireference Equation of Motion Coupled Cluster Study of Atomic Excitation Spectra of First-Row Transition Metal Atoms Cr, Mn, Fe and Co. J. Mol. Spectrosc., 2015, 311, 54.
Liu, Z.; Huntington, L. M. J.; Nooijen, M. Application of the multireference equation of motion coupled cluster method, including spin–orbit coupling, to the atomic spectra of Cr, Mn, Fe and Co. Mol. Phys., 2015, 113 (19-20), 2999–3013. DOI: 10.1080/00268976.2015.1063730.
Lechner, Marvin H.; Izsák, Róbert; Nooijen, Marcel; Neese, Frank. A Perturbative Approach to Multireference Equation-of-Motion Coupled Cluster. Mol. Phys., 2021, 119 (17-18), e1939185. DOI: 10.1080/00268976.2021.1939185.
Mukherjee, D. Normal Ordering and a Wick-like Reduction Theorem for Fermions with Respect to a Multi-Determinantal Reference State. Chem. Phys. Lett., 1997, 274, 561–568. DOI: 10.1016/S0009-2614(97)00714-8.
Kutzelnigg, Werner; Mukherjee, Debashis. Normal order and extended Wick theorem for a multiconfiguration reference wave function. J. Chem. Phys., 1997, 107 (2), 432–449. DOI: 10.1063/1.474405.
National Institute of Standards and Technology (NIST) Atomic Spectra Database.
Nave, G.; Johansson, S.; Learner, R. C. M.; Thorne, A. P.; Brault, J. W. Astrophys. J., Suppl. Ser., 1994, 94, 221.
Pathak, Shubhrodeep; Lang, Lucas; Neese, Frank. A Dynamic Correlation Dressed Complete Active Space Method: Theory, Implementation, and Preliminary Applications. J. Chem. Phys., 2017, 147, 234109.
Maurice, Rémi; Bastardis, Roland; de Graaf, Coen; Suaud, Nicolas; Mallah, Talal; Guihéry, Nathalie. Universal Theoretical Approach to Extract Anisotropic Spin Hamiltonians. J. Chem. Theory Comput., 2009, 5 (11), 2977–2984. DOI: 10.1021/ct900365q.
Li, H.; Jensen, J. H. Partial Hessian vibrational analysis: The localization of the molecular vibrational energy and entropy. Theor. Chem. Acc., 2002, 107 (4), 211–219. DOI: 10.1007/s00214-001-0317-7.
Steinbach, Peter J.; Brooks, Bernard R. New Spherical-Cutoff Methods for Long-Range Forces in Macromolecular Simulation. J. Comput. Chem., 1994, 15 (7), 667–683. DOI: 10.1002/jcc.540150702.
Schlegel, H. B. In Lawley, K. P., editor, Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry, Part I, volume 67, pages 249. John Wiley and Sons, 1987.
Schlegel, H. B. In Yarkony, D. R., editor, Modern Electronic Structure Theory, pages 459. World Scientific, 1995.
Schlegel, H. B. In Schleyer, P. v. R., editor, Encyclopedia of Computational Chemistry, pages 1136. John Wiley and Sons, 1998.
Eckert, F.; Pulay, P.; Werner, H. J. J. Comput. Chem., 1997, 12, 1473.
Horn, H.; Wei, H.; Häser, M.; Ehrig, M.; Ahlrichs, R. J. Comput. Chem., 1991, 12, 1058.
Baker, J. An algorithm for the location of transition states. J. Comput. Chem., 1986, 7, 385. DOI: 10.1002/jcc.540070402.
Ribas-Arino, Jordi; Marx, Dominik. Covalent Mechanochemistry: Theoretical Concepts and Computational Tools with Applications to Molecular Nanomechanics. Chem. Rev., 2012, 112 (10), 5412–5487. DOI: 10.1021/cr200399q.
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem. Theory Comput., 2008, 4, 435.
Harvey, J. N.; Aschi, M.; Schwarz, H.; Koch, W. Theor. Chem. Acc., 1998, 99, 95.
Ishida, Kazuhiro; Morokuma, Keiji; Komornicki, Andrew. The Intrinsic Reaction Coordinate. An Ab Initio Calculation for HNC\textrightarrow HCN and H-+CH4\textrightarrow CH4+H-. J. Chem. Phys., 1977, 66 (5), 2153–2156. DOI: 10.1063/1.434152.
Ásgeirsson, V.; B.O., Birgirsson; Bjornsson, R.; Becker, U.; Riplinger, C.; Neese, F.; Jónssson, H. Nudged Elastic Band Method for Molecular Reactions Using Energy-Weighted Springs Combined with Eigenvector Following. J. Chem. Theory Comput., 2021, 17, 4929. DOI: 10.1021/acs.jctc.1c00462.
Mills, G.; Jónsson, H.; Schenter, G. K. Reversible Work Transition State Theory: Application to Dissociative Adsorption of Hydrogen. Surf. Sci., 1995, 324 (2-3), 305–337. DOI: 10.1016/0039-6028(94)00731-4.
Jónsson, H.; Mills, G.; Jacobsen, K.W. Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific Publishing Company, 1998.
Henkelman, G.; Jónsson, H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. J. Chem. Phys., 2000, 113 (22), 9978–9985.
Zhu, Ting; Li, Ju; Samanta, Amit; Kim, Hyoung Gyu; Suresh, Subra. Interfacial Plasticity Governs Strain Rate Sensitivity and Ductility in Nanostructured Metals. Proc. Nat. Acad. Sci., 2007, 104 (9), 3031–3036. arXiv:https://www.pnas.org/content/104/9/3031.full.pdf, DOI: 10.1073/pnas.0611097104.
Ásgeirsson, Vilhjálmur; Arnaldsson, Andri; Jónsson, Hannes. Efficient Evaluation of Atom Tunneling Combined with Electronic Structure Calculations. J. Chem. Phys., 2018, 148 (10), 102334. DOI: 10.1063/1.5007180.
Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys., 2000, 113 (22), 9901–9904.
Maras, Emile; Trushin, Oleg; Stukowski, Alexander; Ala-Nissila, Tapio; Jónsson, Hannes. Global Transition Path Search for Dislocation Formation in Ge on Si (001). Comput. Phys. Commun., 2016, 205, 13–21. DOI: 10.1016/j.cpc.2016.04.001.
Sheppard, D.; Terrell, R.; Henkelman, G. Optimization Methods for Finding Minimum Energy Paths. J. Chem. Phys., 2008, 128 (13), 134106.
Trygubenko, S.A.; Wales, D.J. A Doubly Nudged Elastic Band Method for Finding Transition States. J. Chem. Phys., 2004, 120 (5), 2082–2094.
Ásgeirsson, V. Development and Evaluation of Computational Methods for Studies of Chemical Reactions. University of Iceland, 2021.
Bitzek, Erik; Koskinen, Pekka; Gähler, Franz; Moseler, Michael; Gumbsch, Peter. Structural Relaxation Made Simple. Phys. Rev. Lett., 2006, 97 (17), 170201. DOI: 10.1103/PhysRevLett.97.170201.
Nocedal, J. Updating Quasi-Newton Matrices with Limited Storage. Math. Comput., 1980, 35 (151), 773–782. DOI: 10.1090/S0025-5718-1980-0572855-7.
Müller, Klaus; Brown, Leo D. Location of Saddle Points and Minimum Energy Paths by a Constrained Simplex Optimization Procedure. Theor. Chem. Acc., 1979, 53 (1), 75–93. DOI: 10.1007/BF00547608.
Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt; Jónsson, Hannes. Improved Initial Guess for Minimum Energy Path Calculations. J. Chem. Phys., 2014, 140 (21), 214106. DOI: 10.1063/1.4878664.
Schmerwitz, Yorick Leonard Adrian; Ásgeirsson, Vilhjálmur; Jónsson, Hannes. Improved Initialization of Optimal Path Calculations Using Sequential Traversal over the Image-Dependent Pair Potential Surface. J. Chem. Theory Comput., 2024, 20, 155–163. DOI: 10.1021/acs.jctc.3c01111.
Melander, Marko; Laasonen, Kari; Jónsson, Hannes. Removing External Degrees of Freedom from Transition-State Search Methods Using Quaternions. J. Chem. Theory Comput., 2015, 11 (3), 1055–1062. DOI: 10.1021/ct501103z.
Kairys, V.; Head, J.D. Geometry Optimization of Charged Molecules in an External Electric Field Applied to F⁻⋅ H₂O and I⁻⋅H₂O. J. Phys. Chem. A, 1998, 102 (8), 1365–1370.
E, Weinan; Ren, Weiqing; Vanden-Eijnden, Eric. String Method for the Study of Rare Events. Phys. Rev. B, 2002, 66 (5), 052301. arXiv:0205527 [cond-mat], DOI: 10.1103/PhysRevB.66.052301.
Shang, Honghui; Yang, Jinlong. The Moving-Grid Effect in the Harmonic Vibrational Frequency Calculations with Numeric Atom-Centered Orbitals. J. Phys. Chem. A, 2020, 124 (14), 2897–2906. Publisher: American Chemical Society. DOI: 10.1021/acs.jpca.0c01453.
