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ORCA 6.0 FOREWORD

Welcome to ORCA 6 – we sincerely hope that you will enjoy it!

ORCA 6.0 is a major turning point for the ORCA project and consequently, it seems appropriate to dwell a little
bit on how we got to this point in this foreword.

The ORCA program suite started its life around 1995 as a semi-empirical program written in Turbo Pascal and
designed to calculate some magnetic and optical spectra of open-shell transition metal complexes in enzyme active
sites. It was unimaginable at the time that it could possibly grow into a major, large-scale software that is used by
tens or thousands of people world-wide.

In its evolution the ORCA package probably had a similar trajectory to many other programs: it started with good
intentions, courage paired with a healthy dose of ignorance and a vision of a few concrete tasks that it should be
able to perform. And it did that. But right there at the beginning, when the foundations were laid for years to come,
there was no master plan. There also was no experience – neither with larger-scale software development, nor with
quantum chemistry in general.

The logical consequence of the absence of a master plan was, that the program grew in a way that was rather need-
driven and short-time goal oriented. The original infrastructure was not horrifically bad, but it was not designed in
a way that was strongly suggestive of healthy growth for decades to come. Not surprisingly, after 5-6 generations
of Ph.D. students and postdocs working on it, some individuals more disciplined than others (including the original
author), the inevitable happened: the code started to look intimidating to new students entering the project since
the code started to be clumsy and convoluted.

The consequence of convoluted code is that new programmers start to copy and paste large sections of code which
adds significantly to the overhead and made the code even less readable. One immediate consequence of such
organically grown code is that it is exceedingly difficult to properly adapt it to the challenges of a rapidly changing
hardware landscape and we eventually had to realize that this is also true for the ORCA code.

In the year 2020, when the pandemic hit globally and travelling ceased, there came a time of relative calmness
that allowed for contemplation and also concentrated, continued work. At this time, the SHARK package was
created based on an idea that I had back in 2016. It turned out to be very successful and led to a highly performant
integral code that also was very compact thanks to the loop-kernel-consumer (LKC) concept proposed by Frank
Wennmohs. Together with other innovations, for example large improvements in the chain of spheres exchange
(COSX) approximation by Robert Izsak, Benjamin Helmich Paris and Bernardo de Souza as well the integration
grids in ORCA (by Bernardo de Souza). SHARK, COSX and improved numerical integration formed the core of
what was released as ORCA 5.0 on July 1st 2021. The improved performance by the program was received very
favorably by the user community and led to an explosive growth of the user base. At the point of writing (2024), the
number of ORCA users is increasingly roughly quadratically with time. At the day of writing, ORCA has ~70000
academically registered users and an unknown (but large) number of users in industry.

While we were proud of what we had achieved with ORCA 5.0, it was clear that we had just seen the tip of the
iceberg. What was lurking underneath was a complete redesign of the infrastructure, not just patching SHARK
into the strategic places. This task amounts to basically a complete rewrite of the entire code and a redesign of the
flow of information. This is obviously an intimidatingly complex and large project and something that – to the best
of my knowledge – has never been done in the history of quantum chemistry: take a major, large-scale program
package and redesign it from scratch – but this time with the hindsight and insights from close to 3 decades of
doing it.

Talking to many colleagues a common statement is “if I could start over again, I would do XYZ, but”. In the case
of ORCA, it actually happened – we did just that! It was a long and occasionally painful road and it would be a lie
to not admit that there were moments were I felt like giving up on the idea. But after three long years, it was finally
seen through to the end (well, almost) thanks to the tireless efforts and the development team and the enthusiasm
and patience that the members have contributed.

It was clear to me that the project “rewrite ORCA” is a bad project for Ph.D. students and postdocs and consequently,
I have taken a large part of the tedious work on myself in the hope that the other developers could focus on continuing
doing great science - and they did! And they did by embracing and using the emerging new infrastructure which
was no small feat since the new infrastructure was a moving target for years and the developers had to work around
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bugs, mistakes and incompleteness of the new infrastructure. But they did do that and showed great dedication,
appreciation and skill in doing so. And of course, a number of individuals also helped with the tedious part of the
whole project and to all those, I am particularly grateful.

The result of our efforts, you now hold in your hands: the ORCA program, version 6.0. But as I explained above,
ORCA 6.0 is not just an update to the program, it is essentially an entirely new quantum chemistry package – but
one that was designed with a master plan, a vision of how such a package could or should be organized. This led
to a highly streamlined and highly efficient new infrastructure that will greatly facilitate future developments.

Please allow me a few personal words: This release of ORCA is a turning point and also a very emotional moment
for me. Recreating the ORCA infrastructure and deleting much of the legacy code amounted to reliving a large part
of my scientific life in fast forward. Many memories were tied to specific code parts and so many images returned
along the way of how life was when this or that was written and what that world looked like back then. Hitting the
“delete” button did not come easy and there might have been a tear or two lurking here and there, especially on the
last weekend before the initial code freeze where I deleted more than 250000 lines of legacy code and edited over
500 files of source code.

ORCA 6 was the result of the work of a large number of outstanding and dedicated individuals. Unfortunately, It is
impossible to individually mention all of them here (for this, please check the credit section at the beginning of the
output), but I do want to ensure all ORCA developers of my deepest sympathy, my admiration and my gratitude for
staying on path, for their hard work, for their creativity, for their intellectual brilliance, for the dedication and for
sharing in the vision. Especially the latter was not a given, in particular in those moments where things were broken
that once upon a time were working perfectly. Specifically, I am indebted to Frank Wennmohs for his long-term
friendship, for enduring my stubbornness in pursuing this project and for his decisive contributions in important
moments. I also want to praise Dagmar Lenk for running our testsuite with almost 2000 jobs every night, analyze
the results with superhuman patience and patiently going after the people that were supposed to fix the errors. And
of course, my very special thanks and deepest gratitude also goes to Ute Becker. Ute has been a member of the
team since the early 2000s. She has single-handedly parallelized ORCA and in all these years, she always had
everybody’s back – implementing, helping, testing, cleaning up behind people without ever complaining and with
laser precision and the highest efficiency. Ute will formally retire by the end of 2024 but we consider ourselves
lucky that she has agreed to keep working with us on the next generations of ORCA, at least for a while.

I am also deeply indebted to the members of FAccTs. Ever since the foundation of FAccTs, it has been continuously
growing and is now very successful in the market. This is largely due to Christoph Riplinger’s ingenuity, vision and
insightful leadership. It is a major pleasure to see FAccTs bloom and grow, drive technology and also assemble a
significant number of the most talented individuals that passed through the group in Mülheim. Importantly, several
FAccTs members have made major contributions to the release of ORCA 6, in particular Bernardo de Souza,
Georgi Stoychev and Miquel Garcia Rates have written extremely effective and important code and have also been
instrumental in streamlining and optimizing the infrastructure.

Now that ORCA 6 has become reality we are highly excited to give it you and we sincerely hope that you embrace
it and make good use of it. Thank you for staying with us through the long wait that led to ORCA 6. We believe
that we have made the program fit for the next decades to come and to be a great platform for keeping up with the
rapidly changing hard- and software landscape. The efficient new infrastructure that Orca 6 is based on will allow
for much improved development speed and consequently, we are looking highly forward to giving you the next
ORCA versions with exciting new functionality in due course.

Thank you for your support!

Frank Neese, on behalf of the development team on July 17, 2024
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ORCA 6 CHANGES

0.1 ORCA 6.0 Highlights

0.1.1 SCF and Single Reference

• LeanSCF: reduced memory, more robust convergence

• Electric field optimizations

• General ROHF implementation (SCF/Gradient) with all approximations

• General CSF ROHF

• New density functionals

• Delta-SCF

• UHF STEOM-CCSD

• UHF-IP-EOM-CCSD

• UHF-EA-EOM-CCSD

• Regularized MP2

• Regularized OOMP2

• Solvation in OOMP2

• Improved stability analysis featuring all approximations, solvation etc

• MixGuess to converge to biradicaloid open shell singlet type broken symmetry solutions

• Approximate Spin Projection Method for broken symmetry calculations (SCF/Gradient)

0.1.2 Multi Reference

• TRAH, AVAS, MCRPA

• Linear response CASSCF

• Vastly improved Recursive CI coupling coefficient generation

0.1.3 Automatic Code generation

• MPn

• CCSD(T) gradients

• CCSDT

iii
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0.1.4 Relativity

• X2C

• New and consistent DKH infrastructure

0.1.5 Solvation & Embedding

• DLPNO-CCSD(T) PTES Approach

• SMD analytical Hessian

• Dynamically adjusted radii: DRACO

• Improved surface grids

• Interface to openCOSMO-RS

• Explicit Solvator

• Molecule Docker

• FMM implementation for embedding

• CIM implementation works with DLPNO-CC, DLPNO-MP2

0.1.6 Optimization

• More robust optimizer (fewer cycles, fewer cases with negative frequencies)

• GOAT global optimizer and conformer generator

• Basis set limit extrapolated optimizations through compound scripts

• Extrapolation with counterpoise correction through compound scripts

0.1.7 Hessian

• Group parallelization

• Performance improvements

0.1.8 Excited States

• Analytical gradient for meta-GGA functionals

0.1.9 New Spectroscopic Properties

• VCD implementation at the SCF level

• MCD with vibronic structure

• General spin ROCIS

• Higher order moments and exact field matter coupling

• Spin rotation constants

iv Chapter 0. ORCA 6 Changes
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0.1.10 Misc Properties

• Local dipole moments and polarizabilities

• Frequency dependent electric properties

• VPT2 enhancements

• Restructured NMR simulation program orca_nmrspectrum

• MBIS charges

0.1.11 Workflow & Interfacing

• Property file: Machine readable, Human readable summary of ORCA run

• Compound: vastly improved Syntax, features, optimizations, . . .

• orca_2json: generate integrals, property file, run backwards to get MOs into ORCA

• Citation tool for helping find the right references

For a detailed change log of ORCA 6.0, please see the detailed change log

0.1. ORCA 6.0 Highlights v
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FAQ – FREQUENTLY ASKED QUESTIONS

0.2 Why do some of my calculations give slightly different results
with ORCA-5?

Besides the new grids there has been some change to the default settings in ORCA-6.

0.2.1 Why do some of my calculations give slightly different results with ORCA-
6.0.0?

When running RPA or the CP-SCF with COSX, the algorithm from ORCA-6.0.0 was hard-coded to a memory-
hungry one, which was not the original intention. In ORCA-6.0.1 that was fixed, and the automatic one is now the
default (see, for example, CP-SCF Options). This might cause very small differences to these results, specially if
the number of densities is small.

This does not affect any “normal” energy, gradient or etc. calculations. Only those particular cases of RPA and
CP-SCF.

0.3 Why is ORCA called ORCA?

Frank Neese made the decision to write a quantum chemistry program in the summer of 1999 while finishing a
postdoc at Stanford University. While thinking about a name for the program he wanted to write he decided against
having yet another “whatever-Mol-something”. The name needed to be short and signify something strong yet
elegant.

During this time in the US Frank went on a whale watching cruise at the California coast—the name “ORCA”
stuck. It is often asked whether ORCA is an acronym and over the years, various people made suggestions what
acronym this could possibly be. At the end of the day it just isn’t an acronym which stands for anything. It stands
for itself and the association which comes with it.

0.4 How do I install ORCA on Linux / MacOS / Windows?

On Linux and MacOS the most convenient way to install ORCA is by using the command-line installer. You
have to download a .run file, e.g. orca_6_0_0_linux_x86-64_shared_openmpi416.run. Then make the file
executable, that is, open a terminal, enter the directory in which you stored the file and enter:

chmod a+x orca_6_0_0_linux_x86-64_shared_openmpi416.run

Afterwards you can simple execute the file, like

./orca_6_0_0_linux_x86-64_shared_openmpi416.run

The installer will install orca in a user directory, as well as set the path to include the orca directory. After opening
a new window ORCA can be used as indicated.

The installer has a few more options, like extract-only, setting the path interactively, and setting the path by option:

-i : Set a different install path interactively
-p <path> : Set a different install path
-x : Just extract

The options have to be given after a double dash, e. g.

./orca_6_0_0_linux_x86-64_shared_openmpi416.run -- -p /my/home/orca/dir

vii
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0.5 How do I install the xtb module?

Please download xtb version 6.7.1 from the Grimme lab’s repository Grimme lab’s repository and copy the xtb
binary into the orca directory.

0.6 I’ve installed ORCA, how do I start it?

First and most importantly, ORCA is invoked from the command line on all platforms. A simple click on a binary
or an input file won’t start a calculation. Under Linux and MacOS you need to open a terminal instance and navigate
to the folder containing an example.inp file. You can run an ORCA calculation with the command:

<full orca binary folder path>/orca example.inp > example.out

Similarly, under Windows you need to open a command prompt (Win7, Win8) or a power shell (Win10), navigate
to said directory and execute the following command:

<full orca binary folder path>/orca example.inp > example.out

0.7 How do I cite ORCA?

Please do NOT just cite the generic ORCA reference given below but also cite in addition our original papers! We
give this program away for free to the community and it is our pleasure and honour to do so. Our payment are
your citations! This will create the visibility and impact that we need to attract funding which in turn allows us to
continue the development. So, PLEASE, go the extra mile to look up and properly cite the papers that report the
development and ORCA implementation of the methods that you have used in your studies!

The generic reference for ORCA is:
Neese,F.; Wennmohs,F.; Becker,U.; Riplinger,C. “The ORCA quantum chemistry program package” J. Chem.
Phys., 2020 152 Art. No. L224108 doi.org/10.1063/5.0004608

There has been an update for ORCA 5.0:
Neese, F. “Software update: The ORCA program system—Version 5.0” Wiley Interdisciplinary Reviews: Compu-
tational Molecular Science, 2022, Vol. 12, Issue 5, p. e1606.

0.8 Are there recommended programmes to use alongside ORCA?

As a matter of fact there are: We make extensive use of Chemcraft. It is interesting to note that it works well in
MacOS or Linux (using Wine or a virtual machine). Another popular visualization programme is Chimera together
with the SEQCROW plugin.

OpenBabel is very useful for file conversion to various chemical formats.

Finally, Avogadro is an excellent tool to edit molecular geometries. It is also able to generate ORCA input files.
The Avogadro version with the latest ORCA modifications is available on the ORCA download site.

For other valuable questions/suggestions, please check out the ORCA forum.

viii Chapter 0. FAQ – frequently asked questions
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0.9 My old inputs don’t work with the new ORCA version! Why?

Please be aware that between ORCA revisions keywords and defaults might have changed or keywords may have
been deprecated (for detailed information please see the Release Notes). It is therefore not unexpected that the
same inputs will now either give slightly different results, or will totally crash. If you are unsure about an input,
please consult the manual. It is provided by the ORCA developers and should contain all information implemented
in the published version of ORCA.

0.10 My SCF calculations suddenly die with ‘Please increase Max-
Core’! Why?

The SCF cannot restrict its memory to a given MaxCore, which, in the past, has led to crashes due to lack of
memory after many hours of calculation. To prevent this, the newer ORCA versions will try to estimate the memory
needed at an early stage of the calculation. If this estimation is smaller than MaxCore, you are fine. If it is larger
than MaxCore, but smaller than 2*MaxCore, ORCA will issue a warning and proceed. If the estimation yields a
value that’s larger than 2*MaxCore, ORCA will abort. You will then have to increase MaxCore. Please note, that
MaxCore is the amount of memory dedicated to each process!

0.11 When dealing with array structures, when does ORCA count
starting from zero and in which cases does counting start
from one?

Since ORCA is a C++ based program its internal counting starts from zero. Therefore all electrons, atoms, fre-
quencies, orbitals, excitation energies etc. are counted from zero. User-based counting such as the numeration of
fragments is counted from one.

0.12 How can I check that my SCF calculation converges to a cor-
rect electronic structure?

The expectation value
⟨︀
𝑆2
⟩︀

is an estimation of the spin contamination in the system. It is highly recommended
for open-shell systems, especially with transition metal complexes, to check the UCO (unrestricted corresponding
orbitals) overlaps and visualise the corresponding orbitals. Additionally, spin-population on atoms that contribute
to the singly occupied orbitals is also an identifier of the electronic structure.

0.13 I can’t locate the transition state (TS) for a reaction expected
to feature a low/very low barrier, what should I do?

For such critical case of locating the TS, running a very fine (e.g. 0.01 Å increment of the bond length) relaxed
scan of the key reaction coordinate is recommended. In this way the highest energy point on a very shallow surface
can be identified and used for the final TS optimisation.

0.9. My old inputs don’t work with the new ORCA version! Why? ix
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0.14 During the geometry optimisation some atoms merge into
each other and the optimisation fails. How can this problem
be solved?

This usually occurs due to the wrong or poor construction of initial molecular orbital involving some atoms. Check
the basis set definition on problematic atoms and then the corresponding MOs!

0.15 While using MOREAD feature in ORCA, why am I getting an error
saying, “no orbitals found in the .gbw file”?

ORCA produces the .gbw file immediately after it reads the coordinates and basis set information. If you put a
.gbw file from a previous calculation with same base name as your current input into the working directory, it will
be overwritten and the previous orbital data will be lost. Therefore, it is recommended to change the file name or
.gbw extension to something else (.gbw.old, for example).

0.16 With all the GRID and RI and associated basis set settings I’m
getting slightly confused. Can you provide a brief overview?

Hartree–Fock (HF) and DFT require the calculation of Coulomb and exchange integrals. While the Coulomb
integrals are usually done analytically, the exchange integrals can be evaluated semi-numerically on a grid. Here,
the pure DFT exchange is calculated on one type of grid (controlled through the GRID keyword) while the HF
exchange can be evaluated on a different, often smaller grid (GRIDX). For both parts, further approximations can
be made (RI-J and RI-K1 or COSX, respectively). When RI is used, auxiliary basis sets are required (<basis >/ J
for RI-J and <basis >/ JK for RI-JK). The following possible combinations arise:

• HF calculation

– Exact J + exact K: no auxiliary functions and no grids needed.

– RIJ + exact K (RIJONX, RIJDX): <basis >/ J auxiliaries, no grids.

– RIJ + RIK = RIJK: <basis >/JK auxiliaries, no grids.

– RIJ + COSX: <basis >/ J auxiliaries, COSX grid controlled by the GRIDX keyword.

• GGA DFT functional

– Exact J + GGA-XC: no auxiliary functions needed, DFT grid controlled by the GRID keyword.

– RIJ + GGA-XC: <basis >/ J auxiliaries, DFT grid controlled by the GRID keyword.

• Hybrid DFT functional

– Exact J + exact K + GGA-XC: no auxiliary functions needed, DFT grid controlled by the GRID keyword.

– RIJ + exact K (RIJONX, RIJDX) + GGA-XC: <basis >/ J auxiliaries, DFT grid controlled by the GRID
keyword.

– RIJ + RIK (RIJK) + GGA-XC: <basis >/ JK auxiliaries, DFT grid controlled by the GRID keyword.

– RIJ + COSX + GGA-XC: <basis >/ J auxiliaries, COSX grid controlled by the GRIDX keyword, DFT
grid controlled by the GRID keyword.

1 Note that ORCA can only use RI-K in conjunction with RI-J; hence the combination RI-JK.

x Chapter 0. FAQ – frequently asked questions
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0.17 There are a lot of basis sets! Which basis should I use when?

ORCA offers a variety of methods and a large choice of basis sets to go with them. Here is an incomplete overview:

Method Approxima-
tion

basis set (and auxiliaries)

CASSCF/NEVPT2 <basis >

CASSCF/NEVPT2 RI-JK <basis >+ <basis >/JK
CASSCF/NEVPT2 RIJCOSX <basis >+ <basis >/J + <basis >/C
CASSCF/NEVPT2 TrafoStep RI <basis >+ <basis >/JK or <basis >/C
NEVPT2-F12 TrafoStep RI <basis >-F12 + <basis >-F12/CABS + <basis >/JK or <basis >/C
TDDFT <basis >

TDDFT Mode RIInts <basis >+ <basis >/C
MP2 <basis >

F12-MP2 <basis >-F12 + <basis >-F12/CABS

RI-MP2 <basis >+ <basis >/C

HF+RI-MP2 RIJCOSX <basis >+ <basis >/C + <basis >/J
F12-RI-MP2 <basis >-F12 + <basis >-F12/CABS + <basis >/C

DLPNO-MP2 <basis >+ <basis >/C

HF+DLPNO-MP2 RI-JK <basis >+ <basis >/C + <basis >/JK
F12-DLPNO-MP2 <basis >-F12 + <basis >-F12/CABS + <basis >/C

CCSD <basis >

RI-CCSD <basis >+ <basis >/C

(D)LPNO-CCSD <basis >+ <basis >/C

HF+(D)LPNO-
CCSD

RIJCOSX <basis >+ <basis >/C + <basis >/J

F12-CCSD <basis >-F12 + <basis >-F12/CABS

F12-RI-CCSD <basis >-F12 + <basis >-F12/CABS + <basis >/C

HF+F12-RI-CCSD RI-JK <basis >-F12 + <basis >-F12/CABS + <basis >/C + <basis >/JK

0.17. There are a lot of basis sets! Which basis should I use when? xi
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CHAPTER

ONE

GENERAL INFORMATION

1.1 Program Components

The program system ORCA consists of several separate programs that call each other during a run. The following
basic modules are included in this release (listed in alphabetical order):

orca Main input+driver program
orca_ailft Ab Initio Ligand Field Theory
orca_autoci CI type program using the automated generation environment (ORCA-AGE)
orca_casscf Main program for CASSCF driver
orca_casscfresp CASSCF static linear response
orca_cclib Precalculation of one particle coupling coefficients for ACCCI
orca_ciprep Preparation of data for MRCI calculations (frozen core matrices and the like)
orca_cipsi Iterative Configuration Expansion Configuration Interaction (ICE-CI)
orca_cis Excited states via CIS and TD-DFT
orca_crystalprep Set up an embedding calculation from a crystal structure file
orca_eca Auxiliary program for solving magnetic model Hamiltonians
orca_esd Excited state dynamics program for calculating vibronic spectra, resonance Raman, . . .
orca_guess Generation of an intial guess for SCF and CASSCF
orca_leanscf Self consistent field program for HF and DFT
orca_lft Ligand Field Theory
orca_loc Calculation of localized molecular orbitals
orca_mcrpa CASSCF linear response for excited states
orca_md Molecular dynamics program
orca_mdci Matrix driven correlation program: CI, CEPA, CPF, QCISD, CCSD(T)
orca_mp2 MP2 program (conventional, direct and RI)
orca_mrci MRCI and MRPT calculations (individually selecting)
orca_ndoint Calculates semiempirical integrals and gradients
orca_nmrspectrum Simulates NMR spectra from calculated NMR parameters
orca_numfreq Numerical Hessian computation
orca_pc Addition of point charge terms to the one-electron matrix
orca_plot Generation of orbital and density plots
orca_pop External program for population analysis on a given density
orca_prop Calculation of molecular properties
orca_propint Calculation of property integrals
orca_rel (Quasi) Relativistic corrections
orca_rocis Excited states via the ROCIS method
orca_scfgrad Analytic derivatives of SCF energies (HF and DFT)
orca_scfresp self consistent field response
orca_startup Calculation of startup data before each single point
orca_vpot Calculation of the electrostatic potential on a given molecular surface
orca_vpt2 VPT2 analysis

Utility programs:

1
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orca_2aim Produces WFN and WFX files suitable for AIM analysis
orca_2json Converts information from the gbw-file into JSON files
orca_2mkl Produces an ASCII file to be read by molekel, molden or other visualization programs
orca_asa Calculation of absorption, fluorescence and resonance Raman spectra
orca_chelpg Electrostatic potential derived charges
orca_euler Calculate Euler angles from .property.txt file
orca_exportbasis Prints out any basis set in ORCA or GAMESS-US format
orca_fitpes Simple program to fit potential energy curves of diatomics
orca_mapspc Produces files for transfer into plotting programs
orca_mergefrag Merges MO coefficients from two independent .gbw files
orca_pltvib Produces files for the animation of vibrations
orca_pnmr Calculation of paramagnetic NMR shielding tensors
orca_vib Calculation of vibrational frequencies from a completed frequency run (also used for

isotope shift calculations)
otool_gcp Geometrical Counterpoise Correction
otool_xtb For this release, xtb 6.7.1 needs to be downloaded from the Grimme lab

Friends of ORCA:

gennbo The NBO analysis package of Weinhold (must be purchased separately from the univer-
sity of Wisconsin; older versions available for free on the internet may also work)

Molekel Molecular visualization program (see Interface to Molekel)
gOpenMol Molecular visualization program (see Interface to gOpenMol)
Avogadro Molecular builder and visualization program with ORCA support (see download page

and original repository)
Chemcraft Molecular builder and visualization program with ORCA support (see download page)
SEQCROW Molecular builder and visualization program with ORCA support (see repository)

In principle every individual module can also be called “standalone”. However, it is most convenient to do every-
thing via the main module.

There is no real installation procedure. Just copy the executables wherever you want them to be and make sure
that your path variable contains a reference to the directory where you copied the files. This is important to make
sure that the programs can call each other (but you can also tell the main program the explicit position of the other
programs in the input file as described below). The xtb tool (recommended version 6.7.1 or higher) needs to be
downloaded separately from the Grimme lab’s repository. The xtb binary needs to be copied to the directory to
which the orca binaries were copied to.

1.2 Units and Conversion Factors

Internally the program uses atomic units. This means that the unit of energy is the Hartree (Eh) and the unit of
length is the Bohr radius (𝑎0). The following conversion factors to other units are used:

1 Eh = 27.2113834 eV
1 eV = 8065.54477 cm−1 = 23.0605 kcal

mol
1 cm−1 = 29979.2458 MHz
1 𝑎0 = 0.5291772083 Å
1 a.t.u. = 2.4188843 10−17 s
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CHAPTER

TWO

THE ARCHITECTURE OF ORCA

In this chapter we describe the broad features of ORCA’s internal structure. This knowledge is not necessary to
carry out calculations with ORCA. It may, however, help to understand which modules are being called in which
order and why this is happening in the sequence it does.

2.1 The structure of the ORCA source code

The source code of ORCA is broadly structured in three parts:

1) The main program.

2) The code for the “ORCA tool library”.

3) The code for individual modules.

The code in the ORCA tool library is being compiled into one library file that subsequently is linked with all ORCA
modules. The code for the individual modules can make use of everything that is in the library, but the modules
are not supposed to link to or use any code of the main program or any other module. This way of structuring the
code ensures that the modules remain maintainable and that there are no complex and unwanted interdependencies
that would make it eventually impossible to exchange modules for new code.

2.2 The shell structure of ORCA

The whole organization of the code and the information flow can be thought of as consisting of a shell structure
where a shell is a layer of software with well-defined functions and a well-defined interface to the shells above and
below it.

3
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The lowest layer of the shell consists of the SHARK integral package. This is the “motor” of the program that
takes care of most compute intensive tasks and essentially all parts that involve integrals over basis functions. This
amounts to calculating all one- and two-electron integrals, forming Fock and Fock-like matrices and performing
integral transformations using all kinds of basis sets and kernels. Most of the SHARK code is independent of the
remaining ORCA source code infrastructure.

The layer above SHARK is the actual ORCA source code. ORCA interacts with the user through the interface
and it orchestrates the entire workflow of the calculation. At this point in time, it also performs compute intensive
tasks like forming diagonalizing and handling Fock-operators , solving large linear equation systems, forming
sigma vectors, densities etc in correlated calculations and similar tasks. The ORCA source code interacts with
SHARK through a small set of DRIVERS. The drivers feature genuine ORCA data structures as well as SHARK
infrastructure. The DRIVERS call the genuine SHARK functions (ORCA calls SHARK directly only in a few
places) and, most importantly, the DRIVERS take care of finding their way through the approximation jungle. By
this we mean they handle the necessary basis sets, auxiliary basis sets, grids, integral approximations, solvation,
relativity, point charges etc.

Concentrating these important and highly error prone tasks in a number of well documented routines provides a
highly transparent way of identifying and properly maintaining the functionality that is at the heart of the program.

Above the ORCA software layer there are tools that orchestrate workflows. Workflows typically consisting of a
number of interdepend computational steps that are later combined into a single meaningful chemical result. For
example, one may optimize the geometry with a DFT functional and calculate zero-point and thermodynamic
corrections at the same level and follow it up with a single point calculation at the coupled cluster level that may
or may not feature another correction for core correlation at the MP2 level or complete basis set extrapolation.
Such tasks and many others, like running series of calculations on a test-sets of molecules or permuting calculation
options like functionals or basis sets on a given test system can be addressed with workflow tools. Inside ORCA,
there is the very powerful compound scripting language to achieve and organize such tasks. On the commercial
branch, FAccTs develops the Weasel tool that is a powerful and highly reliable workflow organizer.

At the final layer, one might envision a graphical user interface (GUI) that helps building molecules and facilitates
running calculations and analyzing results. At this point in time, ORCA does not have a dedicated GUI. There
are many free and commercial solutions that interface to ORCA. This form of interfacing is facilitated by the
orca_2json interface and the property file that ORCA produces. We hope that the transparency of this interface
motivates GUI developers to provide ever improved GUIs that interface ORCA. We do not exclude the possibility
that ORCA will feature it’s own GUI sometime down the road.

4 Chapter 2. The Architecture of ORCA
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2.3 The master/slave concept and the calling sequence

Within ORCA, the code follows a “master/slave” concept in which the main program is allowed to know everything
about every module while the modules are not allowed to know anything about the main program. Thus, the main
program is the piece of software that orchestrates the entire ORCA run and the interaction with the user. The main
program is, however, not supposed to carry out compute intensive tasks or even parallelized tasks by itself.

An ORCA calculation commences with reading and analyzing the ORCA input file. The plausibility of this input
is checked by an elaborate “maincheck” routine. Quite obviously, the number of possible combinations of ORCA
features is far larger than what could possibly be checked with realistic effort. However, the maincheck routine has
evolved over the year in a way that allows to detect the most common combinations of invalid or inconsistent input
keywords and take appropriate action (that can be changing some parameters or aborting the job).

After through maincheck the basis sets used in the calculations and the coordinates are completely known. This is
then the time to initialize the SHARK integral package and will then carry out the bulk of the computation heavy
tasks.

The first module that is being called is orca_startup. This module takes care of calculating the one electron in-
tegrals such as the HCORE and overlap matrices, the metric matrices in RI calculations, the pre-screening matrices
for direct SCF and possibly also the two-electron integrals for integral conventional runs.

The next module downstream is the orca_guess program. This module has the task to produce an initial set of
molecular orbitals and also an initial density matrix from these orbitals. To this end, there are a number of options
out of which the most common ones are to a model density guess (PMODEL) or to read orbitals from a previous
calculation (MOREAD). In the latter case, the calculation may feature a different geometry and/or a different basis
set but the number, nature and ordering of atoms need to be consistent with the target system.

In the third step, the program branches out into either the SCF or the CASSCF module (orca_leanscf or
orca_casscf). These modules produces converged orbitals and a self-consistent field energy as well as one-
particle density matrix. The latter is stored in in the DensityContainer, which is a centralized storage facility
for densities that will also be left over after the calculation and can be accessed by the users.

The next step of the calculation consists of calling various post-SCF programs like orca_mp2, orca_mdci or
orca_autoci. NEVPT2 and CASPT2 are calculated by code that is integrated with orca_casscf. These calcu-
late correlation energies and excited states among many other things.

There are many different pathways that the program can take next, for example geometry optimization or embedding
calculations or molecular dynamics to only name a few. Rather than going into each and every one of the possible
pathways, we will describe the calculation of molecular properties inside ORCA.

2.4 The calculation of molecular properties

For the calculation of molecular properties, ORCA has a fairly unique and strongly streamlined infrastructure that
is focusing on the commonalities in the calculated properties and that are independent of the underlying electronic
structure method used.

There are three qualitatively different sets of properties that are covered in ORCA property calculations:

1) Response properties. These are properties that can be formulated as derivatives of the total energy.

2) QDPT properties. These are properties that are calculated by quasi-degenerate perturbation theory (QDPT).
This amount to diagonalizing the Hamiltonian containing external fields and relativistic corrections over a
number of roots delivered by the underlying electronic structure method

3) Excited state properties: these are, at least at this point in time, transition moments between different elec-
tronic states of the system.

2.3. The master/slave concept and the calling sequence 5
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2.4.1 Response properties

A large number of properties can be written as derivatives of the total energy. These are first order properties:

𝑋𝑀 =
𝜕𝐸

𝜕𝑀
=
∑︁
𝜇𝜈

𝑃±𝜇𝜈

⟨
𝜇
⃒⃒⃒̂︀ℎ𝑀 ⃒⃒⃒𝜈⟩

Here, 𝑃±𝜇𝜈 is the first-order electron (‘+’) or spin (‘-‘) density ̂︀ℎ𝑀 is the operator that is describing the property of
interest (e.g. the dipole moment operator) and the basis set is {𝜇}.

Second order properties are:

𝑋𝑀𝑁 =
𝜕2𝐸

𝜕𝑀𝜕𝑁
=
∑︁
𝜇𝜈

𝑃±𝜇𝜈

⟨
𝜇
⃒⃒⃒̂︀ℎ𝑀𝑁

⃒⃒⃒
𝜈
⟩
+
∑︁
𝜇𝜈

𝜕𝑃±𝜇𝜈
𝜕𝑁

⟨
𝜇
⃒⃒⃒̂︀ℎ𝑀 ⃒⃒⃒𝜈⟩

Here the important quantity is 𝜕𝑃±
𝜇𝜈

𝜕𝑁 , the first derivative (or “response”) of the electron or spin density with respect
to perturbation 𝑁 . It can be shown that the order of perturbations 𝑀 and 𝑁 is immaterial and hence one can
choose the more convenient perturbation to calculate the response density for.

It is important to point out that the equations for response properties can always be brought into this form, irrespec-
tive of whether the calculation is a Hartree-Fock, DFT, MP2, coupled cluster, CASSCF or full-CI wavefunction.

Given the considerable generality of the property equations, it seems logical to create an infrastructure in which
these similarities are exploited to the largest possible extent. In ORCA the central place where all densities and
response densities are stored is the DensityContainer. This is used intensely throughout the actual calculation
and left on disk as BaseName.densities where it can be used for visualization.

In terms of the calculation flow the main program contains all the logic to drive this calculation. It first drives the
SCF and possibly the post-SCF calculations. After this is done, the SCF program collects the information about
which property integrals will be needed down the road and call the property integral program orca_propint that
will calculate the necessary integrals and stores them in another central storage container, the “property integral
container”.

The next step of the calculation is that the main program determines for which properties response densities are
needed. It collects these perturbations and calls the response modules. In the case of a SCF wavefunction (HF
or DFT), this is the orca_scfresp program. This program will divide the requested perturbations into different
types like, real-symmetric, imaginary-antisymmetric, triplet etc. Then it solves the response equations for all types
of perturbations simultaneously. This leads to large efficiency gains since the same integrals are needed on the
left-hand side of the coupled-perturbed SCF (CP-SCF) equations irrespective of the actual perturbations. Hence,
pooling all perturbations of a given type together is much more efficient than treating these perturbations one at a
time. This leads to high efficiency gains, in particular for properties like NMR parameters where nucleus dependent
perturbations are required.

For a number of other electronic structure methods like MP2, CASSCF or AutoCI the respective modules can be
run in “response mode” where instead of solving the equations for the energy, they pick up the amplitudes that
were determined in the energy run and use them together with the property integrals in order to produce response
densities.

The response densities are then stored in the density container too. At this point, one has everything that is required
in order to calculate the actual properties – a task that is performed by orca_prop.

The orca_prop program works by browsing through the density container and looks for densities that are appropri-
ate for calculating a requested property. As soon as it finds an appropriate density (or combination of unperturbed
and response density), it will calculate the property. For example, if you have calculated SCF, MP2 and CCSD
in the same calculation and have asked for the calculation of all three densities, orca_prop will calculate three
dipole moments and print them right next to each other.

6 Chapter 2. The Architecture of ORCA
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One beneficial side effect of this organization is that it is very well suited for future extensions. If a new method
becomes available in ORCA that is able to produce densities and possibly response densities, the properties for this
method will be fully available without any programmer needing to write a single line of additional code. It also
ensures that all properties are calculated in a consistent fashion and with a consistent printout.

The results of all property calculations are stored in the central property file that will be left after the calculation.
Users interested in reading properties, it should be read from the property file or its JSON translation.

2.4.2 QDPT properties

Some properties are not calculated as energy derivatives but from quasi degenerate perturbation theory. In this
method one diagonalizes the QDPT matrix:

𝑄𝐼𝐽 =
⟨
Ψ𝑆𝑀𝐼

⃒⃒⃒
𝐸𝐼𝛿𝐼𝐽 + ̂︀𝐻𝑆𝑂𝐶 + ̂︀𝐻𝑆𝑆 + ̂︀𝐻𝐿𝐵 + . . .

⃒⃒⃒
Ψ𝑆

′𝑀 ′

𝐽

⟩
Here

⃒⃒
Ψ𝑆𝑀𝐼

⟩︀
are the roots of a given method that can generate excited states with energy𝐸𝐼 . For example, these can

be TD-DFT roots, CASSCF roots, CASSCF roots with energy corrections from NEVPT2 or CASPT2, MRCI-roots,
EOM-CCSD roots etc. and ̂︀𝐻𝑆𝑂𝐶 is the spin-orbit coupling (SOC) operator, ̂︀𝐻𝑆𝑆 the electron-electron spin-spin
coupling operator, ̂︀𝐻𝐿𝐵 the molecular Zeeman operator etc. In practice, only the principle component 𝑀 = 𝑆 (i.
e. Ψ𝑆𝑆𝐼 ) is calculated and the necessary matrix elements are generated using the Wigner-Eckart theorem.

The diagonalization produces the complex valued relativistic eigenstates as linear combinations of the non-
relativistic or scalar relativistic eigenstates. Using the eigenstates relativistic densities or transition densities can
be calculated that subsequently can be used to calculate magnetic properties or “relativistic” optical or magneto-
optical spectra.

The procedure obviously suffers from a truncation error because only a finite number of roots can be calculated in
practice. However, results indicate that the QDPT generated properties compare often very favorable with experi-
mental data provided that the underlying electronic structure method delivers reasonable results.

2.4. The calculation of molecular properties 7
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In ORCA, all QDPT properties are calculated in a consistent infrastructure and then also leads to consistent printing
and reporting of the results.

2.4.3 Excited state properties

Closely related to the QDPT infrastructure is the “one-photon absorption” (OPA) infrastructure. This is an infras-
tructure that coordinates the calculation of transition moments using a set of transition densities as input. These
might have been stored on disk or might have been generated on the fly. In a similar way to the QDPT infrastructure,
these transition moments are generated in a consistent manner throughout all modules of ORCA that can generate
excited states.

The exact field/matter coupling Hamiltonian is:

𝐴(r, 𝑡) = −𝐴0𝜀 exp(𝑖kr− 𝜔𝑡)

Here k is the wavevector of the radiation with frequency 𝜔 and 𝜀 is its polarization. 𝐴0 is the intensity of the
radiation, r the electronic coordinate and 𝑡 is the time.

Evaluation of the matrix element
⟨
Ψ𝑆𝑀𝐼

⃒⃒⃒∑︀
𝑖𝐴(r𝑖, 𝑡)

⃒⃒⃒
Ψ𝑆

′𝑀 ′

𝐽

⟩
amount to generating the “exact” field-matter tran-

sition moments. This can be requested by setting the flag DoFullSemiClassical = true in the appropriate
ORCA input block.

A series expansion of the cosine term yields the familiar electric dipole, electric quadrupole, magnetic dipole etc.
contributions. Interestingly, the direct evaluation of the electric dipole term would yield it in the gauge independent
“velocity” form. They are related to the more familiar “length” form dipole matrix elements by:⟨

Ψ𝑆𝑀𝐼

⃒⃒⃒⃒
⃒∑︁
𝑖

p𝑖

⃒⃒⃒⃒
⃒Ψ𝑆′𝑀 ′

𝐽

⟩
=
−𝑖
ℏ
(𝐸𝐽 − 𝐸𝐼)

⟨
Ψ𝑆𝑀𝐼

⃒⃒⃒⃒
⃒∑︁
𝑖

r𝑖

⃒⃒⃒⃒
⃒Ψ𝑆′𝑀 ′

𝐽

⟩

The results of the length and velocity transition moment evaluation are expected to match in the basis set limit if
the electronic structure method at hand satisfies certain conditions. In practice, they usually do not agree very well,
even if large basis sets are used.

In order to generate electric length and velocity as well as higher moment evaluations, you can use the keywords

DoDipoleLength = true
DoDipoleVelocity = true
DoHigherMoments = true

in the appropriate ORCA input blocks that trigger the respective excited state calculation.

8 Chapter 2. The Architecture of ORCA



CHAPTER

THREE

CALLING THE PROGRAM (SERIAL AND PARALLEL)

3.1 Calling the Program

Under Windows the program is called from the command prompt! (Make sure that the PATH variable is set such
that the orca executables are visible)

orca MyMol.inp > MyMol.out

Under UNIX based operating systems the following call is convenient (here also: make sure that the PATH variable
is set to the directory where the orca executables reside):

orca MyMol.inp >& MyMol.out &

The program writes to stdout and stderr. Therefore the output must be redirected to the file MyMol.out in this
example. MyMol.inp is a free format ASCII file that contains the input description. The program will produce
a number of files MyMol.x.tmp and the file MyMol.gbw. The “*.gbw” file contains a binary summary of the
calculation. GBW stands for “Geometry-Basis-Wavefunction”. Basically this together with the calculation flags is
what is stored in this file. You need this file for restarting SCF calculations or starting other calculations with the
orbitals from this calculation as input. The “*.tmp” files are temporary files that contain integrals, Fock matrices
etc. that are used as intermediates in the calculation. If the program exits normally all of these files are deleted.
If it happens to crash you have to remove the files manually (rm MyMol*.tmp under Unix or del MyMol*.tmp
under Windows). In case you want to monitor the output file while it is written, you can use the command (under
Unix):

tail -f MyMol.out

to follow (option -f) the progress of the calculation. Under Windows you have to either open another command
shell and use:

type MyMol.out
type MyMol.out |more

or you have to copy the output file to another file and then use any text editor to look at it.

copy MyMol.out temp.out
edit temp.out

you cannot use edit MyMol.out because this would result in a sharing violation.

9
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3.2 Calling the Program with Multiple Processes

There are parallel versions for Linux, MAC and Windows computers (thanks to the work of Ms Ute Becker) which
make use of OpenMPI (open-source MPI implementation) and Microsoft MPI (Windows only). Most of the im-
portant modules in ORCA can run in parallel or in multi-process mode:

3.2.1 List of Parallelized Modules

The following modules and utility programs are presently parallelized/usable in multi-process mode:

AUTOCI
CASSCF / NEVPT2 / CASSCFRESP
CIPSI
CIS/TDDFT
GRAD (general Gradient program)
GUESS
LEANSCF (memory conserving SCF solver)
MCRPA
MDCI (Canonical- and DLPNO-Methods)
MM
MP2 and RI-MP2 (including Gradients)
MRCI
PC
PLOT
PNMR
POP
PROP
PROPINT
REL
ROCIS
SCFGRAD
SCFRESP (with SCFHessian)
STARTUP
VPOT
Numerical Gradients, Frequencies, Overtones-and-Combination-Bands
VPT2
NEB (Nudged Elastic Band)

Thus, all major modules are parallelized in the present version. The efficiency is such that for RI-DFT perhaps up
to 16 processors are a good idea while for hybrid DFT and Hartree-Fock a few more processors are appropriate.
Above this, the overhead becomes significant and the parallelization loses efficiency. Coupled-cluster calculations
usually scale well up to at least 8 processors but probably it is also worthwhile to try 16. For Numerical Frequencies
or Gradient runs it makes sense to choose nprocs = 4 or 8 times 6*Number of Atoms. For VPT2 on larger systems
you may well even try 16 times 6*Number of Atoms - if you use multiple processes per displacement. (Please check
out the section Hints on the Use of Parallel ORCA what you have to take care of for such kind of calculations.)

If you run a queuing system you have to make sure that it works together with ORCA in a reasonable way.

ò Note

Parallelization is a difficult undertaking and there are many different protocols that work differently for different
machines. Please understand that we can not provide support for each and every platform. We are trying our best
to make the parallelization transparent and provide executables for various platforms but we can not possibly
guarantee that they always work on every system. Please see the download information for details of the version.

