2. Essential Calculation Elements¶
Essential Calculation Elements
- 2.1. General Structure of the Input File
 - 2.2. Input of Coordinates
 - 2.3. Basic Calculation Settings
 - 2.4. Control of Output
 - 2.5. Parallel and Multi-Process Runs
 - 2.6. Self-Consistent-Field (SCF)
- 2.6.1. Convergence Tolerances
 - 2.6.2. Dynamic and Static Damping
 - 2.6.3. Level Shifting
 - 2.6.4. Direct Inversion in Iterative Subspace (DIIS)
 - 2.6.5. Kolmar’s DIIS (KDIIS)
 - 2.6.6. Approximate Second Order SCF (SOSCF)
 - 2.6.7. Trust-Region Augmented Hessian (TRAH) SCF
 - 2.6.8. Finite Temperature SCF
 - 2.6.9. Tips and Tricks: Converging SCF Calculations
 - 2.6.10. Local-SCF Method
 - 2.6.11. Keywords
 
 - 2.7. Basis Sets
- 2.7.1. Basic Usage
 - 2.7.2. Orbital Basis Sets
- 2.7.2.1. Pople Basis Sets
 - 2.7.2.2. Ahlrichs Basis Sets
 - 2.7.2.3. Karlsruhe def2 Basis Sets
 - 2.7.2.4. Karlsruhe dhf Basis Sets
 - 2.7.2.5. Jensen Basis Sets
 - 2.7.2.6. Hydrogenic Gaussian Basis Sets
 - 2.7.2.7. Sapporo Basis Sets
 - 2.7.2.8. Partridge Basis Sets
 - 2.7.2.9. CRENB Basis Sets
 - 2.7.2.10. LANL Basis Sets
 - 2.7.2.11. Correlation-consistent Basis Sets
 - 2.7.2.12. F12 Basis Sets
 - 2.7.2.13. Atomic Natural Orbital Basis Sets
 - 2.7.2.14. Miscellaneous and Specialized Basis Sets
 
 - 2.7.3. Relativistic Basis Sets
- 2.7.3.1. Recontracted Ahlrichs Basis Sets
 - 2.7.3.2. Recontracted Karlsruhe def2 Basis Sets
 - 2.7.3.3. SARC Basis Sets
 - 2.7.3.4. SARC2 Basis Sets
 - 2.7.3.5. Karlsruhe x2c Basis Sets
 - 2.7.3.6. Relativistic Sapporo Basis Sets
 - 2.7.3.7. Relativistic Correlation-Consistent Basis Sets
 - 2.7.3.8. Relativistically Contracted ANO Basis Sets
 
 - 2.7.4. Auxiliary Basis Sets
- 2.7.4.1. Coulomb-fitting auxiliary basis sets (
AuxJ) - 2.7.4.2. Coulomb- and exchange-fitting auxiliary basis sets (
AuxJK) - 2.7.4.3. Auxiliary basis sets for correlated methods (
AuxC) - 2.7.4.4. Complementary auxiliary basis sets for F12 (
CABS) - 2.7.4.5. Automatic Generation of Auxiliary Basis Sets (AutoAux)
 
 - 2.7.4.1. Coulomb-fitting auxiliary basis sets (
 - 2.7.5. Effective Core Potentials
 - 2.7.6. Assigning or Adding Basis Functions to an Element
 - 2.7.7. Assigning or Adding Basis Functions to Individual Atoms
 - 2.7.8. Assigning Basis Sets and ECPs to Fragments
 - 2.7.9. Reading Basis Sets from a File
 - 2.7.10. Linear Dependence
 - 2.7.11. Which Methods Need Which Basis Sets?
 - 2.7.12. Keywords
 
 - 2.8. Resolution-of-the-Identity (RI)
 - 2.9. Numerical Integration
 - 2.10. Details on the Numerical Integration Grids
 - 2.11. Counterpoise Corrections
 - 2.12. Relativistic Calculations
- 2.12.1. Basic Usage
 - 2.12.2. Approximate Relativistic Hamiltonians
 - 2.12.3. The Regular Approximation
 - 2.12.4. The Douglas-Kroll-Hess Method
 - 2.12.5. Exact Two-Component Theory (X2C)
 - 2.12.6. Basis Sets in Relativistic Calculations
 - 2.12.7. Picture-Change Effects
 - 2.12.8. Finite Nucleus Model
 - 2.12.9. Keywords
 
 - 2.13. Implicit Solvation
- 2.13.1. The Conductor-like Polarizable Continuum Model (C-PCM)
 - 2.13.2. Bug Fixes and Extensions
 - 2.13.3. The Conductor-like Screening Solvation Model (COSMO)
 - 2.13.4. The SMD Solvation Model
 - 2.13.5. Dynamic Radii Adjustment for Continuum Solvation (DRACO)
 - 2.13.6. OpenCOSMO-RS
 - 2.13.7. Implicit Solvation in Coupled-Cluster Methods
 - 2.13.8. Complete Keyword List for the 
%cpcmBlock 
 - 2.14. Integral Handling
 - 2.15. The SHARK Integral Package and Task Driver
 - 2.16. SCF Stability Analysis
 - 2.17. Finite Electric Fields
 - 2.18. Fragment Specification
- 2.18.1. Fragments defined on Input File
 - 2.18.2. Automatic Fragmentation
- 2.18.2.1. Automatic Fragmentation: Connectivity
 - 2.18.2.2. Automatic Fragmentation: Atomic and NotAssigned
 - 2.18.2.3. Automatic Fragmentation: Internal Libraries
 - 2.18.2.4. Automatic Fragmentation: External Libraries
 - 2.18.2.5. Automatic Fragmentation: Extend
 - 2.18.2.6. Automatic Fragmentation: Fusebyatoms
 - 2.18.2.7. Automatic Fragmentation: Delete and advanced fragmentation workflows
 
 - 2.18.3. Options available in the 
%fraginput block 
 - 2.19. ORCA and Symmetry
 - 2.20. Choice of Initial Guess and Restart of SCF Calculations
- 2.20.1. One Electron Matrix Guess
 - 2.20.2. Basis Set Projection
 - 2.20.3. PModel Guess
 - 2.20.4. Hückel and PAtom Guesses
 - 2.20.5. Restarting SCF Calculations
 - 2.20.6. AutoStart feature
 - 2.20.7. Changing the Order of Initial Guess MOs and Breaking the Initial Guess Symmetry
 - 2.20.8. Automatically Breaking of the Initial Guess Symmetry
 - 2.20.9. Calculating only the energy of an input density
 - 2.20.10. Keywords
 
 - 2.21. Frozen Core Options
 - 2.22. CP-SCF Options
 - 2.23. Numerical Gradients