Herzberg, G. Infrared and Raman Spectra. Van Nostrand Reinhold, 1945.
Gilson, Michael K.; Irikura, Karl K. Symmetry Numbers for Rigid, Flexible, and Fluxional Molecules: Theory and Applications. J. Phys. Chem. B, 2010, 114 (50), 16304–16317. DOI: 10.1021/jp110434s.
Maeda, Satoshi; Ohno, Koichi; Morokuma, Keiji. Updated Branching Plane for Finding Conical Intersections without Coupling Derivative Vectors. J. Chem. Theory Comput., 2010, 6 (5), 1538–1545. DOI: 10.1021/ct1000268.
de Souza, Bernardo. GOAT: A Global Optimization Algorithm for Molecules and Atomic Clusters. Angew. Chem. Int. Ed., 2025, 64 (18), e202500393. DOI: 10.1002/anie.202500393.
Wales, David J.; Doye, Jonathan P. K. Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. J. Phys. Chem. A, 1997, 101 (28), 5111–5116. Publisher: American Chemical Society. DOI: 10.1021/jp970984n.
Goedecker, Stefan. Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys., 2004, 120 (21), 9911–9917. Publisher: American Institute of Physics. DOI: 10.1063/1.1724816.
Pracht, Philipp; Bohle, Fabian; Grimme, Stefan. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys., 2020, 22 (14), 7169–7192. Publisher: The Royal Society of Chemistry. DOI: 10.1039/C9CP06869D.
Pracht, Philipp; Grimme, Stefan. Calculation of absolute molecular entropies and heat capacities made simple. Chem. Sci., 2021, 12 (19), 6551–6568. Publisher: The Royal Society of Chemistry. DOI: 10.1039/D1SC00621E.
Assadollahzadeh, Behnam; Schwerdtfeger, Peter. A systematic search for minimum structures of small gold clusters Aun (n=2–20) and their electronic properties. J. Chem. Phys., 2009, 131 (6), 064306. Publisher: American Institute of Physics. DOI: 10.1063/1.3204488.
Spicher, Sebastian; Plett, Christoph; Pracht, Philipp; Hansen, Andreas; Grimme, Stefan. Automated Molecular Cluster Growing for Explicit Solvation by Efficient Force Field and Tight Binding Methods. J. Chem. Theory Comput., 2022, 18 (5), 3174–3189. Publisher: American Chemical Society. DOI: 10.1021/acs.jctc.2c00239.
Shami, Tareq M.; El-Saleh, Ayman A.; Alswaitti, Mohammed; Al-Tashi, Qasem; Summakieh, Mhd Amen; Mirjalili, Seyedali. Particle Swarm Optimization: A Comprehensive Survey. IEEE Access, 2022, 10, 10031–10061. DOI: 10.1109/ACCESS.2022.3142859.
Mulliken, R. S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys., 1955, 23 (10), 1833–1840. DOI: 10.1063/1.1740588.
Wiberg, K. B. Tetrahedron, 1968, 24, 1083. DOI: .
Mayer, István. Charge, Bond Order and Valence in the Ab Initio SCF Theory. Chem. Phys. Lett., 1983, 97 (3), 270–274. DOI: 10.1016/0009-2614(83)80005-0.
Mayer, I. Int. J. Quant. Chem., 1984, 26, 151.
Mayer, I. Theor. Chim. Acta, 1985, 67, 315.
Mayer, I. In Maksić, Z. B., editor, Modelling of Structure and Properties of Molecules. John Wiley and Sons, 1987.
Hirshfeld, F. L. Bonded-Atom Fragments for Describing Molecular Charge Densities. Theor. Chim. Acta, 1977, 44, 129–138.
Verstraelen, Toon; Vandenbrande, Steven; Heidar-Zadeh, Farnaz; Vanduyfhuys, Louis; Van Speybroeck, Veronique; Waroquier, Michel; W. Ayers, Paul. Minimal Basis Iterative Stockholder: Atoms in Molecules for Force-Field Development. J. Chem. Theory Comput., 2016, 12, 3894–3912. DOI: 10.1021/acs.jctc.6b00456.
Breneman, C. M.; Wiberg, K. B. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem., 1990, 11, 361–373. DOI: 10.1002/jcc.540110311.
Bayly, Christopher I.; Cieplak, Piotr; Cornell, Wendy; Kollman, Peter A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. The Journal of Physical Chemistry, 1993, 97 (40), 10269–10280. Publisher: American Chemical Society. DOI: 10.1021/j100142a004.
Clark, Aurora E.; Davidson, Ernest R. Local Spin. J. Chem. Phys., 2001, 115 (16), 7382–7392. DOI: 10.1063/1.1407276.
McWeeny, R.; Kutzelnigg, W. Comparison of different independent particle model approximations. Int. J. Quantum Chem., 1968, 2 (2), 187–203. DOI: 10.1002/qua.560020207.
Herrmann, Carmen; Reiher, Markus; Hess, Bernd A. Comparative Analysis of Local Spin Definitions. J. Chem. Phys., 2005, 122 (3), 034102. DOI: 10.1063/1.1829050.
Bohmann, Jonathan A.; Weinhold, Frank; Farrar, Thomas C. Natural Chemical Shielding Analysis of Nuclear Magnetic Resonance Shielding Tensors from Gauge-Including Atomic Orbital Calculations. J. Chem. Phys., 1997, 107 (4), 1173–1184. DOI: 10.1063/1.474464.
Grimme, S.; Hansen, A. A Practicable Real-Space Measure and Visualization of Static Electron-Correlation Effects. Angew. Chem. Int. Ed., 2015, 54, 12308–12313.
Roemelt, M.; Neese, F. Excited States of Large Open-Shell Molecules: An Efficient, General, and Spin-Adapted Approach Based on a Restricted Open-Shell Ground State Wave function. J. Phys. Chem. A, 2013, 117, 3069–3082. DOI: 10.1021/jp3126126.
Roemelt, Michael; Maganas, Dimitrios; DeBeer, Serena; Neese, Frank. Excited States of Large Open-Shell Molecules: An Efficient, General, and Spin-Adapted Approach Based on a Restricted Open-Shell Ground State Wave function. The Journal of Chemical Physics, 2013, 138, 204101. DOI: 10.1063/1.4804607.
Leyser da Costa Gouveia, Tiago; Maganas, Dimitrios; Neese, Frank. General Spin-Restricted Open-Shell Configuration Interaction Approach: Application to Metal K-Edge X-ray Absorption Spectra of Ferro- and Antiferromagnetically Coupled Dimers. The Journal of Physical Chemistry A, 2025, 129 (1), 330–345. PMID: 39680653. arXiv:https://doi.org/10.1021/acs.jpca.4c05228, DOI: 10.1021/acs.jpca.4c05228.
Yeager, Danny L.; Jørgensen, Poul. A Multiconfigurational Time-Dependent Hartree–Fock Approach. Chem. Phys. Lett., 1979, 65, 77–80.
Jørgensen, Poul; Jensen, Hans Jørgen Aagaard; Olsen, Jeppe. Linear Response Calculations for Large Scale Multiconfiguration Self-Consistent Field Wave Functions. J. Chem. Phys., 1988, 89 (6), 3654–3661.
Helmich-Paris, Benjamin. CASSCF Linear Response Calculations for Large Open-Shell Molecules. J. Chem. Phys., 2019, 150 (17), 174121. DOI: 10.1063/1.5092613.
Martin, Richard L. Natural Transition Orbitals. J. Chem. Phys., 2003, 118 (11), 4775–4777. DOI: 10.1063/1.1558471.
Helmich-Paris, Benjamin. Benchmarks for Electronically Excited States with CASSCF Methods. J. Chem. Theory Comput., 2019, 15 (7), 4170–4179. DOI: 10.1021/acs.jctc.9b00325.
Berraud-Pache, Romain; Neese, Frank; Bistoni, Giovanni; Izsák, Róbert. Unveiling the Photophysical Properties of Boron-Dipyrromethene Dyes Using a New Accurate Excited State Coupled Cluster Method. J. Chem. Theory Comput., 2020, 16 (1), 564–575. DOI: 10.1021/acs.jctc.9b00559.
Sirohiwal, Abhishek; Berraud-Pache, Romain; Neese, Frank; Izsák, Róbert; Pantazis, Dimitrios A. Accurate Computation of the Absorption Spectrum of Chlorophyll a with Pair Natural Orbital Coupled Cluster Methods. J. Phys. Chem. B, 2020, 124 (40), 8761–8771. DOI: 10.1021/acs.jpcb.0c05761.