10 Chapter 3. Calling the Program (Serial and Parallel)
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3.2.2 Hints on the Use of Parallel ORCA

Many questions that are asked in the discussion forum deal with the parallel version of ORCA. Please understand
that we cannot possibly provide one-on-one support for every parallel computer in the world. So please, make every
effort to solve the technical problems locally together with your system administrator. Here are some explanations
about what is special to the parallel version, which problems might arise from this and how to deal with them:

1. Parallel ORCA can be used with OpenMPI (on Linux and MAC) or MS-MPI (on windows) only. Please see
the download information for details of the relevant OpenMPI-version for your platform.

The OpenMPI version is configurable in a large variety of ways, which cannot be covered here. For a more
detailed explanation of all available options, cf. http://www.open-mpi.org

2. Please note that the OpenMPI version is dynamically linked, that is, it needs at runtime the OpenMPI libraries
(and several other standard libraries)! If you compile MPI on your own computer, you also need to have a
fortran compiler, as mpirun will contain fortran bindinngs.

(Remember to set PATH and LD_LIBRARY_PATH to mpirun and the mpi libraries)

3. Many problems arise, because parallel ORCA does not find its executables. To avoid this, it is crucial to call
ORCA with its complete pathname. The easiest and safest way to do so is to include the directory with the
orca-executables in your $PATH. Then start the calculation:

- interactively:
start orca with full path: "/mypath_orca_executables/orca MyMol.inp"

- batch :
set your path: `export PATH=/mypath_orca_executables:$PATH` (for bash) then
start orca with full path: "$PATH/orca $jobname.inp"

This seems redundant, but it really is important if you want to run a parallel calculation to call ORCA with
the full path! Otherwise it will not be able to find the parallel executables.

4. Assuming that the MPI libraries are installed properly on your computer, it is fairly easy to run the parallel
version of ORCA. You simply have to specify the number of parallel processes, like:

! PAL4 # everything from PAL2 to PAL8 and Pal16, Pal32, Pal64 is recognized

or

%pal nprocs 4 # any number (positive integer)
end

The parallelized modules of ORCA are started by the (serial) ORCA-Driver. If the driver finds PAL4 or %pal
nprocs 4 end (e.g.) in the input, it will start up the parallel modules instead of the serial ones. So - please
do not start the driver with mpirun! (Please see below for what else has to be taken care of for a successfull
parallel run.)

5. It is recommended to run orca in local (not nfs-mounted) scratch-directories, (/tmp1 or /usr/local e.g.)
and to renew these directories for each run to avoid confusion with left-overs of a previous run.

6. It has proven convenient to use “wrapper” scripts. These scripts should

- set the path
- create local scratch directories
- copy input files to the scratch directory
- start orca
- save your results
- remove the scratch directory

A basic example of such a submission script for the parallel ORCA version is shown below (this is for the
Torque/PBS queuing system, running on Apple Mac OS X):

3.2. Calling the Program with Multiple Processes 11

http://www.open-mpi.org


ORCA Manual, Release 6.0

#!/bin/zsh

setopt EXTENDED_GLOB
setopt NULL_GLOB
#export MKL_NUM_THREADS=1

b=${1:r}

#get number of procs.... close your eyes... (it really works!)
if [[ ${$(grep -e '^!' $1):u} == !*(#b)PAL(<0-9>##)* ]]; then
nprocs=$match

let "nodes=nprocs"
elif [[ ${(j: :) $(grep -v '^#' $1):u} == *%(#b)PAL*NPROCS' '#(<0-9>##)* ]]; then
nprocs=$match
let "nodes=nprocs"

fi

cat > ${b}.job <<EOF
#!/bin/zsh
#PBS -l nodes=1:ppn=${nodes:=1}
#PBS -S /bin/zsh
#PBS -l walltime=8760:00:00

setopt EXTENDED_GLOB
setopt NULL_GLOB
export PATH=$PBS_O_PATH

logfile=$PBS_O_WORKDIR/${b}.log
tdir=$(mktemp -d /Volumes/scratch/$USER/${b}__XXXXXX)

trap '
echo "Job terminated from outer space!" >> $logfile
rm -rf $tdir
exit
' TERM

cp $PBS_O_WORKDIR/$1 $tdir
foreach f ($PBS_O_WORKDIR/*.gbw $PBS_O_WORKDIR/*.pot) { cp $f $tdir }
cd $tdir

echo "Job started from ${PBS_O_HOST}, running on $(hostname) in $tdir using
$(which orca)" > $log
file
=orca $1 1>>$logfile 2>&1

cp ^(*.(inp|tmp*)) $PBS_O_WORKDIR/
rm -rf $tdir

EOF

qsub -j oe -o ${b}.job.out ${b}.job

7. Parallel ORCA distinguishes the following cases of disk availability:

• each process works on its own (private) scratch directory (the data on this directory cannot be seen by
any other process). This is flagged by “working on local scratch directories”

• all processes work in a common scratch directory (all processes can see all file-data) ORCA will dis-
tinguish two situations:

– all processes are on the same node - flagged by “working on a common directory”

– the processes are distributed over multiple nodes but accessing a shared filesysten - flagged by
“working on a shared directory”

12 Chapter 3. Calling the Program (Serial and Parallel)
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• there are at least 2 groups of processes on different scratch directories, one of the groups consisting of
more than 1 process - flagged by “working on distributed directories”

Parallel ORCA will find out, which of these cases exists and will handle the I/O respectively. If ORCA states
disk availability differently from what you would expect, check the number of available nodes and/or the
distribution pattern (fill_up/round_robin)

8. If Parallel ORCA finds a file named “MyMol.nodes” in the directory where it’s running, it will use the nodes
listed in this file to start the processes on, provided your input file was “MyMol.inp”. You can use this file
as your machinefile specifying your nodes, using the usual OpenMPI machinefile notation.

node1 cpu=2
node2 cpu=2

or

node1
node1
node2
node2

ò Note

If you run the parallel ORCA version on only one computer, you do not need to provide a nodefile, and
neither have to enable an rsh/ssh access, as in this case the processes will simply be forked! If you start
ORCA within a queueing system you also don’t need to provide a nodefile. The queueing system will
care for it.

9. It is possible to pass additional MPI-parameters to mpirun by adding these arguments to the ORCA call - all
arguments enclosed in a single pair of quotes:

/mypath_orca_executables/orca MyMol.inp "--bind-to core"

– or – for multiple arguments

/mypath_orca_executables/orca MyMol.inp "--bind-to core --verbose"

10. If the MPI-environment variables are not equally defined on all participating compute nodes it might be
advisable to export these variables. This can be achieved by passing the following additional parameters to
mpirun via the ORCA call:

/mypath_orca_executables/orca MyMol.inp "-x LD_LIBRARY_PATH -x PATH"

11. An additional remark on multi-process numerical calculations (frequencies, gradient, hybrid Hessian): The
processes that execute these calculations do not work in parallel, but independently, often in a totally asyn-
chronous manner. The numerical calculations will start as many processes, as you dedicated for the parallel
parts before and they will run on the same nodes. If your calculation runs on multiple nodes, you have to set
the environment variable RSH_COMMAND to either “rsh” or “ssh”. If RSH_COMMAND is not defined, ORCA
will abort. This prevents that all processes of a multi-node run are started on the ‘master’-node.

12. On multiple user request the ‘parallelization’ of NumCalc has been made more flexible. If before ORCA
would start nprocs displacements with a single process each, the user can now decide on how many processes
should work on a single displacement.

For this the nprocs keyword got a sibling:

%pal nprocs 32 # or nprocs_world - total number of parallel processes
nprocs_group 4 # - number of parallel processes per sub-task
end

3.2. Calling the Program with Multiple Processes 13
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This setting will ORCA make use 32 processes, with 4 processes working on the same displacement, thus
running 8 displacements simultaneously. The methods that can profit from this new feature are

• all NumCalc-methods: as NumGrad, NumFreq, VPT2, Overtones, NEB, and GOAT.

• the analytical Hessian, leading to a nice increase of parallel performance for really large calculations.

It is highly recommended to choose nprocs_group to be an integer divisor of nprocs_world!

For convenient use a couple of standard ‘groupings’ are made available via simple input keyword:

PAL4(2x2) - 2 groups a 2 workers
PAL8(4x2) - 4 groups a 2 workers
PAL8(2x4) - ...
PAL16(4x4)
PAL32(8x4)
PAL32(4x8)
PAL64(8x8)

ò Note

If your system-administration does not allow to connect via rsh/ssh to other compute nodes, you unfor-
tunately cannot make use of parallel sub-calculations within NumCalc runs. This affects NEB as well as
GOAT, VPT2, Overtone-and-Combination-Bands, as well as Numerical Frequencies and Gradients.
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FOUR

GENERAL STRUCTURE OF THE INPUT FILE

In general, the input file is a free format ASCII file and can contain one or more keyword lines that start with a
“!” sign, one or more input blocks enclosed between an “%” sign and “end” that provide finer control over specific
aspects of the calculation, and finally the specification of the coordinates for the system along with the charge and
multiplicity provided either with a %coords block, or more usually enclosed within two “*” symbols. Here is an
example of a simple input file that contains all three input elements:

! HF def2-TZVP

%scf
convergence tight

end

* xyz 0 1
C 0.0 0.0 0.0
O 0.0 0.0 1.13
*

Comments in the file start by a “#”. For example:

# This is a comment. Continues until the end of the line

Comments can also be closed by a second “#”, as the example below where TolE and TolMaxP are two variables
that can be user specified:

TolE=1e-5; #Energy conv.# TolMaxP=1e-6; #Density conv.#

The input may contain several blocks, which consist of logically related data that can be user controlled. The
program tries to choose sensible default values for all of these variables. However, it is impossible to give defaults
that are equally sensible for all systems. In general the defaults are slightly on the conservative side and more
aggressive cutoffs etc. can be chosen by the user and may help to speed things up for actual systems or give higher
accuracy if desired.

4.1 Input Blocks

The following blocks exist:

autoci Controls autogenerated correlation calculations
basis Basis sets are specified
casresp Control of CASSCF static linear response calculations
casscf Control of CASSCF/NEVPT2 and DMRG calculations
cipsi Control of Iterative-Configuration Expansion Configuration Interaction calculation
cim Control of Cluster In Molecules calculations
cis Control of CIS and TD-DFT calculations (synonym is tddft)
coords Input of atomic coordinates

continues on next page

15



ORCA Manual, Release 6.0

Table 4.1 – continued from previous page
compound Control of compound
cosmors Control of ORCA/COSMO-RS calculations
cpcm Control of the Conductor-like Polarizable Continuum Model
elprop Control of electric property calculations
eprnmr Control of EPR and NMR calculations
esd Control of ESD calculations
freq Control of frequency calculations
geom Control of geometry optimization
irc Control of intrinsic reaction coordinate calculations
loc Localization of orbitals
mcrpa Control CASSCF linear response calculations
md Control of molecular dynamics simulation
mdci Controls single reference correlation methods
method Here a computation method is specified
mp2 Controls the details of the MP2 calculation
mrcc Control of multi-reference CC calculations
mrci Control of MRCI calculations
neb Control of NEB calculations
numgrad Control of numerical gradients
nbo Controls NBO analysis with GENNBO
output Control of output
pal Control of parallel jobs
paras Input of semi-empirical parameters
plots Control of plot generation
rel Control of relativistic options
rocis Control of restricted-open-shell CIS
rr Control of resonance Raman and absorption/fluorescence band-shape calculations
scf Control of the SCF procedure
symmetry Control of spatial symmetry recognition

Blocks start with “%” and end with “end”. Note that input is not case sensitive. For example:

%method method HF
end

No blocks need to be present in an input file but they can be present if detailed control over the behavior of the
program is desired. Otherwise all normal jobs can be defined via the keywords described in the next section.
Variable assignments have the following general structure:

VariableName Value

Some variables are actually arrays. In this case several possible assignments are useful:

Array[1] Value1
Array[1] Value1,Value2,Value3
Array Value1,Value2

ò Note

Arrays always start with index 0 in ORCA (this is because ORCA is a C++ program). The first line in the
example gives the value “Value1” to Array[1], which is the second member of this array. The second line
assigns Value1 to Array[1], Value2 to Array[2] and Value3 to Array[3]. The third line assigns Value1
to Array[0] and Value2 to Array[1].

Strings (for examples filenames) must be enclosed in quotes. For example:
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MOInp "Myfile.gbw"

In general the input is not case sensitive. However, inside strings the input is case sensitive. This is because on unix
systems MYFILE.GBW and MyFile.gbw are different files. Under Windows the file names are not case sensitive.

4.2 Keyword Lines

It is possible to give a line of keywords that assign certain variables that normally belong to different input blocks.
The syntax for this “simple input” is line-oriented. A keyword line starts with the “!” sign.

! Keywords

4.2.1 Main Methods and Options

Table 4.2 provides a list of keywords that can be used within the “simple input” keyword line to request specific
methods and/or algorithmic options. Most of them are self-explanatory. The others are explained in detail in the
section of the manual that deals with the indicated input block.

Table 4.2: Main keywords that can be used in the simple input of ORCA.

Keyword Input block Variable Comment
HF METHOD METHOD Selects the Hartree-Fock method
DFT Selects the DFT method (see section Density Functional

Methods for a list of functionals)
FOD FOD analysis (see Fractional Occupation Number

Weighted Electron Density (FOD)) employing default set-
tings (TPSS/def2-TZVP, TightSCF, SmearTemp = 5000 K)

Runtypes

Keyword Input block Variable Comment
ENERGY or
SP

METHOD RUNTYP Selects a single point calculation

OPT Selects a geometry optimization calculation (using 2022 in-
ternal redundant coordinates)

COPT Optimization in Cartesian coordinates (if you are desperate)
ENGRAD Selects an energy and gradient calculation
NUMGRAD Numerical gradient (has explicitly to be asked for, if analytic

gradient is not available)
NUMFREQ Numerical frequencies
NUM-
NACME

Numerical non-adiabatic coplings (only for CIS/TD-DFT)

MD Molecular dynamic simulation
CIM Cluster-In-Molecule calculation
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Atomic mass/weight handling

Keyword Input block Variable Comment
Mass2016 METHOD AMASS Use the latest (2016) atomic masses of the most abundant or

most stable isotopes instead of atomic weights.
PAF Shift and rotate the molecule into its principle axis frame

using the 2016 atomic masses by default.

Symmetry handling

Keyword Input block Variable Comment
UseSym Turns on the use of molecular symmetry (see section ORCA

and Symmetry). THIS IS VERY RUDIMENTARY!
NoUseSym Turns symmetry off

Second order many body perturbation theory

Keyword Input block Variable Comment
MP2 Selects Method=HF and DoMP2=true
MP2RI or RI-MP2 Select the MP2-RI method
SCS-MP2 Spin-component scaled MP2
RI-SCS-MP2 Spin-component scaled RI-MP2

(synonym is SCS-RI-MP2)
OO-RI-MP2 Orbital optimized RI-MP2
OO-RI-SCS-MP2 Orbital optimized and spin-component scaled RI-MP2
MP2-F12 MP2 with F12 correction

(synonym is F12-MP2)
MP2-F12-RI MP2-RI with RI-F12 correction
MP2-F12D-RI MP2-RI with RI-F12 correction employing the D ap-

proximation (less expensive), (synonyms are F12-RI-
MP2, RI-MP2-F12)
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High-level single reference methods

These are implemented in the MDCI module. They can be run in a number of technical variants.

Keyword Input block Variable Comment
CCSD MDCI CITYPE Coupled-cluster singles and doubles
CCSD(T) Same with perturbative triples correction
CCSD-F12 CCSD with F12 correction
CCSD(T)-F12 CCSD(T) with F12 correction
CCSD-F12/RI CCSD with RI-F12 correction
CCSD-F12D/RI CCSD with RI-F12 correction employing the D ap-

proximation (less expensive)
CCSD(T)-F12/RI CCSD(T) with RI-F12 correction
CCSD(T)-F12D/RI CCSD(T) with RI-F12 correction employing the D ap-

proximation (less expensive)
QCISD Quadratic Configuration interaction
QCISD(T) Same with perturbative triples correction
QCISD-F12 QCISD with F12 correction
QCISD(T)-F12 QCISD(T) with F12 correction
QCISD-F12/RI QCISD with RI-F12 correction
QCISD(T)-F12/RI QCISD(T) with RI-F12 correction
NCPF/1 A “new” modified coupled-pair functional
CEPA/1 Coupled-electron-pair approximation
NCEPA/1 The CEPA analogue of NCPF/1
RI-CEPA/1-F12 RI-CEPA with F12 correction
MP3 MP3 energies
SCS-MP3 Grimme’s refined version of MP3

Other coupled-pair methods are available and are documented later in the manual in detail (section 7.8) In general
you can augment the method with RI-METHOD in order to make the density fitting approximation operative; RI34-
METHOD does the same but only for the 3- and 4-external integrals). MO-METHOD performs a full four index
transformation and AO-METHOD computes the 3- and 4-external contributions on the fly. With AOX-METHOD
this is is done from stored AO integrals.

AUTOCI single reference methods

These single reference correlation methods are available in the AUTOCI.

4.2. Keyword Lines 19



ORCA Manual, Release 6.0

Keyword Input block Variable Comment
AUTOCI-CID AUTOCI CITYPE Configuration Interaction with doubles
AUTOCI-CISD CI with singles and doubles
AUTOCI-CISDT CI with singles, doubles and triples
AUTOCI-CEPA(0) Zeroth-order Coupled-Electron pair approximation
AUTOCI-CCD Coupled-Cluster with doubles
AUTOCI-CCSD Coupled-Cluster with singles, doubles
AUTOCI-CCSDT Coupled-Cluster with singles, doubles, triples
AUTOCI-CCSDT-
1

Approximate CCSDT-1 model

AUTOCI-CCSDT-
2

Approximate CCSDT-2 model

AUTOCI-CCSDT-
3

Approximate CCSDT-3 model

AUTOCI-CCSDT-
4

Approximate CCSDT-4 model

AUTOCI-QCISD Quadratic CISD model
AUTOCI-CC2 Approximate CC with singles, doubles
AUTOCI-CC3 Approximate CC with singles, doubles, triples
AUTOCI-
CCSD(T)

Coupled-Cluster with singles, doubles and pertubative
triples

AUTOCI-
CCSD[T]

Coupled-Cluster with singles, doubles and pertubative
triples

AUTOCI-MP2 Second-order Moller-Plesset PT
AUTOCI-MP3 Third-order Moller-Plesset PT
AUTOCI-
MP4(SDQ)

Fourth-order Moller-Plesset PT without triples

AUTOCI-MP4 Forth-order Moller-Plesset PT
AUTOCI-MP5 Fifth-order Moller-Plesset PT

Local correlation methods

These are local, pair natural orbital based correlation methods. They must be used together with auxiliary corre-
lation fitting basis sets. Open-shell variants are available for some of the methods, for full list please see section
Coupled-Cluster and Coupled-Pair Methods.
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Keyword Input block Variable Comment
DLPNO-CCSD Domain based local pair natural orbital coupled-

cluster method with single and double excitations
(closed-shell only)

DLPNO-CCSD(T) DLPNO-CCSD with perturbative triple excitations
DLPNO-
CCSD(T1)

DLPNO-CCSD with iterative perturbative triple exci-
tations

DLPNO-MP2 MP2 Various Local (DLPNO) MP2
DLPNO-SCS-MP2 Spin-component scaled DLPNO-MP2

(a synonym is SCS-DLPNO-MP2)
DLPNO-MP2-F12 DLPNO-MP2 with F12 correction employing an effi-

cient form of the C approximation
DLPNO-MP2-
F12/D

DLPNO-MP2-F12 with approach D (less expensive
than the C approximation)

DLPNO-CCSD-
F12

DLPNO-CCSD with F12 correction employing an ef-
ficient form of the C approximation

DLPNO-CCSD-
F12/D

DLPNO-CCSD-F12 with approach D (less expensive
than the C approximation)

DLPNO-
CCSD(T)-F12

DLPNO-CCSD(T) with F12 correction employing an
efficient form of the C approximation

DLPNO-
CCSD(T)-F12/D

DLPNO-CCSD(T)-F12 with approach D (less expen-
sive than the C approximation)

DLPNO-
CCSD(T1)-F12

DLPNO-CCSD(T1) with F12 correction employing
an efficient form of the C approximation

DLPNO-
CCSD(T1)-F12/D

DLPNO-CCSD(T1)-F12 with approach D (less expen-
sive than the C approximation)

DLPNO-NEVPT2 DLPNO-NEVPT2 requires a CASSCF block

Accuracy control for local correlation methods

These keywords select predefined sensible sets of thresholds to control the accuracy of DLPNO calculations. See
the corresponding sections on local correlation methods for more details.

Keyword Input block Variable Comment
LoosePNO MDCI, MP2 Various Selects loose DLPNO thresholds
NormalPNO Selects default DLPNO thresholds
TightPNO Selects tight DLPNO thresholds
DLPNO-HFC1 Tightened truncation setting for DLPNO-CCSD

hyperfine coupling constants calculation
DLPNO-HFC2 Tighter truncation setting than for DLPNO-

HFC1
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Automatic basis set extrapolation

Keyword Input block Variable Comment
Extrapolate (n/m,
bas)

Extrapolation of the basis set family “bas”
(bas=cc,aug-cc, cc-core, ano, saug-ano, aug-ano,
def2; if omitted “cc-pV𝑛Z” is used) for cardinal
numbers n,m (n<m=2,3,4,5), e.g. Extrapolate(2/3,cc)
extrapolates the SCF, MP2 and MDCI energies to
the basis set limit. “core” refers to basis sets with
core correlation function. In this case the frozen core
approximation is - by default - turned off. This setting
can be overridden in the “methods” block if one
just wants to use the basis set with core correlation
functions (steep primitives) but without unfreezing
the core electrons.

Extrapolate (n, bas) Calculate the first n-energies for member of the basis
set family basis, e.g. Extrapolate(3) is doing calcula-
tions with cc-pVDZ, cc-pVTZ and cc-pVQZ.

Extrapola-
teEP2 (n/m,
bas,[method,method-
details])

Similar: performs SCF, MP2 and MDCI calculations.
The higher basis set can only be done with DLPNO-
CCSD(T) or MP2 methods and then used to extrapo-
late the MDCI calculation to the basis set limit.

ExtrapolateEP3
(bas,[method,method-
details])

Similar to EP2: for the high basis set method we go
one cardinal number higher.

High-level methods for excited states as implemented in the MDCI module

An additional block input to define the number of roots is required. The EOM family of methods feature IP and
EA extensions. The list below is incomplete as some methods need more refined settings such as the Hilbert space
MRCC approaches (MkCCSD/BWCCSD). Note that excited states can also be computed with CIS, RPA, ROCIS
and TD-DFT. Please check the excited states section of the manual for details.

Keyword Input block Variable Comment
EOM-CCSD MDCI NRoots Equation of Motion CCSD
bt-PNO-EOM-CCSD back-transformed PNO approximation
STEOM-CCSD Similarity Transformed Equation of Motion CCSD
bt-PNO-STEOM-CCSD back-transformed PNO approximation
STEOM-DLPNO-CCSD DLPNO approximation
IH-FSMR-CCSD Fock-Space CCSD using an intermediate Hamiltonian
bt-PNO-IH-FSMR-CCSD back-transformed PNO approximation
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CASSCF related options

All of them require the CASSCF block as minimal input.

Keyword Input block Variable Comment
DMRG CASSCF CIStep Sets DMRG as “CIStep” in CASSCF
NEVPT2 PTMethod SC NEVPT2
SC-NEVPT2 SC-NEVPT2 same as NEVPT2
RI-NEVPT2 SC-NEVPT2 with the RI approximation
FIC-NEVPT2 FIC-NEVPT2 aka PC-NEVPT2
DLPNO-NEVPT2 FIC-NEVPT2 in the framework of DLPNO
CASPT2 FIC-CASPT2
RI-CASPT2 FIC-CASPT2 with the RI approximation
DCD-CAS(2) DCD-CAS 2nd order Dynamic Correlation Dressed CAS
RI-DCD-CAS(2) 2nd order Dynamic Correlation Dressed CAS with RI

approximation

(internally contracted) Multireference methods beyond NEVPT2/CASPT2

If specified in a single keyword all information about reference spaces, number of roots etc. is taken from the
CASSCF module that is assumed to be run in advance. These methods reside in the autoci module. More refined
settings require the autoci block in the input.

Keyword Input block Variable Comment
FIC-MRCI AUTOCI CIType Invokes the fully internally contracted MRCI
FIC-DDCI3 Fully internally contracted DDCI3
FIC-DDCI3-C0 Fully internally contracted DDCI3-C0
FIC-CEPA(0) Fully internally contracted CEPA(0)
FIC-ACPF Fully internally contracted ACPF
FIC-AQCC Fully internally contracted AQCC
FIC-MRCC Fully internally contracted MRCCSD

(uncontracted) Multireference methods

If specified in a single keyword all information about reference spaces, number of roots etc. is taken from the
CASSCF module that is assumed to be run in advance. In general, these calculations are of the individually
selecting type and are very time consuming. Very many flags can be set and modified for these methods and in
general using these methods requires expert users! In general see the variables Tsel, Tpre and Tnat that define the
individual selection process. All of these methods can be used with RI integrals by using RI-MRCI etc. However,
then the calculations become even more time consuming since integrals are made one- by one on the fly. Non-RI
calculations will be pretty much limited to about 200-300 orbitals that are included in the CI.
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Keyword Input block Variable Comment
MRCI MRCI CIType Initiates a multireference configuration interaction cal-

culation with single and double excitations
MRCI+Q Same with multireference Davidson correction for un-

linked quadruples
MRACPF Average coupled-pair functional
MRAQCC Average quadratic coupled-cluster
MRDDCI1 Difference dedicated CI with one degree of freedom
MRDDCI2 Same with two degrees of freedom
MRDDCI3 Same with three degrees of freedom
MRDDCI𝑛+Q MRDDCI with Davidson correction
SORCI Spectroscopy oriented CI

Frozen core features

ò Note

This deviates from previous versions of ORCA! We are now counting core electrons rather than using an
energy window. If you do want to use an orbital energy window use %method FrozenCore FC_EWIN end.
Otherwise the EWin commands will be ignored! (alternatives are FC_ELECTRONS(default) and FC_NONE).

Keyword Input
block

Vari-
able

Comment

FROZEN-
CORE

METHOD Frozen-
Core

Use a frozen core. By default this is done by counting the number of
chemical core electrons

NOFROZEN-
CORE

Do not use a frozen core

Semiempirical methods

Keyword Input block Variable Comment
ZINDO/S Selects the ZINDO/S method
ZINDO/1 Selects the ZINDO/1 method
ZINDO/2 Selects the ZINDO/2 method
NDDO/1 Selects the NDDO/1 method
NDDO/2 Selects the NDDO/2 method
MNDO Selects the MNDO method
AM1 Selects the AM1 method
PM3 Selects the PM3 method
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Algorithmic variations, options, add-ons, modifiers, . . .

Keyword Input block Variable Comment
RHF or RKS SCF HFTYP Selects closed-shell SCF
UHF or UKS Selects spin unrestricted SCF
ROHF or
ROKS

Selects open-shell spin restricted SCF

AllowRHF METHOD ALLOWRHF Allow a RHF calculation even if the system is open-shell
(Mult>1). Default is to switch to UHF then

RI METHOD RI Sets RI=true to use the RI approximation in DFT calculations.
Default to Split-RI-J

NORI Sets RI=false
RIJCOSX METHOD/

SCF
RI, KMatrix Sets the flag for the efficient RIJCOSX algorithm (treat the

Coulomb term via RI and the Exchange term via seminumerical
integration)

RI-JK METHOD/
SCF

RI, KMatrix Sets the flag for the efficient RI algorithm for Coulomb and Ex-
change. Works for SCF (HF/DFT) energies and gradients. Works
direct or conventional.

SPLITJ SCF JMATRIX Select the efficient Split-J procedure for the calculation of the
Coulomb matrix in non-hybrid DFT (rarely used)

SPLIT-RI-J SCF JMATRIX, RI Select the efficient Split-RI-J procedure for the improved evalua-
tion of the RI-approximation to the Coulomb-matrix

NoSplit-RI-J SCF JMATRIX, RI Turns the Split-RI-J feature off (but does not set the RI flag to
false!)

RI-J-XC SCF JMATRIX, KMA-
TRIX, RI

Turn on RI for the Coulomb term and the XC terms. This saves
time when the XC integration is significant but introduces another
basis set incompleteness error. (rarely used)

DIRECT SCF SCFMODE Selects an integral direct calculation
CONV Selects an integral conventional calculation
NOITER SCF MAXITER Sets the number of SCF iterations to 0. This works together with

MOREAD and means that the program will work with the pro-
vided starting orbitals.

Initial guess options

In most cases the default PMODEL guess will be adequate. In some special situations you may want to switch to
a different choice.

Keyword Input block Variable Comment
PATOM SCF GUESS Selects the polarized atoms guess
PMODEL Selects the model potential guess
HUECKEL Selects the extended Hückel guess
HCORE Selects the one-electron matrix guess
MOREAD Read MOs from a previous calulation (use

%moinp "myorbitals.gbw" in a separate line
to specify the GBW file that contains these MOs
to be read)

AUTOSTART AUTOSTART Try to start from the existing GBW file of the
same name as the present one (only for single-
point calculations)

NOAUTOSTART Don’t try to do that
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Basis-set related keywords

Keyword Input block Variable Comment
DecontractBas BASIS DecontractBas Decontract the basis set. If the basis set

arises from general contraction, duplicate
primitives will be removed.

NoDecontractBas NoDecontractBas Do not decontract the basis set
DecontractAuxJ DecontractAuxJ Decontract the AuxJ basis set
NoDecontractAuxJ NoDecontractAuxJ Do not decontract the AuxJ basis
DecontractAuxJK DecontractAuxJK Decontract the AuxJK basis set
NoDecontractAuxJK NoDecontractAuxJK Do not decontract the AuxJK basis
DecontractAuxC DecontractAuxC Decontract the AuxC basis set
NoDecontractAuxC NoDecontractAuxC Do not decontract the AuxC basis
Decontract Decontract Decontract all (orbital and auxiliary) basis

sets

Relativistic options

There are several variants of scalar relativistic Hamiltonians to use in all electron calculations. See Relativistic
Options for details.

Keyword Input block Variable Comment
DKH or
DKH2

REL METHOD/ORDER Selects the scalar relativistic Dou-
glas–Kroll–Hess Hamiltonian of 2nd order

ZORA REL METHOD Selects the scalar relativistic ZORA Hamiltonian
X2C REL METHOD Selects the scalar relativistic X2C Hamiltonian
DLU-X2C REL METHOD/DLU Selects the scalar relativistic X2C Hamiltonian

with the diagonal local approximation to the uni-
tary transformation matrix

Grid options

Keyword Input block Variable Comment
DEFGRID𝑛 (𝑛 = 1–3) METHOD GRID Selects the integration grids
NOFINALGRIDX Turn off the final grid in COSX (not recommended)

Convergence thresholds

These keywords control how tightly the SCF and geometry optimizations will be converged. The program makes
an effort to set the convergence thresholds for correlation modules consistently with that of the SCF.
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Keyword Input block Variable Comment
NORMALSCF SCF CONVERGENCE Selects normal SCF convergence
LOOSESCF Selects loose SCF convergence
SLOPPYSCF Selects sloppy SCF convergence
STRONGSCF Selects strong SCF convergence
TIGHTSCF Selects tight SCF convergence
VERYTIGHTSCF Selects very tight SCF convergence
EXTREMESCF Selects “extreme” convergence. All thresholds

are practically reduced to numerical precision of
the computer. Only for benchmarking (very ex-
pensive).

SCFCONV𝑛 Selects energy convergence check and sets𝐸𝑇𝑜𝑙
to 10−𝑛 (𝑛 = 6–10). Also selects appropriate
thresh, tcut, and bfcut values.

VERYTIGHTOPT GEOM TolE, TolRMSG Selects very tight optimization convergence
TIGHTOPT TolMaxG Selects tight optimization convergence
NORMALOPT TolRMSD, Tol-

MaxD
Selects default optimization convergence

LOOSEOPT Selects loose optimization convergence

Convergence acceleration

The default is DIIS which is robust. For most closed-shell organic molecules SOSCF converges somewhat bet-
ter and might be a good idea to use. For “trailing convergence”, KDIIS or the trust-region augmented Hessian
procedures TRAH-SCF might be good choices.

Keyword Input block Variable Comment
DIIS SCF DIIS Turns DIIS on
NODIIS Turns DIIS off
KDIIS SCF KDIIS Turns Kollmar’s DIIS on
TRAH SCF TRAH Turns trust-region augmented Hessian SCF on
NOTRAH Turns trust-region augmented Hessian SCF off
SOSCF SCF SOSCF Turns SOSCF on
NOSOSCF Turns SOSCF off
DAMP SCF CNVDAMP Turns damping on
NODAMP Turns damping off
LSHIFT SCF CNVSHIFT Turns level shifting on
NOLSHIFT Turns level shifting off
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Convergence strategies

(does not modify the convergence criteria)

Keyword Input block Variable Comment
EasyConv Assumes no convergence problems.
NormalConv Normal convergence criteria.
SlowConv Selects appropriate SCF converger criteria for difficult

cases. Most transition metal complexes fall into this
category.

VerySlowConv Selects appropriate SCF converger criteria for very
difficult cases.

CPCM(solvent) CPCM Invoke the conductor-like polarizable contin-
uum model with a standard solvent (see section
[sec:solvationmodels.detailed] for a list of solvents).
If no solvent is given, infinity (a conductor) is as-
sumed.

Spin-orbit coupling

Keyword Input block Variable Comment
SOMF(1X) REL SOCType,

SOCFlags
Invokes the SOMF(1X) treatment of the spin-orbit
coupling operator.

RI-SOMF(1X) Invokes the SOMF(1X) treatment of the spin-orbit
coupling operator, with RI for the Coulomb part.

SOMF(4X) REL SOCType,
SOCFlags

Invokes the SOMF(4X) treatment of the spin-orbit
coupling operator.

RI-SOMF(4X) Invokes the SOMF(4X) treatment of the spin-orbit
coupling operator, with RI for the Coulomb part.

SOMF(4XS) REL SOCType,
SOCFlags

Invokes the SOMF(4XS) treatment of the spin-orbit
coupling operator.

RI-SOMF(4XS) Invokes the SOMF(4XS) treatment of the spin-orbit
coupling operator, with RI for the Coulomb part.

VEFF-SOC Invokes the VEFF-SOC treatment of the spin-orbit
coupling operator.

VEFF(-2X)-SOC Invokes the VEFF(-2X)-SOC treatment of the spin-
orbit coupling operator.

AMFI Invokes the AMFI treatment of the spin-orbit coupling
operator.

ZEFF-SOC Uses effective nuclear charges for the spin-orbit cou-
pling operator.
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Miscellaneous options

Keyword Input block Variable Comment
ANGS COORDS UNITS Select angstrom units
BOHRS Select input coordinates in atomic units
FRACOCC SCF FRACOCC Turns the fractional occupation option on (FOD is always

calculated in this case)
NoPropFile Method Method Turns writing to property file off. By default is on for every-

thing, except MD and L-Opt calculations
SMEAR SCF SMEART-

EMP
Temperature for occupation number smearing on (default is
5000 K; FOD (see Fractional Occupation Number Weighted
Electron Density (FOD)) is always calculated in this case)

NOSMEAR Turn occupation number smearing off
KEEPINTS SCF KEEPINTS Keep two electron integrals on disk
NOKEEP-
INTS

Do not keep two electron integrals

KEEPDENS SCF KEEPDENS Keep the density matrix on disk
NOKEEP-
DENS

Do not keep the density matrix

KEEP-
TRANS-
DENSITY

KEEP-
TRANS-
DENSITY

Keep the transition density matrices on disk

READINTS SCF READINTS Reading of two electron integrals on
NOREAD-
INTS

Reading of two electron integrals off

CHEAPINTS SCF USECHEAP-
INTS

Use the cheap integral feature in direct SCF calculations

NOCHEAP-
INTS

Turn that feature off

FLOAT SCF VALFOR-
MAT

Set storage format for numbers to single precision (SCF, RI-
MP2, CIS, CIS(D), MDCI)

DOUBLE SCF VALFOR-
MAT

Set storage format for numbers to double precision (default)

UCFLOAT SCF VALFOR-
MAT COM-
PRESSION

Use float storage in the matrix containers without data com-
pression

CFLOAT SCF VALFOR-
MAT COM-
PRESSION

Use float storage in the matrix containers with data compres-
sion

UCDOUBLE SCF VALFOR-
MAT COM-
PRESSION

Use double storage in the matrix containers without data
compression

CDOUBLE SCF VALFOR-
MAT COM-
PRESSION

Use double storage in the matrix containers with data com-
pression
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Output control

Keyword Input block Variable Comment
NORMALPRINT OUTPUT PRINTLEVEL Selects the normal output
MINIPRINT Selects the minimal output
SMALLPRINT Selects the small output
LARGEPRINT Selects the large output
PRINTMOS OUTPUT Print[p_MOS] Prints MO coefficients
NOPRINTMOS OUTPUT Suppress printing of MO coefficients
PRINTBASIS OUTPUT Print[p_basis] Print the basis set in input format
PRINTGAP OUTPUT Print[p _homolu-

mogap]
Prints the HOMO/LUMO gap in each SCF itera-
tion. This may help to detect convergence prob-
lems

ALLPOP OUTPUT Print[. . . ] Turns on all population analysis
NOPOP Turns off all populaton analysis
MULLIKEN Turns on the Mulliken analysis
NOMULLIKEN Turns off the Mulliken analysis
LOEWDIN Turns on the Loewdin analysis
NOLOEWDIN Turns off the Loewdin analysis
MAYER Turns on the Mayer analysis
NOMAYER Turns off the Mayer analysis
NPA Turns on interface for the NPA analysis using the

GENNBO program
NBO Turns on the interface for the NPA plus NBO

analysis with the GENNBO program
NONPA Turns off NPA analysis
NONBO Turns of NBO analysis
REDUCEDPOP Prints Loewdin reduced orb.pop per MO
NOREDUCED-
POP

Turns this feature off

UNO SCF UNO Produce UHF natural orbitals
AIM Produce a WFN file
XYZFILE OUTPUT XYZFILE Produce an XYZ coordinate file
PDBFILE PDBFILE Produce a PDB file

Nudged Elastic Band methods

Keyword Input block Variable Comment
NEB Selects standard NEB method
ZOOM-NEB ZOOM-NEB method
NEB-IDPP Initial path NEB calculation
NEB-CI Climbing image NEB calculation
ZOOM-NEB-CI Zoom version of NEB-CI
NEB-MMFTS NEB + subsequent MMF-TS optimization
NEB-TS NEB + subsequent transition state optimization
ZOOM-NEB-TS ZOOM-NEB + subsequent transition state optimiza-

tion
FLAT-NEB-TS
FAST-NEB-TS NEB with one iteration + subsequent transtion state

optimization
LOOSE-NEB-TS
TIGHT-NEB-TS Select tight convergence criteria
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Compression and storage

The data compression and storage options deserve some comment: in a number of modules including RI-MP2,
MDCI, CIS, (D) correction to CIS, etc. the program uses so called “Matrix Containers”. This means that the data
to be processed is stored in terms of matrices in files and is accessed by a double label. A typical example is the
exchange operator Kij with matrix elements𝐾𝑖𝑗(𝑎, 𝑏) = (𝑖𝑎|𝑗𝑏). Here the indices 𝑖 and 𝑗 refer to occupied orbitals
of the reference state and 𝑎 and 𝑏 are empty orbitals of the reference state. Data of this kind may become quite large
(formally𝑁4 scaling). To store the numbers in single precision cuts down the memory requirements by a factor of
two with (usually very) slight loss in precision. For larger systems one may also gain advantages by also compress-
ing the data (e.g. use a “packed” storage format on disk). This option leads to additional packing/unpacking work
and adds some overhead. For small molecules UCDOUBLE is probably the best option, while for larger molecules
UCFLOAT or particularly CFLOAT may be the best choice. Compression does not necessarily slow the calculation
down for larger systems since the total I/O load may be substantially reduced and thus (since CPU is much faster
than disk) the work of packing and unpacking takes less time than to read much larger files (the packing may reduce
disk requirements for larger systems by approximately a factor of 4 but it has not been extensively tested so far).
There are many factors contributing to the overall wall clock time in such cases including the total system load. It
may thus require some experimentation to find out with which set of options the program runs fastest with.

³ Caution

• It is possible that FLOAT may lead to unacceptable errors. Thus it is not the recommended option when
MP2 or RI-MP2 gradients or relaxed densities are computed. For this reason the default is DOUBLE.

• If you have convinced yourself that FLOAT is OK, it may save you a factor of two in both storage and
CPU.

Global memory use

Some ORCA modules (in particular those that perform some kind of wavefunction based correlation calculations)
require large scratch arrays. Each module has an independent variable to control the size of these dominant scratch
arrays. However, since these modules are never running simultaneously, we provide a global variable MaxCore
that assigns a certain amount of scratch memory to all of these modules. Thus:

%MaxCore 4000

sets 4000 MB (= 4 GB) as the limit for these scratch arrays. This limit applies per processing core. Do not be
surprised if the program takes more than that – this size only refers to the dominant work areas. Thus, you are
well advised to provide a number that is significantly less than your physical memory. Note also that the memory
use of the SCF program cannot be controlled: it dynamically allocates all memory that it needs and if it runs out
of physical memory you are out of luck. This, however, rarely happens unless you run on a really small memory
computer or you are running a gigantic job.
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4.2.2 Density Functional Methods

For density functional calculations a number of standard functionals can be selected via the “simple input” feature.
Since any of these keywords will select a DFT method, the keyword “DFT” is not needed in the input. Further func-
tionals are available via the %method block. References are given in Section [sec:model.dft.functionals.detailed]

Local and gradient corrected functionals

HFS Hartree–Fock–Slater Exchange only functional
LDA or LSD Local density approximation (defaults to VWN5)
VWN or VWN5 Vosko-Wilk-Nusair local density approx. parameter set “V”
VWN3 Vosko-Wilk-Nusair local density approx. parameter set “III”
PWLDA Perdew-Wang parameterization of LDA
BP86 or BP Becke ‘88 exchange and Perdew ‘86 correlation
BLYP Becke ‘88 exchange and Lee-Yang-Parr correlation
OLYP Handy’s “optimal” exchange and Lee-Yang-Parr correlation
GLYP Gill’s ‘96 exchange and Lee-Yang-Parr correlation
XLYP The Xu and Goddard exchange and Lee-Yang-Parr correlation
PW91 Perdew-Wang ‘91 GGA functional
mPWPW Modified PW exchange and PW correlation
mPWLYP Modified PW exchange and LYP correlation
PBE Perdew-Burke-Erzerhoff GGA functional
RPBE “Modified” PBE
REVPBE “Revised” PBE
RPW86PBE PBE correlation with refitted Perdew ‘86 exchange
PWP Perdew-Wang ‘91 exchange and Perdew ‘86 correlation

Hybrid functionals

B1LYP The one-parameter hybrid functional with Becke ‘88 exchange and Lee-Yang-Parr correlation
(25% HF exchange)

B3LYP and
B3LYP/G

The popular B3LYP functional (20% HF exchange) as defined in the TurboMole program
system and the Gaussian program system, respectively

O3LYP The Handy hybrid functional
X3LYP The Xu and Goddard hybrid functional
B1P The one-parameter hybrid version of BP86
B3P The three-parameter hybrid version of BP86
B3PW The three-parameter hybrid version of PW91
PW1PW One-parameter hybrid version of PW91
mPW1PW One-parameter hybrid version of mPWPW
mPW1LYP One-parameter hybrid version of mPWLYP
PBE0 One-parameter hybrid version of PBE
REVPBE0 “Revised” PBE0
REVPBE38 “Revised” PBE0 with 37.5% HF exchange
BHANDHLYP Half-and-half hybrid functional by Becke
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Meta-GGA and hybrid meta-GGA functionals

TPSS The TPSS meta-GGA functional
TPSSh The hybrid version of TPSS (10% HF exchange)
TPSS0 A 25% exchange version of TPSSh that yields improved energetics
M06L The Minnesota M06-L meta-GGA functional
M06 The M06 hybrid meta-GGA (27% HF exchange)
M062X The M06-2X version with 54% HF exchange
PW6B95 Hybrid functional by Truhlar
B97M-V Head-Gordon’s DF B97M-V with VV10 nonlocal correlation
B97M-D3BJ Modified version of B97M-V with D3BJ correction by Najibi and Goerigk
B97M-D4 Modified version of B97M-V with DFT-D4 correction by Najibi and Goerigk
SCANfunc Perdew’s SCAN functional
r2SCAN Regularized and restored SCAN functional by Furness, Sun et. al.
r2SCANh Global hybrid variant of 𝑟2 SCAN with 10% HF exchange
r2SCAN0 Global hybrid variant of 𝑟2 SCAN with 25% HF exchange
r2SCAN50 Global hybrid variant of 𝑟2 SCAN with 50% HF exchange

Range-separated hybrid functionals

wB97 Head-Gordon’s fully variable DF 𝜔B97
wB97X Head-Gordon’s DF 𝜔B97X with minimal Fock exchange
wB97X-D3 Chai’s refit incl. D3 in its zero-damping version
wB97X-D4 Modified version of 𝜔B97X-V with DFT-D4 correction by Najibi and Goerigk
wB97X-D4rev Modified version of 𝜔B97X-V with DFT-D4 correction by Grimme et al.
wB97X-V Head-Gordon’s DF 𝜔B97X-V with VV10 nonlocal correlation
wB97X-D3BJ Modified version of 𝜔B97X-V with D3BJ correction by Najibi and Goerigk
wB97M-V Head-Gordon’s DF 𝜔B97M-V with VV10 nonlocal correlation
wB97M-D3BJ Modified version of 𝜔B97M-V with D3BJ correction by Najibi and Goerigk
wB97M-D4 Modified version of 𝜔B97M-V with DFT-D4 correction by Najibi and Goerigk
wB97M-D4rev Modified version of 𝜔B97M-V with DFT-D4 correction by Grimme et al.
CAM-B3LYP Handy’s fit
LC-BLYP Hirao’s original application
LC-PBE range-separated PBE-based hybrid functional with 100% Fock exchange in the long-

range regime
wr2SCAN Range-separated hybrid variant of 𝑟2 SCAN with 0-100% HF exchange

Perturbatively corrected double-hybrid functionals

Add the prefix RI- or DLPNO- to use the respective approximation for the MP2 part.
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B2PLYP Grimme’s mixture of B88, LYP, and MP2
mPW2PLYP mPW exchange instead of B88, which is supposed to improve on weak interac-

tions.
B2GP-PLYP Gershom Martin’s “general purpose” reparameterization
B2K-PLYP Gershom Martin’s “kinetic” reparameterization
B2T-PLYP Gershom Martin’s “thermochemistry” reparameterization
PWPB95 Goerigk and Grimme’s mixture of modified PW91, modified B95, and SOS-

MP2
PBE-QIDH Adamo and co-workers’ “quadratic integrand” double hybrid with PBE ex-

change and correlation
PBE0-DH Adamo and co-workers’ PBE-based double hybrid
DSD-BLYP Gershom Martin’s “general purpose” double-hybrid with B88 exchange, LYP

correlation and SCS-MP2 mixing, i.e. not incl. D3BJ correction
DSD-PBEP86 Gershom Martin’s “general purpose” double-hybrid with PBE exchange, P86

correlation and SCS-MP2 mixing, i.e. not incl. D3BJ correction
DSD-PBEB95 Gershom Martin’s “general purpose” double-hybrid with PBE exchange, B95

correlation and SCS-MP2 mixing, i.e. not incl. D3BJ correction
revDSD-PBEP86/2021,
revDSD-PBEP86-D4/2021

Double-Hybrid Functional with with PBE exchange, B95 correlation and SCS-
MP2 Mixing

revDOD-PBEP86/2021,
revDOD-PBEP86-D4/2021

Double-Hybrid Functional with with PBE exchange, B95 correlation and SOS-
MP2 Mixing

Pr2SCAN50 Global SOS-double-hybrid variant of 𝑟2 SCAN with 50% HF exchange
Pr2SCAN69 Global SOS-double-hybrid variant of 𝑟2 SCAN with 69% HF exchange
kPr2SCAN50 Global SOS-double-hybrid variant of 𝑟2 SCAN with 50% HF exchange and

kappa-regularized MP2

Range-separated double-hybrid functionals

Add the prefix RI- or DLPNO- to use the respective approximation for the MP2 part.

wB2PLYP Goerigk and Casanova-Páez’s range-separated DHDF, with the correlation
contributions based on B2PLYP, optimized for excitation energies

wB2GP-PLYP Goerigk and Casanova-Páez’s range-separated DHDF, with the correlation
contributions based on B2GP-PLYP, optimized for excitation energies

RSX-QIDH range-separated version of the PBE-QIDH double-hybrid by Adamo and co-
workers

RSX-0DH range-separated version of the PBE-0DH double-hybrid by Adamo and co-
workers

wB88PP86 Casanova-Páez and Goerigk’s range-separated DHDF based on Becke88 ex-
change and P86 correlation, optimized for excitation energies

wPBEPP86 Casanova-Páez and Goerigk’s range-separated DHDF based on PBE ex-
change and P86 correlation, optimized for excitation energies

wB97M(2) Mardirossian and Head-Gordon’s 𝜔B97M(2) range-separated meta-GGA
DHDF including VV10 non-local correlation: must be used with 𝜔B97M-V
orbitals! See DFT Calculations with Second Order Perturbative Correction
(Double-Hybrid Functionals).

wPr2SCAN50 Range-separated SOS-double-hybrid variant of 𝑟2 SCAN with 50-100% HF
exchange
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Global and range-separated double-hybrid functionals with spin-component and spin-opposite
scaling

Add the prefix RI- or DLPNO- to use the respective approximation for the MP2 part.

wB97X-2 Chai and Head-Gordon’s 𝜔B97X-2(TQZ) range-separated GGA-based
DHDF with spin-component scaling

SCS/SOS-B2PLYP21 spin-opposite scaled version of B2PLYP optimized for excited states by
Casanova-Páez and Goerigk (SCS fit gave SOS version; SOS only applies
to the CIS(D) component)

SCS-PBE-QIDH spin-component scaled version of PBE-QIDH optimized for excited states by
Casanova-Páez and Goerigk (SCS only applies to the CIS(D) component)

SOS-PBE-QIDH spin-opposite scaled version of PBE-QIDH optimized for excited states by
Casanova-Páez and Goerigk (SOS only applies to the CIS(D) component)

SCS-B2GP-PLYP21 spin-component scaled version of B2GP-PLYP optimized for excited states
by Casanova-Páez and Goerigk (SCS only applies to the CIS(D) component)

SOS-B2GP-PLYP21 spin-opposite scaled version of B2GP-PLYP optimized for excited states by
Casanova-Páez and Goerigk (SOS only applies to the CIS(D) component)

SCS/SOS-wB2PLYP spin-opposite scaled version of 𝜔B2PLYP optimized for excited states by
Casanova-Páez and Goerigk (SCS fit gave SOS version; SOS only applies
to the CIS(D) component)

SCS-wB2GP-PLYP spin-component scaled version of 𝜔B2GP-PLYP optimized for excited states
by Casanova-Páez and Goerigk (SCS only applies to the CIS(D) component)

SOS-wB2GP-PLYP spin-opposite scaled version of 𝜔B2GP-PLYP optimized for excited states by
Casanova-Páez and Goerigk (SOS only applies to the CIS(D) component)

SCS-RSX-QIDH spin-component scaled version of RSX-QIDH optimized for excited states by
Casanova-Páez and Goerigk (SCS only applies to the CIS(D) component)

SOS-RSX-QIDH spin-opposite scaled version of RSX-QIDH optimized for excited states by
Casanova-Páez and Goerigk (SOS only applies to the CIS(D) component)

SCS-wB88PP86 spin-component scaled version of 𝜔B88PPBE86 optimized for excited states
by Casanova-Páez and Goerigk (SCS only applies to the CIS(D) component)

SOS-wB88PP86 spin-opposite scaled version of 𝜔B88PPBE86 optimized for excited states by
Casanova-Páez and Goerigk (SOS only applies to the CIS(D) component)

SCS-wPBEPP86 spin-component scaled version of 𝜔PBEPPBE86 optimized for excited states
by Casanova-Páez and Goerigk (SCS only applies to the CIS(D) component)

SOS-wPBEPP86 spin-opposite scaled version of 𝜔PBEPPBE86 optimized for excited states by
Casanova-Páez and Goerigk (SOS only applies to the CIS(D) component)

Composite Methods

HF-3c HF-based composite method by Grimme et al. emplyoing the MINIX basis
set

B97-3c GGA composite method by Grimme et al. employing a modified def2-
mTZVP basis set

R2SCAN-3c meta-GGA composite method by Grimme et al. employing a modified def2-
mTZVPP basis set

PBEh-3c Hybrid (42% HF exchange) composite method by Grimme et al. employing
a modified def2-mSVP basis set

wB97X-3c Range-separated hybrid composite DFT method by Grimme et al. employing
a polarized valence double-𝜁 basis set
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Dispersion corrections

See DFT Calculations with Atom-pairwise Dispersion Correction and Treatment of Dispersion Interactions with
DFT-D3 for details.

D4 density dependent atom-pairwise dispersion correction with Becke-Johnson damping and ATM
D3BJ Atom-pairwise dispersion correction to the DFT energy with Becke-Johnson damping
D3ZERO Atom-pairwise dispersion correction with zero damping
D2 Empirical dispersion correction from 2006 (not recommended)

Non-local correlation

See DFT Calculations with the Non-Local, Density Dependent Dispersion Correction (VV10): DFT-NL for details.

NL Does a post-SCF correction on the energy only
SCNL Fully self-consistent approach, adding the VV10 correlation to the KS Hamiltonian

4.3 Basis Sets

4.3.1 Standard basis set library

There are standard basis sets that can be specified via the “simple input” feature in the keyword line. However, any
basis set that is not already included in the ORCA library can be provided either directly in the input or through an
external file. See the BASIS input block for a full list of internal basis sets and various advanced aspects (section
Choice of Basis Set). Effective core potentials and their use are described in section Effective Core Potentials.

Pople-style basis sets

STO-3G Minimal basis set(H–I)
3-21G Pople 3-21G (H–Cs)
3-21GSP Buenker 3-21GSP (H–Ar)
4-22GSP Buenker 4-22GSP (H–Ar)
6-31G Pople 6-31G and its modifications (H–Zn)
m6-31G Modified 6-31G for 3d transition metals (Sc–Cu)
6-311G Pople 6-311G and its modifications (H–Br)

Polarization functions for the 6-31G basis set:

* or (d) One set of first polarization functions on all atoms except H
** or (d,p) One set of first polarization functions on all atoms
Further combinations: (2d), (2df), (2d,p), (2d,2p), (2df,2p), (2df,2pd)

Polarization functions for the 6-311G basis set: All of the above plus (3df) and (3df,3pd)

Diffuse functions for the 6-31G and 6-311G basis sets:

+ before
“G”

Include diffuse functions on all atoms except H (e.g. 6-31+G)

++ before
“G”

Include diffuse functions on all atoms. Works only when H polarization is already included,
e.g. 6-31++G(d,p)
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The def2 basis sets of the Karlsruhe group

These basis sets are all-electron for elements H-Kr, and automatically load Stuttgart-Dresden effective core poten-
tials for elements Rb-Rn.

def2-SVP Valence double-zeta basis set with “new” polarization functions.
def2-SV(P) The above with slightly reduced polarization.
def2-TZVP Valence triple-zeta basis set with “new” polarization functions. Note that this is quite

similar to the older (“def”) TZVPP for the main group elements and TZVP for hydrogen.
def2-TZVP(-f) TZVP with f polarization removed from main group elements.
def2-TZVPP TZVPP basis set with “new” polarization functions.
def2-QZVP Polarized quadruple-zeta basis.
def2-QZVPP Accurate doubly polarized quadruple-zeta basis.

Older (“def”) Ahlrichs basis sets

ECP basis sets for elements Fr-Lr. This basis set automatically employs the original def-ECP.

def-TZVP Valence triple-zeta basis set with polarization functions.
ma-def-TZVP Minimally augmented def-TZVP variant with diffuse s and p functions according to Truh-

lar[918].

All-electron basis sets for elements H-Kr:

SV Valence double-zeta basis set.
SV(P) Valence double-zeta with polarization only on heavy elements.
SVP Polarized valence double-zeta basis set.
TZV Valence triple-zeta basis set.
TZV(P) Valence triple-zeta with polarization on heavy elements.
TZVP Polarized valence triple-zeta basis set.
TZVPP Doubly polarized triple-zeta basis set.
QZVP Polarized valence quadruple-zeta basis set.
QZVPP Doubly polarized quadruple-zeta basis set.

ò Note

Past versions of ORCA used to load all-electron basis sets also for elements Rb-I with the above keywords for
double- and triple-zeta basis sets. The Rb-I basis sets originated from non-relativistic all-electron basis sets of
the Turbomole library (such as “TZVPAlls”). This automatic substitution is now deprecated. However, we
offer temporarily the ability to reproduce that behavior by adding the prefix “old-” to the above keywords, e.g.
old-TZVP.
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Diffuse def2 basis sets

Minimally augmented def2 basis
sets:

Augmented def2 basis sets by diffuse s and p functions according to Truh-
lar[918]. Recommended for general use.

ma-def2-SVP Minimally augmented def2-SVP basis set.
ma-def2-SV(P) Minimally augmented def2-SV(P) basis set.
ma-def2-TZVP Minimally augmented def2-TZVP basis set.
ma-def2-TZVP(-f) Minimally augmented def2-TZVP(-f) basis set.
ma-def2-TZVPP Minimally augmented def2-TZVPP basis set.
ma-def2-QZVPP Minimally augmented def2-QZVPP basis set.

Rappoport property-optimized dif-
fuse def2 basis sets:

Augmented def2 basis sets by diffuse functions according to Rappoport et
al.[710, 711]

def2-SVPD Diffuse def2-SVP basis set for property calculations
def2-TZVPD Diffuse def2-TZVP basis set for property calculations
def2-TZVPPD Diffuse def2-TZVPP basis set for property calculations
def2-QZVPD Diffuse def2-QZVP basis set for property calculations
def2-QZVPPD Diffuse def2-QZVPP basis set for property calculations

Karlsruhe basis sets with Dirac–Fock ECPs

These basis sets are derived from the def2-XVP ones with small modifications for 5s, 6s, 4d, and 5d elements and
iodine.[884] They are optimized for the revised Dirac-Fock ECPs (dhf-ECP) as opposed to the Wood–Boring ones
(def2-ECP). Versions for two-component methods are also available, e.g. dhf-TZVP-2c, however, such methods
are currently not implemented in ORCA.

dhf-SV(P) based on def2-SV(P)
dhf-SVP based on def2-SVP
dhf-TZVP based on def2-TZVP
dhf-TZVPP based on def2-TZVPP
dhf-QZVP based on def2-QZVP
dhf-QZVPP based on def2-QZVPP

Relativistically recontracted Karlsruhe basis sets

For use in DKH or ZORA calculations we provide adapted versions of the def2 basis sets for the elements H-Kr
(i.e., for the all-electron def2 basis sets). These basis sets retain the original def2 exponents but have only one
contracted function per angular momentum (and hence are somewhat larger), with contraction coefficients suitable
for the respective scalar relativistic Hamiltonian. These basis sets can be called with the prefix DKH- or ZORA-,
and can be combined with the SARC basis sets for the heavier elements.

DKH-def2-SVP and ZORA-def2-SVP
DKH-def2-SV(P) and ZORA-def2-SV(P)
DKH-def2-TZVP and ZORA-def2-TZVP
DKH-def2-TZVP(-f) and ZORA-def2-TZVP(-f)
DKH-def2-TZVPP and ZORA-def2-TZVPP
DKH-def2-QZVPP and ZORA-def2-QZVPP

Minimally augmented versions:
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ma-DKH-def2-SVP and ma-ZORA-def2-SVP
ma-DKH-def2-SV(P) and ma-ZORA-def2-SV(P)
ma-DKH-def2-TZVP and ma-ZORA-def2-TZVP
ma-DKH-def2-TZVP(-f) and ma-ZORA-def2-TZVP(-f)
ma-DKH-def2-TZVPP and ma-ZORA-def2-TZVPP
ma-DKH-def2-QZVPP and ma-ZORA-def2-QZVPP

The same functionality is offered for the “def” basis sets, e.g. “ZORA-TZVP”. In this case too, the relativistically
recontracted versions refer to the elements H-Kr. To replicate the behavior of past ORCA versions for elements
Rb-I, the prefix “old-” can be used with these keywords as in the non-relativistic case.

. Warning

Previous verions of ORCA made extensive use of automatic basis set substitution and aliasing when the use of
the DKH or ZORA Hamiltonians was detected. This is no longer the case! Relativistic versions of Karlsruhe
basis sets now have to be requested explicitly with the appropriate prefix. SARC basis sets also have to be
requested explicitly

All-electron Karlsruhe basis sets up to Rn for the exact two-component (X2C) Hamiltonian.[690] The “-s” variants,
e.g. “def2-TZVPall-s”, are augmented with additional tight functions for NMR shielding calculations.[275] The
“-2c” variants, e.g. “def2-TZVPall-2c”, are intended for two-component calculations including spin-orbit coupling
(Note that two-component calculations are not implemented in ORCA).

x2c-SV(P)all 2c version: x2c-SV(P)all-2c, NMR version: x2c-SV(P)all-s
x2c-SVPall 2c version: x2c-SVPall-2c, NMR version: x2c-SVPall-s
x2c-TZVPall 2c version: x2c-TZVPall-2c, NMR version: x2c-TZVPall-s
x2c-TZVPPall 2c version: x2c-TZVPPall-2c, NMR version: x2c-TZVPPall-s
x2c-QZVPall 2c version: x2c-QZVPall-2c, NMR version: x2c-QZVPall-s
x2c-QZVPPall 2c version: x2c-QZVPPall-2c, NMR version: x2c-QZVPPall-s

SARC basis sets

[62, 641, 642, 643, 644, 729]

Segmented all-electron relativistically contracted basis sets for use with the DKH2 and ZORA Hamiltonians. Avail-
able for elements beyond Krypton.

SARC-DKH-TZVP
SARC-DKH-TZVPP
SARC-ZORA-TZVP
SARC-ZORA-TZVPP

ò Note

SARC/J is the general-purpose Coulomb-fitting auxiliary for all SARC orbital basis sets.
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SARC2 basis sets for the lanthanides

[52]

SARC basis sets of valence quadruple-zeta quality for lanthanides, with NEVPT2-optimized (3g2h) polarization
functions. Suitable for accurate calculations using correlated wavefunction methods.

SARC2-DKH-QZVP
SARC2-ZORA-QZVP

ò Note

Can be called without the polarization functions using . . . -QZV. Each basis set has a large dedicated /JK aux-
iliary basis set for simultaneous Coulomb and exchange fitting.

Jensen basis sets

pc-𝑛 (𝑛 = 0, 1, 2, 3, 4) “Polarization-consistent” generally contracted basis sets (H–Kr) of up
to quintuple-zeta quality, optimized for SCF calculations

aug-pc-𝑛 As above, augmented by diffuse functions
pcseg-𝑛 Segmented PC basis sets (H–Kr), DFT-optimized
aug-pcseg-𝑛 As above, augmented by diffuse functions
pcSseg-𝑛 Segmented contracted basis sets (H–Kr) optimized for nuclear magnetic shielding
aug-pcSseg-𝑛 As above, augmented by diffuse functions
pcJ-𝑛 Segmented contracted basis sets (H–Ar) optimized for spin-spin coupling constants
aug-pcJ-𝑛 As above, augmented by diffuse functions

Lehtolas hydrogenic Gaussian basis sets

[505]

HGBS-𝑚 (𝑚 = 5, 7, 9) Lehtolas hydrogenic Gaussian basis sets optimized to the energy threshold
𝑚 (H-Og)

HGBSP𝑛-𝑚 (𝑛 = 1, 2, 3; 𝑚 = 5, 7, 9) Variants with 𝑛 polarization shells

Augmented versions:

AHGBS-𝑚 (𝑚 = 5, 7, 9) Variants augmented by diffuse functions
AHGBSP𝑛-𝑚 (𝑛 = 1, 2, 3; 𝑚 = 5, 7, 9)

Sapporo basis sets

Sapporo-𝑛ZP-2012 (𝑛 = D, T, Q) All-electron generally contracted non-relativistic basis sets
(H–Xe)

Sapporo-DKH3-𝑛ZP-2012 (𝑛 = D, T, Q) All-electron basis sets optimized for the DKH3 Hamiltonian
and finite nucleus (K–Rn)
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Correlation-consistent basis sets

cc-pVDZ Dunning correlation-consistent polarized double-zeta
cc-pVTZ Dunning correlation-consistent polarized triple-zeta
cc-pVQZ Dunning correlation-consistent polarized quadruple-zeta
cc-pV5Z Dunning correlation-consistent polarized quintuple-zeta
cc-pV6Z Dunning correlation-consistent polarized sextuple-zeta
aug-cc-pV𝑛Z (𝑛 = D, T, Q, 5, 6) Augmented with diffuse functions
cc-pCV𝑛Z (𝑛 = D, T, Q, 5, 6) Core-polarized basis sets
aug-cc-pCV𝑛Z (𝑛 = D, T, Q, 5, 6) as above, augmented with diffuse functions
cc-pwCV𝑛Z (𝑛 = D, T, Q, 5) Core-polarized with weighted core functions
aug-cc-pwCV𝑛Z (𝑛 = D, T, Q, 5) as above, augmented with diffuse functions
cc-pV𝑛(+d)Z (𝑛 = D, T, Q, 5) with tight d functions

Partially augmented correlation-consistent basis sets

[646]

apr-cc-pV(Q+d)Z Augmented with sp diffuse functions on Li–Ca
may-cc-pV(𝑛+d)Z (𝑛 = T, Q): sp (T), spd (Q) on Li–Ca
jun-cc-pV(𝑛+d)Z (𝑛 = D, T, Q): sp (D), spd (T), spdf (Q) on Li–Ca
jul-cc-pV(𝑛+d)Z (𝑛 = D, T, Q): spd (D), spdf (T), spdfg (Q) on Li–Ca
maug-cc-pV(𝑛+d)Z same as jun-, may-, and apr- for 𝑛 = D, T, and Q, respectively

DKH versions of correlation-consistent basis sets

cc-pV𝑛Z-DK (𝑛 = D, T, Q, 5) Correlation-consistent all-electron basis sets for use with the 2nd-
order Douglas-Kroll-Hess Hamiltonian

aug-cc-pV𝑛Z-DK (𝑛 = D, T, Q, 5) as above, augmented with diffuse functions
cc-pwCV𝑛Z-DK (𝑛 = D, T, Q, 5) DK versions of weighted core correlation-consistent basis sets
aug-cc-pwCV𝑛Z-DK (𝑛 = D, T, Q, 5) weighted-core DK basis sets with diffuse functions
cc-pV𝑛Z-DK3 (𝑛 = D, T, Q) Correlation-consistent all-electron basis sets for lanthanides and

actinides with the 3rd-order Douglas-Kroll-Hess Hamiltonian
cc-pwCV𝑛Z-DK3 (𝑛 = D, T, Q) DK versions of weighted core correlation-consistent basis sets for

lanthanides and actinides

ECP-based versions of correlation-consistent basis sets

cc-pV𝑛Z-PP (𝑛 = D, T, Q, 5) Correlation-consistent basis sets combined with SK-MCDHF-
RSC effective core potentials

aug-cc-pV𝑛Z-PP (𝑛 = D, T, Q, 5) as above, augmented with diffuse functions
cc-pwCV𝑛Z-PP (𝑛 = D, T, Q, 5) with weighted core functions
aug-cc-pwCV𝑛Z-PP (𝑛 = D, T, Q, 5) as above, augmented with diffuse functions
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F12 and F12-CABS basis sets

cc-pV𝑛Z-F12 (𝑛 = D, T, Q) Special orbital basis sets for F12 calculations (larger than the
regular D, T, Q-zeta basis sets!)

cc-pCV𝑛Z-F12 (𝑛 = D, T, Q) with core polarization functions
cc-pV𝑛Z-PP-F12 (𝑛 = D, T, Q) ECP-based versions
cc-pV𝑛Z-F12-CABS (𝑛 = D, T, Q) Near-complete auxiliary basis sets for F12 calculations
cc-pV𝑛Z-F12-OptRI (𝑛 = D, T, Q) identical to the cc-pV𝑛Z-F12-CABS basis above
cc-pCV𝑛Z-F12-OptRI (𝑛 = D, T, Q)
cc-pV𝑛Z-PP-F12-OptRI (𝑛 = D, T, Q)
aug-cc-pV𝑛Z-PP-OptRI (𝑛 = D, T, Q, 5)
aug-cc-pwCV𝑛Z-PP-OptRI (𝑛 = D, T, Q, 5)

Atomic Natural Orbital basis sets

ANO-pV𝑛Z (𝑛 = D, T, Q, 5, 6). Our newly contracted ANO basis sets on the basis of the cc-pV6Z (or
pc-4 where missing) primitives. These are very accurate basis sets that are significantly
better than the cc-pV𝑛Z counterparts for the same number of basis functions (but much
larger number of primitives of course).

saug-ANO-pV𝑛Z (𝑛 = D, T, Q, 5) augmentation with a single set of sp functions. Greatly enhances the
accuracy of the SCF energies but not for correlation energies.

aug-ANO-pV𝑛Z (𝑛 = D, T, Q, 5) full augmentation with spd, spdf, spdfg set of polarization functions.
Almost as expensive as the next higher basis set. In fact, aug-ANO-pV𝑛Z = ANO-
pV(𝑛+ 1)Z with the highest angular momentum polarization function deleted.

Relativistic contracted ANO-RCC basis sets:

ANO-RCC-FULL The complete ANO-RCC basis sets (H-Cm). Some default contractions are provided for
convenience with the keywords:

ANO-RCC-DZP
ANO-RCC-TZP
ANO-RCC-QZP
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Miscellaneous and specialized basis sets

D95 Dunning’s double-zeta basis set (H–Cl).
D95p Polarized version of D95.
MINI Huzinaga’s minimal basis set.
MINIS Scaled version of the MINI.
MIDI Huzinaga’s valence double-zeta basis set.
MINIX Combination of small basis sets by Grimme (see Table Table 7.8).
vDZP Molecule-optimized polarized valence double-𝜁 basis set by Grimme et al. de-

signed for 𝜔B97X-3c[540].
Wachters+f First-row transition metal basis set (Sc–Cu).
Partridge-𝑛 (𝑛 = 1, 2, 3, 4) Uncontracted basis sets by Partridge.

LANL2DZ Los Alamos valence double-zeta with Hay–Wadt ECPs.
LANL2TZ Triple-zeta version.
LANL2TZ(f) Triple-zeta plus polarization.
LANL08 Uncontracted basis set.
LANL08(f) Uncontracted basis set + polarization.

EPR-II Barone’s basis set (H, B–F) for EPR calculations (double-zeta).
EPR-III Barone’s basis set for EPR calculations (triple-zeta).
IGLO-II Kutzelnigg’s basis set (H, B-F, Al–Cl) for NMR and EPR calculations.
IGLO-III Larger version of the above.
aug-cc-pVTZ-J Sauer’s basis set for accurate hyperfine coupling constants.

4.3.2 Auxiliary basis sets

Auxiliary basis sets for the RI-J and RI-MP2 approximations can also be specified directly in the simple input:

Auxiliary basis sets for Coulomb fitting

Def/J Weigend’s “universal” Coulomb fitting basis that is suitable for all def type basis sets. Assumes
the use of ECPs beyond Kr (do not use with DKH/ZORA).

Def2/J Weigend’s “universal” Coulomb fitting basis that is suitable for all def2 type basis sets. As-
sumes the use of ECPs beyond Kr (do not use with DKH/ZORA).

SARC/J General-purpose Coulomb fitting basis set for all-electron calculations. Consists of the decon-
tracted def2/J up to Kr and of our own auxiliary basis sets for the rest of the periodic table.
Appropriate for use in DKH or ZORA calculations with the recontracted versions of the all-
electron def2 basis sets (up to Kr) and the SARC basis sets for the heavier elements.

x2c/J Weigend’s Coulomb fitting basis for the all-electron x2c-XVPall basis sets.

Auxiliary basis sets for simultaneously fitting Coulomb and exchange

Fitting basis sets developed by Weigend for fitting simultaneously Coulomb and exchange energies. They are quite
large and accurate. They fit SCF energies very well but even if they are large they do not fit correlation as well as
the dedicated “/C” auxiliary basis sets.

Def2/JK Coulomb+Exchange fitting for all def2 basis sets
Def2/JKsmall reduced version of the above
cc-pV𝑛Z/JK (𝑛 = T, Q, 5) for the respective cc-pV𝑛Z orbital basis
aug-cc-pV𝑛Z/JK (𝑛 = T, Q, 5) for the respective aug-cc-pV𝑛Z orbital basis
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Auxiliary basis sets for correlation calculations

Def2-SVP/C Correlation fitting for the def2-SVP orbital basis
Def2-TZVP/C for the def2-TZVP orbital basis
Def2-TZVPP/C for the def2-TZVPP orbital basis
Def2-QZVPP/C for the def2-QZVPP orbital basis
Def2-SVPD/C for the def2-SVPD orbital basis
Def2-TZVPD/C for the def2-TZVPD orbital basis
Def2-TZVPPD/C for the def2-TZVPPD orbital basis
Def2-QZVPPD/C for the def2-QZVPPD orbital basis
cc-pV𝑛Z/C (𝑛 = D, T, Q, 5, 6) for the respective cc-pV𝑛Z orbital basis
aug-cc-pV𝑛Z/C (𝑛 = D, T, Q, 5, 6) for the respective aug-cc-pV𝑛Z orbital basis
cc-pwCV𝑛Z/C (𝑛 = D, T, Q, 5) for the respective cc-pwCV𝑛Z orbital basis
aug-cc-pwCV𝑛Z/C (𝑛 = D, T, Q, 5) for the respective aug-cc-pwCV𝑛Z orbital basis
cc-pV𝑛Z-PP/C (𝑛 = D, T, Q) for the respective cc-pV𝑛Z-PP orbital basis
aug-cc-pV𝑛Z-PP/C (𝑛 = D, T, Q) for the respective aug-cc-pV𝑛Z-PP orbital basis
cc-pwCV𝑛Z-PP/C (𝑛 = D, T, Q) for the respective cc-pwCV𝑛Z-PP orbital basis
aug-cc-pwCV𝑛Z-PP/C (𝑛 = D, T, Q) for the respective aug-cc-pwCV𝑛Z-PP orbital basis
cc-pV𝑛Z-F12-MP2fit (𝑛 = D, T, Q) for the respective cc-pV𝑛Z-F12 orbital basis
cc-pCV𝑛Z-F12-MP2fit (𝑛 = D, T, Q) for the respective cc-pCV𝑛Z-F12 orbital basis
cc-pV𝑛Z-PP-F12-MP2fit (𝑛 = D, T, Q) for the respective cc-pV𝑛Z-PP-F12 orbital basis
AutoAux Automatic construction of a general purpose auxiliary basis for simultane-

ously fitting Coulomb, exchange and correlation calculations. See section
Automatic generation of auxiliary basis sets for details.

ò Note

ORCA versions before 4.0 allowed the use of multiple keywords to invoke the same def2 Coulomb or
Coulomb+exchange fitting basis set of Weigend. To avoid confusion all these keywords are now deprecated
and the auxiliary basis sets are simply called using “def2/J” and “def2/JK”.

ò Note

Starting from version 4.1 ORCA internally stores up to five basis sets for each calculation: the obligatory or-
bital basis set; an AuxJ Coulomb-fitting basis for the RI-J, RIJDX/RIJONX, and RIJCOSX approximations; an
AuxJK Coulomb- and exchange-fitting basis used for RIJK; an AuxC auxiliary basis for the RI approximation
in dynamical electron correlation treatments (such as RI-MP2, RI-CCSD, and DLPNO methods); and a com-
plementary auxiliary basis set (CABS) for F12 methods. “/J” basis sets given in the simple input are assigned
to AuxJ and likewise for the other types. Non-standard assignments like AuxJ="def2/JK" are possible only
through the %basis block input (see section Built-in Basis Sets).

4.3.3 Use of scalar relativistic basis sets

For DKH and ZORA calculations ORCA provides relativistically recontracted versions of the Karlsruhe basis
sets for elements up to Kr. These can be requested by adding the prefix DKH- or ZORA- to the normal basis
set name. Note that for other non-relativistic basis sets (for example Pople-style bases) no recontraction has been
performed and consequently such calculations are inconsistent! The basis set and the scalar relativistic Hamiltonian
are specified in the keyword line, for example:

! B3LYP ZORA ZORA-TZVP ...

If an auxiliary basis set is required for these recontracted Karlsruhe basis sets, we recommend the use of the
decontracted def2/J. This can be obtained simply by using the keyword “! SARC/J” (instead of the equivalent “!
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def2/J DecontractAuxJ”) and is the recommended option as it simultaneously covers the use of SARC basis
sets for elements beyond Krypton.

! TPSS ZORA ZORA-def2-TZVP SARC/J ...

For all-electron calculations with elements heavier than Krypton we offer the SARC (segmented all-electron rel-
ativistically contracted) basis sets [62, 641, 642, 643, 644, 729]. These were specifically developed for scalar
relativistic calculations and are individually adapted to the DKH2 and ZORA Hamiltonians. In this case the
Coulomb-fitting auxiliary basis set must be specified as SARC/J, or alternatively the AutoAux keyword (Auto-
matic generation of auxiliary basis sets) can be employed to create auxiliary basis sets.

! PBE DKH SARC-DKH-TZVP SARC/J ...

Specifically for wavefunction-based calculations of lanthanide systems we recommend the more heavily polarized
SARC2 basis sets [52].

Other basis sets suitable for scalar relativistic calculations are various versions of the all-electron correlation-
consistent basis sets that are optimized for the DKH2 Hamiltonian and can be called with the suffix “-DK”. The
relativistically contracted atomic natural orbital (ANO-RCC) basis sets of Roos and coworkers were also developed
for the DKH2 Hamiltonian and have almost complete coverage of the periodic table (up to Cm).

For calculations with the X2C Hamiltonian, all-electron basis sets with the prefix “x2c-” (e.g. x2c-TZVPall)
developed by Weigend and coworkers are available.[275, 690] The matching AuxJ basis set is “x2c/J” and AutoAux
can be used as well.

4.3.4 Effective Core Potentials

Starting from version 2.8.0, ORCA features effective core potentials (ECPs). They are a good alternative to scalar
relativistic all-electron calculations if heavy elements are involved. This pertains to geometry optimizations and
energy calculations but may not be true for property calculations.

In order to reduce the computational effort, the usually highly contracted and chemically inert core basis functions
can be eliminated by employing ECPs. ECP calculations comprise a “valence-only” basis and thus are subject to
the frozen core approximation. Contributions due to the core orbitals are accounted for by an effective one-electron
operator 𝑈 core which replaces the interactions between core and valence electrons and accounts for the indistin-
guishability of the electrons. Its radial parts 𝑈𝑙(𝑟) are generally expressed as a linear combination of Gaussian
functions, while the angular dependence is included through angular momentum projectors |𝑆𝑙𝑚⟩.

𝑈 core = 𝑈𝐿(𝑟) +

𝐿−1∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

⃒⃒
𝑆𝑙𝑚⟩ [𝑈𝑙(𝑟)− 𝑈𝐿(𝑟)] ⟨𝑆𝑙𝑚

⃒⃒
𝑈𝑙 =

∑︁
𝑘

𝑑𝑘𝑙𝑟
𝑛𝑘𝑙 exp(−𝛼𝑘𝑙𝑟2)

The maximum angular momentum 𝐿 is generally defined as 𝑙atom
max + 1. The parameters 𝑛𝑘𝑙, 𝛼𝑘𝑙 and 𝑑𝑘𝑙 that are

necessary to evaluate the ECP integrals have been published by various authors, among them the well-known Los
Alamos (LANL) [367] and Stuttgart–Dresden (SD) [41, 94, 137, 138, 217, 218, 219, 220, 221, 222, 223, 261, 262,
279, 280, 281, 347, 348, 409, 432, 433, 437, 507, 508, 509, 523, 524, 561, 580, 581, 594, 595, 633, 671, 672, 673,
674, 675, 759, 774, 824, 825, 873, 880, 881, 901] parameter sets. Depending on the specific parametrization of
the ECP, relativistic effects can be included in a semiempirical fashion in an otherwise nonrelativistic calculation.
Introducing 𝑈 core into the electronic Hamiltonian yields two types of ECP integrals, the local (or type-1) integrals
that arise because of the maximum angular momentum potential 𝑈𝐿 and the semi-local (or type-2) integrals that
result from the projected potential terms. The evaluation of these integrals in ORCA proceeds according to the
scheme published by Flores-Moreno et al.[266].

A selection of ECP parameters and associated basis sets is directly accessible in ORCA through the internal ECP
library (see Table 4.3 for a listing of keywords).
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Table 4.3: Overview of library keywords for ECPs and associated basis sets available in ORCA.

ECP keyword Core sizePage 47, 1 Elements Valence basis sets
Recommended

def-ECP 78 Fr–Ra Karlsruhe basis sets: def-
TZVP, ma-def-TZVP60 Ac–Lr

def2-ECP 28 Rb–Xe Karlsruhe basis sets:
def2-SVP, def2-TZVP,
etc.
def2-SVPD, def2-
TZVPD, etc.
ma-def2-SVP, ma-def2-
TZVP, etc.

46 Cs–La

28 Ce–Lu

60 Hf–Rn
SK-MCDHF-RSC 10 Ca, Cu–Kr Correlation-consistent

basis sets: cc-pV𝑛Z-
PP, aug-cc-pV𝑛Z-
PP, cc-pCV𝑛Z-PP,
aug-cc-pCV𝑛Z-PP,
cc-pwCV𝑛Z-PP, aug-cc-
pwCV𝑛Z-PP (𝑛 = D, T,
Q, 5) cc-pV𝑛Z-PP (𝑛 =
D, T, Q)

28 Sr–Xe

46 Ba

60 Hf–Rn
78 Ra
60 U

HayWadt2 10 Na–Cu LANL-type basis sets:
LANL2DZ, LANL2TZ,
LANL2TZ(f), LANL08,
LANL08(f)

18 Zn
28 Ga–Ag
36 Cd
46 In–La
60 Hf–Au
68 Hg–Tl
78 Pb–Bi, U–Pu

dhf-ECP 28 Rb–Xe dhf-type Karlsruhe ba-
sis sets: dhf-SVP, dhf-
TZVP, etc.

46 Cs–Ba
60 Hf–Rn, U

vDZP-ECP 2 B–Mg vDZP basis set.
uniquely compiled for the
use with vDZP

10 Al–Zn
28 Ga–Cd
46 In–Lu
60 Hf–Hg
78 Tl–Rn

Legacy definitions
def2-SD 28,MWB Rb–Cd

28,MDF3 In–Xe
46,MWB Cs–La
60,MWB Hf–Pt
60,MDF4 Au–Rn

def-SD 28,MWB Rb–Cd
46,MWB In–La
28,MWB Ce–Lu
60,MWB Hf–Pt
60,MDFPage 47, 4 Au, Hg, Rn
78,MWB Tl–At
78,MDF Fr, Ra
60,MWB Ac–Lr

SDD 2,SDF Li, Be
2,MWB B–Ne
10,SDF Na, Mg
10,MWB Al–Ca

continues on next page
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Table 4.3 – continued from previous page
ECP keyword Core size1 Elements Valence basis sets

10,MDF Sc–Ni
10,MWB Cu-Zn
28,MWB Ga–Sr
28,MHF Y–Cd
28,MDF Ge–Br, Rb–Xe
46,MWB In–Ba
28,MWB La–Lu
60,MWB Hf–Hg
78,MWB Tl–Rn
60,MWB Ac–Lr

LANL1 10 Na–Ar
18 K–Zn
28 Ga–Kr
36 Rb–Cd
46 In–Xe
54 Cs–La
68 Hf–Tl
78 Pb, Bi

LANL2 10 K–Cu
28 Rb–Ag
46 Cs–La
60 Hf–Au

ò Note

Some basis sets assign an ECP by default when requested through the simple input (but not through the %basis
block): for example, “def2” basis sets use the def2-ECP. For others, see the footnotes under Table 7.10.

The simplest way to assign ECPs is by using the ECP keyword within the keyword line, although input through
the %basis block is also possible (Advanced Specification of Effective Core Potentials). The ECP keyword itself
assigns only the effective core potential, not a valence basis set! As an example for an explicitly named ECP you
could use

! def2-TZVP def2-SD

This would assign the def2-SD ECP according to the definition given in the table above. Without the def2-SD
keyword ORCA would default to def2-ECP.

1 Where applicable, reference method and data are given (S: single-valence-electron ion; M: neutral atom; HF: Hartree-Fock; WB: quasi-
relativistic; DF: relativistic).

2 Corresponds to LANL2 and to LANL1 where LANL2 is unavailable.
3 I: OLD-SD(28,MDF) for compatibility with TURBOMOLE.
4 Au, Hg: OLD-SD(60,MDF) for compatibility with TURBOMOLE.
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4.4 Numerical Integration in ORCA

Starting from its version 5.0, ORCA has a new scheme for the quadratures used in numerical integration. It is
based on the same general ideas which were used for the old grids, except that we used machine learning methods,
together with some final hands-on optimization, to find the optimal parameters for all atoms up to the 6th row of
the periodic table, with the 7th row being extrapolated from that. For further details look at Ref. [383]. We also
realized that the COSX and DFT grids have overall different requirements, and these were optimized separately.

The big advantage of this new scheme is that it is significantly more accurate and robust than the old one, even
if having the same number of grid points. We tested energies, geometries, frequencies, excitation energies and
properties to develop three new grid schemes named: DEFGRID1, DEFGRID2 and DEFGRID3, that will auto-
matically fix all grids that are used in the calculations. DEFGRID1 behaves essentially like the old defaults, but
it is more robust. The second is the new default, and is expected to yield sufficiently small errors for all kinds of
applications (see Section Details on the numerical integration grids for details). The last is a heavier, higher-quality
grid, that is close to the limit if one considers an enormous grid as a reference.

In order to change from the default DEFGRID2, one just needs to add !DEFGRID1 or !DEFGRID3 to the main
input.

It is also important to note that the COSX approximation is now the default for DFT, whenever HFexchange is
neede. This can always be turned off by using !NOCOSX.

4.5 Input priority and processing order

In more complicated calculations, the input can get quite involved. Therefore it is worth knowing how it is internally
processed by the program:

• First, all the simple input lines (starting with “!”) are collected into a single string.

• The program looks for all known keywords in a predefined order, regardless of the order in the input file.

• An exception are basis sets: if two different orbital basis sets (e.g. ! def2-SVP def2-TZVP) are given, the
latter takes priority. The same applies to auxiliary basis sets of the same type (e.g. ! def2/J SARC/J).

• Some simple input keywords set multiple internal variables. Therefore, it is possible for one keyword to
overwrite an option, set by another keyword. We have tried to resolve most such cases in a reasonable way
(e.g. the more “specific” keyword should take precedence over a more “general” one) but it is difficult to
forsee every combination of options.

• Next, the block input is parsed in the order it is given in the input file.

• Most block input keywords control a single variable (although there are exceptions). If a keyword is dupli-
cated, the latter value is used.

Consider the following (bad) example:

! def2-TZVP UKS
%method

functional BP86
correlation C_LYP
SpecialGridAtoms[1] 26, 27
SpecialGridIntacc 8, 8, 8
SpecialGridAtoms 28, 29

end
! PBE def2-SVP RKS

Using the rules above, one can figure out why it is equivalent to this one:

! UKS BLYP def2-SVP
%method

SpecialGridAtoms 28, 29, 27

(continues on next page)
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(continued from previous page)

SpecialGridIntacc 8, 8, 8
end

4.6 ORCA and Symmetry

For most of its life, ORCA did not take advantage of molecular symmetry. Starting from version 2.8 (released in
September 2010), there has been at least limited use. On request (using the simple keyword UseSym for instance,
see below), the program detects the point group, orients the molecule, cleans up the coordinates and produces
symmetry-adapted molecular orbitals.

Only for geometry cleanup the full point group is taken into account. For all other purposes such as the construction
of symmetry-adapted molecular orbitals and or to describe electronic states, only𝐷2ℎ and subgroups are currently
supported. Here the use of symmetry helps to control the calculation and the interpretation of the results.

4.6.1 Getting started

Utilization of symmetry is turned on by the simple keyword UseSymmetry (which may be abbreviated by UseSym),
or if a %Symmetry (or %Sym) input block is present in the input. ORCA will then automatically determine the point
group, reorient and center the molecule to align its symmetry elements with the coordinate system, and replace the
input structure by a geometry that corresponds exactly to this point group and which minimizes the sum of square
distances between the atoms of both structures.