Dittmer, Anneke; Izsák, Róbert; Neese, Frank; Maganas, Dimitrios. Accurate Band Gap Predictions of Semiconductors in the Framework of the Similarity Transformed Equation of Motion Coupled Cluster Theory. Inorg. Chem., 2019, 58 (14), 9303–9315. DOI: 10.1021/acs.inorgchem.9b00994.
de Souza, Bernardo; Neese, Frank; Izsak, Robert. On the Theoretical Prediction of Fluorescence Rates from First Principles Using the Path Integral Approach. J. Chem. Phys., 2018, 148 (3), 034104. DOI: 10.1063/1.5010895.
de Souza, Bernardo; Farias, Giliandro; Neese, Frank; Izsak, Robert. Predicting Phosphorescence Rates of Light Organic Molecules Using Time-Dependent Density Functional Theory and the Path Integral Approach to Dynamics. J. Chem. Theory Comput., 2019, 15 (3), 1896–1904. DOI: 10.1021/acs.jctc.8b00841.
Santoro, Fabrizio; Improta, Roberto; Lami, Alessandro; Bloino, Julien; Barone, Vincenzo. Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution. J. Chem. Phys., 2007, 126 (8), 084509. DOI: 10.1063/1.2437197.
Duschisnky, F. Acta Physicochim. URSS, 1937, 7, 551.
Strickler, S. J.; Berg, Robert A. Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules. J. Chem. Phys., 1962, 37 (4), 814–822. DOI: 10.1063/1.1733166.
Serpa, Carlos; Arnaut, Luis G.; Formosinho, Sebastião J.; Naqvi, K. Razi. Calculation of Triplet–Triplet Energy Transfer Rates from Emission and Absorption Spectra. The Quenching of Hemicarcerated Triplet Biacetyl by Aromatic Hydrocarbons. Photochem. Photobiol. Sci., 2003, 2 (5), 616–623. DOI: 10.1039/B300049D.
Mori, K.; Goumans, T. P. M.; van Lenthe, E.; Wang, F. Predicting Phosphorescent Lifetimes and Zero-Field Splitting of Organometallic Complexes with Time-Dependent Density Functional Theory Including Spin–Orbit Coupling. Phys. Chem. Chem. Phys., 2014, 16 (28), 14523–14530. DOI: 10.1039/C3CP55438D.
Montalti, Marco; Credi, Alberto; Prodi, Luca; Gandolfi, M. Teresa. Handbook of Photochemistry, Third Edition. CRC Press, 3 edition edition, 02 2006. ISBN 978-0-8247-2377-4.
Hunter, T. F.; Wyatt, R. F. Intersystem Crossing in Anthracene. Chem. Phys. Lett., 1970, 6 (3), 221–224. DOI: 10.1016/0009-2614(70)80224-X.
de Souza, Bernardo; Farias, Giliandro; Neese, Frank; Izsak, Robert. Efficient Simulation of Overtones and Combination Bands in Resonant Raman Spectra. J. Chem. Phys., 2019, 150 (21), 044105. DOI: 10.1063/1.5099247.
Long, Derek A. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. Wiley, 1 edition edition, 11 2001. ISBN 978-0-471-49028-9.
Tripathi, G. N. R.; Schuler, Robert H. The Resonance Raman Spectrum of Phenoxyl Radical. J. Chem. Phys., 1984, 81 (1), 113–121. DOI: 10.1063/1.447373.
Shafei, Rami; Hamano, Ai; Gourlaouen, Christophe; Maganas, Dimitrios; Takano, Keiko; Daniel, Chantal; Neese, Frank. Theoretical spectroscopy for unraveling the intensity mechanism of the optical and photoluminescent spectra of chiral Re(I) transition metal complexes. J. Chem. Phys., 2023, 159 (8), 084102.
Hodecker, Manuel; Biczysko, Malgorzata; Dreuw, Andreas; Barone, Vincenzo. Simulation of Vacuum UV Absorption and Electronic Circular Dichroism Spectra of Methyl Oxirane: The Role of Vibrational Effects. J. Chem. Theory Comput., 2016, 12 (6), 2820–2833. DOI: 10.1021/acs.jctc.6b00121.
Crassous, Jeanne. Circularly Polarized Luminescence in Helicene and Helicenoid Derivatives, pages 53–97. Springer Singapore, Singapore, 2020. DOI: 10.1007/978-981-15-2309-0_4.
Nishimura, Hidetaka; Tanaka, Kazuo; Morisaki, Yasuhiro; Chujo, Yoshiki; Wakamiya, Atsushi; Murata, Yasujiro. Oxygen-Bridged Diphenylnaphthylamine as a Scaffold for Full-Color Circularly Polarized Luminescent Materials. J. Org. Chem., 2017, 82 (10), 5242–5249. DOI: 10.1021/acs.joc.7b00511.
Foglia, Nicolás; De Souza, Bernardo; Maganas, Dimitrios; Neese, Frank. Including vibrational effects in magnetic circular dichroism spectrum calculations in the framework of excited state dynamics. J. Chem. Phys., 2023, 158 (15), 154108. DOI: 10.1063/5.0144845.
Cerezo, Javier; Zuniga, José; Requena, Alberto; Avila Ferrer, Francisco J.; Santoro, Fabrizio. Harmonic Models in Cartesian and Internal Coordinates to Simulate the Absorption Spectra of Carotenoids at Finite Temperatures. J. Chem. Theory Comput., 2013, 9 (11), 4947–4958. DOI: 10.1021/ct4005849.
Jr, E. Bright Wilson; Decius, J. C.; Cross, Paul C. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra. Dover Publications, revised ed. edition edition, 03 1980. ISBN 978-0-486-63941-3.
Baker, Jon. Constrained Optimization in Delocalized Internal Coordinates. J. Comput. Chem., 1997, 18 (8), 1079–1095. DOI: 10.1002/(SICI)1096-987X(199706)18:8<1079::AID-JCC12>3.0.CO;2-8.
Reimers, Jeffrey R. A Practical Method for the Use of Curvilinear Coordinates in Calculations of Normal-Mode-Projected Displacements and Duschinsky Rotation Matrices for Large Molecules. J. Chem. Phys., 2001, 115 (20), 9103–9109. DOI: 10.1063/1.1412875.
Swart, Marcel; Matthias Bickelhaupt, F. Optimization of Strong and Weak Coordinates. Int. J. Quantum Chem., 2006, 106 (12), 2536–2544. DOI: 10.1002/qua.21049.
Lindh, Roland; Bernhardsson, Anders; Schütz, Martin. Force-Constant Weighted Redundant Coordinates in Molecular Geometry Optimizations. Chem. Phys. Lett., 1999, 303 (5), 567–575. DOI: 10.1016/S0009-2614(99)00247-X.
Sando, Gerald M.; Spears, Kenneth G. Ab Initio Computation of the Duschinsky Mixing of Vibrations and Nonlinear Effects. J. Phys. Chem. A, 2001, 105 (22), 5326–5333. DOI: 10.1021/jp004230b.
Dymarsky, Anatoly Y.; Kudin, Konstantin N. Computation of the Pseudorotation Matrix to Satisfy the Eckart Axis Conditions. J. Chem. Phys., 2005, 122 (12), 124103. DOI: 10.1063/1.1864872.
Petrenko, Taras; Kossmann, Simone; Neese, Frank. Efficient Time-Dependent Density Functional Theory Approximations for Hybrid Density Functionals: Analytical Gradients and Parallelization. J. Chem. Phys., 2011, 134 (5), 054116. DOI: 10.1063/1.3533441.
Neese, F. J. Biol. Inorg. Chem., 2006, 11, 702.
Neese, F. Coord. Chem. Rev., 2009, 253, 526.
Izsák, Róbert; Neese, Frank. An Overlap Fitted Chain of Spheres Exchange Method. J. Chem. Phys., 2011, 135, 144105. DOI: 10.1063/1.3644029.
Petrenko, T.; Kossmann, S.; Neese, F. J. Chem. Phys., 2011, 134, 054116.
Casanova, David; Krylov, Anna I. Spin-Flip Methods in Quantum Chemistry. Phys. Chem. Chem. Phys., 2020, 22 (8), 4326–4342. DOI: 10.1039/C9CP06507E.
Clark, Aurora E.; Davidson, Ernest R. P-Benzyne Derivatives That Have Exceptionally Small Singlet-Triplet Gaps and Even a Triplet Ground State. J. Org. Chem., 2003, 68 (9), 3387–3396. DOI: 10.1021/jo026824b.
Cammi, Roberto; Mennucci, Benedetta; Tomasi, Jacopo. Fast Evaluation of Geometries and Properties of Excited Molecules in Solution: A Tamm-Dancoff Model with Application to 4-Dimethylaminobenzonitrile. J. of Phys. Chem. A, 2000, 104 (23), 5631–5637. DOI: 10.1021/jp000156l.
Grimme, S. A simplified Tamm–Dancoff density functional approach for the electronic excitation spectra of very large molecules. J. Chem. Phys., 2013, 138, 244104. DOI: 10.1063/1.4811330.
Bannwarth, C.; Grimme, S. A simplified time-dependent density functional theory approach for electronic ultraviolet and circular dichroism spectra of very large molecules. Comp. Theor. Chem., 2014, 1040 –1041, 45–53. DOI: 10.1016/j.comptc.2014.02.023.
Risthaus, T.; Hansen, A.; Grimme, S. Phys. Chem. Chem. Phys., 2014, 16, 14408–14419.
Head-Gordon, M.; Rico, R. A.; Oumi, M.; Lee, T. J. Chem. Phys. Lett., 1994, 219, 21–29.
Rhee, Young Min; Head-Gordon, Martin. J. Phys. Chem. A, 2007, 111, 5314–5326.
Goerigk, Lars; Grimme, Stefan. J. Chem. Phys., 2010, 132, 184103.
Casanova-Páez, M.; Goerigk, L. Assessing the Tamm–Dancoff approximation, singlet–singlet, and singlet–triplet excitations with the latest long-range corrected double-hybrid density functionals. J. Chem. Phys., 2020, 153, 064106.
Schwabe, T.; Goerigk, L. J. Chem. Theory Comput., 2017, 13, 4307.
Grimme, S.; Neese, F. J. Phys. Chem., 2007, 127, 154116.
Goerigk, L. Moellmann; Grimme, S. Phys. Chem. Chem. Phys., 2009, 11, 4611.
Di Meo, Florent; Trouillas, Pascal; Adamo, Carlo; Sancho-García, Juan C. Application of Recent Double-Hybrid Density Functionals to Low-Lying Singlet-Singlet Excitation Energies of Large Organic Compounds. J. Chem. Phys., 2013, 139, 164104. DOI: 10.1063/1.4825359.
Hernández-Martínez, Laura; Brémond, Eric; Pérez-Jiménez, Angel J.; San-Fabián, Emilio; Adamo, Carlo; Sancho-García, Juan C. Nonempirical (double-hybrid) density functionals applied to atomic excitation energies: A systematic basis set investigation. Int. J. Quantum Chem., 2020, 120, e26193. DOI: 10.1002/qua.26193.
DeBeer-George, S.; Petrenko, T.; Neese, F. J. Phys. Chem. A, 2008, 112, 12936.
Sørensen, Lasse Kragh; Guo, Meiyuan; Lindh, Roland; Lundberg, Marcus. Applications to metal K pre-edges of transition metal dimers illustrate the approximate origin independence for the intensities in the length representation. Mol. Phys., 2017, 115 (1-2), 174–189. DOI: 10.1080/00268976.2016.1225993.
Bernadotte, Stephan; Atkins, Andrew J.; Jacob, Christoph R. Origin-Independent Calculation of Quadrupole Intensities in X-ray Spectroscopy. J. Chem. Phys., 2012, 137, 204106. DOI: 10.1063/1.4766359.
Holmgaard List, N. Saue, T.; Norman, P. Rotationally averaged linear absorption spectra beyond the electric-dipole approximation. Mol. Phys., 2017, 115 (1-2), 63–74. DOI: 10.1080/00268976.2016.1187773.
List, N. H.; Melin, T. R. L.; van Horn, M.; Saue, T. Beyond the electric-dipole approximation in simulations of x-ray absorption spectroscopy: Lessons from relativistic theory. J. Chem. Phys., 2020, 152 (18), 184110. DOI: 10.1063/5.0003103.
Ray, K.; DeBeer-George, S.; Solomon, E. I.; Wieghardt, K.; Neese, F. Chem. Eur. J., 2007, 13, 2783.
Steinmetzer, Johannes; Kupfer, Stephan; Gräfe, Stefanie. pysisyphus: Exploring potential energy surfaces in ground and excited states. Int. J. Quantum Chem., 2021, 121 (3), e26390. DOI: 10.1002/qua.26390.
Campetella, Marco; Sanz García, Juan. Following the evolution of excited states along photochemical reaction pathways. J. Comput. Chem., 2020, 41 (12), 1156–1164. DOI: 10.1002/jcc.26162.
Send, Robert; Furche, Filipp. First-Order Nonadiabatic Couplings from Time-Dependent Hybrid Density Functional Response Theory: Consistent Formalism, Implementation, and Performance. J. Chem. Phys., 2010, 132 (4), 044107. DOI: 10.1063/1.3292571.
Fatehi, Shervin; Alguire, Ethan; Shao, Yihan; Subotnik, Joseph E. Analytic Derivative Couplings between Configuration-Interaction-Singles States with Built-in Electron-Translation Factors for Translational Invariance. J. Chem. Phys., 2011, 135 (23), 234105. DOI: 10.1063/1.3665031.
Li, Zhendong; Liu, Wenjian. First-Order Nonadiabatic Coupling Matrix Elements between Excited States: A Lagrangian Formulation at the CIS, RPA, TD-HF, and TD-DFT Levels. J. Chem. Phys., 2014, 141 (1), 014110. DOI: 10.1063/1.4885817.
Neese, F.; Solomon, E. I. Inorg. Chem., 1998, 37, 6568–6582.
Maganas, D.; DeBeer, S.; Neese, F. Pair Natural Orbital Restricted Open-Shell Configuration Interaction (PNO-ROCIS) Approach for Calculating x-Ray Absorption Spectra of Large Chemical Systems. J. Phys. Chem. A, 2018, 122 (5), 1215–1227. DOI: 10.1021/acs.jpca.7b10880.
Plasser, F.; Wormit, M.; Dreuw, A. J. Chem. Phys., 2014, 141, 024106.
Helmich-Paris, Benjamin. Simulating X-ray absorption spectra with complete active space self-consistent field linear response methods. Int. J. Quantum Chem., 2021, 121 (3), e26559. DOI: 10.1002/qua.26559.
Olsen, Jeppe; Jensen, Hans Jørgen Aa.; Jørgensen, Poul. Solution of the large matrix equations which occur in response theory. J. Comput. Phys., 1988, 74 (2), 265 – 282. DOI: 10.1016/0021-9991(88)90081-2.
Chaban, G.; Schmidt, M. W.; Gordon, M. S. Approximate second order method for orbital optimization of SCF and MCSCF wavefunctions. Theor. Chem. Acc., 1997, 97, 88–95. DOI: 10.1007/s002140050241.
Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert. Speeding up Equation of Motion Coupled Cluster Theory with the Chain of Spheres Approximation. J. Chem. Phys., 2016, 144 (3), 034102.
Nooijen, Marcel; Bartlett, Rodney J. A new method for excited states: Similarity transformed equation-of-motion coupled-cluster theory. J. Chem. Phys., 1997, 106 (15), 6441–6448. DOI: 10.1063/1.474000.
Huntington, L .M. J.; Krupička, M.; Neese, F.; Izsák, R. Similarity transformed equation of motion coupled-cluster theory based on an unrestricted Hartree-Fock reference for applications to high-spin open-shell systems. J. Chem. Phys., 2017, 147, 174104.
Casanova-Páez, M.; Neese, F. Assessment of the similarity-transformed equation of motion (STEOM) for open-shell organic and transition metal molecules. J. Chem. Phys., 2024, 161, 1444120–XXXX. DOI: 10.1063/5.0234225.
Dutta, Achintya Kumar; Nooijen, Marcel; Neese, Frank; Izsák, Róbert. Towards a Pair Natural Orbital Coupled Cluster Method for Excited States. J. Chem. Phys., 2017, 146 (3), 034102. DOI: 10.1063/1.4974488.
Ghosh, Soumen; Dutta, Achintya Kumar; de Souza, Bernardo; Berraud-Pache, Romain; Izsák, Róbert. A New Density for Transition Properties within the Similarity Transformed Equation of Motion Approach. Mol. Phys., 2020, 118 (19-20), e1818858. DOI: 10.1080/00268976.2020.1818858.
Dutta, Achintya Kumar; Neese, Frank; Izsák, Róbert. Towards a Pair Natural Orbital Coupled Cluster Method for Excited States. J. Chem. Phys., 2016, 145 (3), 034102.
Ghosh, Soumen; Dutta, Achintya Kumar; de Souza, Bernardo; Berraud-Pache, Romain; Róbert Izsák. A New Density for Transition Properties within the Similarity Transformed Equation of Motion Approach. Mol. Phys., 2020, 0 (0), e1818858. DOI: 10.1080/00268976.2020.1818858.
DeBeer-George, S.; Petrenko, T.; Neese, F. Inorg. Chim. Acta, 2008, 361, 965.
Casanova-Páez, M.; Neese, F. Core-Excited States for Open-Shell Systems in Similarity-Transformed Equation-of-Motion Theory. J. Chem. Theory Comput., 2025, 21 (3), 1306–1321. DOI: 10.1021/acs.jctc.4c01181.
Petrenko, Taras; Neese, Frank. Analysis and prediction of absorption band shapes, fluorescence band shapes, resonance Raman intensities, and excitation profiles using the time-dependent theory of electronic spectroscopy. J. Chem. Phys., 2007, 127 (16), 164319. DOI: 10.1063/1.2770706.
Barone, Vincenzo; Biczysko, Malgorzata; Bloino, Julien. Fully Anharmonic IR and Raman Spectra of Medium-Size Molecular Systems: Accuracy and Interpretation. Phys. Chem. Chem. Phys., 2014, 16 (5), 1759–1787. DOI: 10.1039/C3CP53413H.