Any program that attempts to find the point group of an arbitrary atom cluster must be prepared to cope with some
amount of numerical noise in the atom coordinates. ORCA by default allows each atom to deviate at most 10−4
atomic units from the ideal position that is consistent with the point group being examined. The rationale behind
this value is the rounding error that occurs when the user feeds Cartesian coordinates with five significant digits
after the decimal point into the program which otherwise represent an exact (symmetry-adapted) geometry. A
threshold that is about one order of magnitude higher than the numerical noise in the coordinates is usually very
safe.

If the maximum error in the Cartesian coordinates exceeds these 10−4 atomic units, the symmetry module in ORCA
will fail to recognize the expected point group. The user is strongly advised to always make sure that the detected
point group meets their expectations. If the point group reported by the symmetry module appears to be too low,
the user may try to increase the detection threshold to 10−3 or 10−2 Bohr radii using option SymThresh in the
%Symmetry input block:

%Sym SymThresh 0.01 End

A great method to obtain a structure with perfect symmetry avoiding any expensive calculation is to use the simple
keywords ! NoIter XYZFile with an appropriate threshold. The structure in the resulting file with the extension
.xyz may then be used as input for the actual calculation.

To give an illustrative example, coordinates for staggered ethane have been obtained by geometry optimization
without using symmetry. If symmetry is turned on, point group 𝐶𝑖 is recognized instead of the expected point
group 𝐷3𝑑 due to the remaining numerical noise. To counter this, the detection threshold is increased to 10−2 a.
u. and a coordinate file with perfect symmetry is produced by the following input:

! RHF SVP NoIter XYZfile
%sym SymThresh 1.0e-2 end
*xyz 0 1

C -0.002822 -0.005082 -0.001782
C -0.723141 -1.252323 -0.511551
H 0.017157 0.029421 1.100049
H 1.042121 0.030085 -0.350586
H -0.495109 0.917401 -0.350838
H -0.743120 -1.286826 -1.613382
H -0.230855 -2.174806 -0.162495

(continues on next page)
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(continued from previous page)

H -1.768085 -1.287489 -0.162747
*

If ORCA fails to find the expected point group even though a value of 10−2 atomic units has been selected for
SymThresh, the user is strongly advised to take a careful look at the structure by means of their favorite visualization
tool before increasing this value any further. Look for any obvious distortions or even missing atoms. An especially
tricky point may be the orientation of methyl groups or the conformation of floppy side chains. A small rotation
about a single bond may be enough to push some atom positions above the limit. If the conformational deviations
cannot be fixed using a molecular editor or modelling program, a possible alternative may be to pre-optimize
the structure without symmetry using a less expensive method like PB86 and a small basis set like def2-SVP.
Even several passes of pre-optimization and structure editing may be considered until all symmetry-equivalent
side chains are locked in the same conformation so that ORCA finally detects the correct point group.

It is not recommended to run calculations using a value of SymThresh which is much too high or much too small
since this may result in some really strange behavior of the symmetry module. Consider for instance the following
input file which contains a perfectly octahedral geometry of a sulfur hexafluoride molecule. Its coordinates may be
easily created by hand by placing the sulfur atom into the origin and two fluorine atoms on each coordinate axis at
equal distances 𝑟 from the origin (𝑟 = 1.56 Å or approximately 2.95 atomic units). Using a value for SymThresh
as large as 0.1 Bohr radii works fine in this case, resulting in the correct point group Oℎ.

# Sulfur hexafluoride (SF6), point group Oh.
! BP86 def2-SVP
%Sym SymThresh 0.1 End
* xyz 0 1
S 0.00 0.00 0.00
F 1.56 0.00 0.00
F -1.56 0.00 0.00
F 0.00 1.56 0.00
F 0.00 -1.56 0.00
F 0.00 0.00 1.56
F 0.00 0.00 -1.56
*

However, if SymThresh is increased further to 𝑡 = 0.5 atomic units, the point group detection algorithm breaks
down (strange warnings are printed as a consequence) and the reported point group decreases to C𝑖 (in which the
center of inversion is the only non-trivial symmetry element). This is because the center of inversion is easy to
detect and this is done by one of the early checks. The breakdown of the point group recognition may be explained
as follows. During the process of point group detection the symmetry module is of course unaware that the given
input geometry is exact. Hence it will be treated as any other input structure. A value of 𝑡 = 0.5 Bohr radii for
SymThresh means that the unknown exact atom position is located within a sphere of radius 𝑡 = 0.5 atomic units
around the input atom position. The input distance 𝑎 =

√
2 𝑟 between two adjacent fluorine atoms is approximately

𝑎 ≈ 2.21 Å ≈ 4.17 a. u., so their unknown exact distance 𝑑 may vary in the following interval (see the diagram in
Fig. 4.1):

𝑑min = 𝑎− 2𝑡 = 3.17 a.u. ≤ 𝑑 ≤ 𝑑max = 𝑎+ 2𝑡 = 5.17 a.u.

Analogously, the unknown exact distance 𝑑′ between two opposite fluorine atoms with the input distance 𝑎′ =
2𝑟 = 5.90 a. u. is:

𝑑′min = 𝑎′ − 2𝑡 = 4.90 a.u. ≤ 𝑑′ ≤ 𝑑′max = 𝑎′ + 2𝑡 = 6.90 a.u.

Since the possible intervals of 𝑑 and 𝑑′ overlap (due to 𝑑max > 𝑑′min), all fifteen F–F distances are considered
equal. Since there is no solid with six vertices and fifteen equal inter-vertex distances in three dimensions, the
point group detection algorithm fails.
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Fig. 4.1: The relation between the value 𝑡 of SymThresh, the distance 𝑎 of some input atom pair, and the allowed
interval [𝑑min, 𝑑max] for the distance 𝑑 between the exact atom positions. This interval has the width 𝑑max−𝑑min =
4𝑡.

4.6.2 Geometry optimizations using symmetry

If a geometry optimization is performed with symmetry turned on, ORCA will first determine the point group
of the starting structure and replace the geometry that is presumed to contain numerical noise with one that has
perfect symmetry. Starting with ORCA 6, the optimizer will clean up the gradient at every step of the optimization
if requested by setting option CleanUpGradient true in the %Symmetry input block. The gradient cleanup is
done by projecting out all components that are not totally symmetric. This way the symmetry of the molecule
cannot decrease during the optimization.

By default, the point group is determined from scratch again after the geometry has been updated at every step of
the optimization. This behaviour may be switched off by setting option SymRelaxOpt false in the %Symmetry
input block. In this case the point group of the molecule is actually frozen during the entire optimization.

The following table summarizes the behaviour of the optimizer depending on the options SymRelaxOpt and
CleanUpGradient:

SymRelaxOpt CleanUpGradient Behaviour
true true Symmetry may increase but not decrease.
true false Symmetry may change freely.
false true Symmetry will be frozen.
false false Setting not recommended.

Setting both switches false would allow the point group to change during the optimization but at the same time,
a change would be impossible to detect. Therefore this setting is strongly discouraged.
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4.6.3 Default alignment of the symmetry elements with the coordinate system

If ORCA determines the point group of a molecule and the user has not selected any special options, the follow-
ing principles apply to the manner in which the symmetry elements of the full point group are aligned with the
coordinate system:

1. The center of mass of the molecule will be shifted into the origin by default.5 If the point group leaves one
unique vertex invariant to all symmetry operations, the center of mass agrees with this vertex. This is the
case for all point groups except 𝐶𝑠, 𝐶𝑛 (𝑛 ≥ 1), 𝐶𝑛𝑣 (𝑛 ≥ 2), and 𝐶∞𝑣 .

2. If the molecule exhibits a unique axis of symmetry with the highest number of positions, this axis will become
the 𝑧 axis. This applies to all point groups except 𝐶1, 𝐶𝑖, 𝐶𝑠, 𝐷2, 𝐷2ℎ, the cubic point groups, and 𝐾ℎ.

3. For point group 𝐶𝑠, the mirror plane will become the 𝑥𝑦 plane.

4. For point groups 𝐶𝑛𝑣 (𝑛 ≥ 2), one of the vertical mirror planes will become the 𝑥𝑧 plane.

5. For point groups 𝐷𝑛 (𝑛 ≥ 3), 𝐷𝑛ℎ (𝑛 ≥ 3), and 𝐷𝑛𝑑 (𝑛 ≥ 2), one of the two-fold rotation axes perpendic-
ular to the axis with the highest number of positions will become the 𝑥 axis.

6. For point groups 𝐷2, 𝐷2ℎ, 𝑇 , and 𝑇ℎ, the three mutually orthogonal 𝐶2 axes will become the coordinate
axes.

7. For point groups 𝑇𝑑, 𝑂, and 𝑂ℎ, the three mutually orthogonal four-fold rotation or rotation-reflection axes
will become the coordinate axes.

8. Finally, for point groups 𝐼 and 𝐼ℎ, one of the five sets of three mutually orthogonal 𝐶2 axes will become the
coordinate axes. The pair of 𝐶5 or 𝑆10 axes closest to the 𝑧 axis will be located in the 𝑦𝑧 plane.

9. In general the orientation of the molecule will be changed as little as possible to meet the criteria above. If
the input geometry meets these criteria already, the molecule will not be moved or rotated at all.

If the point group of the system is 𝐷𝑛𝑑 with 𝑛 ≥ 2 or 𝑇𝑑 and the user has selected subgroup 𝐶2𝑣 using option
PreferC2v, the following rules apply instead:

• For point group 𝐷𝑛𝑑 with 𝑛 ≥ 2, one of the diagonal mirror planes will become the 𝑥𝑧 plane.

• For point group 𝑇𝑑, one of the diagonal mirror planes containing the 𝑧 axis will become the 𝑥𝑧 plane, i. e.
the molecule will be rotated by 45 degrees about the 𝑧 axis compared to the default orientation.

Table 4.4 gives an overview over all point groups and the way in which the symmetry elements of the reduced point
group (the largest common subgroup of 𝐷2ℎ) are aligned with the coordinate system.

Table 4.4: Point groups and corresponding subgroups suitable for electronic-structure calculations.

Full Index Unique Consistent Chosen Alignment
point 𝑛 centerPage 53, 6 with planar subgroup of the
group moleculePage 53, 7 subgroupPage 53, 8

𝐶1 no no 𝐶1

𝐶𝑖 𝑖 no 𝐶𝑖
𝐶𝑠 no yes 𝐶𝑠
𝐶𝑛 odd no no 𝐶1

even no no 𝐶2 𝑧 axis
𝐶𝑛𝑣 odd no no 𝐶𝑠 𝑥𝑧 plane

even no for 𝑛 = 2 𝐶2𝑣 𝑧, 𝑥𝑧, 𝑦𝑧
𝐶𝑛ℎ odd yes yes 𝐶𝑠 𝑥𝑦 plane

even 𝑖 yes 𝐶2ℎ 𝑧, 𝑥𝑦
𝐷𝑛 odd yes no 𝐶2 𝑥 axis

even yes no 𝐷2

𝐷𝑛ℎ odd yes yes 𝐶2𝑣 𝑥, 𝑥𝑦, 𝑥𝑧
even 𝑖 yes 𝐷2ℎ

𝐷𝑛𝑑 odd 𝑖 no 𝐶2ℎ 𝑥, 𝑦𝑧
continues on next page

5 In the very special case that the Z matrix contains no atoms with mass, the geometric center will be used instead.
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Table 4.4 – continued from previous page
Full Index Unique Consistent Chosen Alignment
point 𝑛 center6 with planar subgroup of the
group molecule7 subgroup8

even yes no 𝐷2

𝐶2𝑣 𝑧, 𝑥𝑧, 𝑦𝑧
𝑆2𝑛 odd 𝑖 no 𝐶𝑖

even yes no 𝐶2 𝑧 axis
𝑇 yes no 𝐷2

𝑇ℎ 𝑖 no 𝐷2ℎ

𝑇𝑑 yes no 𝐷2

𝐶2𝑣 𝑧, 𝑥𝑧, 𝑦𝑧
𝑂 yes no 𝐷2

𝑂ℎ 𝑖 no 𝐷2ℎ

𝐼 yes no 𝐷2

𝐼ℎ 𝑖 no 𝐷2ℎ

𝐶∞𝑣 no no 𝐶2𝑣 𝑧, 𝑥𝑧, 𝑦𝑧
𝐷∞ℎ 𝑖 no 𝐷2ℎ

𝐾ℎ 𝑖 no 𝐷2ℎ

4.6.4 Irreducible representations of 𝐷2ℎ and subgroups

Table 4.5, Table 4.6, and Table 4.7 contain lists of the irreducible representations (also called species) and the
corresponding characters of the point groups supported for electronic structure calculations in ORCA, and the
product tables of these irreducible representations. Where the data depends on the alignment of the symmetry
elements with the coordinate system, Mulliken’s recommendations [600] are followed. This approach is in line
with the recommendations by the IUPAC [771].

Table 4.5: Species and species product table of point group 𝐶2𝑣 . The species table for 𝐶2𝑣 corresponds to Table
III in [600]. The directions of the two-fold axis and the mirror planes in each column are related to each other by
cyclic permutations.

𝐶2(𝑧) 𝜎𝑣(𝑥𝑧) 𝜎𝑣(𝑦𝑧)
𝐶2𝑣 𝐸 𝐶2(𝑥) 𝜎𝑣(𝑥𝑦) 𝜎𝑣(𝑥𝑧)

𝐶2(𝑦) 𝜎𝑣(𝑦𝑧) 𝜎𝑣(𝑥𝑦)
𝐴1 +1 +1 +1 +1
𝐴2 +1 +1 −1 −1
𝐵1 +1 −1 +1 −1
𝐵2 +1 −1 −1 +1

× 𝐴1 𝐴2 𝐵1 𝐵2

𝐴1 𝐴1 𝐴2 𝐵1 𝐵2

𝐴2 𝐴2 𝐴1 𝐵2 𝐵1

𝐵1 𝐵1 𝐵2 𝐴1 𝐴2

𝐵2 𝐵2 𝐵1 𝐴2 𝐴1

Table 4.6: Species and species product table of point group 𝐷2. The species table for 𝐷2 has been obtained by
dropping the center of inversion and the mirror planes from the species table for 𝐷2ℎ (see Table 4.7).

𝐷2 𝐸 𝐶2(𝑧) 𝐶2(𝑦) 𝐶2(𝑥)
𝐴 +1 +1 +1 +1
𝐵1 +1 +1 −1 −1
𝐵2 +1 −1 +1 −1
𝐵3 +1 −1 −1 +1

× 𝐴 𝐵1 𝐵2 𝐵3

𝐴 𝐴 𝐵1 𝐵2 𝐵3

𝐵1 𝐵1 𝐴 𝐵3 𝐵2

𝐵2 𝐵2 𝐵3 𝐴 𝐵1

𝐵3 𝐵3 𝐵2 𝐵1 𝐴

6 A center of inversion is denoted 𝑖. “yes” indicates the existence of a unique vertex that remains invariant to all symmetry operations of
the point group.

7 This column indicates whether the given point group may be the full point group of a planar molecule.
8 This column contains the elements (axes or planes) of the coordinate system that coincide with the symmetry elements of the reduced

point group (the largest common subgroup of the full point group and 𝐷2ℎ) by default. If the full point group contains a unique principle axis
of symmetry (with the highest number of positions), this axis is presumed to coincide with the 𝑧 axis.
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Table 4.7: Species and species product table of point group 𝐷2ℎ. The species table for 𝐷2ℎ corresponds to Table
IV in [600].

𝐷2ℎ 𝐸 𝐶2(𝑧) 𝐶2(𝑦) 𝐶2(𝑥) 𝑖 𝜎(𝑥𝑦) 𝜎(𝑥𝑧) 𝜎(𝑦𝑧)
𝐴𝑔 +1 +1 +1 +1 +1 +1 +1 +1
𝐵1𝑔 +1 +1 −1 −1 +1 +1 −1 −1
𝐵2𝑔 +1 −1 +1 −1 +1 −1 +1 −1
𝐵3𝑔 +1 −1 −1 +1 +1 −1 −1 +1
𝐴𝑢 +1 +1 +1 +1 −1 −1 −1 −1
𝐵1𝑢 +1 +1 −1 −1 −1 −1 +1 +1
𝐵2𝑢 +1 −1 +1 −1 −1 +1 −1 +1
𝐵3𝑢 +1 −1 −1 +1 −1 +1 +1 −1

× 𝐴𝑔 𝐵1𝑔 𝐵2𝑔 𝐵3𝑔 𝐴𝑢 𝐵1𝑢 𝐵2𝑢 𝐵3𝑢

𝐴𝑔 𝐴𝑔 𝐵1𝑔 𝐵2𝑔 𝐵3𝑔 𝐴𝑢 𝐵1𝑢 𝐵2𝑢 𝐵3𝑢

𝐵1𝑔 𝐵1𝑔 𝐴𝑔 𝐵3𝑔 𝐵2𝑔 𝐵1𝑢 𝐴𝑢 𝐵3𝑢 𝐵2𝑢

𝐵2𝑔 𝐵2𝑔 𝐵3𝑔 𝐴𝑔 𝐵1𝑔 𝐵2𝑢 𝐵3𝑢 𝐴𝑢 𝐵1𝑢

𝐵3𝑔 𝐵3𝑔 𝐵2𝑔 𝐵1𝑔 𝐴𝑔 𝐵3𝑢 𝐵2𝑢 𝐵1𝑢 𝐴𝑢
𝐴𝑢 𝐴𝑢 𝐵1𝑢 𝐵2𝑢 𝐵3𝑢 𝐴𝑔 𝐵1𝑔 𝐵2𝑔 𝐵3𝑔

𝐵1𝑢 𝐵1𝑢 𝐴𝑢 𝐵3𝑢 𝐵2𝑢 𝐵1𝑔 𝐴𝑔 𝐵3𝑔 𝐵2𝑢

𝐵2𝑢 𝐵2𝑢 𝐵3𝑢 𝐴𝑢 𝐵1𝑢 𝐵2𝑔 𝐵3𝑔 𝐴𝑔 𝐵1𝑢

𝐵3𝑢 𝐵3𝑢 𝐵2𝑢 𝐵1𝑢 𝐴𝑢 𝐵3𝑔 𝐵2𝑔 𝐵1𝑔 𝐴𝑔

4.6.5 Options available in the %Symmetry input block

Table 4.8 contains a list of the options available in the %Symmetry (or %Sym) input block. Options SymThresh
and SymRelax (same as SymRelaxSCF below) can also be accessed in the %Method input block for backward
compatibility. This use is deprecated and not recommended in new input files, however.

Table 4.8: List of options in the %Symmetry (%Sym) input block

Option Type Default Description
UseSymmetry Boolean True By setting this option to False, symmetry may be switched

off even though the %Symmetry block is present in the input
file.

UseSym Boolean True Same as UseSymmetry.
SymThresh Real 10−4 Two vertices with a distance shorter than this threshold (in

atomic units) are considered identical during point group
recognition.

PreferC2v Boolean False Indicates whether to prefer subgroup 𝐶2𝑣 over 𝐷2 for
electronic-structure calculations where both choices are ap-
propriate (point groups 𝐷𝑛𝑑 with odd 𝑛 and 𝑇𝑑).

PointGroup String Empty string If the user specifies a point group using this option, point
group recognition will be skipped and the user must make
sure that the molecule is oriented in the coordinate system
in agreement with the conventions in Section 4.6.3. Note
that the point group label must be enclosed in double quotes.
Otherwise ORCA will complain about an invalid assign-
ment.

SymRelaxSCF Boolean False Indicates whether orbital occupation numbers of each irre-
ducible representation are allowed to change during SCF.

continues on next page
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Table 4.8 – continued from previous page
Option Type Default Description
SymRelaxOpt Boolean True Indicates whether the point group will be determined from

scratch in every step of a geometry optimization. A value
of True will allow the point group to change in an arbitrary
manner. Otherwise the initial point group will be imposed
at every step no matter how far the distances between the
current and the ideal structure exceed SymThresh.

CleanUpCoords Boolean True Determines whether the molecular geometry will be cleaned
up using the automatically detected or user-specified point
group. Even if CleanUpCoords is False, symmetrized co-
ordinates will still be computed temporarily and a warning
will be printed if the largest deviation from the original ge-
ometry exceeds SymThresh.

CleanUpGeom Boolean True Same as CleanUpCoords.
CleanUpGrad Boolean True Indicates whether the full point group of the molecule shall

be used to remove all non-totally symmetric components
from the gradient. This ensures that the point group will
not decrease throughout the optimization.

CleanUpGradient Boolean True Same as CleanUpGrad.
Print Integer 1 Determines the output size for symmetry handling in general

and point group detection in particular; 0 – No output dur-
ing point group detection; 1 – Normal output; 2 – Detailed
information; 3 – Debug print.

PrtSALC Integer 0 Specifies the output size for the construction of symmetry-
adapted linear combinations (SALCs) of atomic orbitals; 0
– No output for symmetry-adapted orbitals; 1 – Normal out-
put; 2 – Detailed information (e. g. the SALCs themselves);
3 – Debug print.

4.7 Jobs with Multiple Steps

ORCA supports input files with multiple jobs. This feature is designed to simplify series of closely related calcu-
lations on the same molecule or calculations on different molecules. The objectives for implementing this feature
include:

• Calculate of a molecular property using different theoretical methods and/or basis sets for one molecule.

• Calculations on a series of molecules with identical settings.

• Geometry optimization followed by more accurate single points and perhaps property calculations.

• Crude calculations to provide good starting orbitals that may then be used for subsequent calculations with
larger basis sets.

For example consider the following job that in the first step computes the g-tensor of BO at the LDA level, and in
the second step using the BP86 functional.

# -----------------------------------------------------
! LSD DEF2-SVP TightSCF KeepInts
# -----------------------------------------------------
%eprnmr gtensor 1 end

* int 0 2
B 0 0 0 0 0 0
O 1 0 0 1.2049 0 0

*

(continues on next page)
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(continued from previous page)

# *************************************************
# ****** This starts the input for the next job *
# *************************************************
$new_job
# --------------------------------------------------
! BP86 DEF2-SVP SmallPrint ReadInts NoKeepInts
# --------------------------------------------------
%eprnmr gtensor 1 end

* int 0 2
B 0 0 0 0 0 0
O 1 0 0 1.2049 0 0

*

What happens if you use the $new_job feature is that all calculation flags for the actual job are transferred from
the previous job and that only the changes in the settings must be input by the user. Thus if you turn on some flags
for one calculation that you do not want for the next, you have to turn them off again yourself (for example the use
of the RI approximation)! In addition, the default is that the new job takes the orbitals from the old job as input. If
you do not want this you have to overwrite this default by specifying your desired guess explicitly.

4.7.1 Changing the default BaseName

Normally the output files for MyJob.inp are returned in MyJob.xxx (any xxx, for example xxx=out). Sometimes,
and in particular in multistep jobs, you will want to change this behavior. To this end there is the variable %base that
can be user controlled. All filenames (also scratch files) will then be based on this default name. For example, using
the following setting, the output files for the current job would be job1.xxx (e.g. job1.gbw, job1.densities,
etc.).

%base "job1"
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CHAPTER

FIVE

INPUT OF COORDINATES

Coordinates can be either specified directly in the input file or read from an external file, and they can be in either
Cartesian (“xyz”) or internal coordinate format (“Z-matrix”).

5.1 Reading coordinates from the input file

The easiest way to specify coordinates in the input file is by including a block like the following, enclosed by star
symbols:

* CType Charge Multiplicity
...
coordinate specifications
...
*

Here CType can be one of xyz, int (or internal), or gzmt, which correspond to Cartesian coordinates, internal
coordinates, and internal coordinates in Gaussian Z-matrix format.

The input of Cartesian coordinates in the “xyz” option is straightforward. Each line consists of the label for a given
atom type and three numbers that specify the coordinates of the atom. The units can be either Ångström or Bohr.
The default is to specify the coordinates in Ångströms (this can be changed through the keyword line or via the
variable Units in the %coords main block described below).

* xyz Charge Multiplicity
Atom1 x1 y1 z1
Atom2 x2 y2 z2
...
*

For example for CO+ in a 𝑆 = 1/2 state (multiplicity = 2× 1/2 + 1 = 2)

* xyz 1 2
C 0.0 0.0 0.0
O 0.0 0.0 1.1105
*

Internal coordinates are specified in the form of the familiar “Z-matrix”. A Z-matrix basically contains informa-
tion about molecular connectivity, bond lengths, bond angles and dihedral angles. The program then constructs
Cartesian coordinates from this information. Both sets of coordinates are printed in the output such that conversion
between formats is facilitated. The input in that case looks like:

* int Charge Multiplicity
Atom1 0 0 0 0.0 0.0 0.0
Atom2 1 0 0 R1 0.0 0.0
Atom3 1 2 0 R2 A1 0.0
Atom4 1 2 3 R3 A2 D1
. . .

(continues on next page)
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(continued from previous page)

AtomN NA NB NC RN AN DN
*

The rules for connectivity in the “internal” mode are as follows:

• NA: The atom that the actual atom has a distance (RN) with.

• NB: The actual atom has an angle (AN) with atoms NA and NB.

• NC: The actual atom has a dihedral angle (DN) with atoms NA, NB and NC. This is the angle between the actual
atom and atom NC when looking down the NA-NB axis.

• Note that - contrary to other parts in ORCA - atoms are counted starting from 1.

Angles are always given in degrees! The rules are compatible with those used in the well known MOPAC and ADF
programs.

Finally, gzmt specifies internal coordinates in the format used by the Gaussian program. This resembles the fol-
lowing:

* gzmt 0 1
C
O 1 4.454280
Si 2 1.612138 1 56.446186
O 3 1.652560 2 114.631525 1 -73.696925
C 4 1.367361 3 123.895399 2 -110.635060
...

*

An alternative way to specify coordinates in the input file is through the use of the %coords block, which is
organized as follows:

%coords
CTyp xyz # the type of coordinates = xyz or internal
Charge 0 # the total charge of the molecule
Mult 2 # the multiplicity = 2S+1
Units Angs # the unit of length = angs or bohrs

# the subblock coords is for the actual coordinates
# for CTyp=xyz
coords

Atom1 x1 y1 z1
Atom2 x2 y2 z2

end
# for CTyp=internal
coords

Atom1 0 0 0 0.0 0.0 0.0
Atom2 1 0 0 R1 0.0 0.0
Atom3 1 2 0 R2 A1 0.0
Atom4 1 2 3 R3 A2 D1
. . .
AtomN NA NB NC RN AN DN

end
end
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5.2 Reading coordinates from external files

It is also possible to read the coordinates from external files. The most common format is a .xyz file, which can
in principle contain more than one structure (see section Multiple XYZ File Scans for this multiple XYZ feature):

* xyzfile Charge Multiplicity Filename

For example:

* xyzfile 1 2 mycoords.xyz

A lot of graphical tools like Gabedit, molden or Jmol can write Gaussian Z-Matrices (.gzmt). ORCA can also
read them from an external file with the following

* gzmtfile 1 2 mycoords.gzmt

Note that if multiple jobs are specified in the same input file then new jobs can read the coordinates from previous
jobs. If no filename is given as fourth argument then the name of the actual job is automatically used.

... specification for the first job

$new_job
! keywords
* xyzfile 1 2

In this way, optimization and single point jobs can be very conveniently combined in a single, simple input file.
Examples are provided in the following sections.

5.3 Special definitions

• Dummy atoms are defined in exactly the same way as any other atom, by using “DA”, “X”, or “Xx” as the
atomic symbol.

• Ghost atoms are specified by adding “:” right after the symbol of the element (see Counterpoise Correction).

• Point charges are specified with the symbol “Q”, followed by the charge (see Inclusion of Point Charges).

• Embedding potentials are specified by adding a “>” right after the symbol of the element (see Embedding
Potentials).

• Non-standard isotopes or nuclear charges are specified with the statements “M = . . . ” and “Z = . . . ”, re-
spectively, after the atomic coordinate definition.

ò Note

1. The nuclear charge can adopt non-integer values

2. When the nuclear charge is modified throughca “Z = . . . ” statement, the total charge of the system
should still be calculated based on the unmodified charge. For example, for a calculation of a single
hydrogen atom whose Z is set to 1.5, a charge of 0 and a spin multiplicity of 2 should be entered
into the charge and multiplicity sections of the input file, despite that the actual total charge is 0.5.

• Fragments can be conveniently defined by declaring the fragment number a given atom belongs to in paren-
theses “(n)” following the element symbol (see Fragment Specification).

• Frozen coordinates, which are not changed during optimizations in Cartesian coordinates, are defined with
a “$” symbol after the X, Y, and/or Z coordinate value (cf. constraints on all 3 Cartesian components Con-
strained Optimizations).
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CHAPTER

SIX

RUNNING TYPICAL CALCULATIONS

Before entering the detailed documentation of the various features of ORCA it is instructive to provide a chapter that
shows how “typical” tasks may be performed. This should make it easier for the user to get started on the program
and not get lost in the details of how-to-do-this or how-to-do-that. We hope that the examples are reasonably
intuitive.

6.1 Single Point Energies and Gradients

6.1.1 Hartree-Fock

Standard Single Points

In general single point calculations are fairly easy to run. What is required is the input of a method, a basis set
and a geometry. For example, in order run a single point Hartree-Fock calculation on the CO molecule with the
DEF2-SVP basis set type:

#
# My first ORCA calculation :-)
#
! HF DEF2-SVP
* xyz 0 1

C 0 0 0
O 0 0 1.13

*

As an example consider this simple calculation on the cyclohexane molecule that may serve as a prototype for this
type of calculation.

# Test a simple direct HF calculation
! HF DEF2-SV(P)
* xyz 0 1
C -0.79263 0.55338 -1.58694
C 0.68078 0.13314 -1.72622
C 1.50034 0.61020 -0.52199
C 1.01517 -0.06749 0.77103
C -0.49095 -0.38008 0.74228
C -1.24341 0.64080 -0.11866
H 1.10490 0.53546 -2.67754
H 0.76075 -0.97866 -1.78666
H -0.95741 1.54560 -2.07170
H -1.42795 -0.17916 -2.14055
H -2.34640 0.48232 -0.04725
H -1.04144 1.66089 0.28731
H -0.66608 -1.39636 0.31480
H -0.89815 -0.39708 1.78184
H 1.25353 0.59796 1.63523

(continues on next page)
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H 1.57519 -1.01856 0.93954
H 2.58691 0.40499 -0.67666
H 1.39420 1.71843 -0.44053
*

Basis Set Options

There is extensive flexibility in the specification of basis sets in ORCA. First of all, you are not only restricted to the
basis sets that are built in ORCA, but can also read basis set definitions from files. In addition there is a convenient
way to change basis sets on certain types of atoms or on individual atoms. Consider the following example:

# CuCl$_4$
! HF
%basis basis "SV"

newGTO Cl "DUNNING-DZP" end
end

* xyz -2 2
Cu 0 0 0 newGTO "TZVPP" end
Cl 2.25 0 0
Cl -2.25 0 0
Cl 0 2.25 0
Cl 0 -2.25 0

*

In this example the basis set is initialized as the Ahlrichs split valence basis. Then the basis set on all atoms of type
Cl is changed to SVP and finally the basis set for only the copper atom is changed to the more accurate TZVPP set.
In this way you could treat different atom types or even individual groups in a molecule according to the desired
accuracy. Similar functionality regarding per-element or per-atom assignments exists for effective core potentials.
More details are provided in section Choice of Basis Set.

Sometimes you will like to change the ordering of the starting orbitals to obtain a different electronic state in the
SCF calculation. For example, if we take the last input and want to converge to a ligand field excited state this can
be achieved by:

! HF SV
%basis newGTO Cl "Dunning-DZP" end

end
%scf rotate {48, 49, 90, 1, 1} end

end
* xyz -2 2

Cu 0 0 0 newGTO "TZVPP" end
Cl 2.25 0 0
Cl -2.25 0 0
Cl 0 2.25 0
Cl 0 -2.25 0

*

In the present case, MO 48 is the spin-down HOMO and MO49 the spin-down LUMO. Since we do a calculation
on a Cu(II) complex (d9 electron configuration) the beta LUMO corresponds with the “SOMO”. Thus, by changing
the SOMO we proceed to a different electronic state (in this case the one with the “hole” in the “d𝑥𝑦” orbital instead
of the “d𝑥2−𝑦2” orbital). The interchange of the initial guess MOs is achieved by the command rotate {48, 49,
90, 1, 1} end. What this does is the following: take the initial guess MOs 48 and 49 and rotate them by an angle
of 90 degree (this just interchanges them). The two last numbers mean that both orbitals are from the spin-down
set. For RHF or ROHF calculations the operator would be 0. In general you would probably first take a look at the
initial guess orbitals before changing them.
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SCF and Symmetry

Upon request, the SCF program produces symmetry adapted orbitals. This can help to converge the SCF on specific
excited states of a given symmetry. Take for example the cation H2O+: We first run the simple job:

! SVP UseSym

* xyz 1 2
O 0.000000 0.000000 0.068897
H 0.000000 0.788011 -0.546765
H 0.000000 -0.788011 -0.546765

*

The program will recognize the C2𝑣 symmetry and adapt the orbitals to this:

------------------
SYMMETRY DETECTION
------------------
The point group will now be determined using a tolerance of 1.0000e-04.
Splitting atom subsets according to nuclear charge, mass and basis set.
Splitting atom subsets according to distance from the molecule's center.
Identifying relative distance patterns of the atoms.
Splitting atom subsets according to atoms' relative distance patterns.
Bring atoms of each subset into input order.
The molecule is planar.
There is at least one atom subset not centered around the molecule's center.
The molecule does not have a center of inversion.
Analyzing the first atom subset for its symmetry.
Testing point group C2v.
Success!
This point group has been found: C2v
Largest non-degenerate subgroup: C2v

Mass-centered symmetry-perfected Cartesians (point group C2v):

Atom Symmetry-perfected Cartesians (x, y, z; au)
0 0.000000000000 0.000000000000 0.130195951333
1 0.000000000000 1.489124980517 -1.033236619729
2 0.000000000000 -1.489124980517 -1.033236619729

------------------
SYMMETRY REDUCTION
------------------
ORCA supports only abelian point groups.
It is now checked, if the determined point group is supported:
Point Group ( C2v ) is ... supported

(Re)building abelian point group:
Creating Character Table ... done
Making direct product table ... done
Constructing symmetry operations ... done
Creating atom transfer table ... done
Creating asymmetric unit ... done

----------------------
ASYMMETRIC UNIT IN C2v
----------------------

\# AT MASS COORDS (A.U.) BAS
0 O 15.9990 0.00000000 0.00000000 0.13019595 0
1 H 1.0080 0.00000000 1.48912498 -1.03323662 0

(continues on next page)
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----------------------
SYMMETRY ADAPTED BASIS
----------------------
The coefficients for the symmetry adapted linear combinations (SALCS)
of basis functions will now be computed:
Number of basis functions ... 24
Preparing memory ... done
Constructing Gamma(red) ... done
Reducing Gamma(red) ... done
Constructing SALCs ... done
Checking SALC integrity ... nothing suspicious
Normalizing SALCs ... done

Storing the symmetry object:
Symmetry file ... C05S01_030.sym.tmp
Writing symmetry information ... done

The initial guess in the SCF program will then recognize and freeze the occupation numbers in each irreducible
representation of the C2𝑣 point group.

The symmetry of the initial guess is 2-B1
Irrep occupations for operator 0

A1 - 3
A2 - 0
B1 - 1
B2 - 1

Irrep occupations for operator 1
A1 - 3
A2 - 0
B1 - 0
B2 - 1

The calculation converges smoothly to

Total Energy : -75.56349710 Eh -2056.18729 eV

With the final orbitals being:

SPIN UP ORBITALS
NO OCC E(Eh) E(eV) Irrep
0 1.0000 -21.127827 -574.9174 1-A1
1 1.0000 -1.867576 -50.8193 2-A1
2 1.0000 -1.192139 -32.4397 1-B2
3 1.0000 -1.124657 -30.6035 1-B1
4 1.0000 -1.085062 -29.5260 3-A1
5 0.0000 -0.153303 -4.1716 4-A1
6 0.0000 -0.071324 -1.9408 2-B2

...
SPIN DOWN ORBITALS

NO OCC E(Eh) E(eV) Irrep
0 1.0000 -21.081198 -573.6486 1-A1
1 1.0000 -1.710193 -46.5367 2-A1
2 1.0000 -1.152855 -31.3708 1-B2
3 1.0000 -1.032556 -28.0973 1-B1
4 0.0000 -0.306683 -8.3453 3-A1
5 0.0000 -0.139418 -3.7937 4-A1
6 0.0000 -0.062261 -1.6942 2-B2
7 0.0000 0.374727 10.1968 3-B2

...

Suppose now that we want to converge on an excited state formed by flipping the spin-beta HOMO and LUMO
that have different symmetries.
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! SVP UseSym
! moread
%moinp "Test-SYM-H2O+.gbw"
%scf rotate {3,4,90,1,1}

end
end

* xyz 1 2
O 0.000000 0.000000 0.068897
H 0.000000 0.788011 -0.546765
H 0.000000 -0.788011 -0.546765

*

The program now finds:

Irrep occupations for operator 0
A1 - 3
A2 - 0
B1 - 1
B2 - 1

Irrep occupations for operator 1
A1 - 2
A2 - 0
B1 - 1
B2 - 1

And converges smoothly to

Total Energy : -75.48231924 Eh -2053.97833 eV

Which is obviously an excited state of the H2O+ molecule. In this situation (and in many others) it is an advantage
to have symmetry adapted orbitals.

SymRelax. Sometimes, one may want to obtain the ground state of a system but due to a particularly bad initial
guess, the calculation converges to an excited state. In such cases, the following option can be used:

%method SymRelax True
end

This will allow the occupation numbers in each irreducible representation to change if and only if a virtual orbital
has a lower energy than an occupied one. Hence, nothing will change for the excited state of H2O+ discussed
above. However, the following calculation

! SVP UseSym
! moread
%moinp "Test-SYM-H2O+.gbw"
%scf rotate {3,13,90,1,1}

end
end

* xyz 1 2
O 0.000000 0.000000 0.068897
H 0.000000 0.788011 -0.546765
H 0.000000 -0.788011 -0.546765

*

which converges to a high-lying excited state:

Total Energy : -73.87704009 Eh -2010.29646 eV
...

SPIN UP ORBITALS
NO OCC E(Eh) E(eV) Irrep
0 1.0000 -21.314859 -580.0068 1-A1
1 1.0000 -1.976707 -53.7889 2-A1

(continues on next page)
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2 1.0000 -1.305096 -35.5135 3-A1
3 1.0000 -1.253997 -34.1230 1-B2
4 1.0000 -1.237415 -33.6718 1-B1
5 0.0000 -0.122295 -3.3278 4-A1
6 0.0000 -0.048384 -1.3166 2-B2

...
SPIN DOWN ORBITALS

NO OCC E(Eh) E(eV) Irrep
0 1.0000 -21.212928 -577.2331 1-A1
1 1.0000 -1.673101 -45.5274 2-A1
2 1.0000 -1.199599 -32.6427 1-B2
3 1.0000 0.727889 19.8069 1-A2
4 0.0000 -0.449647 -12.2355 3-A1
5 0.0000 -0.371861 -10.1189 1-B1
6 0.0000 -0.106365 -2.8943 4-A1

...

would revert to the ground state with the SymRelax option.

SCF and Memory

As the SCF module cannot restrict its use of memory to MaxCore we introduced an estimation of the expected
memory consumption. If the memory needed is larger than MaxCore ORCA will abort.

To check, if a certain job can be run with a given amount of MaxCore, you can ask for the estimation of memory
requirements by

%scf DryRun true
end

ORCA will finish execution after having printed the estimated amount of memory needed.

If you want to run the calculation (if doable), and only are interested in the estimated memory consumption, you
can ask for the printing via

%scf Print[P_SCFMemInfo] 1
end

ò Note

The estimation is given per process. If you want to run a parallel job, you will need the estimated memory ×
number of parallel processes.

6.1.2 MP2

MP2 and RI-MP2 Energies

You can do conventional or integral direct MP2 calculations for RHF, UHF or high-spin ROHF reference wave-
functions. MP3 functionality is not implemented as part of the MP2 module, but can be accessed through the
MDCI module. Analytic gradients are available for RHF and UHF. The analytic MP2-Hessians have been depre-
cated with ORCA-6.0. The frozen core approximation is used by default. For RI-MP2 the ⟨𝑆2⟩ expectation value
is computed in the unrestricted case according to [531]. An extensive coverage of MP2 exists in the literature.[96,
187, 258, 359, 370, 450, 473, 495, 576, 694, 737, 840, 882, 883]

! MP2 def2-TZVP TightSCF
%amp2 MaxCore

(continues on next page)
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end
%paras rCO = 1.20

ACOH = 120
rCH = 1.08
end

* int 0 1
C 0 0 0 0.00 0.0 0.00
O 1 0 0 {rCO} 0.0 0.00
H 1 2 0 {rCH} {ACOH} 0.00
H 1 2 3 {rCH} {ACOH} 180.00
*

ò Note

There are two algorithms for MP2 calculations without the RI approximation. The first one uses main memory
as much as possible. The second one uses more disk space and is usually faster (in particular, if you run the
calculations in single precision using ! FLOAT, UCFLOAT or CFLOAT). The memory algorithm is used by
specifying Q1Opt >0 in the %mp2 block whereas the disk based algorithm is the default or specified by Q1Opt
= -1. Gradients are presently only available for the memory based algorithm.

The RI approximation to MP2[96, 258, 882, 883] is fairly easy to use, too. It results in a tremendous speedup of
the calculation, while errors in energy differences are very small. For example, consider the same calculation as
before:

# only the auxiliary basis set def2-TZVP/C is added to
# the keyword line
#
! RI-MP2 def2-TZVP def2-TZVP/C TightSCF
%mp2 MaxCore 100

end
%paras rCO = 1.20

ACOH = 120
rCH = 1.08
end

* int 0 1
C 0 0 0 0.00 0.0 0.00
O 1 0 0 {rCO} 0.0 0.00
H 1 2 0 {rCH} {ACOH} 0.00
H 1 2 3 {rCH} {ACOH} 180.00
*

Generally, the RI approximation can be switched on by setting RI true in the %mp2 block. Specification of an
appropriate auxiliary basis set (“/C”) for correlated calculations is required. Note that if the RIJCOSX method
(section Hartree–Fock and Hybrid DFT Calculations with RIJCOSX) or the RI-JK method (section Hartree–Fock
and Hybrid DFT Calculations with RI-JK) is used to accelerate the SCF calculation, then two basis sets should be
specified: firstly the appropriate Coulomb (“/J”) or exchange fitting set (“/JK”), and secondly the correlation fitting
set (“/C”), as shown in the example below.

# Simple input line for RIJCOSX:
! RHF RI-MP2 RIJCOSX def2-TZVP def2/J def2-TZVP/C TightSCF

# Simple input line for RI-JK:
! RHF RI-MP2 RI-JK def2-TZVP def2/JK def2-TZVP/C TightSCF

The MP2 module can also do Grimme’s spin-component scaled MP2 [318]. It is a semi-empirical modification
of MP2 which applies different scaling factors to same-spin and opposite-spin components of the MP2 energy.
Typically it gives fairly bit better results than MP2 itself.
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#
# Spin-component scaled MP2 example
#
! SCS-MP2 def2-TZVPP TightSCF
%paras rCO = 1.20

ACOH = 120
rCH = 1.08
end

* int 0 1
C 0 0 0 0.00 0.0 0.00
O 1 0 0 {rCO} 0.0 0.00
H 1 2 0 {rCH} {ACOH} 0.00
H 1 2 3 {rCH} {ACOH} 180.00
*

Energy differences with SCS-MP2 appear to be much better than with MP2 itself according to Grimme’s de-
tailed evaluation study. For the sake of efficiency, it is beneficial to make use of the RI approximation using the
RI-SCS-MP2 keyword. The opposite-spin and same-spin scaling factors can be modified using PS and PT in the
%mp2 block, respectively. By default, PS = 6/5 and PT = 1/3.

NOTE

• In very large RI-MP2 runs you can cut down the amount of main memory used by a factor of two if you use
the keyword ! FLOAT. This is more important in gradient runs than in single point runs. Deviations from
double precision values for energies and gradients should be in the 𝜇Eh and sub-𝜇Eh range. However, we
have met cases where this option introduced a large and unacceptable error, in particular in transition metal
calculations. You are therefore advised to be careful and check things out beforehand.