Yagi, Kiyoshi; Hirao, Kimihiko; Taketsugu, Tetsuya; Schmidt, Michael W.; Gordon, Mark S. \emph Ab initio Vibrational State Calculations with a Quartic Force Field: Applications to H2CO, C2H4, CH3OH, CH3CCH, and C6H6. J. Chem. Phys., 2004, 121 (3), 1383–1389. DOI: 10.1063/1.1764501.
Barnes, Loïc; Schindler, Baptiste; Compagnon, Isabelle; Allouche, Abdul-Rahman. Fast and Accurate Hybrid QM//MM Approach for Computing Anharmonic Corrections to Vibrational Frequencies. J. Mol. Model., 2016, 22 (11), 285. DOI: 10.1007/s00894-016-3135-5.
Kesharwani, Manoj K.; Brauer, Brina; Martin, Jan M. L. Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can Anharmonic Force Fields Be Avoided? J. Phys. Chem. A, 2015, 119 (9), 1701–1714. DOI: 10.1021/jp508422u.
Bec, Krzysztof B.; Huck, Christian W. Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments. Front. Chem., 2019, 7, 48. DOI: 10.3389/fchem.2019.00048.
Reiter, Kevin; Kühn, Michael; Weigend, Florian. Vibrational circular dichroism spectra for large molecules and molecules with heavy elements. J. Chem. Phys., 2017, 146 (5), 054102. DOI: 10.1063/1.4974897.
Neugebauer, J.; Reiher, M.; Kind, C.; Hess, B. A. J. Comput. Chem., 2002, 23, 895–910.
Petrenko, Taras; Sturhahn, Wolfgang; Neese, Frank. Hyperfine Interact., 2007, 175, 165.
Petrenko, Taras; DeBeer-George, Serena; Aliaga-Alcalde, Núria; Bill, Eckhard; Mienert, Bernd; Xiao, Yuming; Guo, YiSong; Sturhahn, Wolfgang; Cramer, Stephen P.; Wieghardt, Karl; Neese, Frank. Characterization of a Genuine Iron(V)-Nitrido Species by Nuclear Resonant Vibrational Spectroscopy Coupled to Density Functional Calculations. J. Am. Chem. Soc., 2007, 129, 11053–11060.
McLean, A. D.; Yoshimine, M. Theory of Molecular Polarizabilities. J. Chem. Phys., 1967, 47 (6), 1927–1935. arXiv:https://pubs.aip.org/aip/jcp/article-pdf/47/6/1927/18852261/1927\_1\_online.pdf, DOI: 10.1063/1.1712220.
Elking, Dennis M.; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G. A finite field method for calculating molecular polarizability tensors for arbitrary multipole rank. J. Comput. Chem., 2011, 32 (15), 3283–3295. DOI: 10.1002/jcc.21914.
Chen, Houxian; Liu, Menglin; Yan, Tianying. Molecular multipoles and (hyper)polarizabilities from the Buckingham expansion: revisited. Commun. Theor. Phys., 2020, 72 (7), 075503. DOI: 10.1088/1572-9494/ab8a0d.
London, F. Théorie quantique des courants interatomiques dans les combinaisons aromatiques. Phys. Radium, 1937, 8 (10), 397–409. DOI: 10.1051/jphysrad:01937008010039700.
Ditchfield, R. J. Chem. Phys., 1972, 56, 5688.
Helgaker, T.; Jaszuński, M.; Ruud, K. Chem. Rev., 1999, 99, 293.
Gauss, J. Molecular Properties. In Grotendorst, J., editor, Modern Methods and Algorithms of Quantum Chemistry, volume 3, 541–592. John von Neumann Institute for Computing, NIC Series, 2000.
Mason, J. Convention for the Reporting of Nuclear Magnetic Shielding (or Shifts) Tensors Suggested by Participants in the NATO ARW on NMR Shielding Constants at the University of Maryland, College Park, July 1992. Solid State Nucl. Magn. Res., 1993, 2, 285–288. DOI: 10.1016/0926-2040(93)90046-3.
Auer, A. A.; Gauss, J., Stanton J. F. Quantitative prediction of gas-phase ¹³C nuclear magnetic shielding constants. J. Chem. Phys., 2003, 118, 10407. DOI: 10.1063/1.1574314.
Flaig, D.; Maurer, M.; Hanni, M.; Braunger, K.; Kick, L.; Thubauville, M.; Ochsenfeld, C. J. Chem. Theory Comput., 2014, 10, 572.
Stoychev, Georgi L; Auer, Alexander A; Izsák, Róbert; Neese, Frank. Self-Consistent Field Calculation of Nuclear Magnetic Resonance Chemical Shielding Constants Using Gauge-Including Atomic Orbitals and Approximate Two-Electron Integrals. J. Chem. Theory Comput., 2018, 14 (2), 619–637. DOI: 10.1021/acs.jctc.7b01006.
Maximoff, Sergey N.; Scuseria, Gustavo E. Nuclear Magnetic Resonance Shielding Tensors Calculated with Kinetic Energy Density-Dependent Exchange-Correlation Functionals. Chem. Phys. Lett., 2004, 390 (4-6), 408–412. DOI: 10.1016/j.cplett.2004.04.049.
Schattenberg, Caspar Jonas; Kaupp, Martin. Effect of the Current Dependence of Tau-Dependent Exchange-Correlation Functionals on Nuclear Shielding Calculations. J. Chem. Theory Comput., 2021, 17 (3), 1469–1479. DOI: 10.1021/acs.jctc.0c01223.
Dobson, John F. Alternative Expressions for the Fermi Hole Curvature. J. Chem. Phys., 1993, 98 (11), 8870–8872. DOI: 10.1063/1.464444.
Bates, Jefferson E.; Furche, Filipp. Harnessing the Meta-Generalized Gradient Approximation for Time-Dependent Density Functional Theory. J. Chem. Phys., 2012, 137 (16), 164105. arXiv:23126693, DOI: 10.1063/1.4759080.
Reimann, Sarah; Ekström, Ulf; Stopkowicz, Stella; Teale, Andrew M; Borgoo, Alex; Helgaker, Trygve. The Importance of Current Contributions to Shielding Constants in Density-Functional Theory. Phys. Chem. Chem. Phys., 2015, 17 (28), 18834–18842. arXiv:26123927, DOI: 10.1039/C5CP02682B.
Van den Heuvel, Willem; Soncini, Alessandro. NMR Chemical Shift as Analytical Derivative of the Helmholtz Free Energy. J. Chem. Phys., 2013, 138, 054113. DOI: doi:10.1063/1.4789398.
Soncini, Alessandro; Van den Heuvel, Willem. Communication: Paramagnetic NMR Chemical Shift in a Spin State Subject to Zero-Field Splitting. J. Chem. Phys., 2013, 138, 021103. DOI: doi:10.1063/1.4775809.
Pell, Andrew J.; Pintacuda, Guido; Grey, Clare P. Paramagnetic NMR in Solution and the Solid State. Prog. Nucl. Magn. Reson. Spectrosc., 2019, 111, 1–271. DOI: 10.1016/j.pnmrs.2018.05.001.
Gauss, Jürgen; Ruud, Kenneth; Helgaker, Trygve. Perturbation‐dependent atomic orbitals for the calculation of spin‐rotation constants and rotational g tensors. J. Chem. Phys., 1996, 105 (7), 2804–2812. DOI: 10.1063/1.472143.
Lang, Lucas; Ravera, Enrico; Parigi, Giacomo; Luchinat, Claudio; Neese, Frank. Solution of a Puzzle: High-Level Quantum-Chemical Treatment of Pseudocontact Chemical Shifts Confirms Classic Semiempirical Theory. J. Phys. Chem. Lett., 2020, 11 (20), 8735–8744.
Saitow, Masaaki; Neese, Frank. Accurate Spin-Densities Based on the Domain-Based Local Pair-Natural Orbital Coupled-Cluster Theory. J. Chem. Phys., 2018, 149, 034104. DOI: 10.1063/1.5027114.
Pantazis, D. A.; Orio, M.; Petrenko, T.; Zein, S.; Bill, E.; Lubitz, W.; Messinger, J.; Neese, F. Chem. Eur. J., 2009, 15, 5108.
Harriman, John E. Theoretical Foundations of Electron Spin Resonance: Physical Chemistry: A Series of Monographs. Academic Press, 1978. ISBN 978-1483175855.
Pederson, M. R.; Khanna, S. N. Phys. Rev. B, 1999, 60, 9566.
Neese, F. J. Chem. Phys., 2007, 127, 164112.
Sinnecker, S.; Neese, F. Spin-Spin Contributions to the Zero-Field Splitting Tensor in Organic Triplets, Carbenes and Biradicals – A Density Functional and \it ab initio Study. J. Phys. Chem. A, 2006, 110, 12267.
Riplinger, Christoph; Kao, Joseph P. Y.; Rosen, Gerald M.; Kathirvelu, Velavan; Eaton, Gareth R.; Eaton, Sandra S.; Kutateladze, Andrei; Neese, Frank. J. Am. Chem. Soc., 2009, 131, 10092.
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. A, 1992, 46, 6671.
Helgaker, Trygve U.; Almlöf, Jan; Jensen, Hans Jørgen Aa.; Jørgensen, Poul. Molecular Hessians for large-scale MCSCF wave functions. J. Chem. Phys., 1986, 84 (11), 6266–6279. DOI: 10.1063/1.450771.
Vahtras, O.; Minaev, B.; Ågren, H. Ab initio calculations of electronic g-factors by means of multiconfiguration response theory. Chem. Phys. Lett., 1997, 281 (1), 186–192. DOI: 10.1016/S0009-2614(97)01169-X.
Neese, F. Inorg. Chim. Acta, 2002, 337C, 181–192.
Römelt, M.; Ye, S.; Neese, F. Inorg. Chem., 2009, 48, 784.
Neese, F. Efficient and Accurate Approximations to the Molecular Spin-Orbit Coupling Operator and their use in Molecular g-Tensor Calculations. J. Chem. Phys., 2005, 122, 034107.
Ganyushin, D.; Neese, F. J. Chem. Phys., 2013, 138, 104113.
Hess, Bernd A.; Marian, Christel M.; Wahlgren, Ulf; Gropen, Odd. Chem. Phys. Lett., 1996, 251, 365–371.
Schimmelpfennig, B. AMFI - an Atomic Mean-Field Spin-Orbit Integral Program. 1996.
Berning, A.; Schweizer, M.; Werner, H.J.; Knowles, P. J.; Palmieri, P. Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions. Mol. Phys., 2000, 98, 1823–1833. DOI: 10.1080/00268970009483386.
Koseki, S.; Schmidt, M. W.; Gordon, M. S. J. Phys. Chem., 1992, 96, 10768–10772.
Koseki, S.; Gordon, M. S.; Schmidt, M. W.; Matsunaga, N. Main-group effective nuclear charges for spin-orbit calculations. J. Phys. Chem., 1995, 99 (31), 12764–12772. DOI: 10.1021/j100034a013.
Koseki, S.; Schmidt, M. W.; Gordon, M. S. Reappraisal of the spin-forbidden unimolecular decay of the methoxy radical. J. Phys. Chem. A, 1998, 102 (50), 10430–10435. DOI: 10.1021/jp982609q.
Suturina, E. A.; Maganas, D.; Bill, E.; Atanasov, M.; Neese, F. Inorg. Chem., 2015, 54, 9948–9961.
Ginsberg, A. P. J. Am. Chem. Soc., 1980, 102, 111.
Noodleman, L. J. Chem. Phys., 1981, 74, 5737.
Noodleman, L.; Davidson, E. R. Chem. Phys., 1986, 109, 131.
Bencini, A.; Gatteschi, D. X.alpha.-SW calculations of the electronic structure and magnetic properties of weakly coupled transition-metal clusters. The [Cu2Cl6]2- dimers. J. Am. Chem. Soc., 1980, 108, 5763. DOI: 10.1021/ja00279a017.
Yamaguchi, K.; Takahara, Y.; Fueno, T. In Smith, V. H., editor, Applied Quantum Chemistry, pages 155. Wiley, 1986.
Soda, T.; Kitagawa, Y.; Onishi, T.; Takano, Y.; Shigeta, Y.; Nagao, H.; Yoshioka, Y.; Yamaguchi, K. Chem. Phys. Lett., 2000, 319, 223.
Yamaguchi, K.; Jensen, F.; Dorigo, A.; Houk, K. N. Chem. Phys. Lett., 1988, 149, 537.
Saito, T.; Nishihara, S.; Kataoka, Y.; Nakanishi, Y.; Kitagawa, Y.; Kawakami, T.; Yamanaka, S.; Okumura, M.; Yamaguchi, K. J. Phys. Chem. A, 2010, 114, 7967.
Ruiz, E.; Cano, J.; Alvarez, S.; Alemany, P. J. Comput. Chem., 1999, 20, 1391.
Saito, T.; Thiel, W. J. Phys. Chem. A, 2012, 116, 10864.
Coulaud, E.; Malrieu, J.-P.; Guihéry, N.; Ferré, N. Additive Decomposition of the Physical Components of the Magnetic Coupling from Broken Symmetry Density Functional Theory Calculations. J. Chem. Theory Comput., 2013, 9 (8), 3429–3436. DOI: 10.1021/ct400305h.
Ferre, N.; Guihery, N.; Malrieu, J.-P. Spin Decontamination of Broken-Symmetry Density Functional Theory Calculations: Deeper Insight and New Formulations. Phys. Chem. Chem. Phys., 2015, 17 (22), 14375–14382. DOI: 10.1039/C4CP05531D.
David, Grégoire; Trinquier, Georges; Malrieu, Jean-Paul. Consistent spin decontamination of broken-symmetry calculations of diradicals. J. Chem. Phys., 2020, 153 (19), 194107. DOI: 10.1063/5.0029201.
Duplaix-Rata, Gwenhaël; Le Guennic, Boris; David, Grégoire. Revisiting magnetic exchange couplings in heterodinuclear complexes through the decomposition method in KS-DFT. Phys. Chem. Chem. Phys., 2023, 25 (20), 14170–14178. DOI: 10.1039/d3cp00697b.
David, Grégoire; Ferré, Nicolas; Le Guennic, Boris. Consistent Evaluation of Magnetic Exchange Couplings in Multicenter Compounds in KS-DFT: The Recomposition Method. J. Chem. Theory Comput., 2022, 19 (1), 157–173. DOI: 10.1021/acs.jctc.2c01022.
David, Grégoire; Duplaix-Rata, Gwenhaël; Le Guennic, Boris. What governs magnetic exchange couplings in radical-bridged dinuclear complexes? Phys. Chem. Chem. Phys., 2024, 26 (11), 8952–8964. DOI: 10.1039/d3cp06243k.
Foglia, Nicolás O.; Maganas, Dimitrios; Neese, Frank. Going beyond the electric-dipole approximation in the calculation of absorption and (magnetic) circular dichroism spectra including scalar relativistic and spin–orbit coupling effects. J. Chem. Phys., 2022, 157 (8), 084120. arXiv:10.1063/5.0094709, DOI: 10.1063/5.0094709.
Chibotaru, L. F.; Ungur, L. Ab Initio Calculation of Anisotropic Magnetic Properties of Complexes. I. Unique Definition of Pseudospin Hamiltonians and Their Derivation. J. Chem. Phys., 2012, 137 (6), 064112. DOI: 10.1063/1.4739763.
Ungur, Liviu; Chibotaru, Liviu F. Ab Initio Crystal Field for Lanthanides. Chem. Eur. J., 2017, 23 (15), 3708–3718. DOI: 10.1002/chem.201605102.
Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F. J-Pseudospin States and the Crystal Field of Cubic Systems. Phys. Rev. B, 2018, 98 (5), 054436. DOI: 10.1103/PhysRevB.98.054436.
Ungur, Liviu. Ab Initio Methodology for the Investigation of Magnetism in Strongly Anisotropic Complexes. PhD thesis, KU Leuven, 10 2010.
Ungur, Liviu. Introduction to the Electronic Structure, Luminescence, and Magnetism of Lanthanides. In Martín-Ramos, Pablo; Manuela Ramos Silva, editors, Lanthanide-Based Multifunctional Materials, Advanced Nanomaterials, pages 1–58. Elsevier, 2018. DOI: 10.1016/B978-0-12-813840-3.00001-6.
Vieru, Veacheslav; Iwahara, Naoya; Ungur, Liviu; Chibotaru, Liviu F. Giant exchange interaction in mixed lanthanides. Scientific reports, 2016, 6, 24046.
Iwahara, Naoya; Chibotaru, Liviu F. Exchange interaction between J multiplets. Physical Review B, 2015, 91, 174438. DOI: 10.1103/PhysRevB.91.174438.
Lines, M. E. Orbital Angular Momentum in the Theory of Paramagnetic Clusters. J. Chem. Phys., 1971, 55 (6), 2977–2984. DOI: 10.1063/1.1676524.
Schmerwitz, Yorick Leonard Adrian; Ivanov, Aleksei V.; Jónsson, Elvar Ö.; Jónsson, Hannes; Levi, Gianluca. Variational Density Functional Calculations of Excited States: Conical Intersection and Avoided Crossing in Ethylene Bond Twisting. J. Phys. Chem. Lett., 2022, 13, 3990–3999. DOI: 10.1021/acs.jpclett.2c00741.
Selenius, Elli; Sigurdarson, Alec Elías; Schmerwitz, Yorick Leonard Adrian; Levi, Gianluca. Orbital-Optimized Versus Time-Dependent Density Functional Calculations of Intramolecular Charge Transfer Excited States. J. Chem. Theory Comput., 2024, 20, 3809–3822. DOI: 10.1021/acs.jctc.3c01319.