A word of caution is due regarding MP2 calculations with a linearly dependent basis. This can happen, for example,
with very diffuse basis sets (see Linear Dependence for more information). If some vectors were removed from
the basis in the SCF procedure, those redundant vectors are still present as “virtual” functions with a zero orbital
energy in the MP2 calculation. When the number of redundant vectors is small, this is often not critical (and when
their number is large, one should probably use a different basis). However, it is better to avoid linearly dependent
basis sets in MP2 calculations whenever possible. Moreover, in such a situation the orbitals should not be read
with the MORead and NoIter keywords, as that is going to produce wrong results!

Frozen Core Options

In MP2 energy and gradient runs the Frozen Core (FC) approximation is applied by default. This implies that the
core electrons are not included in the perturbation treatment, since the inclusion of dynamic correlation in the core
electrons usually effects relative energies or geometry parameters insignificantly.

The frozen core option can be switched on or off with FrozenCore or NoFrozenCore in the simple input line.
Furthermore, frozen orbitals can be selected by means of an energy window:

%method FrozenCore FC_EWIN end
%mp2 ewin -1.5, 1.0e3 end

More information and the different options can be found in section Frozen Core Options
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Orbital Optimized MP2 Methods

By making the Hylleraas functional stationary with respect to the orbital rotations one obtains the orbital-optimized
MP2 method that is implemented in ORCA in combination with the RI approximation (OO-RI-MP2). One obtains
from these calculations orbitals that are adjusted to the dynamic correlation field at the level of second order many-
body perturbation theory. Also, the total energy of the OO-RI-MP2 method is lower than that of the RI-MP2
method itself. One might think of this method as a special form of multiconfigurational SCF theory except for the
fact that the Hamiltonian is divided into a 0th order term and a perturbation.

The main benefit of the OO-RI-MP2 method is that it “repairs” the poor Hartree–Fock orbitals to some extent
which should be particularly beneficial for systems which suffer from the imbalance in the Hartree-Fock treatment
of the Coulomb and the Exchange hole. Based on the experience gained so far, the OO-RI-MP2 method is no better
than RI-MP2 itself for the thermochemistry of organic molecules. However, for reactions barriers and radicals the
benefits of OO-MP2 over MP2 are substantial. This is particularly true with respect to the spin-component scaled
variant of OO-RI-MP2 that is OO-RI-SCS-MP2. Furthermore, the OO-RI-MP2 method substantially reduces the
spin contamination in UHF calculations on radicals.

Since every iteration of the OO-MP2 method is as expensive as a RI-MP2 relaxed density calculation, the compu-
tational cost is much higher than for RI-MP2 itself. One should estimate about a factor of 10 increase in computa-
tional time with respect to the RI-MP2 time of a normal calculation. This may still be feasible for calculations in
the range of 1000–2000 basis functions (the upper limit, however, implies very significant computational costs). A
full assessment of the orbital optimized MP2 method has been published.[621]

OO-RI-MP2 is triggered either with ! OO-RI-MP2 or ! OO-RI-SCS-MP2 (with spin component scaling) in the
simple input line or by OrbOpt true in the %mp2 block. The method comes with the following new variables:

%mp2 OrbOpt true # turns on the orbital optimization
CalcS2 false # calculate the S**2 expectation value

# in spin-unrestricted calculations
MaxOrbIter 64 # Max. number of iterations
MP2Shift 0.1 # Level shift for the procedure
end

The solver is a simple DIIS type scheme with additional level shifting. We have found that it is not really beneficial
to first converge the Hartree-Fock equations. Thus it is sensible to additionally use the keyword ! noiter in order
to turn off the standard Hartree-Fock SCF process before entering the orbital optimizations.

The OO-RI-MP2 method is implemented for RHF and UHF reference wavefunctions. Analytic gradients are avail-
able.

The density does not need to be requested separately in OO-RI-MP2 calculations because it is automatically calcu-
lated. Also, there is no distinction between relaxed and unrelaxed densities because the OO-RI-MP2 energy is fully
stationary with respect to all wavefunction parameters and hence the unrelaxed and relaxed densities coincide.

MP2 and RI-MP2 Gradients

Geometry optimization with MP2, RI-MP2, SCS-MP2 and RI-SCS-MP2 proceeds just as with any SCF method.
With frozen core orbitals, second derivatives of any kind are currently only available numerically. The RIJCOSX
approximation (section Hartree–Fock and Hybrid DFT Calculations with RIJCOSX) is supported in RI-MP2 and
hence also in double-hybrid DFT gradient runs (it is in fact the default for double-hybrid DFT since ORCA 5.0).
This leads to large speedups in larger calculations, particularly if the basis sets are accurate.

#
# MP2 optimization example
#
! SCS-MP2 def2-TZVP OPT NoFrozenCore
* int 0 1
C 0 0 0 0.00 0.0 0.00
O 1 0 0 1.20 0.0 0.00
H 1 2 0 1.09 120.0 0.00

(continues on next page)
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H 1 2 3 1.09 120.0 180.00
*

This job results in:

---------------------------------------------------------------------------
Redundant Internal Coordinates

--- Optimized Parameters ---
(Angstroem and degrees)

Definition OldVal dE/dq Step FinalVal
----------------------------------------------------------------------------
1. B(O 1,C 0) 1.2081 0.000488 -0.0003 1.2078
2. B(H 2,C 0) 1.1027 0.000009 -0.0000 1.1027
3. B(H 3,C 0) 1.1027 0.000009 -0.0000 1.1027
4. A(O 1,C 0,H 3) 121.85 0.000026 -0.00 121.85
5. A(H 2,C 0,H 3) 116.29 -0.000053 0.01 116.30
6. A(O 1,C 0,H 2) 121.85 0.000026 -0.00 121.85
7. I(O 1,H 3,H 2,C 0) -0.00 -0.000000 0.00 0.00
----------------------------------------------------------------------------

Just to demonstrate the accuracy of RI-MP2, here is the result with RI-SCS-MP2 instead of SCS-MP2, with the
addition of def2-TZVP/C:

---------------------------------------------------------------------------
Redundant Internal Coordinates

--- Optimized Parameters ---
(Angstroem and degrees)

Definition OldVal dE/dq Step FinalVal
----------------------------------------------------------------------------
1. B(O 1,C 0) 1.2081 0.000487 -0.0003 1.2078
2. B(H 2,C 0) 1.1027 0.000009 -0.0000 1.1027
3. B(H 3,C 0) 1.1027 0.000009 -0.0000 1.1027
4. A(O 1,C 0,H 3) 121.85 0.000026 -0.00 121.85
5. A(H 2,C 0,H 3) 116.29 -0.000053 0.01 116.30
6. A(O 1,C 0,H 2) 121.85 0.000026 -0.00 121.85
7. I(O 1,H 3,H 2,C 0) -0.00 0.000000 -0.00 -0.00
----------------------------------------------------------------------------

You see that nothing is lost in the optimized geometry through the RI approximation thanks to the efficient and
accurate RI-auxiliary basis sets of the Karlsruhe group (in general the deviations in the geometries between standard
MP2 and RI-MP2 are very small). Thus, RI-MP2 really is a substantial improvement in efficiency over standard
MP2.

Geometric gradients can be calculated with RI-MP2 in conjunction with the RIJCOSX method. They are called the
same way as with a conventional SCF wave function, for example to perform a geometry optimization with tight
convergence parameters: (Please note that you have to switch on NumFreq for the MP2-Hessian, as the analytical
(RI-)MP2-Hessians are no longer available).

! RI-MP2 def2-TZVPP def2/J def2-TZVPP/C TightSCF RIJCOSX
! TightOpt
...

70 Chapter 6. Running Typical Calculations



ORCA Manual, Release 6.0

MP2 Properties, Densities and Natural Orbitals

The MP2 method can be used to calculate electric and magnetic properties such as dipole moments, polarizabilities,
hyperfine couplings, g-tensors or NMR chemical shielding tensors. For this purpose, the appropriate MP2 density
needs to be requested - otherwise the properties are calculated using the SCF density!

Two types of densities can be constructed - an “unrelaxed” density (which basically corresponds to the MP2 ex-
pectation value density) and a “relaxed” density which incorporates orbital relaxation. For both sets of densities a
population analysis is printed if the SCF calculation also requested this population analysis. These two densities
are stored as JobName.pmp2ur.tmp and JobName.pmp2re.tmp, respectively. For the open shell case case the
corresponding spin densities are also constructed and stored as JobName.rmp2ur.tmp and JobName.rmp2re.
tmp.

In addition to the density options, the user has the ability to construct MP2 natural orbitals. If relaxed densities are
available, the program uses the relaxed densities and otherwise the unrelaxed ones. The natural orbitals are stored
as JobName.mp2nat which is a GBW type file that can be read as input for other jobs (for example, it is sensible
to start CASSCF calculations from MP2 natural orbitals). The density construction can be controlled separately in
the input file (even without running a gradient or optimization) by:

#
# MP2 densities and natural orbitals
#
%mp2 Density none # no density

unrelaxed # unrelaxed density
relaxed # relaxed density

NatOrbs true # Natural orbital construction on or off
end

Below is a calculation of the dipole and quadrupole moments of a water molecule:

! RI-MP2 def2-SVP def2-SVP/C
%mp2 density relaxed end
%elprop dipole true

quadrupole true
end

* int 0 1
O 0 0 0 0 0 0
H 1 0 0 0.9584 0 0
H 1 2 0 0.9584 104.45 0
*

Another example is a simple g-tensor calculation with MP2:

! RI-MP2 def2-SVP def2-SVP/C TightSCF SOMF(1X) NoFrozenCore
%eprnmr gtensor 1

ori CenterOfElCharge
end
%mp2 density relaxed end
* int 1 2
O 0 0 0 0 0 0
H 1 0 0 1.1056 0 0
H 1 2 0 1.1056 109.62 0
*

NMR chemical shielding as well as g-tensor calculations with GIAOs are only available for RI-MP2. The input for
NMR chemical shielding looks as follows:

! RIJK RI-MP2 def2-SVP def2/JK def2-SVP/C TightSCF NMR NoFrozenCore
%mp2

density relaxed # required
end
* int 0 1

(continues on next page)
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(continued from previous page)

O 0 0 0 0 0 0
H 1 0 0 1.1056 0 0
H 1 2 0 1.1056 109.62 0
*

Note that by default core electrons are not correlated unless the NoFrozenCore keyword is present.

For details, see sections The Second Order Many Body Pertubation Theory Module (MP2) and MP2 level magnetic
properties.

Explicitly correlated MP2 calculations

ORCA features an efficient explicit correlation module that is available for MP2 and coupled-cluster calculations
(section Explicitly Correlated MP2 and CCSD(T) Calculations). It is described below in the context of coupled-
cluster calculations.

Local MP2 calculations

Purely domain-based local MP2 methodology dates back to Pulay and has been developed further by Werner,
Schütz and co-workers. ORCA features a local MP2 method (DLPNO-MP2) that combines the ideas of domains
and local pair natural orbitals, so that RI-MP2 energies are reproduced efficiently to within chemical accuracy.
Due to the intricate connections with other DLPNO methods, reading of the sections Local Coupled Pair and
Coupled-Cluster Calculations and and Local correlation is recommended. A full description of the method for
RHF reference wave functions has been published.[685]

Since DLPNO-MP2 employs an auxiliary basis set to evaluate integrals, its energies converge systematically to
RI-MP2 as thresholds are tightened. The computational effort of DLPNO-MP2 with default settings is usually
comparable with or less than that of a Hartree-Fock calculation. However, for small and medium-sized molecules,
RI-MP2 is even faster than DLPNO-MP2.

Calculations on open-shell systems are supported through a UHF treatment. While most approximations are con-
sistent between the RHF and UHF versions, this is not true for the PNO spaces. DLPNO-MP2 gives different
energies for closed-shell molecules in the RHF and UHF formalisms. When calculating reaction energies or
other energy differences involving open-shell species, energies of closed-shell species must also be calculated
with UHF-DLPNO-MP2, and not with RHF-DLPNO-MP2. As for canonical MP2, ROHF reference wave func-
tions are subject to an ROMP2 treatment through the UHF machinery. It is not consistent with the RHF version of
DLPNO-MP2, unlike in the case of RHF-/ROHF-DLPNO-CCSD.

Input for DLPNO-MP2 requires little specification from the user:

# DLPNO-MP2 calculation with standard settings
# sufficient for most purposes
! def2-TZVP def2-TZVP/C DLPNO-MP2 TightSCF

# OR: DLPNO-MP2 with tighter thresholds
# May be interesting for weak interactions, calculations with diffuse basis sets etc.
! def2-TZVP def2-TZVP/C DLPNO-MP2 TightPNO TightSCF

%maxcore 2000

*xyz 0 1
... (coordinates)
*

Noteworthy aspects of the DLPNO-MP2 method:

• Both DLPNO-CCSD(T) and DLPNO-MP2 are linear-scaling methods (albeit the former has a larger pref-
actor). This means that if a DLPNO-MP2 calculation can be performed, DLPNO-CCSD(T) is often going
to be within reach, too. However, CCSD(T) is generally much more accurate than MP2 and thus should be
given preference.
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• A correlation fitting set must be provided, as the method makes use of the RI approximation.

• Canonical RI-MP2 energy differences are typically reproduced to within a fraction of 1 kcal/mol. The default
thresholds have been chosen so as to reproduce about 99.9% of the total RI-MP2 correlation energy.

• The preferred way to control the accuracy of the method is by means of specifying “LoosePNO”, “Nor-
malPNO” and “TightPNO” keywords. “NormalPNO” corresponds to default settings and does not need to
be given explicitly. More details and an exhaustive list of input parameters are provided in section Local
MP2. Note that the thresholds differ from DLPNO coupled cluster.

• Results obtained from RI-MP2 and DLPNO-MP2, or from DLPNO-MP2 with different accuracy settings,
must never be mixed, such as when computing energy differences. In calculations involving open-shell
species, even the closed-shell molecules need to be subject to a UHF treatment.

• Spin-component scaled DLPNO-MP2 calculations are invoked by using the ! DLPNO-SCS-MP2 keyword
instead of ! DLPNO-MP2 in the simple input line. Weights for same-spin and opposite-spin contributions
can be adjusted as described for the canonical SCS-MP2 method. Likewise, there is a DLPNO-SOS-MP2
keyword to set the parameters defined by the SOS-MP2 method (but there is no Laplace transformation
involved).

• The frozen core approximation is used by default. If core orbitals are involved in the calculation, they are
subject to the treatment described in section Local MP2.

• Calculations can be performed in parallel.

• It may be beneficial to accelerate the Hartree-Fock calculation by means of the RIJCOSX method (requiring
specification of a second auxiliary set).

Explicit correlation has been implemented in the DLPNO-MP2-F12 methodology for RHF reference wave func-
tions.[654] The available approaches are C (keyword ! DLPNO-MP2-F12) and the somewhat more approximate
D (keyword ! DLPNO-MP2-F12/D). Approach D is generally recommended as it results in a significant speedup
while leading only to small errors relative to approach C. In addition to the MO and correlation fitting sets, a CABS
basis set is also required for both F12 approaches as shown below.

# DLPNO-MP2-F12 calculation using approach C
! cc-pVDZ-F12 aug-cc-pVDZ/C cc-pVDZ-F12-CABS DLPNO-MP2-F12 TightSCF

# OR: DLPNO-MP2-F12 calculation using approach D (recommended)
! cc-pVDZ-F12 aug-cc-pVDZ/C cc-pVDZ-F12-CABS DLPNO-MP2-F12/D TightSCF

Local MP2 derivatives

Analytical gradients and the response density are available for the RHF variant of the DLPNO-MP2 method.[686,
687] Usage is as simple as that of RI-MP2. For example, the following input calculates the gradient and the natural
orbitals:

! DLPNO-MP2 def2-SVP def2-SVP/C TightSCF EnGrad
%MaxCore 512
# With 'EnGrad', specifying 'density relaxed' is unnecessary.
# However, it is needed when calculating properties without the gradient.
%MP2 Density Relaxed

NatOrbs True
End

*xyz 0 1
C 0.000 0.000 0.000
O 0.000 0.000 1.162
O 0.000 0.000 -1.162
*

The implementation supports spin-component scaling and can be used together with double-hybrid density func-
tionals. The latter are invoked with the name of the functional preceded by “DLPNO-”. A simple geometry opti-
mization with a double-hybrid density functional is illustrated in the example below:
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! DLPNO-B2PLYP D3 NormalPNO def2-TZVP def2-TZVP/C Opt
%MaxCore 1000
*xyz 0 1
O 0.000 0.000 0.000
H 0.000 0.000 1.000
H 0.000 1.000 0.000
*

For smaller systems, the performance difference between DLPNO-MP2 and RI-MP2 is not particularly large, but
very substantial savings in computational time over RI-MP2 can be achieved for systems containing more than
approximately 70-80 atoms.

Since MP2 is an expensive method for geometry optimizations, it is generally a good idea to use well-optimized
starting structures (calculated, for example, with a dispersion-corrected DFT functional). Moreover, it is highly
advisable to employ accurate Grids for RIJCOSX or the exchange-correlation functional (if applicable), as the SCF
iterations account only for a fraction of the overall computational cost. If calculating calculating properties without
requesting the gradient, Density Relaxed needs to be specified in the %MP2-block.

Only the Foster-Boys localization scheme is presently supported by the derivatives implementation. The default lo-
calizer in DLPNO-MP2 is AHFB, and changing this setting is strongly discouraged, since tightly converged localized
orbitals are necessary to calculate the gradient.

Analytical second derivatives for closed-shell DLPNO-MP2 are available for the calculation of NMR shielding
and static polarizability tensors.[827] The implementation supports spin-component scaling and double-hybrid
functionals. Errors in the calculated properties are well below 0.5% when NormalPNO thresholds are used. Re-
fer to section Local MP2 Response Properties for more information about the DLPNO-MP2 second derivatives
implementation, as well as to the sections on electric (Electric Properties) and magnetic (EPR and NMR proper-
ties) properties and CP-SCF settings (CP-SCF Options). Below is an example for a simple DLPNO-MP2 NMR
shielding calculation:

! DLPNO-MP2 def2-TZVP def2-TZVP/C TightSCF NMR
# MP2 relaxed density is requested automatically
*xyz 0 1

H 0 0 0
F 0 0 0.9

*

6.1.3 Coupled-Cluster and Coupled-Pair Methods

Basics

The coupled-cluster method is presently available for RHF and UHF references. The implementation is fairly
efficient and suitable for large-scale calculations. The most elementary use of this module is fairly simple.

! METHOD
# where METHOD is:
# CCSD CCSD(T) QCISD QCISD(T) CPF/n NCPF/n CEPA/n NCEPA/n
# (n=1,2,3 for all variants) ACPF NACPF AQCC CISD

! AOX-METHOD
# computes contributions from integrals with 3- and 4-external
# labels directly from AO integrals that are pre-stored in a
# packed format suitable for efficient processing

! AO-METHOD
# computes contributions from integrals with 3- and 4-external
# labels directly from AO integrals. Can be done for integral
# direct and conventional runs. In particular, the conventional
# calculations can be very efficient

(continues on next page)
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! MO-METHOD (this is the default)
# performs a full four index integral transformation. This is
# also often a good choice

! RI-METHOD
# selects the RI approximation for all integrals. Rarely advisable

! RI34-METHOD
# selects the RI approximation for the integrals with 3- and 4-
# external labels
#
# The module has many additional options that are documented
# later in the manual.

! RCSinglesFock
! RIJKSinglesFock
! NoRCSinglesFock
! NoRIJKSinglesFock
# Keywords to select the way the so-called singles Fock calculation
# is evaluated. The first two keywords turn on, the second two turn off
# RIJCOSX or RIJK, respectively.

ò Note

• The same FrozenCore options as for MP2 are applied in the MDCI module.

• Since ORCA 4.2, an additional term, called “4th-order doubles-triples correction” is considered in open-
shell CCSD(T). To reproduce previous results, one should use a keyword,

%mdci
Include_4thOrder_DT_in_Triples false

end

The computational effort for these methods is high — O(N6) for all methods and O(N7) if the triples correction
is to be computed (calculations based on an unrestricted determinant are roughly 3 times more expensive than
closed-shell calculations and approximately six times more expensive if triple excitations are to be calculated).
This restricts the calculations somewhat: on presently available PCs 300–400 basis functions are feasible and if
you are patient and stretch it to the limit it may be possible to go up to 500–600; if not too many electrons are
correlated maybe even up to 800–900 basis functions (when using AO-direct methods).

� Tip

• For calculations on small molecules and large basis sets the MO-METHOD option is usually the most
efficient; say perhaps up to about 300 basis functions. For integral conventional runs, the AO-METHOD
may even more efficient.

• For large calculations (>300 basis functions) the AO-METHOD option is a good choice. If, however,
you use very deeply contracted basis sets such as ANOs these calculations should be run in the integral
conventional mode.

• AOX-METHOD is usually slightly less efficient than MO-METHOD or AO-METHOD.

• RI-METHOD is seldom the most efficient choice. If the integral transformation time is an issue than you
can select %mdci trafotype trafo_ri or choose RI-METHOD and then %mdci kcopt kc_ao.

• Regarding the singles Fock keywords (RCSinglesFock, etc.), the program usually decides which method
to use to evaluate the singles Fock term. For more details on the nature of this term, and options related
to its evaluation, see The singles Fock term.
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To put this into perspective, consider a calculation on serine with the cc-pVDZ basis set — a basis on the lower end
of what is suitable for a highly correlated calculation. The time required to solve the equations is listed in Table
6.1. We can draw the following conclusions:

• As long as one can store the integrals and the I/O system of the computer is not the bottleneck, the most
efficient way to do coupled-cluster type calculations is usually to go via the full transformation (it scales as
O(N5) whereas the later steps scale as O(N6) and O(N7) respectively).

• AO-based coupled-cluster calculations are not much inferior. For larger basis sets (i.e. when the ratio of
virtual to occupied orbitals is larger), the computation times will be even more favorable for the AO based
implementation. The AO direct method uses much less disk space. However, when you use a very expensive
basis set the overhead will be larger than what is observed in this example. Hence, conventionally stored
integrals — if affordable — are a good choice.

• AOX-based calculations run at essentially the same speed as AO-based calculations. Since AOX-based cal-
culations take four times as much disk space, they are pretty much outdated and the AOX implementation is
only kept for historical reasons.

• RI-based coupled-cluster methods are significantly slower. There are some disk space savings, but the com-
putationally dominant steps are executed less efficiently.

• CCSD is at most 10% more expensive than QCISD. With the latest AO implementation the awkward coupled-
cluster terms are handled efficiently.

• CEPA is not much more than 20% faster than CCSD. In many cases CEPA results will be better than CCSD
and then it is a real saving compared to CCSD(T), which is the most rigorous.

• If triples are included practically the same comments apply for MO versus AO based implementations as in
the case of CCSD.

ORCA is quite efficient in this type of calculation, but it is also clear that the range of application of these rig-
orous methods is limited as long as one uses canonical MOs. ORCA implements novel variants of the so-called
local coupled-cluster method which can calculate large, real-life molecules in a linear scaling time. This will be
addressed in Sec. Local Coupled Pair and Coupled-Cluster Calculations.

Table 6.1: Computer times (minutes) for solving the coupled-cluster/coupled-pair equations for Serine (cc-pVDZ
basis set)

Method SCFMode Time (min)
MO-CCSD Conv 38.2
AO-CCSD Conv 47.5
AO-CCSD Direct 50.8
AOX-CCSD Conv 48.7
RI-CCSD Conv 64.3
AO-QCISD Conv 44.8
AO-CEPA/1 Conv 40.5
MO-CCSD(T) Conv 147.0
AO-CCSD(T) Conv 156.7

All of these methods are designed to cover dynamic correlation in systems where the Hartree-Fock determinant
dominates the wavefunctions. The least attractive of these methods is CISD which is not size-consistent and there-
fore practically useless. The most rigorous are CCSD(T) and QCISD(T). The former is perhaps to be preferred,
since it is more stable in difficult situations.1 One can get highly accurate results from such calculations. However,
one only gets this accuracy in conjunction with large basis sets. It is perhaps not very meaningful to perform a
CCSD(T) calculation with a double-zeta basis set (see Table 6.2). The very least basis set quality required for
meaningful results would perhaps be something like def2-TZVP(-f) or preferably def2-TZVPP (cc-pVTZ, ano-
pVTZ). For accurate results quadruple-zeta and even larger basis sets are required and at this stage the method is
restricted to rather small systems.

1 The exponential of the T1 operator serves to essentially fully relax the orbitals of the reference wavefunction. This is not included in the
QCISD model that only features at most a linear T1T2 term in the singles residuum. Hence, if the Hartree-Fock wavefunction is a poor starting
point but static correlation is not the main problem, CCSD is much preferred over QCISD. This is not uncommon in transition metal complexes.
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Let us look at the case of the potential energy surface of the N2 molecule. We study it with three different basis
sets: TZVP, TZVPP and QZVP. The input is the following:

! TZVPP CCSD(T)
%paras R= 1.05,1.13,8

end
* xyz 0 1
N 0 0 0
N 0 0 {R}
*

For even higher accuracy we would need to introduce relativistic effects and - in particular - turn the core correlation
on.2

Table 6.2: Computed spectroscopic constants of N2 with coupled-cluster methods.

Method Basis set Re (pm) 𝜔e (cm−1) 𝜔e xe (cm−1)
CCSD(T) SVP 111.2 2397 14.4

TZVP 110.5 2354 14.9
TZVPP 110.2 2349 14.1
QZVP 110.0 2357 14.3
ano-pVDZ 111.3 2320 14.9
ano-pVTZ 110.5 2337 14.4
ano-pVQZ 110.1 2351 14.5

CCSD QZVP 109.3 2437 13.5
Exp 109.7 2358.57 14.32

One can see from Table 6.2 that for high accuracy - in particular for the vibrational frequency - one needs both - the
connected triple-excitations and large basis sets (the TZVP result is fortuitously good). While this is an isolated
example, the conclusion holds more generally. If one pushes it, CCSD(T) has an accuracy (for reasonably well-
behaved systems) of approximately 0.2 pm in distances, <10 cm−1 for harmonic frequencies and a few kcal/mol
for atomization energies.3 It is also astonishing how well the Ahlrichs basis sets do in these calculations — even
slightly better than the much more elaborate ANO bases.

ò Note

The quality of a given calculation is not always high because it carries the label “coupled-cluster”. Accurate
results are only obtained in conjunction with large basis sets and for systems where the HF approximation is a
good 0𝑡ℎ order starting point.

2 Note that core correlation is not simply introduced by including the core orbitals in the correlation problem. In addition, special correlation
core-polarization functions are needed. They have been standardized for a few elements in the cc-pCVxZ (X=D,T,Q,5,6) basis sets.

3 However, in recent years it became more evident that even CCSD(T) achieves its high apparent accuracy through error cancellations. The
full CCSDT method (triples fully included) usually performs worse than CCSD(T). The reason is that the (T) correction undershoots the effects
of the triples to some extent and thereby compensates for the neglect of connected quadruple excitations. For very high accuracy quantum
chemistry, even these must be considered. The prospects for treating chemically more relevant molecules with such methods is not particularly
bright for the foreseeable future. . .
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Coupled-Cluster Densities

If one is mainly accustomed to Hartree-Fock or DFT calculations, the calculation of the density matrix is more or
less a triviality and is automatically done together with the solution of the self-consistent field equations. Unfortu-
nately, this is not the case in coupled-cluster theory (and also not in MP2 theory). The underlying reason is that in
coupled-cluster theory, the expansion of the exponential 𝑒𝑇 in the expectation value

𝐷𝑝𝑞 =
⟨Ψ|𝐸𝑞𝑝 |Ψ⟩
⟨Ψ|Ψ⟩

=
⟨𝑒𝑇Ψ0|𝐸𝑞𝑝 |𝑒𝑇Ψ0⟩
⟨𝑒𝑇Ψ0|𝑒𝑇Ψ0⟩

only terminates if all possible excitation levels are exhausted, i.e., if all electrons in the reference determinant Ψ0

(typically the HF determinant) are excited from the space of occupied to the space of virtual orbitals (here 𝐷𝑝𝑞

denotes the first order density matrix, 𝐸𝑞𝑝 are the spin traced second quantized orbital replacement operators, and
𝑇 is the cluster operator). Hence, the straightforward application of these equations is far too expensive. It is,
however, possible to expand the exponentials and only keep the linear term. This then defines a linearized density
which coincides with the density that one would calculate from linearized coupled-cluster theory (CEPA/0). The
difference to the CEPA/0 density is that converged coupled-cluster amplitudes are used for its evaluation. This
density is straightforward to compute and the computational effort for the evaluation is very low. Hence, this is a
density that can be easily produced in a coupled-cluster run. It is not, however, what coupled-cluster aficionados
would accept as a density.

The subject of a density in coupled-cluster theory is approached from the viewpoint of response theory. Imagine
one adds a perturbation of the form

𝐻(𝜆) = 𝜆
∑︁

𝑝𝑞
ℎ𝜆𝑝𝑞𝐸

𝑞
𝑝

to the Hamiltonian. Then it is always possible to cast the first derivative of the total energy in the form:

𝑑𝐸

𝑑𝜆
=
∑︁
𝑝𝑞

𝐷(response)
𝑝𝑞 ℎ𝜆𝑝𝑞

This is a nice result. The quantity 𝐷(response)
𝑝𝑞 is the so-called response density. In the case of CC theory where

the energy is not obtained by variational optimization of an energy functional, the energy has to be replaced by a
Lagrangian reading as follows:

𝐿𝐶𝐶 = ⟨Φ0|�̄�|Φ0⟩+
∑︁
𝜂

𝜆𝜂⟨Φ𝜂|�̄�|Φ0⟩+
∑︁
𝑎𝑖

𝑓𝑎𝑖𝑧𝑎𝑖

Here ⟨Φ𝜂| denotes any excited determinant (singly, doubly, triply, . . . .). There are two sets of Lagrange multipliers:
the quantities 𝑧𝑎𝑖 that guarantee that the perturbed wavefunction fulfills the Hartree-Fock conditions by making
the off-diagonal Fock matrix blocks zero and the quantities 𝜆𝜂 that guarantee that the coupled-cluster projection
equations for the amplitudes are fulfilled. If both sets of conditions are fulfilled then the coupled-cluster Lagrangian
simply evaluates to the coupled-cluster energy. The coupled-cluster Lagrangian can be made stationary with respect
to the Lagrangian multipliers 𝑧𝑎𝑖 and 𝜆𝜂 . The response density is then defined through:

𝑑𝐿𝐶𝐶
𝑑𝜆

=
∑︁
𝑝𝑞

𝐷(response)
𝑝𝑞 ℎ𝜆𝑝𝑞

The density 𝐷𝑝𝑞 appearing in this equation does not have the same properties as the density that would arise from
an expectation value. For example, the response density can have eigenvalues lower than 0 or larger than 2. In
practice, the response density is, however, the best “density” there is for coupled-cluster theory.

Unfortunately, the calculation of the coupled-cluster response density is quite involved because additional sets of
equations need to be solved in order to determine the 𝑧𝑎𝑖 and 𝜆𝜂 . If only the equations for 𝜆𝜂 are solved one speaks
of an “unrelaxed” coupled-cluster density. If both sets of equations are solved, one speaks of a “relaxed” coupled-
cluster density. For most intents and purposes, the orbital relaxation effects incorporated into the relaxed density
are small for a coupled-cluster density. This is so, because the coupled-cluster equations contain the exponential
of the single excitation operator 𝑒𝑇1 = exp(

∑︀
𝑎𝑖 𝑡

𝑖
𝑎𝐸

𝑎
𝑖 ). This brings in most of the effects of orbital relaxation. In

fact, replacing the 𝑇1 operator by the operator �̂� =
∑︀
𝑎𝑖 𝜅

𝑖
𝑎(𝐸

𝑎
𝑖 − 𝐸𝑖𝑎) would provide all of the orbital relaxation

thus leading to “orbital optimized coupled-cluster theory” (OOCC).
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Not surprisingly, the equations that determine the coefficients 𝜆𝜂 (the Lambda equations) are as complicated as the
coupled-cluster amplitude equations themselves. Hence, the calculation of the unrelaxed coupled-cluster density
matrix is about twice as expensive as the calculation of the coupled-cluster energy (but not quite as with proper
program organization terms can be reused and the Lambda equations are linear equations that converge somewhat
better than the non-linear amplitude equations).

ORCA features the calculation of the unrelaxed coupled-cluster density on the basis of the Lambda equations
for closed- and open-shell systems. If a fully relaxed coupled-cluster density is desired then ORCA still features
the orbital-optimized coupled-cluster doubles method (OOCCD). This is not exactly equivalent to the fully relaxed
CCSD density matrix because of the operator �̂� instead of 𝑇1. However, results are very close and orbital optimized
coupled-cluster doubles is the method of choice if orbital relaxation effects are presumed to be large.

In terms of ORCA keywords, the coupled-cluster density is obtained through the following keywords:

#
# coupled-cluster density
#
%mdci density none

linearized
unrelaxed
orbopt

end

which will work together with CCSD or QCISD (QCISD and CCSD are identical in the case of OOCCD because
of the absence of single excitations). Note, that an unrelaxed density for CCSD(T) is NOT available.

Instead of using the density option “orbopt” in the mdci-block, OOCCD can also be invoked by using the keyword:

! OOCCD

Static versus Dynamic Correlation

Having said that, let us look at an “abuse” of the single reference correlation methods by studying (very superfi-
cially) a system which is not well described by a single HF determinant. This already occurs for the twisting of
the double bond of C2H4. At a 90∘ twist angle the system behaves like a diradical and should be described by a
multireference method (see section Complete Active Space Self-Consistent Field Method)
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Fig. 6.1: A rigid scan along the twisting coordinate of C2H4. The inset shows the T1 diagnostic for the CCSD
calculation.

As can be seen in Fig. 6.1, there is a steep rise in energy as one approaches a 90∘ twist angle. The HF curve is
actually discontinuous and has a cusp at 90∘. This is immediately fixed by a simple CASSCF(2,2) calculation
which gives a smooth potential energy surface. Dynamic correlation is treated on top of the CASSCF(2,2) method
with the MRACPF approach as follows:

#
# twisting the double bond of C2H4
#
! SV(P) def2-TZVP/C SmallPrint NoPop MRACPF
%casscf nel 2

norb 2
mult 1
nroots 1
TrafoStep RI
end

%mrci tsel 1e-10
tpre 1e-10
end

%method scanguess pmodel
end

%paras R= 1.3385
Alpha=0,180,18
end

* int 0 1
C 0 0 0 0 0 0
C 1 0 0 {R} 0 0
H 1 2 0 1.07 120 0
H 1 2 3 1.07 120 180
H 2 1 3 1.07 120 {Alpha}
H 2 1 3 1.07 120 {Alpha+180}
*
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This is the reference calculation for this problem. One can see that the RHF curve is far from the MRACPF reference
but the CASSCF calculation is very close. Thus, dynamic correlation is not important for this problem! It only
appears to be important since the RHF determinant is such a poor choice. The MP2 correlation energy is insufficient
in order to repair the RHF result. The CCSD method is better but still falls short of quantitative accuracy. Finally,
the CCSD(T) curve is very close the MRACPF. This even holds for the total energy (inset of Fig. 6.2) which does
not deviate by more than 2–3 mEh from each other. Thus, in this case one uses the powerful CCSD(T) method in
an inappropriate way in order to describe a system that has multireference character. Nevertheless, the success of
CCSD(T) shows how stable this method is even in tricky situations. The “alarm” bell for CCSD and CCSD(T) is
the so-called “T1-diagnostic”4 that is also shown in Fig. 6.2. A rule of thumb says, that for a value of the diagnostic
of larger than 0.02 the results are not to be trusted. In this calculation we have not quite reached this critical point
although the T1 diagnostic blows up around the 90∘ twist.

Fig. 6.2: Comparison of the CCSD(T) and MRACPF total energies of the C2H4 along the twisting coordinate. The
inset shows the difference E(MRACPF)-E(CCSD(T)).

The computational cost (disregarding the triples) is such that the CCSD method is the most expensive followed
by QCISD (∼10% cheaper) and all other methods (about 50% to a factor of two cheaper than CCSD). The most
accurate method is generally CCSD(T). However, this is not so clear if the triples are omitted and in this regime
the coupled pair methods (in particular CPF/1 and NCPF/15) can compete with CCSD.

Let us look at the same type of situation from a slightly different perspective and dissociate the single bond of F2.
As is well known, the RHF approximation fails completely for this molecule and predicts it to be unbound. Again
we use a much too small basis set for quantitative results but it is enough to illustrate the principle.

We first generate a “reference” PES with the MRACPF method:

! def2-SV def2-SVP/C MRACPF
%casscf nel 2

norb 2

(continues on next page)

4 It is defined as ‖𝑇1‖ /𝑁1/2 where T1 are the singles amplitudes and N the number of correlated electrons. The original reference is [504]
5 The “N” methods have been suggested by [886] and are exclusive to ORCA. Please note that our NCPF/1 is different from the MCPF

method in the literature [173]. The original CPF method — which we prefer — is from [16]; see also [15] for a nice review about the coupled
pair approaches and the underlying philosophy.
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(continued from previous page)

nroots 1
mult 1
end

%mrci tsel 1e-10
tpre 1e-10
end

%paras R= 3.0,1.3,35
end

* xyz 0 1
F 0 0 0
F 0 0 {R}
*

Note that we scan from outward to inward. This helps the program to find the correct potential energy surface
since at large distances the 𝜎 and 𝜎* orbitals are close in energy and fall within the desired 2 × 2 window for the
CASSCF calculation (see section Complete Active Space Self-Consistent Field Method). Comparing the MRACPF
and CASSCF curves it becomes evident that the dynamic correlation brought in by the MRACPF procedure is very
important and changes the asymptote (loosely speaking the binding energy) by almost a factor of two (see Fig.
6.3). Around the minimum (roughly up to 2.0 Å) the CCSD(T) and MRACPF curves agree beautifully and are
almost indistinguishable. Beyond this distance the CCSD(T) calculation begins to diverge and shows an unphysical
behavior while the multireference method is able to describe the entire PES up to the dissociation limit. The CCSD
curve is qualitatively OK but has pronounced quantitative shortcomings: it predicts a minimum that is much too
short and a dissociation energy that is much too high. Thus, already for this rather “simple” molecule, the effect
of the connected triple excitations is very important. Given this (rather unpleasant) situation, the behavior of the
much simpler CEPA method is rather satisfying since it predicts a minimum and dissociation energy that is much
closer to the reference MRACPF result than CCSD or CASSCF. It appears that in this particular case CEPA/1 and
CEPA/2 predict the correct result.
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Fig. 6.3: Potential energy surface of the F2 molecule calculated with some single-reference methods and compared
to the MRACPF reference.

Basis Sets for Correlated Calculations. The case of ANOs.

In HF and DFT calculations the generation and digestion of the two-electron repulsion integrals is usually the most
expensive step of the entire calculation. Therefore, the most efficient approach is to use loosely contracted basis
sets with as few primitives as possible — the Ahlrichs basis sets (SVP, TZVP, TZVPP, QZVP, def2-TZVPP, def2-
QZVPP) are probably the best in this respect. Alternatively, the polarization-consistent basis sets pc-1 through
pc-4 could be used, but they are only available for H-Ar. For large molecules such basis sets also lead to efficient
prescreening and consequently efficient calculations.

This situation is different in highly correlated calculations such as CCSD and CCSD(T) where the effort scales
steeply with the number of basis functions. In addition, the calculations are usually only feasible for a limited
number of basis functions and are often run in the integral conventional mode, since high angular momentum basis
functions are present and these are expensive to recompute all the time. Hence, a different strategy concerning the
basis set design seems logical. It would be good to use as few basis functions as possible but make them as accurate
as possible. This is compatible with the philosophy of atomic natural orbital (ANO) basis sets. Such basis sets are
generated from correlated atomic calculations and replicate the primitives of a given angular momentum for each
basis function. Therefore, these basis sets are deeply contracted and expensive but the natural atomic orbitals form
a beautiful basis for molecular calculations. In ORCA an accurate and systematic set of ANOs (ano-pV𝑛Z, 𝑛 = D,
T, Q, 5 is incorporated). A related strategy underlies the design of the correlation-consistent basis sets (cc-pV𝑛Z,
𝑛 = D, T, Q, 5, 6,. . . ) that are also generally contracted except for the outermost primitives of the “principal”
orbitals and the polarization functions that are left uncontracted.

Let us study this subject in some detail using the H2CO molecule at a standard geometry and compute the SCF
and correlation energies with various basis sets. In judging the results one should view the total energy in con-
junction with the number of basis functions and the total time elapsed. Looking at the data in the Table below,
it is obvious that the by far lowest SCF energies for a given cardinal number (2 for double-zeta, 3 for triple zeta
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and 4 for quadruple-zeta) are provided by the ANO basis sets. Using specially optimized ANO integrals that are
available since ORCA 2.7.0, the calculations are not even much more expensive than those with standard basis sets.
Obviously, the correlation energies delivered by the ANO bases are also the best of all 12 basis sets tested. Hence,
ANO basis sets are a very good choice for highly correlated calculations. The advantages are particularly large for
the early members (DZ/TZ).

Table 6.3: Comparison of various basis sets for highly correlated calculations

Basis set No. Basis Fcns E(SCF) EC(CCSD(T)) Etot(CCSD(T)) Total Time
cc-pVDZ 38 -113.876184 -0.34117952 -114.217364 2
cc-pVTZ 88 -113.911871 -0.42135475 -114.333226 40
cc-pVQZ 170 -113.920926 -0.44760332 -114.368529 695
def2-SVP 38 -113.778427 -0.34056109 -114.118988 2
def2-TZVPP 90 -113.917271 -0.41990287 -114.337174 46
def2-QZVPP 174 -113.922738 -0.44643753 -114.369175 730
pc-1 38 -113.840092 -0.33918253 -114.179274 2
pc-2 88 -113.914256 -0.41321906 -114.327475 43
pc-3 196 -113.922543 -0.44911659 -114.371660 1176
ano-pVDZ 38 -113.910571 -0.35822337 -114.268795 12
ano-pVTZ 88 -113.920389 -0.42772994 -114.348119 113
ano-pVQZ 170 -113.922788 -0.44995355 -114.372742 960

Fig. 6.4: Error in Eh for various basis sets for highly correlated calculations relative to the ano-pVQZ basis set.

Let us look at one more example in Table 6.4: the optimized structure of the N2 molecule as a function of basis set
using the MP2 method (these calculations are a bit older from the time when the ano-pVnZ basis sets did not yet
exist. Today, the ano-pVnZ would be preferred) .

The highest quality basis set here is QZVP and it also gives the lowest total energy. However, this basis set contains
up to g-functions and is very expensive. Not using g-functions and a set of f-functions (as in TZVPP) has a
noticeable effect on the outcome of the calculations and leads to an overestimation of the bond distance of 0.2
pm — a small change but for benchmark calculations of this kind still significant. The error made by the TZVP
basis set that lacks the second set of d-functions on the bond distance, binding energy and ionization potential is
surprisingly small even though the deletion of the second d-set “costs” more than 20 mEh in the total energy as
compared to TZV(2d,2p), and even more compared to the larger TZVPP.

A significant error on the order of 1 – 2 pm in the calculated distances is produced by smaller DZP type basis sets,
which underlines once more that such basis sets are really too small for correlated molecular calculations — the
ANO-DZP basis sets are too strongly biased towards the atom, while the “usual” molecule targeted DZP basis sets
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like SVP have the d-set designed to cover polarization but not correlation (the correlating d-functions are steeper
than the polarizing ones). The performance of the very economical SVP basis set should be considered as very
good, and (a bit surprisingly) slightly better than cc-pVDZ despite that it gives a higher absolute energy.

Essentially the same picture is obtained by looking at the (uncorrected for ZPE) binding energy calculated at the
MP2 level – the largest basis set, QZVP, gives the largest binding energy while the smaller basis sets underestimate
it. The error of the DZP type basis sets is fairly large (≈ 2 eV) and therefore caution is advisable when using such
bases.

Table 6.4: Comparison of various basis sets for correlated calculations.

Basis set Req (pm) E(2N-N2) (eV) IP(N/N+) (eV) E(MP2) (Eh)
SVP 112.2 9.67 14.45 -109.1677
cc-pVDZ 112.9 9.35 14.35 -109.2672
TZVP 111.5 10.41 14.37 -109.3423
TZV(2d,2p) 111.4 10.61 14.49 -109.3683
TZVPP 111.1 10.94 14.56 -109.3973
QZVP 110.9 11.52 14.60 -109.4389

Automatic extrapolation to the basis set limit

ò Note

• This functionality is deprecated - it may still be usable but we will not actively maintain this part of code
anymore. For basis set extrapolation please use the respective compound scripts (Table Protocols, known
to the simple input line, with short explanation).

As eluded to in the previous section, one of the biggest problems with correlation calculations is the slow conver-
gence to the basis set limit. One possibility to overcome this problem is the use of explicitly correlated methods.
The other possibility is to use basis set extrapolation techniques. Since this involves some fairly repetitive work,
some procedures were hardwired into the ORCA program. So far, only energies are supported. For extrapola-
tion, a systematic series of basis sets is required. This is, for example, provided by the cc-pV𝑛Z, aug-cc-pV𝑛Z or
the corresponding ANO basis sets. Here 𝑛 is the “cardinal number” that is 2 for the double-zeta basis sets, 3 for
triple-zeta, etc.

The convergence of the HF energy to the basis set limit is assumed to be given by:

𝐸
(𝑋)
SCF = 𝐸

(∞)
SCF +𝐴 exp

(︁
−𝛼
√
𝑋
)︁

(6.1)

Here, 𝐸(𝑋)
SCF is the SCF energy calculated with the basis set with cardinal number 𝑋 , 𝐸(∞)

SCF is the basis set limit
SCF energy and 𝐴 and 𝛼 are constants. The approach taken in ORCA is to do a two-point extrapolation. This
means that either 𝐴 or 𝛼 have to be known. Here, we take 𝐴 as to be determined and 𝛼 as a basis set specific
constant.

The correlation energy is supposed to converge as:

𝐸(∞)
corr =

𝑋𝛽𝐸
(𝑋)
corr − 𝑌 𝛽𝐸(𝑌 )

corr

𝑋𝛽 − 𝑌 𝛽
(6.2)

The theoretical value for 𝛽 is 3.0. However, it was found by Truhlar and confirmed by us, that for 2/3 extrapolations
𝛽 = 2.4 performs considerably better.

For a number of basis sets, we have determined the optimum values for 𝛼 and 𝛽[607]:
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𝛼23 𝛽23 𝛼34 𝛽34

cc-pVnZ 4.42 2.46 5.46 3.05
pc-n 7.02 2.01 9.78 4.09
def2 10.39 2.40 7.88 2.97
ano-pVnZ 5.41 2.43 4.48 2.97
saug-ano-pVnZ 5.48 2.21 4.18 2.83
aug-ano-pVnZ 5.12 2.41

Since the 𝛽 values for 2/3 are close to 2.4, we always take this value. Likewise, all 3/4 and higher extrapolations
are done with 𝛽 = 3. However, the optimized values for 𝛼 are taken throughout.

Using the keyword ! Extrapolate(X/Y,basis), where X and Y are the corresponding successive cardinal num-
bers and basis is the type of basis set requested (= cc, aug-cc, cc-core, ano, saug-ano, aug-ano, def2) ORCA
will calculate the SCF and optionally the MP2 or MDCI energies with two basis sets and separately extrapolate.

The keyword works also in the following way: ! Extrapolate(n,basis)where n is the is the number of energies
to be used. In this way the program will start from a double-zeta basis and perform calculations with n cardinal
numbers and then extrapolate the different pairs of basis sets. Thus for example the keyword ! Extrapolate(3,
CC) will perform calculations with cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets and then estimate the extrapolation
results of both cc-pVDZ/cc-pVTZ and cc-pVTZ/cc-pVQZ combinations.

Let us take the example of the H2O molecule at the B3LYP/TZVP optimized geometry. The reference values have
been determined from a HF calculation with the decontracted aug-cc-pV6Z basis set and the correlation energy
was obtained from the cc-pV5Z/cc-pV6Z extrapolation. This gives:

E(SCF,CBS) = -76.066958 Eh
EC(CCSD(T),CBS) = -0.30866 Eh
Etot(CCSD(T),CBS) = -76.37561 Eh

Now we can see what extrapolation can bring in:

!CCSD(T) Extrapolate(2/3) TightSCF Conv Bohrs
* int 0 1
O 0 0 0 0 0 0
H 1 0 0 1.81975 0 0
H 1 2 0 1.81975 105.237 0
*

NOTE:

• The RI-JK and RIJCOSX approximations work well together with this option and RI-MP2 is also possible.
Auxiliary basis sets are automatically chosen and can not be changed.

• All other basis set choices, externally defined bases etc. will be ignored — the automatic procedure only
works with the default basis sets!

• The basis sets with the “core” postfix contain core correlation functions. By default it is assumed that this
means that the core electrons are also to be correlated and the frozen core approximation is turned off. How-
ever, this can be overridden in the method block by choosing, e.g. %method frozencore fc_electrons
end!

• So far, the extrapolation is only implemented for single points and not for gradients. Hence, geometry opti-
mizations cannot be done in this way.

• The extrapolation method should only be used with very tight SCF convergence criteria. For open shell
methods, additional caution is advised.

This gives:
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Alpha(2/3) : 4.420 (SCF Extrapolation)
Beta(2/3) : 2.460 (correlation extrapolation)

SCF energy with basis cc-pVDZ: -76.026430944
SCF energy with basis cc-pVTZ: -76.056728252
Extrapolated CBS SCF energy (2/3) : -76.066581429 (-0.009853177)

MDCI energy with basis cc-pVDZ: -0.214591061
MDCI energy with basis cc-pVTZ: -0.275383015
Extrapolated CBS correlation energy (2/3) : -0.310905962 (-0.035522947)

Estimated CBS total energy (2/3) : -76.377487391

Thus, the error in the total energy is indeed strongly reduced. Let us look at the more rigorous 3/4 extrapolation:

Alpha(3/4) : 5.460 (SCF Extrapolation)
Beta(3/4) : 3.050 (correlation extrapolation)

SCF energy with basis cc-pVTZ: -76.056728252
SCF energy with basis cc-pVQZ: -76.064381269
Extrapolated CBS SCF energy (3/4) : -76.066687152 (-0.002305884)

MDCI energy with basis cc-pVTZ: -0.275383016
MDCI energy with basis cc-pVQZ: -0.295324345
Extrapolated CBS correlation energy (3/4) : -0.309520368 (-0.014196023)

Estimated CBS total energy (3/4) : -76.376207520

In our experience, the ANO basis sets extrapolate similarly to the cc-basis sets. Hence, repeating the entire calcu-
lation with Extrapolate(3,ANO) gives:

Estimated CBS total energy (2/3) : -76.377652792
Estimated CBS total energy (3/4) : -76.376983433

Which is within 1 mEh of the estimated CCSD(T) basis set limit energy in the case of the 3/4 extrapolation and
within 2 mEh for the 2/3 extrapolation.

For larger molecules, the bottleneck of the calculation will be the CCSD(T) calculation with the larger basis set.
In order to avoid this expensive (or prohibitive) calculation, it is possible to estimate the CCSD(T) energy at the
basis set limit as:

𝐸(CCSD(T);𝑌 )
corr ≈ 𝐸(CCSD(T);𝑋)

corr + 𝐸(MP2;∞)
corr − 𝐸(MP2;𝑋)

corr (6.3)

This assumes that the basis set dependence of MP2 and CCSD(T) is similar. One can then extrapolate as before.
Alternatively, the standard way — as extensively exercised by Hobza and co-workers — is to simply use:

𝐸
(CCSD(T);CBS)
total ≈ 𝐸(𝑌 )

SCF + 𝐸(CCSD(T);𝑋)
corr + 𝐸(MP2;∞)

corr − 𝐸(MP2;𝑋)
corr (6.4)

The appropriate keyword is:

! ExtrapolateEP2(2/3,ANO,MP2) TightSCF Conv Bohrs
* int 0 1
O 0 0 0 0 0 0
H 1 0 0 1.81975 0 0
H 1 2 0 1.81975 105.237 0
*

This creates the following output:

Alpha : 5.410 (SCF Extrapolation)
Beta : 2.430 (correlation extrapolation)

(continues on next page)
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(continued from previous page)

SCF energy with basis ano-pVDZ: -76.059178452
SCF energy with basis ano-pVTZ: -76.064774379
Extrapolated CBS SCF energy : -76.065995735 (-0.001221356)

MP2 energy with basis ano-pVDZ: -0.219202871
MP2 energy with basis ano-pVTZ: -0.267058634
Extrapolated CBS correlation energy : -0.295568604 (-0.028509970)

CCSD(T) correlation energy with basis ano-pVDZ: -0.229478341
CCSD(T) - MP2 energy with basis ano-pVDZ: -0.010275470

Estimated CBS total energy : -76.371839809

The estimated correlation energy is not really bad — within 3 mEh from the basis set limit.

Using the ExtrapolateEP2(n/m,bas,[method, method-details]) keyword one can use a generalization
of the above method where instead of MP2 any available correlation method can be used as described in Ref. [519].
method is optional and can be either MP2 or DLPNO-CCSD(T), the latter being the default. In case the method
is DLPNO-CCSD(T) in the method-details option one can ask for LoosePNO, NormalPNO or TightPNO.

𝐸(CCSD(T);𝐶𝐵𝑆)
corr ≈ 𝐸(CCSD(T);𝑋)

corr + 𝐸(M;𝐶𝐵𝑆)
corr (𝑋,𝑋 + 1)− 𝐸(M;𝑋)

corr (6.5)

Here M represents any correlation method one would like to use. For the previous water molecule the input of a
calculation that uses DLPNO-CCSD(T) (which is the default now) instead of MP2 would look like:

! ExtrapolateEP2(2/3,cc,DLPNO-CCSD(T)) TightSCF Conv Bohrs
* int 0 1
O 0 0 0 0 0 0
H 1 0 0 1.81975 0 0
H 1 2 0 1.81975 105.237 0
*

and it would produce the following output:

Alpha : 4.420 (SCF Extrapolation)
Beta : 2.460 (correlation extrapolation)

SCF energy with basis cc-pVDZ: -76.026430944
SCF energy with basis cc-pVTZ: -76.056728252
Extrapolated CBS SCF energy : -76.066581429 (-0.009853177)

MDCI energy with basis cc-pVDZ: -0.214429497
MDCI energy with basis cc-pVTZ: -0.275299699
Extrapolated CBS correlation energy : -0.310868368 (-0.035568670)

CCSD(T) correlation energy with basis cc-pVDZ: -0.214548320
CCSD(T) - MDCI energy with basis cc-pVDZ: -0.000118824

Estimated CBS total energy : -76.377568621

which is less than 2 mEh from the basis set limit. Finally it was shown [519] that instead of extrapolating the cheap
method, M, using cardinal numbers 𝑋 and 𝑋 + 1 it is better to use cardinal numbers 𝑋 + 1 and 𝑋 + 2.

𝐸(CCSD(T);𝐶𝐵𝑆)
corr ≈ 𝐸(CCSD(T);𝑋)

corr + 𝐸(M;𝐶𝐵𝑆)
corr (𝑋 + 1, 𝑋 + 2)− 𝐸(M;𝑋)

corr (6.6)

This can be done using the ExtrapolateEP3(bas,[method,method-details]) keyword:

! ExtrapolateEP3(CC) TightSCF Conv Bohrs

and the corresponding output would be:
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Alpha : 5.460 (SCF Extrapolation)
Beta : 3.050 (correlation extrapolation)

SCF energy with basis cc-pVDZ: -76.026430944
SCF energy with basis cc-pVTZ: -76.056728252
SCF energy with basis cc-pVQZ: -76.064381269
Extrapolated CBS SCF energy : -76.066687152 (-0.002305884)

MDCI energy with basis cc-pVDZ: -0.214429497
MDCI energy with basis cc-pVTZ: -0.275299699
MDCI energy with basis cc-pVQZ: -0.295229871
Extrapolated CBS correlation energy : -0.309417951 (-0.014188080)

CCSD(T) correlation energy with basis cc-pVDZ: -0.214548319
CCSD(T) - MDCI energy with basis cc-pVDZ: -0.000118822

Estimated CBS total energy : -76.376223926

For the ExtrapolateEP2, and ExtrapolateEP3 keywords the default cheap method is the DLPNO-CCSD(T) with
the NormalPNO thresholds. There also available options with MP2, and DLPNO-CCSD(T) with LoosePNO and
TightPNO settings.

Explicitly Correlated MP2 and CCSD(T) Calculations

A physically perhaps somewhat more satisfying alternative to basis set extrapolation is the theory of explicit cor-
relation. In this method terms are added to the wavefunction Ansatz that contain the interelectronic coordinates
explicitly (hence the name “explicit correlation”). Initially these terms were linear in the interelectronic distances
(“R12-methods”). However, it has later been found that better results can be obtained by using other functions,
such as an exponential, of the interelectronic distance (“F12-methods”). These methods are known to yield near
basis set limit results for correlation energies in conjunction with much smaller orbital basis sets.

In applying these methods several points are important:

• Special orbital basis sets are at least advantageous. The development of such basis sets is still in its infancy.
For a restricted range of elements the basis sets cc-pV𝑛Z-F12 are available (where 𝑛 = D, T, Q) and are
recommended. Note, that other than their names suggest, these are a fair bit larger than regular double, triple
or quadruple-zeta basis sets

• In addition to an orbital basis set, a near-complete auxiliary basis set must be specified. This is the so-called
“CABS” basis. For the three basis sets mentioned above these are called cc-pV𝑛Z-F12-CABS. If you have
elements that are not covered you are on your own to supply a CABS basis set. CABS basis sets can be read
into ORCA in a way analogous to RI auxiliary basis sets (replace “AUX” by “CABS” in the input). There
are automatic tools for building a CABS basis from an arbitrary orbital basis, e.g. AutoCABS[781]

• if the RI approximation is used in conjunction with F12, a third basis set is required - this can be the regular
auxiliary “/C” basis, but we recommend to step one level up in the auxiliary basis set (e.g. use a cc-pVTZ/C
fitting basis in conjunction with cc-pVDZ-F12)

• It is perfectly feasible to use RIJCOSX or RI-JK at the same time. In this case, you should provide a fourth
basis set for the Coulomb fitting

• RHF and UHF are available, ROHF not. (Although, one can do a ROHF like calculation by using QROs)

• Gradients are not available

Doing explicitly correlated MP2 calculations is straightforward. For example look at the following calculation on
the water molecule at a given geometry:

#
! F12-MP2 cc-pVDZ-F12 cc-pVDZ-F12-CABS VeryTightSCF PModel

* xyz 0 1

(continues on next page)

6.1. Single Point Energies and Gradients 89



ORCA Manual, Release 6.0

(continued from previous page)

O 0.000000000000 0.000000000000 0.369372944000
H 0.783975899000 0.000000000000 -0.184686472000
H -0.783975899000 0.000000000000 -0.184686472000

*

and similarly in conjunction with the RI approximation:

#
! F12-RI-MP2 cc-pVDZ-F12 cc-pVDZ-F12-CABS cc-pVTZ/C VeryTightSCF PModel

* xyz 0 1
O 0.000000000000 0.000000000000 0.369372944000
H 0.783975899000 0.000000000000 -0.184686472000
H -0.783975899000 0.000000000000 -0.184686472000

*

The output is relatively easy to interpret:

-----------------
RI-MP2-F12 ENERGY
-----------------

EMP2 correlation Energy : -0.241038994909
F12 correction : -0.054735459470

-----------------
MP2 basis set limit estimate : -0.295774454379

Hartree-Fock energy : -76.057963800414
(2)_S CABS correction to EHF : -0.003475342535

-----------------
HF basis set limit estimate : -76.061439142949

MP2 total energy before F12 : -76.299002795323
Total F12 correction : -0.058210802005

-----------------
Final basis set limit MP2 estimate : -76.357213597328

It consists of several parts. The first is the regular (RI-)MP2 correlation energy in the orbitals basis followed by
the additive MP2 correction which are combined to provide an MP2 correlation energy basis set limit estimate.
The second part consists of an estimate in the error in the underlying SCF energy. This is the “(2)_S CABS”
correction. The combination of the SCF energy with this correction yields an estimate of the SCF basis set limit.
The correction will typically undershoot somewhat, but the error is very smooth. Finally, the corrected correlation
energy and the corrected SCF energy are added to yield the F12 total energy estimate at the basis set limit.

Let’s look at some results and compare to extrapolation:

#
# Correlation energies of the water molecule: extrapolation versus F12
#
# cc-pVDZ MP2: -0.201380894
# T : -0.261263141
# Q : -0.282661311
# T/Q : -0.298276192
# Q/5 : -0.300598282
# F12-DZ : -0.295775804
# RI-F12-DZ : -0.295933560 (cc-pVDZ/C)
# -0.295774489 (cc-pVTZ/C)
# F12-TZ : -0.299164006
# RI-F12-TZ : -0.299163478 (cc-pVQZ/C)
# F12-QZ : -0.300130086

It is obvious that extrapolated and F12 correlation energies converge to the same number (in this case around 300
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mEh). The best extrapolated result is still below the F12 result (this would primarily be meaningful in a variational
calculation). However, first of all this was an expensive extrapolation and second, the small residual F12 error is
very smooth and cancels in energy differences. In any case, already the F12-double-zeta (where “double zeta”
is to be interpreted rather loosely) brings one into within 5 mEh of the basis set limit correlation energy and the
F12-triple-zeta calculation to within 1 mEh, which is impressive.

The additional effort for the F12 calculation is rather high, since five types of additional two-electron integrals
need to be calculated. Both integrals in CABS space and in the original orbital (OBS) space must be calculated
and mixed Fock matrices are also required. Hence, one may wonder, whether a double-zeta F12 calculation actually
saves any time over, say, a quadruple-zeta regular calculation. The actual answer to this question is: “NO”. Given
all possibilities of obtained approximate MP2 and SCF energies, we have investigated the question of how to obtain
MP2 basis set limit energies most efficiently in some detail. The results show that in terms of timings, basis set
extrapolation in combination with RI-JK is the method of choice for MP2.[521] However, energy differences are
more reliable with F12-MP2. In combination with RI-JK or RIJCOSX F12-MP2 becomes also competitive in
terms of computational efficiency.

This situation is different in the case of coupled-cluster methods, where F12 methods outperform extrapolation and
are the method of choice.

For coupled-cluster theory, everything works in a very similar fashion:

# the keywords
! F12-CCSD(T)
# and
! CCSD(T)-F12
# are equivalent

A special feature of ORCA that can save large amounts of time, is to use the RI approximation only for the F12-part.
The keyword here is:

! F12/RI-CCSD(T)
# or
! CCSD(T)-F12/RI

Everything else works as described for F12-MP2.

Frozen Core Options

In coupled-cluster calculations the Frozen Core (FC) approximation is applied by default. This implies that the
core electrons are not included in the correlation treatment, since the inclusion of dynamic correlation in the core
electrons usually affects relative energies insignificantly.

The frozen core option can be switched on or off with ! FrozenCore or ! NoFrozenCore in the simple input.
More information and further options are given in section Frozen Core Options and in section Including (semi)core
orbitals in the correlation treatment.

Local Coupled Pair and Coupled-Cluster Calculations

ORCA features a special set of local correlation methods. The prevalent local coupled-cluster approaches date back
to ideas of Pulay and have been extensively developed by Werner, Schütz and co-workers. They use the concept
of correlation domains in order to achieve linear scaling with respect to CPU, disk and main memory. While the
central concept of electron pairs is very similar in both approaches, the local correlation methods in ORCA follow
a completely different and original philosophy.

In ORCA rather than trying to use sparsity, we exploit data compression. To this end two concepts are used:
(a) localization of internal orbitals, which reduces the number of electron pairs to be correlated since the pair
correlation energies are known to fall off sharply with distance; (b) use of a truncated pair specific natural orbital
basis to span the significant part of the virtual space for each electron pair. This guarantees the fastest convergence
of the pair wavefunction and a nearly optimal convergence of the pair correlation energy while not introducing any
real space cut-offs or geometrically defined domains. These PNOs have been used previously by the pioneers of
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correlation theory. However, as discussed in the original papers, the way in which they have been implemented
into ORCA is very different. For a full description of technical details and numerical tests see:

• F. Neese, A. Hansen, D. G. Liakos: Efficient and accurate local approximations to the coupled-cluster singles
and doubles method using a truncated pair natural orbital basis.[617]

• F. Neese, A. Hansen, F. Wennmohs, S. Grimme: Accurate Theoretical Chemistry with Coupled Electron
Pair Models.[618]

• F. Neese, F. Wennmohs, A. Hansen: Efficient and accurate local approximations to coupled electron pair
approaches. An attempt to revive the pair-natural orbital method.[623]

• D. G. Liakos, A. Hansen, F. Neese: Weak molecular interactions studied with parallel implementations of
the local pair natural orbital coupled pair and coupled-cluster methods.[520]

• A. Hansen, D. G. Liakos, F. Neese: Efficient and accurate local single reference correlation methods for
high-spin open-shell molecules using pair natural orbitals.[361]

• C. Riplinger, F. Neese: An efficient and near linear scaling pair natural orbital based local coupled-cluster
method.[721]

• C. Riplinger, B. Sandhoefer, A. Hansen, F. Neese: Natural triple excitations in local coupled-cluster calcu-
lations with pair natural orbitals.[723]

• C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, F. Neese: Sparse maps - A systematic infrastructure for
reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled
cluster theory.[722]

• D. Datta, S. Kossmann, F. Neese: Analytic energy derivatives for the calculation of the first-order molecular
properties using the domain-based local pair-natural orbital coupled-cluster theory[191]

• M. Saitow, U. Becker, C. Riplinger, E. F. Valeev, F. Neese: A new linear scaling, efficient and accurate,
open-shell domain based pair natural orbital coupled cluster singles and doubles theory.[740]

In 2013, the so-called DLPNO-CCSD method (“domain based local pair natural orbital”) was introduced.[721] This
method is near linear scaling with system size and allows for giant calculations to be performed. In 2016, significant
changes to the algorithm were implemented leading to linear scaling with system size concerning computing time,
hard disk and memory consumption.[722] The principal idea behind DLPNO is the following: it became clear
early on that the PNO space for a given electron pair (ij) is local and located in the same region of space as the
electron pair (ij). In LPNO-CCSD this locality was partially used in the local fitting to the PNOs (controlled by the
parameter TCutMKN). However, the PNOs were expanded in canonical virtual orbitals which led to some higher
order scaling steps. In DLPNO, the PNOs are expanded in the set of projected atomic orbitals:

|�̃�⟩ =
(︁
1−

∑︁
𝑖
|𝑖⟩ ⟨𝑖|

)︁
|𝜇⟩

where |𝜇⟩ is an atomic orbital and |𝑖⟩ refers to an occupied molecular orbital. Such projected orbitals are an
overcomplete representation of the virtual space. The projected orbital |�̃�⟩ is located in the same region of space
as |𝜇⟩ and hence can be assigned to atomic centers. This has first been invented and used by Pulay and Saebo [705]
in their pioneering work on local correlation methods and widely exploited by Werner, Schütz and co-workers in
their local correlation approaches. [755, 756] DLPNO-CCSD goes one step further in expanding the PNOs
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where �̃� ∈ {𝑖𝑗} is the domain of atoms (range of �̃�) that is associated with the electron pair ij. The advantage of the
PNO method is, that these domains can be chosen to be large (>15-20 atoms) without compromising the efficiency
of the method.

The comparison between LPNO-CCSD and DLPNO-CCSD is shown in Fig. 6.5. It is obvious that DLPNO-CCSD
is (almost) never slower than LPNO-CCSD. However, its true advantages do become most apparent for molecules
with more than approximately 60 atoms. The triples correction, that was added with our second paper from 2013,
shows a perfect linear scaling, as is shown in part (a) of Fig. 6.5. For large systems it adds about 10%–20% to
the DLPNO-CCSD computation time, hence its addition is possible for all systems for which the latter can still be
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obtained. Since 2016, the entire DLPNO-CCSD(T) algorithm is linear scaling. The improvements of the linear-
scaling algorithm, compared to DLPNO2013-CCSD(T), start to become significant at system sizes of about 300
atoms, as becomes evident in part (b) of Fig. 6.5.

(a) (a) DLPNO2013 Scaling (b) (b) DLPNO Scaling

Fig. 6.5: a) Scaling behavior of the canonical CCSD, LPNO-CCSD and DLPNO2013-CCSD(T) methods. It is
obvious that only DLPNO2013-CCSD and DLPNO2013-CCSD(T) can be applied to large molecules. The ad-
vantages of DLPNO2013-CCSD over LPNO-CCSD do not show before the system has reached a size of about 60
atoms. b) Scaling behavior of DLPNO2013-CCSD(T), DLPNO-CCSD(T) and RHF using RIJCOSX. It is obvious
that only DLPNO-CCSD(T) can be applied to truly large molecules, is faster than the DLPNO2013 version, and
even has a crossover with RHF at about 400 atoms.

Using the DLPNO-CCSD(T) approach it was possible for the first time (in 2013) to perform a CCSD(T) level
calculation on an entire protein (Crambin with more than 650 atoms, Fig. 6.6). While the calculation using a
double-zeta basis took about 4 weeks on one CPU with DLPNO2013-CCSD(T), it takes only about 4 days to
complete with DLPNO-CCSD(T). With DLPNO-CCSD(T) even the triple-zeta basis calculation can be completed
within reasonable time, taking 2 weeks on 4 CPUs.
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Fig. 6.6: Structure of the Crambin protein - the first protein to be treated with a CCSD(T) level ab initio method

The use of the LPNO (and DLPNO) methods is simple and requires little special attention from the user:

# Local Pair Natural Orbital Test
! cc-pVTZ cc-pVTZ/C LPNO-CCSD TightSCF
# or
! cc-pVTZ cc-pVTZ/C DLPNO-CCSD TightSCF
%maxcore 2000

# these are the default values - they need not to be touched!
%mdci TCutPNO 3.33e-7 # cutoff for PNO occupation numbers. This

is the main truncation parameter
TCutPairs 1e-4 # cut-off for estimated pair correlation energies.

This exploits the locality in the internal space
TCutMKN 1e-3 # this is a technical parameter here that controls the domain

size for the local fit to the PNOs. It is conservative.
end

* xyz 0 1
... (coordinates)
*

Using the well tested default settings, the LPNO-CEPA (LPNO-CPF, LPNO-VCEPA), LPNO-QCISD and LPNO-
CCSD (LPNO-pCCSD) methods6 can be run in strict analogy to canonical calculations and should approximate

6 As a technical detail: The closed-shell LPNO QCISD and CCSD come in two technical variants - LPNO1-CEPA/QCISD/CCSD and
LPNO2-CEPA/CCSD/QCISD. The “2” variants consume less disk space but are also slightly less accurate than the “1” variants. This is
discussed in the original paper in the case of QCISD and CCSD. For the sake of accuracy, the “1” variants are the default. In those cases,
where “1” can still be performed, the computational efficiency of both approaches is not grossly different. For LPNO CCSD there is also a
third variant (LPNO3-CCSD, also in the open-shell version) which avoids neglecting the dressing of the external exchange operator. However,
the results do not differ significantly from variant 1 but the calculations will become more expensive. Thus it is not recommend to use variant
3. Variant 2 is not available in the open-shell version.
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the canonical result very closely. In fact, one should not view the LPNO methods as new model chemistry - they
are designed to reproduce the canonical results, including BSSE. This is different from the domain based local
correlation methods that do constitute a new model chemistry with properties that are different from the original
methods.

In some situations, it may be appropriate to adapt the accuracy of the calculation. Sensible defaults have been
determined from extensive benchmark calculations and are accessible via LoosePNO, NormalPNO and TightPNO
keywords in the simple input line.[522]

These keywords represent the recommended way to control the accuracy of DLPNO calculations as follows. Man-
ual changing of thresholds beyond these specifying these keywords is usually discouraged.

# Tight settings for increased accuracy, e.g. when investigating
# weak interactions or conformational equilibria
! cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T) TightPNO TightSCF

# OR: Default settings (no need to give NormalPNO explicitly)
# Useful for general thermochemistry
! cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T) NormalPNO TightSCF

# OR: Loose settings for rapid estimates
! cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T) LoosePNO TightSCF

%maxcore 2000

* xyz 0 1
... (coordinates)
*

Since ORCA 4.0, the linear-scaling DLPNO implementation described in reference [722] is the default DLPNO
algorithm. However, for comparison, the first DLPNO implementation from references [721] and [723] can still
be called by using the DLPNO2013 prefix instead of the DLPNO- prefix.

# DLPNO-CCSD(T) calculation using the 2013 implementation
! cc-pVTZ cc-pVTZ/C DLPNO2013-CCSD(T)

# DLPNO-CCSD(T) calculation using the linear-scaling implementation
! cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T)

* xyz 0 1
... (coordinates)
*

Until ORCA 4.0, the “semi-canonical” approximation is used in the perturbative triples correction for DLPNO-
CCSD. It was found that the “semi-canonical” approximation is a very good approximation for most systems. How-
ever, the “semi-canonical” approximation can introduce large errors in rare cases (particularly when the HOMO-
LUMO gap is small), whereas the DLPNO-CCSD is still very accurate. To improve the accuracy of perturbative
triples correction, since 4.1, an improved perturbative triples correction for DLPNO-CCSD is available, DLPNO-
CCSD(T1)[341]. In DLPNO-CCSD(T1), the triples amplitudes are computed iteratively, which can reproduce
more accurately the canonical (T) energies.

It is necessary to clarify the nomenclature used in ORCA input files. The keyword to invoke “semi-canonical”
perturbative triples correction approximation is DLPNO-CCSD(T). While, the keyword of improved iterative ap-
proximation is DLPNO-CCSD(T1). However, in our recent paper[341], the “semi-canonical” perturbative triples
correction approximation is named DLPNO-CCSD(T0), whereas the improved iterative one is called DLPNO-
CCSD(T). Thus, the names used in our paper are different from those in ORCA input files. An example input file
to perform improved iterative perturbative triples correction for DLPNO-CCSD is given below,

# DLPNO-CCSD(T1) calculation using the iterative triples correction
! cc-pVTZ cc-pVTZ/C DLPNO-CCSD(T1)

%mdci

(continues on next page)
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(continued from previous page)

TNOSCALES 10.0 #TNO truncation scale for strong triples, TNOSCALES*TCutTNO.
Default setting is 10.0

TNOSCALEW 100.0 #TNO truncation scale for weak triples, TNOSCALEW*TCutTNO
Default setting is 100.0

TriTolE 1e-4 #(T) energy convergence tolerance
Default setting is 1e-4

%end
* xyz 0 1
... (coordinates)
*

Since ORCA 4.2, the improved iterative perturbative triples correction for open-shell DLPNO-CCSD is available
as well. The keyword of open-shell DLPNO-CCSD(T) is the same as that of the closed-shell case.

Since ORCA 4.0, the high-spin open-shell version of the DLPNO-CISD/QCISD/CCSD implementations have been
made available on top of the same machinery as the 2016 version of the RHF-DLPNO-CCSD code. The present
UHF-DLPNO-CCSD is designed to be an heir to the UHF-LPNO-CCSD and serves as a natural extension to the
RHF-DLPNO-CCSD. A striking difference between UHF-LPNO and newly developed UHF-DLPNO methods is
that the UHF-DLPNO approach gives identical results to that of the RHF variant when applied to closed-shell
species while UHF-LPNO does not. Usage of this program is quite straightforward and shown below:

# (1) In case of ROHF reference
! ROHF DLPNO-CCSD def2-TZVPP def2-TZVPP/C TightSCF TightPNO

# (2) In case of UHF reference, the QROs are constructed first and used for
# the open-shell DLPNO-CCSD computations
! UHF DLPNO-CCSD def2-TZVPP def2-TZVPP/C TightSCF TightPNO

# (3) In case that UKS is specified, the QROs are constructed first and used as
# "unconverged" UHF orbitals for the open-shell DLPNO-CCSD computations.
# This approach is useful when the converged UHF wavefunction is qualitatively
# wrong but the UKS wavefunction is not
! UKS CAM-B3LYP DLPNO-CCSD def2-TZVPP def2-TZVPP/C TightSCF TightPNO

ò Note

DLPNO-CISD/QCISD/CCSD methods are dedicated to closed-shell and high-spin open-shell species, but not
spin-polarized systems (e.g. open shell singlets or antiferromagnetically coupled transition metal clusters). Per-
forming DLPNO-CISD/QCISD/CCSD calculations upon open shell singlet UHF/UKS wavefunctions will give
results resembling the corresponding closed shell singlet calculations, because the DLPNO calculations will be
done on the closed-shell determinant composed of the QRO orbitals. Similarly, calculations of spin-polarized
systems other than open shell singlets may give qualitatively wrong results. For spin-polarized systems, the
UHF-LPNO-CCSD or Mk-LPNO-CCSD methods are available, in addition to DLPNO-NEVPT2.

The same set of truncation parameters as closed-shell DLPNO-CCSD is used also in case of open-shell DLPNO.
The open-shell DLPNO-CCSD produces more than 99.9 % of the canonical CCSD correlation energy as in case
of the closed-shell variant. This feature is certainly different from the UHF-LPNO methods because the open-shell
DLPNO-CCSD is re-designed from scratch on the basis of a new PNO ansatz which makes use of the high-spin
open-shell NEVPT framework. The computational timings of the UHF-DLPNO-CCSD and RIJCOSX-UHF for
linear alkane chains in triplet state are shown in Fig. 6.7.
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Fig. 6.7: Computational times of RIJCOSX-UHF and UHF-DLPNO-CCSD for the linear alkane chains (𝐶𝑛𝐻2n + 2)
in triplet state with def2-TZVPP basis and default frozen core settings. 4 CPU cores and 128 GB of memory were
used on a single cluster node.

Although those systems are somewhat idealized for the DLPNO method to best perform, it is clear that the preceding
RIJCOSX-UHF is the rate-determining step in the total computational time for large examples. In the open-shell
DLPNO implementations, SOMOs are included not only in the occupied space but also in the PNO space in the
preceding integral transformation step. This means the presence of more SOMOs may lead to more demanding
PNO integral transformation and DLPNO-CCSD iterations. The illustrative examples include active site model
of the [NiFe] Hydrogenase in triplet state and the oxygen evolving complex (OEC) in the high-spin state, which
are shown in Figures 7 and 8, respectively. With def2-TZVPP basis set and NormalPNO settings, a single point
calculation on [NiFe] Hydrogenase (Fig. 6.8) took approximately 45 hours on a single cluster node by using 4 CPU
cores of Xeon E5-2670. A single point calculation on the OEC compound (Fig. 6.9) with the same computational
settings finished in 44 hours even though the number of AOs in this system is even fewer than the Hydrogenase:
the Hydrogenase active site model and OEC involve 4007 and 2606 AO basis functions, respectively. Special care
should be taken if the system possesses more than ten SOMOs, since inclusion of more SOMOs may drastically
increase the prefactor of the calculations. In addition, if the SOMOs are distributed over the entire molecular
skeleton, each pair domain may not be truncated at all; in this case speedup attributed to the domain truncation
will not be achieved at all.
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Fig. 6.8: Ni-Fe active center in the [NiFe] Hydrogenase in its second-coordination sphere. The whole model system
is composed of 180 atoms.
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Fig. 6.9: A model compound for the OEC in the S2 state of photosystem II which is composed of 238 atoms. In
its high-spin state, the OEC possesses 13 SOMOs in total.

Calculation of the orbital-unrelaxed density has been implemented for closed-shell DLPNO-CCSD. This permits
analytical computation of first-order properties, such as multipole moments or electric field gradients. In order to
reproduce conventional unrelaxed CCSD properties to a high degree of accuracy, tighter thresholds may be needed
than given by the default settings. Reading of the reference[191] is recommended. Calculation of the unrelaxed
density is requested as usual:

%MDCI Density Unrelaxed End

There are a few things to be noticed about (D)LPNO methods:

• The LPNO methods obligatorily make use of the RI approximation. Hence, a correlation fit set must be
provided.

• The DLPNO-CCSD(T) method is applicable to closed-shell or high-spin open-shell species. When per-
forming DLPNO calculations on open-shell species, it is always better to have UCO option: If preceding
SCF converges to broken-symmetry solutions, it is not guaranteed that the DLPNO-CCSD gives physically
meaningful results.
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• Besides the closed-shell version which uses a RHF or RKS reference determinant there is an open-shell
version of the LPNO-CCSD for high-spin open-shell molecules (see original paper) using an UHF or UKS
reference determinant built from quasi-restricted orbitals (QROs, see section Open-Shell Equations). Since
the results of the current open-shell version are slightly less accurate than that of the closed-shell version it is
mandatory to specify if you want to use the closed-shell or open-shell version for calculations of closed-shell
systems, i.e. always put the “RHF” (“RKS”) or “UHF” (“UKS”) keyword in the simple keyword line. Open-
shell systems can be of course only treated by the open-shell version. Do not mix results of the closed-
and open-shell versions of LPNO methods (e.g. if you calculate reaction energies of a reaction in which
both closed- and open-shell molecules take part, you should use the open-shell version throughout). This is
because the open-shell LPNO results for the closed-shell species certainly differ from those of closed-shell
implementations. This drawback of the open-shell LPNO methods has led to the development of a brand new
open-shell DLPNO approach which converges to the RHF-DLPNO in the closed-shell limit. Importantly,
one can mix the results of closed- and open-shell versions of DLPNO approaches.

• The open-shell version of the DLPNO approach uses a different strategy to the LPNO variant to define the
open-shell PNOs. This ensures that, unlike the open-shell LPNO, the PNO space converges to the closed-
shell counterpart in the closed-shell limit. Therefore, in the closed-shell limit, the open-shell DLPNO gives
identical correlation energy to the RHF variant up to at least the third decimal place. The perturbative triples
correction referred to as, (T), is also available for the open-shell species.

• When performing a calculation on the open-shell species with either of canonical/LPNO/DLPNO methods
on top of the Slater determinant constructed from the QROs, special attention should be paid on the orbitals
energies of those QROs. In some cases, the orbitals energy of the highest SOMO appear to be higher than
that of the lowest VMO. Similarly to this, the orbital energy of the highest DOMO may appear to higher
than that of the lowest SOMOs. In such cases, the CEPA/QCISD/CCSD iteration may show difficulty in
convergence. In the worst case, it just diverges. Most likely, in such cases, one has to suspect the charge and
multiplicity might be wrong. If they are correct, you may need much prettier starting orbitals and a bit of
good luck! Apart from a careful choice of starting orbitals (in particular, DFT orbitals can be used in place
of the default HF orbitals if the latter have qualitative deficiencies, including but not limited to severe spin
contamination), changing the maximum DIIS expansion space size (MaxDIIS) and the level shift (LShift)
in the %mdci block may alleviate the convergence problems to some extent.

• DLPNO-CCSD(T)-F12 and DLPNO-CCSD(T1)-F12 (iterative triples) are available for both closed- and
open-shell cases. These methods employ a perturbative F12 correction on top of the DLPNO-CCSD(T)
correlation energy calculation. The F12 part of the code uses the RI approximation in the same spirit as the
canonical RI-F12 methods (refer to section Explicitly Correlated MP2 and CCSD(T) Calculations). Hence,
they should be compared with methods using the RI approximation for both CC and F12 parts. The F12
correction takes only a fraction (usually 10-30%) of the total time (excluding SCF) required to calculate
the DLPNO-CCSD(T)-F12 correlation energy. Thus, the F12 correction scales the same (linear or near-
linear) as the parent DLPNO method. Furthermore, no new truncation parameters are introduced for the
F12 procedure, preserving the black-box nature of the DLPNO method. The F12D approximation is highly
recommended as it is computationally cheaper than the F12 approach which involves a double RI summa-
tion. Keywords: DLPNO-CCSD(T)-F12D, DLPNO-CCSD(T)-F12, DLPNO-CCSD(T1)-F12D, DLPNO-
CCSD(T1)-F12, DLPNO-CCSD-F12D, DLPNO-CCSD-F12.

• Parallelization is done.

• There are three thresholds that can be user controlled that can all be adjusted in the %mdci block: (a) 𝑇CutPNO
controls the number of PNOs per electron pair. This is the most critical parameter and has a default value of
3.33×10−7. (b) 𝑇CutPairs controls a perturbative selection of significant pairs and has a default value of 10−4.
(c) 𝑇CutMKN is a technical parameter and controls the size of the fit set for each electron pair. It has a default
value of 10−3. All of these default values are conservative. Hence, no adjustment of these parameters is
necessary. All DLPNO-CCSD truncations are bound to these three truncation parameters and should almost
not be touched (Hence they are also not documented :) ).

• The preferred way to adjust accuracy when needed is to use the “LoosePNO/NormalPNO/TightPNO” key-
words. In addition, “TightPNO” triggers the full iterative (DLPNO-MP2) treatment in the MP2 guess,
whereas the other options use a semicanonical MP2 calculation. Table 6.5 and Table 6.6 contain the thresh-
olds used by the current (2016) and old (2013) implementations, respectively.

• LPNO-VCEPA/n (n=1,2,3) methods are only available in the open-shell version yet.
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• LPNO variants of the parameterized coupled-cluster methods (pCCSD, see section Theory) are also available
(e.g. LPNO-pCCSD/1a and LPNO-pC/2a).

• The LPNO methods reproduce the canonical energy differences to typically better than 1 kcal/mol. This
accuracy exists over large parts of the potential energy surface. Tightening TCutPairs to 1e-5 gives more
accurate results but also leads to significantly longer computation times.

• Potential energy surfaces are virtually but not perfectly smooth (like any method that involves cut-offs).
Numerical gradient calculations have been attempted and reported to have been successful.

• The LPNO methods do work together with RIJCOSX, RI-JK and also with ANO basis sets and basis set
extrapolation. They also work for conventional integral handling.

• The methods behave excellently with large basis sets. Thus, they stay efficient even when large basis sets
are used that are necessary to obtain accurate results with wavefunction based ab initio methods. This is a
prerequisite for efficient computational chemistry applications.

• For LPNO-CCSD, calculations with about 1000 basis functions are routine, calculations with about 1500 ba-
sis functions are possible and calculations with 2000-2500 basis functions are the limit on powerful comput-
ers. For DLPNO-CCSD much larger calculations are possible. There is virtually no crossover and DLPNO-
CCSD is essentially always more efficient than LPNO-CCSD. Starting from about 50 atoms the differences
become large. The largest DLPNO-CCSD calculation to date featured >1000 atoms and more than 20000
basis functions!

• Using large main memory is not mandatory but advantageous since it speeds up the initial integral transfor-
mation significantly (controlled by “MaxCore” in the %mdci block, see section Local correlation).

• The open-shell versions are about twice as expensive as the corresponding closed-shell versions.

• Analytic gradients are not available.

• An unrelaxed density implementation is available for closed-shell DLPNO-CCSD, permitting calculation of
first-order properties.

Table 6.5: Accuracy settings for DLPNO coupled cluster (current version).

Setting 𝑇CutPairs 𝑇CutDO 𝑇CutPNO 𝑇CutMKN MP2 pair treatment
LoosePNO 10−3 2× 10−2 1.00× 10−6 10−3 semicanonical
NormalPNO 10−4 1× 10−2 3.33× 10−7 10−3 semicanonical
TightPNO 10−5 5× 10−3 1.00× 10−7 10−3 full iterative

Table 6.6: Accuracy settings for DLPNO coupled cluster (deprecated 2013 version).

Setting 𝑇CutPairs 𝑇CutPNO 𝑇CutMKN MP2 pair treatment
LoosePNO 10−3 1.00× 10−6 10−3 semicanonical
NormalPNO 10−4 3.33× 10−7 10−3 semicanonical
TightPNO 10−5 1.00× 10−7 10−4 full iterative

As an example, see the following isomerization reaction that appears to be particularly difficult for DFT:
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Isomerizes to:

The results of the calculations (closed-shell versions) with the def2-TZVP basis set (about 240 basis functions) are
shown below:

Method Energy Difference (kcal/mol) Time (min)
CCSD(T) -14.6 92.4
CCSD -18.0 55.3
LPNO-CCSD -18.6 20.0
CEPA/1 -12.4 42.2
LPNO-CEPA/1 -13.5 13.4

The calculations are typical in the sense that: (a) the LPNO methods provide answers that are within 1 kcal/mol
of the canonical results, (b) CEPA approximates CCSD(T) more closely than CCSD. The speedups of a factor of
2 – 5 are moderate in this case. However, this is also a fairly small calculation. For larger systems, speedups of the
LPNO methods compared to their canonical counterparts are on the order of a factor >100–1000.

Cluster in molecules (CIM)

Cluster in molecules (CIM) approach is a linear scaling local correlation method developed by Li and the coworkers
in 2002.[514] It was further improved by Li, Piecuch, Kállay and other groups recently.[337, 340, 515, 516, 730]
The CIM is inspired by the early local correlation method developed by Förner and coworkers.[250] The total
correlation energy of a closed-shell molecule can be considered as a summation of correlation energies of each
occupied LMOs.