Gilbert, Andrew T. B.; Besley, Nicholas A.; Gill, Peter M. W. Self-Consistent Field Calculations of Excited States Using the Maximum Overlap Method (MOM). J. Phys. Chem. A, 2008, 112 (50), 13164–13171. Publisher: American Chemical Society. DOI: 10.1021/jp801738f.
Corzo, Hector H.; Abou Taka, Ali; Pribram-Jones, Aurora; Hratchian, Hrant P. Using projection operators with maximum overlap methods to simplify challenging self-consistent field optimization. J. Comput. Chem., 2022, 43 (6), 382–390. DOI: 10.1002/jcc.26797.
Hait, Diptarka; Head-Gordon, Martin. Orbital Optimized Density Functional Theory for Electronic Excited States. J. Phys. Chem. Lett., 2021, 12, 4517–4529. DOI: 10.1021/acs.jpclett.1c00744.
Hardikar, Tarini S.; Neuscamman, Eric. A self-consistent field formulation of excited state mean field theory. J. Chem. Phys., 2020, 153, 164108. DOI: 10.1063/5.0019557.
Ziegler, Tom; Rank, Arvi; Baerends, Evert J. On the Calculation of Multiplet Energies by the Hartree-Fock-Slater Method. Theoret. Chim Acta (Berl.), 1977, 43, 261–271. DOI: 10.1007/BF00551551.
Schmerwitz, Yorick Leonard Adrian; Levi, Gianluca; Jónsson, Hannes. Calculations of Excited Electronic States by Converging on Saddle Points Using Generalized Mode Following. J. Chem. Theory Comput., 2023, 19, 3634–3651. DOI: 10.1021/acs.jctc.3c00178.
Schmerwitz, Yorick Leonard Adrian; Ollé, Núria Urgell; Levi, Gianluca; Jónsson, Hannes. Saddle Point Search Algorithms for Variational Density Functional Calculations of Excited Electronic States with Self-Interaction Correction. In Proceedings of the Platform for Advanced Scientific Computing Conference, 1–11. Association for Computing Machinery, 6 2024. DOI: 10.1145/3659914.3659933.
Schmerwitz, Yorick Leonard Adrian; Selenius, Elli; Levi, Gianluca. Freeze-and-release direct optimization method for variational calculations of excited electronic states. arXiv:2501.18568, 2025. DOI: 10.48550/arXiv.2501.18568.
Levi, Gianluca; Ivanov, Aleksei V; Jónsson, Hannes. Variational density functional calculations of excited states via direct optimization. J. Chem. Theory Comput., 2020, 16 (11), 6968–6982. DOI: 10.1021/acs.jctc.0c00597.
Barca, Giuseppe M. J.; Gilbert, Andrew T. B.; Gill, Peter M. W. Simple Models for Difficult Electronic Excitations. J. Chem. Theory Comput., 2018, 14 (3), 1501–1509. Publisher: American Chemical Society. DOI: 10.1021/acs.jctc.7b00994.
Carter-Fenk, Kevin; Herbert, John M. State-Targeted Energy Projection: A Simple and Robust Approach to Orbital Relaxation of Non-Aufbau Self-Consistent Field Solutions. J. Chem. Theory Comput., 2020, 16 (8), 5067–5082. Publisher: American Chemical Society. DOI: 10.1021/acs.jctc.0c00502.
Kubas, Adam; Hoffmann, Felix; Heck, Alexander; Oberhofer, Harald; Elstner, Marcus; Blumberger, Jochen. Electronic couplings for molecular charge transfer: Benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations. J. Chem. Phys., 2014, 140 (10), 104105. DOI: 10.1063/1.4867077.
Mitoraj, Mariusz P.; Michalak, Artur; Ziegler, Tom. A Combined Charge and Energy Decomposition Scheme for Bond Analysis. J. Chem. Theory Comput., 2009, 5 (4), 962–975.
Schneider, W.; Bistoni, G.; Sparta., M.; Riplinger, C.; Saitow, M.; Auer, A.; Neese, F. Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework. J. Chem. Theory Comput., 2016, 12 (10), 4778–4792. DOI: 10.1021/acs.jctc.6b00523.
Altun, Ahmet; Saitow, Masaaki; Neese, Frank; Bistoni, Giovanni. Local Energy Decomposition of Open-Shell Molecular Systems in the Domain-Based Local Pair Natural Orbital Coupled Cluster Framework. J. Chem. Theory Comput., 2019, 15 (3), 1616–1632. DOI: 10.1021/acs.jctc.8b01145.
Bistoni, Giovanni. Finding Chemical Concepts in the Hilbert Space: Coupled Cluster Analyses of Noncovalent Interactions. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2020, 10 (3), e1442. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.1442, DOI: 10.1002/wcms.1442.
Bistoni, Giovanni; Auer, Alexander A.; Neese, Frank. Understanding the Role of Dispersion in Frustrated Lewis Pairs and Classical Lewis Adducts: A Domain-Based Local Pair Natural Orbital Coupled Cluster Study. Chem. Eur. J., 2017, 23 (4), 865–873.
Lu, Qing; Neese, Frank; Bistoni, Giovanni. Formation of Agostic Structures Driven by London Dispersion. Angew. Chem. Int. Ed., 2018, 57 (17), 4760–4764.
Lu, Qing; Neese, Frank; Bistoni, Giovanni. London Dispersion Effects in the Coordination and Activation of Alkanes in σ-Complexes: A Local Energy Decomposition Study. Phys. Chem. Chem. Phys., 2019, 21 (22), 11569–11577. DOI: 10.1039/C9CP01309A.
Ghafarian Shirazi, Reza; Neese, Frank; Pantazis, Dimitrios A; Bistoni, Giovanni. Physical Nature of Differential Spin-State Stabilization of Carbenes by Hydrogen and Halogen Bonding: A Domain-Based Pair Natural Orbital Coupled Cluster Study. J. Phys. Chem. A, 2019, 123 (24), 5081–5090.
Yepes, Diana; Neese, Frank; List, Benjamin; Bistoni, Giovanni. Unveiling the Delicate Balance of Steric and Dispersion Interactions in Organocatalysis Using High-Level Computational Methods. J. Am. Chem. Soc., 2020, 142 (7), 3613–3625. arXiv:10.1021/jacs.9b13725, DOI: 10.1021/jacs.9b13725.
Beck, M. E.; Riplinger, C.; Neese, F.; Bistoni, G. Unraveling Individual Host-Guest Interactions in Molecular Recognition from First Principles Quantum Mechanics: Insights into the Nature of Nicotinic Acetylcholine Receptor Agonist Binding. J. Comput. Chem., 2021, 42 (5), 293–302. DOI: 10.1002/jcc.26454.
Altun, Ahmet; Izsák, Róbert; Bistoni, Giovanni. Local Energy Decomposition of Coupled-Cluster Interaction Energies: Interpretation, Benchmarks, and Comparison with Symmetry-Adapted Perturbation Theory. Int. J. Quantum Chem., 2021, 121 (3), e26339. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.26339, DOI: 10.1002/qua.26339.
Altun, Ahmet; Neese, Frank; Bistoni, Giovanni. Local Energy Decomposition Analysis of Hydrogen-Bonded Dimers within a Domain-Based Pair Natural Orbital Coupled Cluster Study. Beilstein J. Org. Chem., 2018, 14, 919. DOI: 10.1021/acs.jctc.8b01145.
Altun, Ahmet; Neese, Frank; Bistoni, Giovanni. Effect of Electron Correlation on Intermolecular Interactions: A Pair Natural Orbitals Coupled Cluster Based Local Energy Decomposition Study. J. Chem. Theory Comput., 2019, 15 (1), 215–228. DOI: 10.1021/acs.jctc.8b00915.
Wuttke, Axel; Mata, Ricardo A. Visualizing Dispersion Interactions through the Use of Local Orbital Spaces. J. Comput. Chem., 2017, 38 (1), 15–23.
Regni, Gianluca; Baldinelli, Lorenzo; Bistoni, Giovanni. A Quantum Chemical Method for Dissecting London Dispersion Energy into Atomic Building Blocks (In press). 2025. DOI: 10.1021/acscentsci.5c00356.
Altun, Ahmet; Neese, Frank; Bistoni, Giovanni. HFLD: A Nonempirical London Dispersion-Corrected Hartree–Fock Method for the Quantification and Analysis of Noncovalent Interaction Energies of Large Molecular Systems. J. Chem. Theory Comput., 2019, 15 (11), 5894–5907. DOI: 10.1021/acs.jctc.9b00425.
Baldinelli, Lorenzo; De Angelis, Filippo; Bistoni, Giovanni. Unraveling Atomic Contributions to the London Dispersion Energy: Insights into Molecular Recognition and Reactivity. J. Chem. Theory Comput., 2024, 20 (5), 1923–1931. DOI: 10.1021/acs.jctc.3c00977.
Ghosh, Soumen; Neese, Frank; Izsák, Róbert; Bistoni, Giovanni. Fragment-Based Local Coupled Cluster Embedding Approach for the Quantification and Analysis of Noncovalent Interactions: Exploring the Many-Body Expansion of the Local Coupled Cluster Energy. J. Chem. Theory Comput., 2021, 17 (6), 3348–3359. DOI: 10.1021/acs.jctc.1c00005.
Altun, Ahmet; Garcia-Ratés, Miquel; Neese, Frank; Bistoni, Giovanni. Unveiling the complex pattern of intermolecular interactions responsible for the stability of the DNA duplex. Chem. Sci., 2021, 12 (38), 12785–12793. DOI: 10.1039/D1SC03868K.
Schümann, Jan M.; Ochmann, Lukas; Becker, Jonathan; Altun, Ahmet; Harden, Ingolf; Bistoni, Giovanni; Schreiner, Peter R. Exploring the Limits of Intramolecular London Dispersion Stabilization with Bulky Dispersion Energy Donors in Alkane Solution. J. Am. Chem. Soc., 2023, 145 (4), 2093–2097. DOI: 10.1021/jacs.2c13301.
Altun, Ahmet; Schiavo, Eduardo; Mehring, Michael; Schulz, Stephan; Bistoni, Giovanni; Auer, Alexander A. Rationalizing polymorphism with local correlation-based methods: a case study of pnictogen molecular crystals. Phys. Chem. Chem. Phys., 2024, 26 (45), 28733–28745. DOI: 10.1039/D4CP03697B.
Bistoni, Giovanni; Altun, Ahmet; Wang, Zikuan; Neese, Frank. Local Energy Decomposition Analysis of London Dispersion Effects: From Simple Model Dimers to Complex Biomolecular Assemblies. Accounts Chem. Res., 2024, 57 (9), 1411–1420. DOI: 10.1021/acs.accounts.4c00085.
Altun, Ahmet; Leach, Isaac F.; Neese, Frank; Bistoni, Giovanni. A Generally Applicable Method for Disentangling the Effect of Individual Noncovalent Interactions on the Binding Energy. Angew. Chem. Int. Ed., 2025, 64 (12), e202421922. DOI: 10.1002/anie.202421922.
Altun, Ahmet; Neese, Frank; Bistoni, Giovanni. HFLD: A Nonempirical London Dispersion-Corrected Hartree–Fock Method for the Quantification and Analysis of Noncovalent Interaction Energies of Large Molecular Systems. J. Chem. Theory Comput., 2019, 15 (11), 5894–5907. arXiv:10.1021/acs.jctc.9b00425, DOI: 10.1021/acs.jctc.9b00425.
Altun, A.; Neese, F.; Bistoni, G. Open-Shell Variant of the London Dispersion-Corrected Hartree-Fock Method HFLD for the Quantification and Analysis of Noncovalent Interaction Energies. J. Chem. Theory Comput., 2022, 18 (4), 2292–2307. DOI: 10.1021/acs.jctc.1c01295.
Greengard, L; Rokhlin, V. A fast algorithm for particle simulations. J. Comput. Phys., 1987, 73 (2), 325–348. DOI: 10.1016/0021-9991(87)90140-9.
Mayhall, Nicholas J.; Raghavachari, Krishnan; Hratchian, Hrant P. ONIOM-Based QM:QM Electronic Embedding Method Using Löwdin Atomic Charges: Energies and Analytic Gradients. J. Chem. Phys., 2010, 132 (11), 114107. DOI: 10.1063/1.3315417.
Vreven, T.; Mennucci, B.; da Silva, C. O.; Morokuma, K.; Tomasi, J. J. Chem. Phys., 2001, 115, 62.
Bjornsson, Ragnar; Bühl, Michael. Modeling Molecular Crystals by QM/MM: Self-Consistent Electrostatic Embedding for Geometry Optimizations and Molecular Property Calculations in the Solid. J. Chem. Theory Comput., 2012, 8 (2), 498–508. DOI: 10.1021/ct200824r.
Anisimov, Victor; Stewart, James JP. Introduction to the Fast Multipole Method: Topics in Computational Biophysics, Theory, and Implementation. CRC Press, 2019.
Helgaker, Trygve; Jørgensen, Poul; Olsen, Jeppe. Molecular electronic-structure theory, chapter 9. John Wiley & Sons, 2013.
Pérez-Jordá, José M; Yang, Weitao. A concise redefinition of the solid spherical harmonics and its use in fast multipole methods. J. Chem. Phys., 1996, 104 (20), 8003–8006.
Laio, Alessandro; Parrinello, Michele. Escaping Free-Energy Minima. Proc. Natl. Acad. Sci. U.S.A., 2002, 99 (20), 12562–12566. DOI: 10.1073/pnas.202427399.
Iannuzzi, Marcella; Laio, Alessandro; Parrinello, Michele. Efficient Exploration of Reactive Potential Energy Surfaces Using Car–Parrinello Molecular Dynamics. Phys. Rev. Lett., 2003, 90 (23), 238302. DOI: 10.1103/PhysRevLett.90.238302.
Tummanapelli, Anil Kumar; Vasudevan, Sukumaran. Dissociation Constants of Weak Acids from Ab Initio Molecular Dynamics Using Metadynamics: Influence of the Inductive Effect and Hydrogen Bonding on pKa Values. J. Phys. Chem. B, 2014, 118 (47), 13651–13657. DOI: 10.1021/jp5088898.
Tummanapelli, Anil Kumar; Vasudevan, Sukumaran. Estimating Successive pKa Values of Polyprotic Acids from Ab Initio Molecular Dynamics Using Metadynamics: The Dissociation of Phthalic Acid and Its Isomers. Phys. Chem. Chem. Phys., 2015, 17 (9), 6383–6388. DOI: 10.1039/C4CP06000H.
Barducci, Alessandro; Bussi, Giovanni; Parrinello, Michele. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett., 2008, 100 (2), 020603. DOI: 10.1103/PhysRevLett.100.020603.
Martyna, Glenn J.; Klein, Michael L.; Tuckerman, Mark. Nosé–Hoover Chains: The Canonical Ensemble via Continuous Dynamics. J. Chem. Phys., 1992, 97 (4), 2635–2643. DOI: 10.1063/1.463940.
Martyna, Glenn J.; Tuckerman, Mark E.; Tobias, Douglas J.; Klein, Michael L. Explicit Reversible Integrators for Extended Systems Dynamics. Mol. Phys., 1996, 87 (5), 1117–1157. DOI: 10.1080/00268979600100761.
Bussi, Giovanni; Donadio, Davide; Parrinello, Michele. Canonical Sampling through Velocity Rescaling. J. Chem. Phys., 2007, 126 (1), 014101. DOI: 10.1063/1.2408420.
Kumar, Shankar; Rosenberg, John M.; Bouzida, Djamal; Swendsen, Robert H.; Kollman, Peter A. THE Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules. I. The Method. J. Comput. Chem., 1992, 13 (8), 1011–1021. DOI: 10.1002/jcc.540130812.
Kästner, Johannes; Senn, Hans Martin; Thiel, Stephan; Otte, Nikolaj; Thiel, Walter. QM/MM Free-Energy Perturbation Compared to Thermodynamic Integration and Umbrella Sampling: Application to an Enzymatic Reaction. J. Chem. Theory Comput., 2006, 2 (2), 452–461. DOI: 10.1021/ct050252w.
Grimme, Stefan. Exploration of Chemical Compound, Conformer, and Reaction Space with Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations. J. Chem. Theory Comput., 2019, 15 (5), 2847–2862. DOI: 10.1021/acs.jctc.9b00143.
Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys., 1984, 81 (8), 3684–3690. DOI: 10.1063/1.448118.
Box, G. E. P.; Muller, Mervin E. A Note on the Generation of Random Normal Deviates. Ann. Math. Statist., 1958, 29 (2), 610–611. DOI: 10.1214/aoms/1177706645.
Andersen, Hans C. Rattle: A “Velocity” Version of the Shake Algorithm for Molecular Dynamics Calculations. J. Comput. Phys., 1983, 52 (1), 24–34. DOI: 10.1016/0021-9991(83)90014-1.
Kutteh, Ramzi. RATTLE Recipe for General Holonomic Constraints: Angle and Torsion Constraints. CCP5 Newsletter, 1998, 46, 8–15. URL: https://www.ccp5.ac.uk/wp-content/uploads/2023/03/CCP5_Newsletter_1998_10_46.pdf.
Wilson, E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations – the Theory of Infrared and Raman Vibrational Spectra. Dover Publications, 1955.
Knizia, Gerald. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput., 2013, 9 (11), 4834–4843. DOI: 10.1021/ct400687b.
Derricotte, Wallace D; Evangelista, Francesco A. Localized Intrinsic Valence Virtual Orbitals as a Tool for the Automatic Classification of Core Excited States. J. Chem. Theory Comput., 2017, 13 (12), 5984–5999. DOI: 10.1021/acs.jctc.7b00493.
Kubas, A.; Berger, D.; Oberhofer, H.; Maganas, D.; Reuter, K.; Neese, F. Surface Adsorption Energetics Studied with “Gold Standard” Wave Function-Based Ab Initio Methods: Small-Molecule Binding to TiO2(110). J. Phys. Chem. Lett., 2016, 7, 4207–4212.