𝐸corr =

𝑜𝑐𝑐∑︁
𝑖

𝐸𝑖 =

𝑜𝑐𝑐∑︁
𝑖

1

4

∑︁
𝑗,𝑎𝑏

⟨𝑖𝑗||𝑎𝑏⟩𝑇 𝑖𝑗𝑎𝑏 (6.7)

For each occupied LMO, it only correlates with its nearby occupied LMOs and virtual MOs. To reproduce the
correlation energy of each occupied LMO, only a subset of occupied and virtual LMOs are needed in the correlation
calculation. Instead of doing the correlation calculation of the whole molecule, the correlation energies of all LMOs
can be obtained within various subsystems.

The CIM approach implemented in ORCA is following an algorithm proposed by Guo and coworkers with a few
improvements.[337, 340]

1. To avoid the real space cutoff, the differential overlap integral (DOI) is used instead of distance threshold.
There is only one parameter ‘CIMTHRESH’ in CIM approach, controlling the construction of CIM subsys-
tems. If the DOI between LMO i and LMO j is larger than CIMTHRESH, LMO j will be included into the
MO domain of i. By including all nearby LMO of i, one can construct a subsystem for MO i. The default
value of CIMTHRESH is 0.001. If accurate results are needed, a tighter CIMTHRESH must be used.

2. Since ORCA 4.1, the neglected correlations between LMO i and LMOs outside the MO domain of i are
considered as well. These weak correlations are approximately evaluated by dipole moment integrals. With
this correction, the CIM results of 3 dimensional proteins are significantly improved. About 99.8% of the
correlation energies are recovered.
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The CIM can invoke different single reference correlation methods for the subsystem calculations. In ORCA
the CIM-RI-MP2, CIM-CCSD(T), CIM-DLPNO-MP2 and CIM-DLPNO-CCSD(T) methods are available. The
CIM-RI-MP2 and CIM-DLPNO-CCSD(T) have been proved to be very efficient and accurate methods to compute
correlation energies of very big molecules, containing a few thousand atoms.[340]
The usage of CIM in ORCA is simple. For CIM-RI-MP2,

#
# CIM-RI-MP2 calculation
#
! RI-MP2 cc-pVDZ cc-pVDZ/C CIM
%CIM

CIMTHRESH 0.0005 # Default value is 0.001
end

* xyzfile 0 1 CIM.xyz

For CIM-DLPNO-CCSD(T),

#
# CIM-DLPNO-CCSD calculation
#
! DLPNO-CCSD(T) cc-pVDZ cc-pVDZ/C CIM
* xyzfile 0 1 CIM.xyz

The parallel efficiency of CIM has been significantly improved.[340] Except for a few domain construction sub-
steps, the CIM algorithm can achieve very high parallel efficiency. Since ORCA 4.1, the parallel version does not
support Windows platform anymore due to the parallelization strategy. The generalization of CIM from closed-
shell to open-shell (multi-reference) will also be implemented in the near future.

Arbitrary Order Coupled-Cluster Calculations

ORCA features an interface to Kallay’s powerful MRCC program. This program must be obtained separately. The
interface is restricted to single point energies but can be used for rigid scan calculations or numerical frequencies.

The use of the interface is simple:

#
# Test the MRCC code of Mihael Kallay
#
! cc-pVDZ Conv SCFConv10 UseSym

%mrcc method "CCSDT"
ETol 9
end

* xyz 0 1
F 0 0 0
H 0 0 0.95
*

The Method string can be any of:

# The excitation level specification can be anything
# like SD, SDT, SDTQ, SDTQP etc.
%mrcc method "CCSDT"

"CCSD(T)"
"CCSD[T]"
"CCSD(T)_L" (the lambda version)
"CC3"
"CCSDT-1a"

(continues on next page)
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"CCSDT-1b"
"CISDT"

It is not a good idea, of course, to use this code for CCSD or CCSD(T) or CISD. Its real power lies in performing
the higher order calculations. Open-shell calculations can presently not be done with the interface.

Note also that certain high-order configuration interaction or coupled cluster methods, such as CISDT, CISDTQ,
CC3 and CCSDT etc., have now been implemented natively in ORCA in the AUTOCI module. For details please
consult section CI methods using generated code.

6.1.4 Density Functional Theory

Standard Density Functional Calculations

Density functional calculations are as simple to run as HF calculations. In this case, the RI-J approximation will
be the default for LDA, GGA or meta-GGA non-hybrid functionals, and the RIJCOSX for the hybrids. The RI-JK
approximation might also offer large speedups for smaller systems.

For example, consider this B3LYP calculation on the cyclohexane molecule.

# Test a simple DFT calculation
! B3LYP SVP
* xyz 0 1
C -0.79263 0.55338 -1.58694
C 0.68078 0.13314 -1.72622
C 1.50034 0.61020 -0.52199
C 1.01517 -0.06749 0.77103
C -0.49095 -0.38008 0.74228
C -1.24341 0.64080 -0.11866
H 1.10490 0.53546 -2.67754
H 0.76075 -0.97866 -1.78666
H -0.95741 1.54560 -2.07170
H -1.42795 -0.17916 -2.14055
H -2.34640 0.48232 -0.04725
H -1.04144 1.66089 0.28731
H -0.66608 -1.39636 0.31480
H -0.89815 -0.39708 1.78184
H 1.25353 0.59796 1.63523
H 1.57519 -1.01856 0.93954
H 2.58691 0.40499 -0.67666
H 1.39420 1.71843 -0.44053
*

If you want an accurate single point energy then it is wise to choose “TightSCF” and select a basis set of at least
valence triple-zeta plus polarization quality (e.g. def2-TZVP).

DFT Calculations with RI

DFT calculations that do not require the HF exchange to be calculated (non-hybrid DFT) can be very efficiently
executed with the RI-J approximation. It leads to very large speedups at essentially no loss of accuracy. The use
of the RI-J approximation may be illustrated for a medium sized organic molecule - Penicillin:

# RI-DFT calculation on the Penicillin molecule
! BP86 SVP TightSCF

* xyz 0 1
N 3.17265 1.15815 -0.09175
C 2.66167 0.72032 1.18601

(continues on next page)
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C 4.31931 0.59242 -0.73003
C 2.02252 1.86922 -0.54680
C 1.37143 1.52404 0.79659
S 2.72625 -1.05563 0.80065
C 4.01305 -0.91195 -0.52441
C 5.58297 1.09423 -0.06535
O 1.80801 2.36292 -1.62137
N 0.15715 0.73759 0.70095
C 5.25122 -1.72918 -0.12001
C 3.41769 -1.50152 -1.81857
O 6.60623 1.14077 -0.91855
O 5.72538 1.40990 1.08931
C -1.08932 1.35001 0.75816
C -2.30230 0.45820 0.54941
O -1.19855 2.53493 0.96288
O -3.48875 1.21403 0.57063
C -4.66939 0.59150 0.27339
C -4.84065 -0.79240 0.11956
C -5.79523 1.39165 0.03916
C -6.07568 -1.34753 -0.22401
C -7.03670 0.85454 -0.30482
C -7.18253 -0.52580 -0.43612
H 3.24354 1.09074 2.02120
H 4.33865 0.87909 -1.77554
H 1.26605 2.42501 1.39138
H 0.17381 -0.25857 0.47675
H 6.05024 -1.64196 -0.89101
H 5.67754 -1.39089 0.85176
H 5.01118 -2.81229 -0.01401
H 2.50304 -0.95210 -2.14173
H 4.15186 -1.44541 -2.65467
H 3.14138 -2.57427 -1.69700
H 7.29069 1.46408 -0.31004
H -2.21049 -0.02915 -0.44909
H -2.34192 -0.28647 1.37775
H -4.00164 -1.48999 0.26950
H -5.69703 2.48656 0.12872
H -6.17811 -2.44045 -0.33185
H -7.89945 1.51981 -0.47737
H -8.15811 -0.96111 -0.71027
*

The job has 42 atoms and 430 contracted basis functions. Yet, it executes in just a few minutes elapsed time on
any reasonable personal computer.

NOTES:

• The RI-J approximation requires an “auxiliary basis set” in addition to a normal orbital basis set. For the
Karlsruhe basis sets there is the universal auxiliary basis set of Weigend that is called with the name def2/J
(all-electron up to Kr). When scalar relativistic Hamiltonians are used (DKH or ZORA) along with all-
electron basis sets, then a general-purpose auxiliary basis set is the SARC/J that covers most of the periodic
table. Other choices are documented in sections Basis Sets and Choice of Basis Set.

• For “pure” functionals the use of RI-J with the def2/J auxiliary basis set is the default.

Since DFT is frequently applied to open-shell transition metals we also show one (more or less trivial) example of
a Cu(II) complex treated with DFT.

! BP86 SV SlowConv
%base "temp"
* xyz -2 2

Cu 0 0 0

(continues on next page)
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Cl 2.25 0 0
Cl -2.25 0 0
Cl 0 2.25 0
Cl 0 -2.25 0

*

$new_job

! B3LYP NoRI TZVP TightSCF MORead
%moinp "temp.gbw"
%scf GuessMode CMatrix

end
* xyz -2 2

Cu 0 0 0
Cl 2.25 0 0
Cl -2.25 0 0
Cl 0 2.25 0
Cl 0 -2.25 0

*

Although it would not have been necessary for this example, it shows a possible strategy how to converge such
calculations. First a less accurate but fast job is performed using the RI approximation, a GGA functional and a
small basis set without polarization functions. Note that a larger damping factor has been used in order to guide the
calculation (SlowConv). The second job takes the orbitals of the first as input and performs a more accurate hybrid
DFT calculation. A subtle point in this calculation on a dianion in the gas phase is the command GuessMode
CMatrix that causes the corresponding orbital transformation to be used in order to match the orbitals of the
small and the large basis set calculation. This is always required when the orbital energies of the small basis set
calculation are positive as will be the case for anions.

Hartree–Fock and Hybrid DFT Calculations with RIJCOSX

Frustrated by the large difference in execution times between pure and hybrid functionals, we have been motivated
to study approximations to the Hartree-Fock exchange term. The method that we have finally come up with is called
the “chain of spheres” COSX approximation and may be thought of as a variant of the pseudo-spectral philosophy.
Essentially, in performing two electron integrals, the first integration is done numerically on a grid and the second
(involving the Coulomb singularity) is done analytically. For algorithmic and theoretical details see Refs. [624] and
[383]. Upon combining this treatment with the Split-RI-J method for the Coulomb term (thus, a Coulomb fitting
basis is needed!), we have designed the RIJCOSX approximation that can be used to accelerate Hartree-Fock and
hybrid DFT calculations. Note that this introduces another grid on top of the DFT integration grid which is usually
significantly smaller.

OBS.: Since ORCA 5, RIJCOSX is the default option for hybrid DFT (can be turned off by using !NOCOSX).
However, it is by default NOT turned on for HF.

In particular for large and accurate basis sets, the speedups obtained in this way are very large - we have observed
up to a factor of sixty! The procedure is essentially linear scaling such that large and accurate calculations become
possible with high efficiency. The RIJCOSX approximation is basically available throughout the program. The
default errors are on the order of 0.05 ± 0.1 kcal mol−1 or less in the total energies as well as in energy differ-
ences and can be made smaller with larger than the default grids or by running the final SCF cycle without this
approximation. The impact on bond distances is a fraction of a pm, angles are better than a few tenth of a degree
and soft dihedral angles are good to about 1 degree. To the limited extent to which it has been tested, vibrational
frequencies are roughly good to 0.1 wavenumbers with the default settings.

The use of RIJCOSX is very simple:

! HF def2-TZVPP TightSCF RIJCOSX
...

One thing to be mentioned in correlation calculations with RIJCOSX is that the requirements for the SCF and
correlation fitting bases are quite different. We therefore support two different auxiliary basis sets in the same run:
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! RI-MP2 def2-TZVPP def2/J def2-TZVPP/C TightSCF RIJCOSX
...

Hartree–Fock and Hybrid DFT Calculations with RI-JK

An alternative algorithm for accelerating the HF exchange in hybrid DFT or HF calculations is to use the RI
approximation for both Coulomb and exchange. This is implemented in ORCA for SCF single point energies but
not for gradients.

! RHF def2-TZVPP def2/JK RI-JK
...

The speedups for small molecules are better than for RIJCOSX, for medium sized molecules (e.g. (gly)4) similar,
and for larger molecules RI-JK is less efficient than RIJCOSX. The errors of RI-JK are usually below 1 mEh and
the error is very smooth (smoother than for RIJCOSX). Hence, for small calculations with large basis sets, RI-JK
is a good idea, for large calculations on large molecules RIJCOSX is better.

ò Note

• For RI-JK you will need a larger auxiliary basis set. For the Karlsruhe basis set, the universal def2/JK
and def2/JKsmall basis sets are available. They are large and accurate.

• For UHF RI-JK is roughly twice as expensive as for RHF. This is not true for RIJCOSX.

• RI-JK is available for conventional and direct runs and also for ANO bases. There the conventional mode
is recommended.

A comparison of the RIJCOSX and RI-JK methods (taken from Ref. [465]) for the (gly)2, (gly)4 and (gly)8 is
shown below (wall clock times in second for performing the entire SCF):

Def2-SVP Def2-TZVP(-df) Def2-TZVPP Def2-QZVPP

(gly)2 Default 105 319 2574 27856
RI-JK 44 71 326 3072

RIJCOSX 70 122 527 3659

(gly)4 Default 609 1917 13965 161047
RI-JK 333 678 2746 30398

RIJCOSX 281 569 2414 15383

(gly)8 Default 3317 12505 82774

RI-JK 3431 5452 16586 117795

RIJCOSX 1156 2219 8558 56505

It is obvious from the data that for small molecules the RI-JK approximation is the most efficient choice. For (gly)4
this is already no longer obvious. For up to the def2-TZVPP basis set, RI-JK and RIJCOSX are almost identical
and for def2-QZVPP RIJCOSX is already a factor of two faster than RI-JK. For large molecules like (gly)8 with
small basis sets RI-JK is not a big improvement but for large basis set it still beats the normal 4-index calculation.
RIJCOSX on the other hand is consistently faster. It leads to speedups of around 10 for def2-TZVPP and up to
50-60 for def2-QZVPP. Here it outperforms RI-JK by, again, a factor of two.
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DFT Calculations with Second Order Perturbative Correction (Double-Hybrid Functionals)

There is a family of functionals which came up in 2006 and were proposed by Grimme [320]. They consist of a
semi-empirical mixture of DFT components and the MP2 correlation energy calculated with the DFT orbitals and
their energies. Grimme referred to his functional as B2PLYP (B88 exchange, 2 parameters that were fitted and
perturbative mixture of MP2 and LYP) – a version with improved performance (in particular for weak interactions)
is mPW2PLYP [773] and is also implemented. From the extensive calibration work, the new functionals appear
to give better energetics and a narrower error distribution than B3LYP. Thus, the additional cost of the calculation
of the MP2 energy may be well invested (and is quite limited in conjunction with density fitting in the RI part).
Martin has reported reparameterizations of B2PLYP (B2GP-PLYP, B2K-PLYP and B2T-PLYP) that are optimized
for “general-purpose”, “kinetic” and “thermochemistry” applications.[436, 844] In 2011, Goerigk and Grimme
published the PWPB95 functional with spin-opposite-scaling and relatively low amounts of Fock exchange, which
make it promising for both main-group and transition-metal chemistry. [308]

Among the best performing density functionals[312] are Martin’s “DSD”-double-hybrids, which use different com-
binations of exchange and correlation potentials and spin-component-scaled MP2 mixing. Three of these double-
hybrids (DSD-BLYP, DSD-PBEP86 and DSD-PBEB95)[467, 468, 469] are available via simple input keywords.
Different sets of parameters for the DSD-double-hybrids are published, e.g. for the use with and without D3.
The keywords DSD-BLYP, DSD-PBEP86 and DSD-PBEB95 request parameters consistent with the GMTKN55[312]
benchmark set results. The keywords DSD-BLYP/2013 and DSD-PBEP86/2013 request the slightly different pa-
rameter sets used in the 2013 paper by Kozuch and Martin.[469] To avoid confusion, the different parameters are
presented in Table 6.7.

Table 6.7: DSD-DFT parameters defined in ORCA

Keywords ScalDFX ScalHFX ScalGGAC PS PT D3S6 D3S8 D3A2

DSD-BLYP 0.25 0.75 0.53 0.46 0.60

DSD-BLYP D3BJ 0.31 0.69 0.54 0.46 0.37 0.50 0.213 6.0519
DSD-BLYP/2013 D3BJ 0.29 0.71 0.54 0.47 0.40 0.57 0 5.4
DSD-PBEP86 0.28 0.72 0.44 0.51 0.36

DSD-PBEP86 D3BJ 0.30 0.70 0.43 0.53 0.25 0.418 0 5.65
DSD-PBEP86/2013 D3BJ 0.31 0.69 0.44 0.52 0.22 0.48 0 5.6
DSD-PBEB95 0.30 0.70 0.52 0.48 0.22

DSD-PBEB95 D3BJ 0.34 0.66 0.55 0.46 0.09 0.61 0 6.2

Note that D3A1 is always 0 for these functionals.

Three different variants of MP2 can be used in conjunction with these functionals. Just specifying the functional
name leads to the use of RI-MP2 by default. In this case, an appropriate auxiliary basis set for correlation fitting
needs to be specified. It is very strongly recommended to use the RI variants instead of conventional MP2, as their
performance is vastly better. Indeed, there is hardly ever any reason to use conventional MP2. To turn this option
off just use !NORI in the simple input (which also turns off the RIJCOSX approximation) or %mp2 RI false
end. More information can be found in the relevant sections regarding RI-MP2.

Finally, DLPNO-MP2 can be used as a component of double-hybrid density functionals. In that case, a “DLPNO-”
prefix needs to be added to the functional name, for example DLPNO-B2GP-PLYP or DLPNO-DSD-PBEP86. Please
refer to the relevant manual sections for more information on the DLPNO-MP2 method.

For each functional, parameters can be specified explicitly in the input file, e.g. for RI-DSD-PBEB95 with D3BJ:

! D3BJ
%method

Method DFT
DoMP2 True
Exchange X_PBE
Correlation C_B95

(continues on next page)
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LDAOpt C_PWLDA # specific for B95
ScalDFX 0.34
ScalHFX 0.66
ScalGGAC 0.55
ScalLDAC 0.55 # must be equal to ScalGGAC
ScalMP2C 1.00 # for all DSD-DFs
D3S6 0.61
D3S8 0
D3A1 0 # for all DSD-DFs
D3A2 6.2

end
%mp2

DoSCS True
RI True
PS 0.46
PT 0.09

end

In this version of ORCA, double-hybrid DFT is available for single points, geometry optimizations [620], dipole
moments and other first order properties, magnetic second order properties (chemical shifts, g-tensors), as well as
for numerical polarizabilities and frequencies.

There are also double-hybrid functionals, such as XYG3 and 𝜔B97M(2), which must be applied to orbitals con-
verged with a different functional. This can be accomplished with a two-step calculation using MORead and
MaxIter=1. Note that because the orbitals are not obtained self-consistently, only single point energies can be
computed in this way, i.e. no density, gradient, or properties! For example, the 𝜔B97M(2) functional must be used
with 𝜔B97M-V orbitals,[558] which can be done with the following input:

*xyz 0 1
H 0.0 0.0 0.0
F 0.0 0.0 0.9

*
%compound

Variable EwB97MV, EwB97M2; # Output variables
# Step 1: wB97M-V calculation to obtain the orbitals
New_Step
! wB97M-V SCNL def2-TZVP

Step_End
# Step 2: single iteration with the wB97M(2) functional
# + MP2 correlation to get the final energy
ReadMOs(1);
New_Step
! wB97M(2) SCNL NoFrozenCore def2-TZVP def2-TZVP/C
%scf

MaxIter 1
IgnoreConv 1 # prevent the "not converged" error

end
Step_End
Read EwB97MV = DFT_Total_En[1]; # wB97M-V energy
Read EwB97M2 = MP2_Total_Energy[2]; # wB97M(2) energy

End
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DFT Calculations with Atom-pairwise Dispersion Correction

It is well known that many DFT functionals do not include dispersion forces. It is possible to use a simple atom-
pairwise correction to account for the major parts of this contribution to the energy [131, 321, 324, 326]. We have
adopted the code and method developed by Stefan Grimme in this ORCA version. The method is parameterized for
many established functionals (e.g. BLYP, BP86, PBE, TPSS, B3LYP, B2PLYP).7 For the 2010 model the Becke-
Johnson damping version (! D3BJ) is the default and will automatically be invoked by the simple keyword ! D3.
The charge dependent atom-pairwise dispersion correction (keyword ! D4) is using the D4(EEQ)-ATM dispersion
model[132], other D4 versions, using tight-binding partial charges, are currently only available with the standalone
DFT-D4 program.

! BLYP D3 def2-QZVPP Opt

%paras R= 2.5,4.0,16
end

%geom Constraints
{ C 0 C }
{ C 1 C }
end

end

* xyz 0 1
Ar 0.0000000 0.0000000 {R}
H 0.0000000 0.0000000 0.0000000
C 0.0000000 0.0000000 -1.0951073
H 0.5163499 0.8943443 -1.4604101
H 0.5163499 -0.8943443 -1.4604101
H -1.0326998 0.0000000 -1.4604101
*

In this example, a BLYP calculation without dispersion correction will show a repulsive potential between the argon
atom and the methane molecule. Using the D3 dispersion correction as shown above, the potential curve shows
a minimum at about 3.1−3.2 Å. The atom-pairwise correction is quite successful and Grimme’s work suggests
that this is more generally true. For many systems like stacked DNA base pairs, hydrogen bond complexes and
other weak interactions the atom-pairwise dispersion correction will improve substantially the results of standard
functionals at essentially no extra cost.

ò Note

• Dispersion corrections do not only affect non-covalent complexes, but also affect conformational energies
(and conformer structures) which are heavily influenced by intramolecular dispersion. Therefore, for
large and/or flexible molecules, including the dispersion correction is almost always recommended or
even required (except for a handful of cases where it cannot, should not or need not be used, see below).
For small systems, the dipersion correction may result in basically no improvement of the results, but is
usually harmless anyway.

• DFT calculations with small basis sets (such as double zeta basis sets) often yield attractive potential en-
ergy surfaces even without the dispersion correction. However, this is due to basis set superposition error
(BSSE), and the interaction energy brought about by the BSSE frequently does not match the true inter-
action energy due to dispersion (because they have completely different origins). Therefore, although a
DFT double zeta calculation without the dispersion correction may appear to give qualitatively correct
results, or occasionally even better results than a double zeta calculation with dispersion corrections (be-
cause in the latter case one typically overestimates the total attraction), it is still highly recommended to
“get the right answer for the right reason” by reducing the BSSE and turning on the dispersion correction.

7 For expert users: The keyword D2, D3ZERO, D3BJ and D4 select the empirical 2006, the atom-pairwise 2010 model, respectively, with
either zero-damping or Becke-Johnson damping, or the partial charge dependent atom-pairwise 2018 model. The default is the most accurate
D3BJ model. The outdated model from 2004 [319] is no longer supported and can only be invoked by setting DFTDOPT = 1. The C6-scaling
coefficient can be user defined using e.g. “%method DFTDScaleC6 1.2 end”
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The BSSE can be corrected by a variety of means, for example (1) by using a larger basis set; (2) by us-
ing the counterpoise correction (Counterpoise Correction); or (3) by using the geometrical counterpoise
correction (section DFT and HF Calculations with the Geometrical Counterpoise Correction: gCP).
Of these, (3) is available at almost no cost (including analytic gradient contributions), and is especially
suitable for geometry optimization of large molecules. Otherwise (1) (or its combination with (2)) may
be more appropriate due to its higher accuracy.

• Functionals that contain VV10-type non-local dispersion (in general, these are the functionals whose
names end with “-V”) do not need (and cannot be used together with) dispersion corrections. The same
holds for post-HF and multireference methods, like MP2, CCSD(T), CASSCF and NEVPT2. However,
one can add a dispersion correction on top of HF.

• Certain functionals, especially the Minnesota family of functionals (e.g. M06-2X), describe medium-
range dispersion but miss long-range dispersion. They give reasonable dispersion energies for small to
medium systems but may slightly underestimate the dispersion energies for large systems. For them,
dispersion corrections are only available in the zero-damping variant, and one should use the D3ZERO
keyword instead of the D3 keyword. As the uncorrected functional already accounts for the bulk of the
dispersion in this case, the dispersion correction is much less important than e.g. the case of B3LYP, and
should in general be considered as beneficial but not mandatory.

• Some density functional developers reparameterize the functional itself while parameterizing the dis-
persion correction. A famous example is the 𝜔B97X family of functionals, to be detailed in the next
section. For these functionals, the D3, D3BJ or D4 keywords should be hyphenated with the name of the
functional itself, and some quantities that normally would not change when adding dispersion correc-
tions (e.g. orbitals, excitation energies, dipole moments) may change slightly when adding or removing
the dispersion correction. Likewise, for these functionals the structural changes that one observe upon
adding or removing the dispersion correction cannot be completely attributed to the dispersion correction
itself, but may contain contributions due to the change of the functional.

DFT Calculations with Range-Separated Hybrid Functionals

All range-separated functionals in ORCA use the error function based approach according to Hirao and cowork-
ers.[410] This allows the definition of DFT functionals that dominate the short-range part by an adapted exchange
functional of LDA, GGA or meta-GGA level and the long-range part by Hartree-Fock exchange.

CAM-B3LYP,[900] LC-BLYP[846], LC-PBE[410, 602] and members of the 𝜔B97-family of functionals have
been implemented into ORCA, namely 𝜔B97, 𝜔B97X[151], 𝜔B97X-D3[525], 𝜔B97X-V[555], 𝜔B97M-V[557],
𝜔B97X-D3BJ and 𝜔B97M-D3BJ.[603] (For more information on 𝜔B97X-V[555] and 𝜔B97M-V[557] see section
DFT Calculations with the Non-Local, Density Dependent Dispersion Correction (VV10): DFT-NL.) Some of
them incorporate fixed amounts of Hartree-Fock exchange (EXX) and/or DFT exchange and they differ in the RS-
parameter 𝜇. In the case of 𝜔B97X-D3, the proper D3 correction (employing the zero-damping scheme) should
be calculated automatically. The D3BJ correction is used automatically for 𝜔B97X-D3BJ and 𝜔B97M-D3BJ (as
well as for the meta-GGA B97M-D3BJ). The same is true for the D4-based variants 𝜔B97M-D4 and 𝜔B97X-D4.
The D3BJ and D4 variants have also been shown to perform well for geometry optimizations [604].

Several restrictions apply to these functionals at the moment. They have only been implemented and tested for use
with the libint integral package and for RHF and UHF single-point, ground state nuclear gradient, ground state
nuclear Hessian, TDDFT, and TDDFT nuclear gradient calculations. Only the standard integral handling (NORI),
RIJONX, and RIJCOSX are supported. Do not use these functionals with any other options.
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DFT Calculations with Range-Separated Double Hybrid Functionals

For the specifics of the range-separated double-hybrid functionals the user is referred to sections DFT Calcula-
tions with Second Order Perturbative Correction (Double-Hybrid Functionals), DFT Calculations with Range-
Separated Hybrid Functionals and Doubles Correction. The first range-separated double hybrids available in
ORCA were 𝜔B2PLYP and 𝜔B2GP-PLYP[146]. Both were optimized for the calculation of excitation energies,
but they have recently also been tested for ground-state properties[602].

A large variety of range-separated double hybrids with and without spin-component/opposite scaling have become
available in ORCA 5. Some have been developed with ground-state properties in mind, most for excitation energies.
See Section Choice of Functional for more details and citations.

6.1.5 Quadratic Convergence

The standard SCF implementation in ORCA uses the DIIS algorithm[703, 704] for initial and an approximate
second-order converger for final convergence[264, 608]. This approach converges quickly for most chemical sys-
tems. However, there are many interesting systems with a more complicated electronic structure for which the
standard SCF protocol converges either slowly (“creeping”), converges to an excited state, or diverges. In those
cases, a newly developed trust-region augmented Hessian (TRAH) SCF approach[64, 349, 381, 735] should be used.
The TRAH-SCF method always converges to a local minimum and converges quadratically near the solution.

You can run TRAH from the beginning by adding

! TRAH

to the simple input line if you expect convergence difficulties. Open-shell molecules notoriously have SCF con-
vergence issues, in particular, if they are composed of many open-shell atoms. In Fig. 6.10, the convergence of a
TRAH-SCF calculation is shown for a high-spin Rh cluster for which the standard SCF diverges. The errors of the
electronic gradient or residual vector converge almost steadily below the default TRAH accuracy of 10−6.

Rh12
+ cluster (Ms = 36)

Fig. 6.10: TRAH-SCF gradient norm of a PBE/def2-TZVP calculation for aRh+12 cluster in high-spin configuration
(Ms = 36). The structure was taken from Ref. [362].

Alternatively, TRAH is launched automatically if standard SCF (DIIS/SOSCF) shows converge problems (default),
an approach which is called AutoTRAH.

%scf
AutoTRAH true
end

You can switch off the automatic start of TRAH by adding
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! NOTRAH

to the simple input line or

%scf
AutoTRAH false
end

Convergence problems are detected by comparing the norm of the electronic gradient at multiple iterations which
is explained in more detail in Sec. Trust-Region Augmented Hessian (TRAH) SCF.

TRAH-SCF is currently implemented for restricted closed-shell (RHF and RKS) and unrestricted open-shell deter-
minants (UHF and UKS) and can be accelerated with RIJ, RIJONX, RIJK, or RIJCOSX. Solvation effects can also be
accounted for with the C-PCM and SMD models. Restricted open-shell calculations are not possible yet.

TRAH-SCF can also be applied to large molecules as it is parallelized and works with AO Fock matrices. However,
for systems with large HOMO-LUMO gaps that converge well, the default SCF converger is usually faster because
the screening in TRAH is less effective and more iterations are required.

For a more detailed documentation we refer to Sec. Trust-Region Augmented Hessian (TRAH) SCF.

ò Note

• TRAH is mathematically guaranteed to converge with a sufficient number of iterations, provided that
there is no numerical noise (e.g. round-off error, truncation error) in the calculation. Therefore, if TRAH
fails to converge, this means that either the default number of iterations is not large enough, or certain
numerical thresholds are not tight enough. One can verify whether the former possibility is operative by
checking whether the error still decreases steadily towards zero in the last SCF iterations. If yes, one can
increase the number of iterations; otherwise it may be worthwhile to try increasing the integration grid,
tighten the integral thresholds, etc.

• For some functionals (e.g. PWPB95), the native ORCA implementation supports only their XC energies
and potentials, but not their XC kernels. In this case one should switch to the LibXC implementation
instead, e.g. replace PWPB95 by LIBXC(PWPB95). Otherwise the calculation aborts upon entering the
TRAH procedure.

6.1.6 Counterpoise Correction

In calculating weak molecular interactions the nasty subject of the basis set superposition error (BSSE) arises. It
consists of the fact that if one describes a dimer, the basis functions on A help to lower the energy of fragment B and
vice versa. Thus, one obtains an energy that is biased towards the dimer formation due to basis set effects. Since this
is unwanted, the Boys and Bernardi procedure aims to correct for this deficiency by estimating what the energies
of the monomers would be if they had been calculated with the dimer basis set. This will stabilize the monomers
relative to the dimers. The effect can be a quite sizable fraction of the interaction energy and should therefore be
taken into account. The original Boys and Bernardi formula for the interaction energy between fragments A and B
is:

∆𝐸 = 𝐸𝐴𝐵𝐴𝐵 (𝐴𝐵)− 𝐸𝐴𝐴(𝐴)− 𝐸𝐵𝐵 (𝐵)−
[︀
𝐸𝐴𝐵𝐴 (𝐴𝐵)− 𝐸𝐴𝐵𝐴 (𝐴) + 𝐸𝐴𝐵𝐵 (𝐴𝐵)− 𝐸𝐴𝐵𝐵 (𝐵)

]︀
(6.8)

Here 𝐸𝑌𝑋 (𝑍) is the energy of fragment X calculated at the optimized geometry of fragment Y with the basis set of
fragment Z. Thus, you need to do a total the following series of calculations:

1. optimize the geometry of the dimer and the monomers with some basis set Z. This gives you 𝐸𝐴𝐵𝐴𝐵 (𝐴𝐵),
𝐸𝐴𝐴 (𝐴) and 𝐸𝐵𝐵 (𝐵)

2. delete fragment A (B) from the optimized structure of the dimer and re-run the single point calculation with
basis set Z. This gives you 𝐸𝐴𝐵𝐵 (𝐵) and 𝐸𝐴𝐵𝐴 (𝐴).

3. Now, the final calculation consists of calculating the energies of A and B at the dimer geometry but with the
dimer basis set. This gives you 𝐸𝐴𝐵𝐴 (𝐴𝐵) and 𝐸𝐴𝐵𝐵 (𝐴𝐵).
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In order to achieve the last step efficiently, a special notation was put into ORCA which allows you to delete the
electrons and nuclear charges that come with certain atoms but retain the assigned basis set. This trick consists of
putting a “:” after the symbol of the atom. Here is an example of how to run such a calculation of the water dimer
at the MP2 level (with frozen core):

#
# BSSE test
#

# --------------------------------------------
# First the monomer. It is a waste of course
# to run the monomer twice ...
# --------------------------------------------
! RHF MP2 TZVPP VeryTightSCF XYZFile PModel
%id "monomer"
* xyz 0 1
O 7.405639 6.725069 7.710504
H 7.029206 6.234628 8.442160
H 8.247948 6.296600 7.554030
*

$new_job
! RHF MP2 TZVPP VeryTightSCF XYZFile PModel
%id "monomer"
* xyz 0 1
O 7.405639 6.725069 7.710504
H 7.029206 6.234628 8.442160
H 8.247948 6.296600 7.554030
*

# --------------------------------------------
# now the dimer
# --------------------------------------------
$new_job
! RHF MP2 TZVPP VeryTightSCF XYZFile PModel
%id "dimer"
* xyz 0 1
O 7.439917 6.726792 7.762120
O 5.752050 6.489306 5.407671
H 7.025510 6.226170 8.467436
H 8.274883 6.280259 7.609894
H 6.313507 6.644667 6.176902
H 5.522285 7.367132 5.103852
*

# --------------------------------------------
# Now the calculations of the monomer at the
# dimer geometry
# --------------------------------------------
$new_job
! RHF MP2 TZVPP VeryTightSCF XYZFile PModel
%id "monomer_1"

* xyz 0 1
O 7.439917 6.726792 7.762120
H 7.025510 6.226170 8.467436
H 8.274883 6.280259 7.609894
*

$new_job
! RHF MP2 TZVPP VeryTightSCF XYZFile PModel
%id "monomer_1"

(continues on next page)
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* xyz 0 1
O 5.752050 6.489306 5.407671
H 6.313507 6.644667 6.176902
H 5.522285 7.367132 5.103852
*

# --------------------------------------------
# Now the calculation of the monomer at the
# dimer geometry but with the dimer basis set
# --------------------------------------------
$new_job
! RHF MP2 TZVPP VeryTightSCF XYZFile PModel
%id "monomer_2"
* xyz 0 1
O 7.439917 6.726792 7.762120
O : 5.752050 6.489306 5.407671
H 7.025510 6.226170 8.467436
H 8.274883 6.280259 7.609894
H : 6.313507 6.644667 6.176902
H : 5.522285 7.367132 5.103852
*

$new_job
! RHF MP2 TZVPP VeryTightSCF XYZFile PModel
%id "monomer_2"
* xyz 0 1
O : 7.439917 6.726792 7.762120
O 5.752050 6.489306 5.407671
H : 7.025510 6.226170 8.467436
H : 8.274883 6.280259 7.609894
H 6.313507 6.644667 6.176902
H 5.522285 7.367132 5.103852
*

You obtain the energies:

Monomer : -152.647062118 Eh
Dimer : -152.655623625 Eh -5.372 kcal/mol
Monomer at dimer geometry: -152.647006948 Eh 0.035 kcal/mol
Same with AB Basis set : -152.648364970 Eh -0.818 kcal/mol

Thus, the corrected interaction energy is:
-5.372 kcal/mol - (-0.818-0.035)=-4.52 kcal/mol

It is also possible to set entire fragments as ghost atoms using the GhostFrags keyword as shown below. See
section Fragment Specification for different ways of defining fragments.

! MP2 TZVPP VeryTightSCF XYZFile PModel
* xyz 0 1
O 7.439917 6.726792 7.762120
O 5.752050 6.489306 5.407671
H 7.025510 6.226170 8.467436
H 8.274883 6.280259 7.609894
H 6.313507 6.644667 6.176902
H 5.522285 7.367132 5.103852
*
%geom

GhostFrags {1} end # space-separated list and X:Y ranges accepted
fragments
1 {0 2 3} end
2 {1 4 5} end

(continues on next page)
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end
end

Starting from ORCA 6.0, we support geometry optimizations with the counterpoise correction, us-
ing analytic gradients. This opens up the way of obtaining accurate non-covalent complex ge-
ometries (instead of just interaction energies) using modest basis sets. To use this functional-
ity, one should NOT simply add !Opt to the above input files, but should instead use the dedi-
cated compound script BSSEOptimization.cmp available in the ORCA Compound Script repository
(https://github.com/ORCAQuantumChemistry/CompoundScripts/blob/main/GeometryOptimization/BSSEOptimization.cmp).
Detailed usage are described in the comments of the compound script.

6.1.7 Complete Active Space Self-Consistent Field Method

Introduction

There are several situations where a complete-active space self-consistent field (CASSCF) treatment is a good idea:

• Wavefunctions with significant multireference character arising from several nearly degenerate configura-
tions (static correlation)

• Wavefunctions which require a multideterminantal treatment (for example multiplets of atoms, ions, transi-
tion metal complexes, )

• Situations in which bonds are broken or partially broken.

• Generation of orbitals which are a compromise between the requirements for several states.

• Generation of start orbitals for multireference methods covering dynamic correlation (NEVPT2, MRCI,
MREOM, . . . )

• Generation of genuine spin eigenfunctions for multideterminantal/multireference wavefunctions.

In all of these cases the single-determinantal Hartree-Fock method fails badly and in most of these cases DFT
methods will also fail. In these cases a CASSCF method is a good starting point. CASSCF is a special case of
multiconfigurational SCF (MCSCF) methods which specialize to the situation where the orbitals are divided into
three-subspaces: (a) the internal orbitals which are doubly occupied in all configuration state functions (CSFs) (b)
partially occupied (active) orbitals (c) virtual (external) orbitals which are empty in all CSFs.

A fixed number of electrons is assigned to the internal subspace and the active subspace. If N-electrons are “active”
in M orbitals one speaks of a CASSCF(N,M) wavefunctions. All spin-eigenfunctions for N-electrons in M orbitals
are included in the configuration interaction step and the energy is made stationary with respect to variations in the
MO and the CI coefficients. Any number of roots of any number of different multiplicities can be calculated and
the CASSCF energy may be optimized with respect to a user defined average of these states.

The CASSCF method has the nice advantage that it is fully variational which renders the calculation of analytical
gradients relatively easy. Thus, the CASSCF method may be used for geometry optimizations and numerical
frequency calculations.

The price to pay for this strongly enhanced flexibility relative to the single-determinantal HF method is that the
CASSCF method requires more computational resources and also more insight and planning from the user side.
The technical details are explained in section The Complete Active Space Self-Consistent Field (CASSCF) Module.
Here we explain the use of the CASSCF method by examples. In addition to the description in the manual, there
is a separate tutorial for CASSCF with many more examples in the field of coordination chemistry. The tutorial
covers the design of the calculation, practical tips on convergence as well as the computation of properties.

A number of properties are available in ORCA (g-tensor, ZFS splitting, CD, MCD, susceptibility, dipoles, . . . ). The
majority of CASSCF properties such as EPR parameters are computed in the framework of the quasi-degenerate
perturbation theory. Some properties such as ZFS splittings can also be computed via perturbation theory or
rigorously extracted from an effective Hamiltonian. For a detailed description of the available properties and
options see section CASSCF Properties. All the aforementioned properties are computed within the CASSCF
module. An exception are Mössbauer parameters, which are computed with the usual keywords using the EPRNMR
module (Mössbauer Parameters).
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A simple Example

One standard example of a multireference system is the Be atom. Let us run two calculations, a standard closed-
shell calculation (1s22s2) and a CASSCF(2,4) calculation which also includes the (1s22s12p1) and (1s22s02p2)
configurations.

! TZVPP TightSCF
* xyz 0 1
Be 0 0 0
*

This standard closed-shell calculation yields the energy -14.56213241 Eh. The CASSCF calculation

! TZVPP TightSCF
%casscf nel 2

norb 4
end

* xyz 0 1
Be 0 0 0
*

yields the energy -14.605381525 Eh. Thus, the inclusion of the 2p shell results in an energy lowering of 43 mEh
which is considerable. The CASSCF program also prints the composition of the wavefunction:

---------------------------------------------
CAS-SCF STATES FOR BLOCK 1 MULT= 1 NROOTS= 1
---------------------------------------------

ROOT 0: E= -14.6053815294 Eh
0.90060 [ 0]: 2000
0.03313 [ 4]: 0200
0.03313 [ 9]: 0002
0.03313 [ 7]: 0020

This information is to be read as follows: The lowest state is composed of 90% of the configuration which has the
active space occupation pattern 2000 which means that the first active orbital is doubly occupied in this configu-
ration while the other three are empty. The MO vector composition tells us what these orbitals are (ORCA uses
natural orbitals to canonicalize the active space).

0 1 2 3 4 5
-4.70502 -0.27270 0.11579 0.11579 0.11579 0.16796
2.00000 1.80121 0.06626 0.06626 0.06626 0.00000
-------- -------- -------- -------- -------- --------

0 Be s 100.0 100.0 0.0 0.0 0.0 100.0
0 Be pz 0.0 0.0 13.6 6.1 80.4 0.0
0 Be px 0.0 0.0 1.5 93.8 4.6 0.0
0 Be py 0.0 0.0 84.9 0.1 15.0 0.0

Thus, the first active space orbital has occupation number 1.80121 and is the Be-2s orbital. The other three orbitals
are 2p in character and all have the same occupation number 0.06626. Since they are degenerate in occupation
number space, they are arbitrary mixtures of the three 2p orbitals. It is then clear that the other components of the
wavefunction (each with 3.31%) are those in which one of the 2p orbitals is doubly occupied.

How did we know how to put the 2s and 2p orbitals in the active space? The answer is – WE DID NOT KNOW! In
this case it was “good luck” that the initial guess produced the orbitals in such an order that we had the 2s and 2p
orbitals active. IN GENERAL IT IS YOUR RESPONSIBILITY THAT THE ORBITALS ARE ORDERED
SUCH THAT THE ORBITALS THAT YOU WANT IN THE ACTIVE SPACE COME IN THE DESIRED
ORDER. In many cases this will require re-ordering and CAREFUL INSPECTION of the starting orbitals.

. Attention
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If you include orbitals in the active space that are nearly empty or nearly doubly occupied, convegence problems
are likely. The SuperCI(PT) [459] and Newton-Raphson method are less prone to these problems.

Starting Orbitals

� Tip

In many cases natural orbitals of a simple correlated calculation of some kind provide a good starting point for
CASSCF.

Let us illustrate this principle with a calculation on the Benzene molecule where we want to include all six 𝜋-orbitals
in the active space. After doing a RHF calculation:

! RHF SV(P)

* int 0 1
C 0 0 0 0.000000 0.000 0.000
C 1 0 0 1.389437 0.000 0.000
C 2 1 0 1.389437 120.000 0.000
C 3 2 1 1.389437 120.000 0.000
C 4 3 2 1.389437 120.000 0.000
C 5 4 3 1.389437 120.000 0.000
H 1 2 3 1.082921 120.000 180.000
H 2 1 3 1.082921 120.000 180.000
H 3 2 1 1.082921 120.000 180.000
H 4 3 2 1.082921 120.000 180.000
H 5 4 3 1.082921 120.000 180.000
H 6 5 4 1.082921 120.000 180.000
*
%Output

Print[P_ReducedOrbPopMO_L] 1
End

We can look at the orbitals around the HOMO/LUMO gap:

12 13 14 15 16 17
-0.63810 -0.62613 -0.59153 -0.59153 -0.50570 -0.49833
2.00000 2.00000 2.00000 2.00000 2.00000 2.00000
-------- -------- -------- -------- -------- --------

0 C s 2.9 0.0 0.3 0.1 0.0 0.0
0 C pz 0.0 0.0 0.0 0.0 16.5 0.0
0 C px 1.4 12.4 5.9 0.3 0.0 11.2
0 C py 4.2 4.1 10.1 5.9 0.0 0.1
0 C dyz 0.0 0.0 0.0 0.0 0.1 0.0
0 C dx2y2 0.1 0.1 0.2 0.2 0.0 0.5
0 C dxy 0.4 0.0 0.0 0.2 0.0 0.0
1 C s 2.9 0.0 0.3 0.1 0.0 0.0
1 C pz 0.0 0.0 0.0 0.0 16.5 0.0
1 C px 1.4 12.4 5.9 0.3 0.0 11.2
1 C py 4.2 4.1 10.1 5.9 0.0 0.1
1 C dyz 0.0 0.0 0.0 0.0 0.1 0.0
1 C dx2y2 0.1 0.1 0.2 0.2 0.0 0.5
1 C dxy 0.4 0.0 0.0 0.2 0.0 0.0
2 C s 2.9 0.0 0.0 0.4 0.0 0.1
2 C pz 0.0 0.0 0.0 0.0 16.5 0.0
2 C px 5.7 0.0 0.0 20.9 0.0 10.1
2 C py 0.0 16.5 1.3 0.0 0.0 0.0
2 C dxz 0.0 0.0 0.0 0.0 0.1 0.0

(continues on next page)

118 Chapter 6. Running Typical Calculations



ORCA Manual, Release 6.0

(continued from previous page)

2 C dx2y2 0.6 0.0 0.0 0.2 0.0 1.2
2 C dxy 0.0 0.1 0.5 0.0 0.0 0.0
3 C s 2.9 0.0 0.3 0.1 0.0 0.0
3 C pz 0.0 0.0 0.0 0.0 16.5 0.0
3 C px 1.4 12.4 5.9 0.3 0.0 11.2
3 C py 4.2 4.1 10.1 5.9 0.0 0.1
3 C dyz 0.0 0.0 0.0 0.0 0.1 0.0
3 C dx2y2 0.1 0.1 0.2 0.2 0.0 0.5
3 C dxy 0.4 0.0 0.0 0.2 0.0 0.0
4 C s 2.9 0.0 0.3 0.1 0.0 0.0
4 C pz 0.0 0.0 0.0 0.0 16.5 0.0
4 C px 1.4 12.4 5.9 0.3 0.0 11.2
4 C py 4.2 4.1 10.1 5.9 0.0 0.1
4 C dyz 0.0 0.0 0.0 0.0 0.1 0.0
4 C dx2y2 0.1 0.1 0.2 0.2 0.0 0.5
4 C dxy 0.4 0.0 0.0 0.2 0.0 0.0
5 C s 2.9 0.0 0.0 0.4 0.0 0.1
5 C pz 0.0 0.0 0.0 0.0 16.5 0.0
5 C px 5.7 0.0 0.0 20.9 0.0 10.1
5 C py 0.0 16.5 1.3 0.0 0.0 0.0
5 C dxz 0.0 0.0 0.0 0.0 0.1 0.0
5 C dx2y2 0.6 0.0 0.0 0.2 0.0 1.2
5 C dxy 0.0 0.1 0.5 0.0 0.0 0.0
6 H s 7.5 0.0 7.5 2.5 0.0 2.5
7 H s 7.5 0.0 7.5 2.5 0.0 2.5
8 H s 7.5 0.0 0.0 10.0 0.0 9.9
9 H s 7.5 0.0 7.5 2.5 0.0 2.5
10 H s 7.5 0.0 7.5 2.5 0.0 2.5
11 H s 7.5 0.0 0.0 10.0 0.0 9.9

18 19 20 21 22 23
-0.49833 -0.33937 -0.33937 0.13472 0.13472 0.18198
2.00000 2.00000 2.00000 0.00000 0.00000 0.00000
-------- -------- -------- -------- -------- --------

0 C s 0.1 0.0 0.0 0.0 0.0 2.2
0 C pz 0.0 8.1 24.4 7.8 23.4 0.0
0 C px 0.1 0.0 0.0 0.0 0.0 0.6
0 C py 10.4 0.0 0.0 0.0 0.0 1.7
0 C dxz 0.0 0.4 0.2 0.7 0.7 0.0
0 C dyz 0.0 0.2 0.0 0.7 0.0 0.0
0 C dx2y2 0.0 0.0 0.0 0.0 0.0 0.2
0 C dxy 1.0 0.0 0.0 0.0 0.0 0.5
1 C s 0.1 0.0 0.0 0.0 0.0 2.2
1 C pz 0.0 8.1 24.4 7.8 23.4 0.0
1 C px 0.1 0.0 0.0 0.0 0.0 0.6
1 C py 10.4 0.0 0.0 0.0 0.0 1.7
1 C dxz 0.0 0.4 0.2 0.7 0.7 0.0
1 C dyz 0.0 0.2 0.0 0.7 0.0 0.0
1 C dx2y2 0.0 0.0 0.0 0.0 0.0 0.2
1 C dxy 1.0 0.0 0.0 0.0 0.0 0.5
2 C s 0.0 0.0 0.0 0.0 0.0 2.2
2 C pz 0.0 32.5 0.0 31.2 0.0 0.0
2 C px 0.0 0.0 0.0 0.0 0.0 2.2
2 C py 11.6 0.0 0.0 0.0 0.0 0.0
2 C dxz 0.0 0.1 0.0 0.3 0.0 0.0
2 C dyz 0.0 0.0 0.8 0.0 1.8 0.0
2 C dx2y2 0.0 0.0 0.0 0.0 0.0 0.7
2 C dxy 0.4 0.0 0.0 0.0 0.0 0.0
3 C s 0.1 0.0 0.0 0.0 0.0 2.2
3 C pz 0.0 8.1 24.4 7.8 23.4 0.0
3 C px 0.1 0.0 0.0 0.0 0.0 0.6
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3 C py 10.4 0.0 0.0 0.0 0.0 1.7
3 C dxz 0.0 0.4 0.2 0.7 0.7 0.0
3 C dyz 0.0 0.2 0.0 0.7 0.0 0.0
3 C dx2y2 0.0 0.0 0.0 0.0 0.0 0.2
3 C dxy 1.0 0.0 0.0 0.0 0.0 0.5
4 C s 0.1 0.0 0.0 0.0 0.0 2.2
4 C pz 0.0 8.1 24.4 7.8 23.4 0.0
4 C px 0.1 0.0 0.0 0.0 0.0 0.6
4 C py 10.4 0.0 0.0 0.0 0.0 1.7
4 C dxz 0.0 0.4 0.2 0.7 0.7 0.0
4 C dyz 0.0 0.2 0.0 0.7 0.0 0.0
4 C dx2y2 0.0 0.0 0.0 0.0 0.0 0.2
4 C dxy 1.0 0.0 0.0 0.0 0.0 0.5
5 C s 0.0 0.0 0.0 0.0 0.0 2.2
5 C pz 0.0 32.5 0.0 31.2 0.0 0.0
5 C px 0.0 0.0 0.0 0.0 0.0 2.2
5 C py 11.6 0.0 0.0 0.0 0.0 0.0
5 C dxz 0.0 0.1 0.0 0.3 0.0 0.0
5 C dyz 0.0 0.0 0.8 0.0 1.8 0.0
5 C dx2y2 0.0 0.0 0.0 0.0 0.0 0.7
5 C dxy 0.4 0.0 0.0 0.0 0.0 0.0
6 H s 7.4 0.0 0.0 0.0 0.0 11.5
7 H s 7.4 0.0 0.0 0.0 0.0 11.5
8 H s 0.0 0.0 0.0 0.0 0.0 11.5
9 H s 7.4 0.0 0.0 0.0 0.0 11.5
10 H s 7.4 0.0 0.0 0.0 0.0 11.5
11 H s 0.0 0.0 0.0 0.0 0.0 11.5

We see that the occupied 𝜋-orbitals number 16, 19, 20 and the unoccupied ones start with 21 and 22. However, the
sixth high-lying 𝜋*-orbital cannot easily be found. Thus, let us run a simple selected CEPA/2 calculation and look
at the natural orbitals.

! RHF SV(P)
! moread
%moinp "Test-CASSCF-Benzene-1.gbw"

%mrci citype cepa2
tsel 1e-5
natorbiters 1
newblock 1 *

nroots 1
refs cas(0,0) end
end

end
# ...etc, input of coordinates

The calculation prints the occupation numbers:

N[ 6] = 1.98784765
N[ 7] = 1.98513069
N[ 8] = 1.98508633
N[ 9] = 1.97963799
N[ 10] = 1.97957039
N[ 11] = 1.97737886
N[ 12] = 1.97509724
N[ 13] = 1.97370616
N[ 14] = 1.97360821
N[ 15] = 1.96960145
N[ 16] = 1.96958645
N[ 17] = 1.96958581
N[ 18] = 1.95478929

(continues on next page)
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N[ 19] = 1.91751184
N[ 20] = 1.91747498
N[ 21] = 0.07186879
N[ 22] = 0.07181758
N[ 23] = 0.03203528
N[ 24] = 0.01766832
N[ 25] = 0.01757735
N[ 26] = 0.01708578
N[ 27] = 0.01707675
N[ 28] = 0.01671912
N[ 29] = 0.01526139
N[ 30] = 0.01424982

From these occupation number it becomes evident that there are several natural orbitals which are not quite doubly
occupied MOs. Those with an occupation number of 1.95 and less should certainly be taken as active. In addition
the rather strongly occupied virtual MOs 21-23 should also be active leading to CASSCF(6,6). Let us see what
these orbitals are before starting CASSCF:

! RHF SV(P)
! moread noiter
%moinp "Test-CASSCF-Benzene-2.mrci.nat"

Leading to:

18 19 20 21 22 23
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1.95479 1.91751 1.91747 0.07187 0.07182 0.03204
-------- -------- -------- -------- -------- --------

0 C pz 16.5 8.1 24.4 23.4 7.8 16.1
0 C dxz 0.0 0.4 0.2 0.6 0.9 0.1
0 C dyz 0.1 0.2 0.0 0.0 0.6 0.4
1 C pz 16.5 8.1 24.4 23.5 7.8 16.1
1 C dxz 0.0 0.4 0.2 0.6 0.9 0.1
1 C dyz 0.1 0.2 0.0 0.0 0.6 0.4
2 C pz 16.5 32.5 0.0 0.0 31.3 16.3
2 C dxz 0.1 0.1 0.0 0.0 0.2 0.5
2 C dyz 0.0 0.0 0.8 1.9 0.0 0.0
3 C pz 16.5 8.1 24.4 23.4 7.8 16.1
3 C dxz 0.0 0.4 0.2 0.6 0.9 0.1
3 C dyz 0.1 0.2 0.0 0.0 0.6 0.4
4 C pz 16.5 8.1 24.4 23.5 7.8 16.1
4 C dxz 0.0 0.4 0.2 0.6 0.9 0.1
4 C dyz 0.1 0.2 0.0 0.0 0.6 0.4
5 C pz 16.5 32.5 0.0 0.0 31.3 16.3
5 C dxz 0.1 0.1 0.0 0.0 0.2 0.5
5 C dyz 0.0 0.0 0.8 1.9 0.0 0.0

This shows us that these six orbitals are precisely the 𝜋/𝜋* orbitals that we wanted to have active (you can also plot
them to get even more insight).

Now we know that the desired orbitals are in the correct order, we can do CASSCF:

! SV(P)
! moread
%moinp "Test-CASSCF-Benzene-2.mrci.nat"

%casscf nel 6
norb 6
nroots 1
mult 1
switchstep nr # For illustration purpose

(continues on next page)
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end

To highlight the feature SwitchStep of the CASSCF program, we employ the Newton-Raphson method (NR)
after a certain convergence has been reached (SwitchStep NR statement). In general, it is not recommended to
change the default convergence settings! The output of the CASSCF program is:

------------------
CAS-SCF ITERATIONS
------------------

MACRO-ITERATION 1:
--- Inactive Energy E0 = -224.09725414 Eh
CI-ITERATION 0:
-230.588253032 0.000000000000 ( 0.00)
CI-PROBLEM SOLVED
DENSITIES MADE

<<<<<<<<<<<<<<<<<<INITIAL CI STATE CHECK>>>>>>>>>>>>>>>>>>

BLOCK 1 MULT= 1 NROOTS= 1
ROOT 0: E= -230.5882530315 Eh
0.89482 [ 0]: 222000
0.02897 [ 14]: 211110
0.01982 [ 29]: 202020
0.01977 [ 4]: 220200
0.01177 [ 65]: 112011
0.01169 [ 50]: 121101

<<<<<<<<<<<<<<<<<<INITIAL CI STATE CHECK>>>>>>>>>>>>>>>>>>

E(CAS)= -230.588253032 Eh DE= 0.000000e+00
--- Energy gap subspaces: Ext-Act = 0.195 Act-Int = 0.127
--- current l-shift: Up(Ext-Act) = 1.40 Dn(Act-Int) = 1.47
N(occ)= 1.96393 1.90933 1.90956 0.09190 0.09208 0.03319
||g|| = 1.046979e-01 Max(G)= -4.638985e-02 Rot=53,19
--- Orbital Update [SuperCI(PT)]
--- Canonicalize Internal Space
--- Canonicalize External Space
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.063973050 Max(X)(83,23) = -0.035491133
--- SFit(Active Orbitals)

MACRO-ITERATION 2:
--- Inactive Energy E0 = -224.09299157 Eh
CI-ITERATION 0:
-230.590141151 0.000000000000 ( 0.00)
CI-PROBLEM SOLVED
DENSITIES MADE
E(CAS)= -230.590141151 Eh DE= -1.888119e-03
--- Energy gap subspaces: Ext-Act = 0.202 Act-Int = 0.126
--- current l-shift: Up(Ext-Act) = 0.90 Dn(Act-Int) = 0.97
N(occ)= 1.96182 1.90357 1.90364 0.09771 0.09777 0.03549
||g|| = 2.971340e-02 Max(G)= -8.643429e-03 Rot=52,20
--- Orbital Update [SuperCI(PT)]
--- Canonicalize Internal Space
--- Canonicalize External Space
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.009811159 Max(X)(67,21) = -0.003665750
--- SFit(Active Orbitals)

MACRO-ITERATION 3:
===>>> Convergence to 3.0e-02 achieved - switching to Step=NR

(continues on next page)
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--- Inactive Energy E0 = -224.07872151 Eh
CI-ITERATION 0:
-230.590260496 0.000000000000 ( 0.00)
CI-PROBLEM SOLVED
DENSITIES MADE
E(CAS)= -230.590260496 Eh DE= -1.193453e-04
--- Energy gap subspaces: Ext-Act = 0.203 Act-Int = 0.125
--- current l-shift: Up(Ext-Act) = 0.73 Dn(Act-Int) = 0.81
N(occ)= 1.96145 1.90275 1.90278 0.09856 0.09857 0.03589
||g|| = 8.761362e-03 Max(G)= 4.388664e-03 Rot=43,19
--- Orbital Update [ NR]
AUGHESS-ITER 0: E= -0.000016434 <r|r>= 2.70127912e-05
AUGHESS-ITER 1: E= -0.000021148 <r|r>= 2.91399830e-06
AUGHESS-ITER 2: E= -0.000021780 <r|r>= 4.01336069e-07 => CONVERGED
DE(predicted)= -0.000010890 First Element= 0.999987718
<X(rot)|X(rot)>= 0.000024564
--- SFit(Active Orbitals)

MACRO-ITERATION 4:
--- Inactive Energy E0 = -224.07787812 Eh
CI-ITERATION 0:
-230.590271490 0.000000000000 ( 0.00)
CI-PROBLEM SOLVED
DENSITIES MADE
E(CAS)= -230.590271490 Eh DE= -1.099363e-05
--- Energy gap subspaces: Ext-Act = 0.202 Act-Int = 0.125
--- current l-shift: Up(Ext-Act) = 0.40 Dn(Act-Int) = 0.47
N(occ)= 1.96135 1.90267 1.90267 0.09866 0.09866 0.03599
||g|| = 6.216730e-04 Max(G)= 1.417079e-04 Rot=66,13
---- THE CAS-SCF GRADIENT HAS CONVERGED ----
--- FINALIZING ORBITALS ---
---- DOING ONE FINAL ITERATION FOR PRINTING ----
--- Forming Natural Orbitals
--- Canonicalize Internal Space
--- Canonicalize External Space

MACRO-ITERATION 5:
--- Inactive Energy E0 = -224.07787811 Eh
--- All densities will be recomputed
CI-ITERATION 0:
-230.590271485 0.000000000000 ( 0.00)
CI-PROBLEM SOLVED
DENSITIES MADE
E(CAS)= -230.590271485 Eh DE= 5.179942e-09
--- Energy gap subspaces: Ext-Act = -0.242 Act-Int = -0.002
--- current l-shift: Up(Ext-Act) = 0.84 Dn(Act-Int) = 0.60
N(occ)= 1.96135 1.90267 1.90267 0.09866 0.09866 0.03599
||g|| = 6.216710e-04 Max(G)= 1.544017e-04 Rot=29,12
--------------
CASSCF RESULTS
--------------

Final CASSCF energy : -230.590271485 Eh -6274.6803 eV

First of all you can see how the program cycles between CI-vector optimization and orbital optimization steps
(so-called unfolded two-step procedure). After 3 iterations, the program switches to the Newton-Raphson solver
which then converges very rapidly. Orbital optimization with the Newton-Raphson solver is limited to smaller sized
molecules, as the program produces lengthy integrals and Hessian files. In the majority of situations the default
converger (SuperCI(PT)) is the preferred choice.[459]
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Atomic Valence Active Space

Very good starting orbitals that are targeted to a specific user-given active space can be generated with the Atomic
Valence Active Space (AVAS) procedure. [752, 753] The general idea is that the user provides a set of atomic
orbitals (AO) of a minimal basis set that are sufficient to qualitatively represent the final CASSCF active orbitals.
Typical examples are

• pz orbitals of a 𝜋 system chromophore in a molecule

• five valence (or 10 double-shell) d orbitals of a transition-metal (TM) atom in a molecule

• seven valence (or 14 double-shell) f orbitals of a lanthanide or actinide atom in a molecule

Then, by the help of linear algebra (singular-value decomposition) AVAS rotates the starting molecular orbitals
(MOs) such that they have maximum overlap with the target AOs. With those rotated MOs that have a sufficiently
large singular value (> 0.4 (default)) are considered as active orbitals. In that manner, AVAS can automatically
determine an active space, i.e. the number of active orbitals and electrons, that is now specified by the target AOs.

As a first example, we now consider CuCl−4 in a minimal active space

! cc-pvtz TightSCF Def2/JK PModel NoIter
! AVAS(Valence-D)

%maxcore 3000

%paras
cucl = 2.291
end

* int -1 1
Cu 0 0 0 0.0 0.0 0.0
Cl 1 0 0 {cucl} 0.0 0.0
Cl 1 2 0 {cucl} 90.0 0.0
Cl 1 3 2 {cucl} 90.0 180.
Cl 1 4 3 {cucl} 90.0 180.
*

The keyword ! AVAS(Valence-D) seeks for all transition-metal atoms in the molecule and inserts a single min-
imal d basis function for each TM atom. All five component 𝑀𝐿 of the basis function are then considered. The
AVAS procedure prints singular / eigen values for the occupied and virtual orbital space and easily finds the desired
minimal active space CAS(9,5).

-------------------------------------------------
INITIAL GUESS: Atomic Valence Active space (AVAS)
-------------------------------------------------

AVAS threshold : 0.400000
AVAS minimal basis set : MINAO
AVAS list : Shell | 3 2 0> at atom 0 (system 0)
\\\\\: Shell | 3 2 1> at atom 0 (system 0)\\\\\: Shell | 3 2 -1> at atom 0 (system 0)\\\\\:␣
→˓Shell | 3 2 2> at atom 0 (system 0)\\\\\: Shell | 3 2 -2> at atom 0 (system 0)

AVAS P matrix eig. val ( Occupied) : 0.966698
AVAS P matrix eig. val ( Occupied) : 0.974913
AVAS P matrix eig. val ( Occupied) : 0.977443
AVAS P matrix eig. val ( Occupied) : 0.977443
AVAS P matrix eig. val ( Occupied) : 0.985233
AVAS P matrix eig. val ( Virtual) : (0.032829)
AVAS P matrix eig. val ( Virtual) : (0.024687)
AVAS P matrix eig. val ( Virtual) : (0.022047)
AVAS P matrix eig. val ( Virtual) : (0.022047)
AVAS P matrix eig. val ( Virtual) : (0.014546)

(continues on next page)
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AVAS electrons : 9
AVAS orbitals : 5

The five initial active orbitals after being processed by AVAS indeed look like the desired Cu d-orbitals.

(a) σ𝑜1 = 0.977 (b) σ𝑜3 = 0.975 (c) σ𝑜0 = 0.985

(d) σ𝑜4 = 0.967 (e) σ𝑜2 = 0.977

Fig. 6.11: Initial Minimal AS orbitals of CuCl−4 generated by AVAS.

The same calculation can be started also by using the %scf avas ... end end block.

%scf
avas
system
shell 3, 3, 3, 3, 3
l 2, 2, 2, 2, 2
m_l 0, 1, -1, 2, -2
center 0, 0, 0, 0, 0
end

end
end

Here, it is also possible to use target basis functions at different atoms (center) and to select only a subset of
functions in a shell (𝑚l). Note that if not all functions of a shell (3p, 5d, 7f) are selected, the molecule should be
oriented manually to accomplish the desired basis function overlap.

AVAS can be also used very conveniently in the same fashion for double-d shell calculations with transition-metal
complexes (! AVAS(Double-D)). For each 3d transition-metal center in a molecule all 3d and 4d target functions
are considered. Similarly, double-shell active spaces can be also set up for 4d and 5d transition-metal complexes.

There is also a similar keyword for lanthanides and actinides. ! AVAS( Valence-F ) attempts to set up an
active space with 7 f functions for each lanthanide or actinide atom in a molecule. There is also the possibility to
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run double-f shell calculations using the ! AVAS( Double-F ) keyword.

To avoid this issue for 𝜋 active space calculation, all three 2p target AOs are considered first but they are weighted
by the three component of the principle axis of inertia with the largest moment. [752] For those inertia moment
calculations, masses are ignored and only the centers of the desired target p AO are considered.

For a CAS(10,9) 𝜋-active space calculation on tryptophan, the AVAS input read

! cc-pVTZ PModel NoIter

%scf
avas
tol 0.4
system
center 0, 1, 2, 3, 4, 5, 10, 11, 12
type pz, pz, pz, pz, pz, pz, pz, pz, pz
end

end
end

* xyz 0 1
C 0.4512549872 2.3796411953 0.0577773122
C 0.1094760583 1.0035547288 -0.1566676092
C 1.7801675822 2.8072137170 0.2571892289
C 2.7806901872 1.8262977582 0.2356692574
C 2.4656511421 0.4546661378 0.0230301052
C 1.1452272475 0.0339609344 -0.1736410480
H 2.0259509453 3.8615102004 0.4187388370
H 3.8237760997 2.1214062744 0.3833595222
H 3.2752609035 -0.2812140701 0.0109117373
H 0.9203743659 -1.0244858148 -0.3388820373
C -1.3215206968 0.9316755285 -0.3177965838
C -1.7965156128 2.2386249398 -0.2022300378
N -0.7296902726 3.0958334808 0.0227806512
H -0.8107596679 4.0971334562 0.1485860796
H -2.8167763088 2.6080109542 -0.2688439980
C -2.1029028025 -0.3291635000 -0.5688909937
C -3.4238543678 -0.4065989881 0.2267575199
H -1.4745479852 -1.1909157350 -0.2884954137
H -2.3461010681 -0.4478113906 -1.6421457333
C -3.9423325138 -1.8379287141 0.1258142785
N -4.3742952299 0.5836598444 -0.2812451173
H -3.2051519657 -0.1892488262 1.2846794690
O -3.2924970778 -2.6708957465 0.9924074621
O -4.8043368378 -2.2232843366 -0.6488988164
H -3.6480373076 -3.5631013900 0.8277551234
H -5.2270970579 0.5578136152 0.2816027849
H -4.6658127461 0.2911757460 -1.2180819802
*

and leads to the following output

-------------------------------------------------
INITIAL GUESS: Atomic Valence Active space (AVAS)
-------------------------------------------------

AVAS threshold : 0.400000
AVAS minimal basis set : AUTO
AVAS list : Shell | 2 1 0> at atom 0 (system 0, type pz)

: Shell | 2 1 1> at atom 0 (system 0, type pz)
: Shell | 2 1 -1> at atom 0 (system 0, type pz)
: Shell | 2 1 0> at atom 1 (system 0, type pz)
: Shell | 2 1 1> at atom 1 (system 0, type pz)

(continues on next page)
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: Shell | 2 1 -1> at atom 1 (system 0, type pz)
: Shell | 2 1 0> at atom 2 (system 0, type pz)
: Shell | 2 1 1> at atom 2 (system 0, type pz)
: Shell | 2 1 -1> at atom 2 (system 0, type pz)
: Shell | 2 1 0> at atom 3 (system 0, type pz)
: Shell | 2 1 1> at atom 3 (system 0, type pz)
: Shell | 2 1 -1> at atom 3 (system 0, type pz)
: Shell | 2 1 0> at atom 4 (system 0, type pz)
: Shell | 2 1 1> at atom 4 (system 0, type pz)
: Shell | 2 1 -1> at atom 4 (system 0, type pz)
: Shell | 2 1 0> at atom 5 (system 0, type pz)
: Shell | 2 1 1> at atom 5 (system 0, type pz)
: Shell | 2 1 -1> at atom 5 (system 0, type pz)
: Shell | 2 1 0> at atom 10 (system 0, type pz)
: Shell | 2 1 1> at atom 10 (system 0, type pz)
: Shell | 2 1 -1> at atom 10 (system 0, type pz)
: Shell | 2 1 0> at atom 11 (system 0, type pz)
: Shell | 2 1 1> at atom 11 (system 0, type pz)
: Shell | 2 1 -1> at atom 11 (system 0, type pz)
: Shell | 2 1 0> at atom 12 (system 0, type pz)
: Shell | 2 1 1> at atom 12 (system 0, type pz)
: Shell | 2 1 -1> at atom 12 (system 0, type pz)

AVAS P matrix eig. val ( Occupied) : (0.000004)
AVAS P matrix eig. val ( Occupied) : (0.000014)
AVAS P matrix eig. val ( Occupied) : (0.000292)
AVAS P matrix eig. val ( Occupied) : (0.040014)
AVAS P matrix eig. val ( Occupied) : 0.978162
AVAS P matrix eig. val ( Occupied) : 0.986637
AVAS P matrix eig. val ( Occupied) : 0.993225
AVAS P matrix eig. val ( Occupied) : 0.994300
AVAS P matrix eig. val ( Occupied) : 0.996447
AVAS P matrix eig. val ( Virtual) : 0.999996
AVAS P matrix eig. val ( Virtual) : 0.999986
AVAS P matrix eig. val ( Virtual) : 0.999708
AVAS P matrix eig. val ( Virtual) : 0.959986
AVAS P matrix eig. val ( Virtual) : (0.021838)
AVAS P matrix eig. val ( Virtual) : (0.013363)
AVAS P matrix eig. val ( Virtual) : (0.006775)
AVAS P matrix eig. val ( Virtual) : (0.005700)
AVAS P matrix eig. val ( Virtual) : (0.003553)

AVAS electrons : 10
AVAS orbitals : 9

------------------
INITIAL GUESS DONE ( 0.3 sec)
------------------

and initial active orbitals.
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(a) σ𝑜4 = 0.978 (b) σ𝑜3 = 0.987 (c) σ𝑜2 = 0.993

(d) σ𝑜1 = 0.994 (e) σ𝑜0 = 0.996 (f) σ𝑣0 = 1.000

(g) σ𝑣1 = 1.000 (h) σ𝑣2 = 1.000 (i) σ𝑣3 = 0.960

Fig. 6.12: Initial 𝜋 AS orbitals of tryptophan generated by AVAS.

It is also possible to specify the number of active electrons nel and orbitals norb directly. For such a calculation, the
AVAS singular value decomposition threshold tol is ignored. In the following calculation, the strongly occupied
orbital from the previous CAS(10,9) (𝜎o

4 in Fig. 6.12) calculation is omitted.

%scf
avas
system
norb 8
nel 8
center 0, 1, 2, 3, 4, 5, 10, 11, 12
type pz, pz, pz, pz, pz, pz, pz, pz, pz
end

end
end

It is also possible to do the AVAS start MO generation for several systems independently and then re-
orthonormalize all MOs at the end similar to [752]. This becomes interesting for generating starting orbitals for
multiple 𝜋 chromophores like the bridged bithiophene biradical

%scf
avas
system
norb 4
nel 3
center 0, 1, 2, 3, 4 # C / S atoms system 1
type pz, pz, pz, pz, pz
end
system

(continues on next page)
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norb 4
nel 5
center 38, 39, 40, 41, 43 # C / S atoms system 2
type pz, pz, pz, pz, pz
end

end
end

or the FeTPP molecule.

! SVP NoIter
! PModel

%scf
avas
system
center 0
type d
end
system
center 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 29,␣

→˓30, 31, 32
type pz, pz, pz, pz, pz, pz, pz, pz, pz, pz, pz, pz, pz, pz, pz, pz, pz, pz, pz, pz, pz,␣

→˓pz, pz, pz
end

end
end

*xyz 0 1
Fe 0.0000 0.0000 0.0000
N 1.9764 0.0000 0.0000
N 0.0000 0.0000 1.9884
N -1.9764 0.0000 0.0000
N 0.0000 0.0000 -1.9884
C 2.8182 0.0000 -1.0903
C 2.8182 0.0000 1.0903
C 1.0918 0.0000 2.8249
C -1.0918 0.0000 2.8249
C -2.8182 0.0000 1.0903
C -2.8182 0.0000 -1.0903
C -1.0918 0.0000 -2.8249
C 1.0918 0.0000 -2.8249
C 4.1961 0.0000 -0.6773
C 4.1961 0.0000 0.6773
C 0.6825 0.0000 4.1912
C -0.6825 0.0000 4.1912
C -4.1961 0.0000 0.6773
C -4.1961 0.0000 -0.6773
C -0.6825 0.0000 -4.1912
C 0.6825 0.0000 -4.1912
H 5.0441 0.0000 -1.3538
H 5.0441 0.0000 1.3538
H 1.3558 0.0000 5.0416
H -1.3558 0.0000 5.0416
H -5.0441 0.0000 1.3538
H -5.0441 0.0000 -1.3538
H -1.3558 0.0000 -5.0416
H 1.3558 0.0000 -5.0416
C 2.4150 0.0000 2.4083
C -2.4150 0.0000 2.4083
C -2.4150 0.0000 -2.4083

(continues on next page)
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C 2.4150 0.0000 -2.4083
H 3.1855 0.0000 3.1752
H -3.1855 0.0000 3.1752
H -3.1855 0.0000 -3.1752
H 3.1855 0.0000 -3.1752
*

For those systems, all AVAS starting MOs have the desired 𝜋 or 𝑑 character as illustrated for the “active frontier
orbitals” in Fig. 6.13.

(a) AVAS HOMO

(b) AVAS LUMO

(c) AVAS HOMO (d) AVAS LUMO

Fig. 6.13: Initial HOMO and LUMO AVAS orbitals of a bridged bithiophene biradical and FeTPP.

130 Chapter 6. Running Typical Calculations



ORCA Manual, Release 6.0

CASSCF and Symmetry

The CASSCF program can make some use of symmetry. Thus, it is possible to do the CI calculations separated by
irreducible representations. This allows one to calculate electronic states in a more controlled fashion.

Let us look at a simple example: C2H4. We first generate symmetry adapted MP2 natural orbitals. Since we opt
for initial guess orbitals, the computationally cheaper unrelaxed density suffices:

! def2-TZVP def2-TZVP/C UseSym RI-MP2 conv # conventional is faster for small molecules
%mp2
density unrelaxed
natorbs true
end
* int 0 1
C 0 0 0 0 0 0
C 1 0 0 1.35 0 0
H 1 2 0 1.1 120 0
H 1 2 3 1.1 120 180
H 2 1 3 1.1 120 0
H 2 1 3 1.1 120 180
*

The program does the following. It first identifies the group correctly as D2ℎ and sets up its irreducible represen-
tations. The process detects symmetry within SymThresh (10−4) and purifies the geometry thereafter:

------------------
SYMMETRY DETECTION
------------------
The point group will now be determined using a tolerance of 1.0000e-04.
Splitting atom subsets according to nuclear charge, mass and basis set.
Splitting atom subsets according to distance from the molecule's center.
Identifying relative distance patterns of the atoms.
Splitting atom subsets according to atoms' relative distance patterns.
Bring atoms of each subset into input order.
The molecule is planar.
The molecule has a center of inversion.
Analyzing the first atom subset for its symmetry.
The atoms in the selected subset form a 4-gon with alternating side lengths.
Testing point group D2h.
Success!
This point group has been found: D2h
Largest non-degenerate subgroup: D2h

Symmetry-perfected Cartesians (point group D2h):

Atom Symmetry-perfected Cartesians (x, y, z; au)
0 -1.275565140397 0.000000000000 0.000000000000
1 1.275565140397 0.000000000000 0.000000000000
2 -2.314914514054 1.800205921988 0.000000000000
3 -2.314914514054 -1.800205921988 0.000000000000
4 2.314914514054 1.800205921988 0.000000000000
5 2.314914514054 -1.800205921988 0.000000000000

-----------------------------------------------
SYMMETRY-PERFECTED CARTESIAN COORDINATES (A.U.)
-----------------------------------------------
Warning (ORCA_SYM): Coordinates were not cleaned so far!

------------------
SYMMETRY REDUCTION

(continues on next page)
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------------------
ORCA supports only abelian point groups.
It is now checked, if the determined point group is supported:
Point Group ( D2h ) is ... supported

(Re)building abelian point group:
Creating Character Table ... done
Making direct product table ... done
Constructing symmetry operations ... done
Creating atom transfer table ... done
Creating asymmetric unit ... done

----------------------
ASYMMETRIC UNIT IN D2h
----------------------

# AT MASS COORDS (A.U.) BAS
0 C 12.0110 -1.27556514 0.00000000 0.00000000 0
2 H 1.0080 -2.31491451 1.80020592 0.00000000 0

----------------------
SYMMETRY ADAPTED BASIS
----------------------
The coefficients for the symmetry adapted linear combinations (SALCS)
of basis functions will now be computed:
Number of basis functions ... 86
Preparing memory ... done
Constructing Gamma(red) ... done
Reducing Gamma(red) ... done
Constructing SALCs ... done
Checking SALC integrity ... nothing suspicious
Normalizing SALCs ... done

Storing the symmetry object:
Symmetry file ... Test-SYM-CAS-C2H4-1.sym.tmp
Writing symmetry information ... done

It then performs the SCF calculation and keeps the symmetry in the molecular orbitals.

NO OCC E(Eh) E(eV) Irrep
0 2.0000 -11.236728 -305.7669 1-Ag
1 2.0000 -11.235157 -305.7242 1-B3u
2 2.0000 -1.027144 -27.9500 2-Ag
3 2.0000 -0.784021 -21.3343 2-B3u
4 2.0000 -0.641566 -17.4579 1-B2u
5 2.0000 -0.575842 -15.6694 3-Ag
6 2.0000 -0.508313 -13.8319 1-B1g
7 2.0000 -0.373406 -10.1609 1-B1u
8 0.0000 0.139580 3.7982 1-B2g
9 0.0000 0.171982 4.6799 4-Ag
10 0.0000 0.195186 5.3113 3-B3u
11 0.0000 0.196786 5.3548 2-B2u
12 0.0000 0.242832 6.6078 2-B1g
13 0.0000 0.300191 8.1686 5-Ag
14 0.0000 0.326339 8.8801 4-B3u

... etc

The MP2 module does not take any advantage of this information but produces natural orbitals that are symmetry
adapted:

N[ 0](B3u) = 2.00000360
N[ 1]( Ag) = 2.00000219

(continues on next page)
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N[ 2]( Ag) = 1.98056435
N[ 3](B3u) = 1.97195041
N[ 4](B2u) = 1.96746753
N[ 5](B1g) = 1.96578954
N[ 6]( Ag) = 1.95864726
N[ 7](B1u) = 1.93107098
N[ 8](B2g) = 0.04702701
N[ 9](B3u) = 0.02071784
N[ 10](B2u) = 0.01727252
N[ 11]( Ag) = 0.01651489
N[ 12](B1g) = 0.01602695
N[ 13](B3u) = 0.01443373
N[ 14](B1u) = 0.01164204
N[ 15]( Ag) = 0.01008617
N[ 16](B2u) = 0.00999302
N[ 17]( Ag) = 0.00840326
N[ 18](B3g) = 0.00795053
N[ 19](B3u) = 0.00532044
N[ 20]( Au) = 0.00450556
etc.

From this information and visual inspection you will know what orbitals you will have in the active space:

These natural orbitals can then be fed into the CASSCF calculation. We perform a simple calculation in which we
keep the ground state singlet (A1𝑔 symmetry, irrep=0) and the first excited triplet state (B3𝑢 symmetry, irrep=7).
In general the ordering of irreps follows standard conventions and in case of doubt you will find the relevant number
for each irrep in the output.

For example, here (using LargePrint):

----------------------------
CHARACTER TABLE OF GROUP D2h
----------------------------
GAMMA O1 O2 O3 O4 O5 O6 O7 O8
Ag : 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
B1g: 1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0 -1.0
B2g: 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0
B3g: 1.0 -1.0 -1.0 1.0 1.0 -1.0 -1.0 1.0
Au : 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0
B1u: 1.0 1.0 -1.0 -1.0 -1.0 -1.0 1.0 1.0
B2u: 1.0 -1.0 1.0 -1.0 -1.0 1.0 -1.0 1.0
B3u: 1.0 -1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0

---------------------------------
DIRECT PRODUCT TABLE OF GROUP D2h
---------------------------------

** Ag B1g B2g B3g Au B1u B2u B3u

Ag Ag B1g B2g B3g Au B1u B2u B3u
B1g B1g Ag B3g B2g B1u Au B3u B2u
B2g B2g B3g Ag B1g B2u B3u Au B1u
B3g B3g B2g B1g Ag B3u B2u B1u Au
Au Au B1u B2u B3u Ag B1g B2g B3g
B1u B1u Au B3u B2u B1g Ag B3g B2g
B2u B2u B3u Au B1u B2g B3g Ag B1g
B3u B3u B2u B1u Au B3g B2g B1g Ag

We use the following input for CASSCF, where we tightened the integral cut-offs and the convergence criteria using
!VeryTightSCF.

! def2-TZVP Conv NormalPrint UseSym
! moread

(continues on next page)
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%moinp "Test-SYM-CAS-C2H4-1.mp2nat"
%casscf nel 4

norb 4
# This is only here to show that NR can also be used from
# the start with orbstep
orbstep nr
switchstep nr
# the lowest singet and triplet states. The new feature
# is the array "irrep" that lets you give the irrep for
# a given block. Thus, now you can have several blocks of
# the same multiplicity but different spatial symmetry
irrep 0,7
mult 1,3
nroots 1,1
end

* int 0 1
C 0 0 0 0 0 0
C 1 0 0 1.35 0 0
H 1 2 0 1.1 120 0
H 1 2 3 1.1 120 180
H 2 1 3 1.1 120 0
H 2 1 3 1.1 120 180
*

And gives:

------------
SCF SETTINGS
------------
Hamiltonian:
Ab initio Hamiltonian Method .... Hartree-Fock(GTOs)

General Settings:
Integral files IntName .... Test-SYM-CAS-C2H4-1
Hartree-Fock type HFTyp .... CASSCF
Total Charge Charge .... 0
Multiplicity Mult .... 1
Number of Electrons NEL .... 16
Basis Dimension Dim .... 86
Nuclear Repulsion ENuc .... 32.9609050695 Eh

Symmetry handling UseSym .... ON
Point group .... D2h
Used point group .... D2h
Number of irreps .... 8

Irrep Ag has 19 symmetry adapted basis functions (ofs= 0)
Irrep B1g has 12 symmetry adapted basis functions (ofs= 19)
Irrep B2g has 8 symmetry adapted basis functions (ofs= 31)
Irrep B3g has 4 symmetry adapted basis functions (ofs= 39)
Irrep Au has 4 symmetry adapted basis functions (ofs= 43)
Irrep B1u has 8 symmetry adapted basis functions (ofs= 47)
Irrep B2u has 12 symmetry adapted basis functions (ofs= 55)
Irrep B3u has 19 symmetry adapted basis functions (ofs= 67)

And further in the CASSCF program:

Symmetry handling UseSym ... ON
Point group ... D2h
Used point group ... D2h

(continues on next page)
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Number of irreps ... 8
Irrep Ag has 19 SALCs (ofs= 0) #(closed)= 2 #(active)= 1
Irrep B1g has 12 SALCs (ofs= 19) #(closed)= 1 #(active)= 0
Irrep B2g has 8 SALCs (ofs= 31) #(closed)= 0 #(active)= 1
Irrep B3g has 4 SALCs (ofs= 39) #(closed)= 0 #(active)= 0
Irrep Au has 4 SALCs (ofs= 43) #(closed)= 0 #(active)= 0
Irrep B1u has 8 SALCs (ofs= 47) #(closed)= 0 #(active)= 1
Irrep B2u has 12 SALCs (ofs= 55) #(closed)= 1 #(active)= 0
Irrep B3u has 19 SALCs (ofs= 67) #(closed)= 2 #(active)= 1

Symmetries of active orbitals:
MO = 6 IRREP= 0 (Ag)
MO = 7 IRREP= 5 (B1u)
MO = 8 IRREP= 2 (B2g)
MO = 9 IRREP= 7 (B3u)

Setting up the integral package ... done
Building the CAS space ... done (7 configurations for Mult=1 Irrep=0)
Building the CAS space ... done (4 configurations for Mult=3 Irrep=7)

Note that the irrep occupations and active space irreps will be frozen to what they are upon entering the CASSCF
program. This helps to setup the CI problem.

After which it smoothly converges to give:

6: 1.986258 -0.753012 -20.4905 3-Ag
7: 1.457849 -0.291201 -7.9240 1-B1u
8: 0.541977 0.100890 2.7454 1-B2g
9: 0.013915 0.964186 26.2368 3-B3u

As well as:

-----------------------------
SA-CASSCF TRANSITION ENERGIES
------------------------------

LOWEST ROOT = -78.110314788 Eh -2125.490 eV

STATE ROOT MULT IRREP DE/a.u. DE/eV DE/cm**-1
1: 0 3 B3u 0.163741 4.456 35937.1

RI, RIJCOSX and RIJK approximations for CASSCF

A significant speedup of CASSCF calculations on larger molecules can be achieved with the RI, RI-JK and RIJ-
COSX approximations. [459] There are two independent integral generation and transformation steps in a CASSCF
procedure. In addition to the usual Fock matrix construction, that is central to HF and DFT approaches, more inte-
grals appear in the construction of the orbital gradient and Hessian. The latter are approximated using the keyword
trafostep RI, where an auxiliary basis (/C or the more accurate /JK auxiliary basis) is required. Note that auxil-
iary basis sets of the type /J are not sufficient to fit these integrals. If no suitable auxiliary basis set is available, the
AutoAux feature might be useful (see comment in the input below). [828] We note passing, that there are in princi-
ple three distinguished auxiliary basis slots, that can be individually assigned in the %basis block (section Choice
of Basis Set). As an example, we recompute the benzene ground state example from Section Starting Orbitals with
a CAS(6,6).

! SV(P) def2-svp/C
! moread
%moinp "Test-CASSCF-Benzene-2.mrci.nat"

# Commented out: Detailed settings of the auxiliary basis in the %basis block,
# where the AuxC slot is relevant for the option TrafoStep RI.

(continues on next page)
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# %basis
# auxC "def2-svp/C" # "AutoAux" or "def2/JK"
# end

%casscf nel 6
norb 6
nroots 1
mult 1
trafostep ri
end

The energy of this calculation is -230.590328 Eh compared to the previous result -230.590271 Eh. Thus, the
RI error is only 0.06 mEh which is certainly negligible for all intents and purposes. With the larger /JK auxiliary
basis the error is typically much smaller (0.02 mEh in this example). Even if more accurate results are necessary,
it is a good idea to pre-converge the CASSCF with RI. The resulting orbitals should be a much better guess for the
subsequent calculation without RI and thus save computation time.

The TrafoStep RI only affects the integral transformation in CASSCF calculations while the Fock operators
are still calculated in the standard way using four index integrals. In order to fully avoid any four-index integral
evaluation, you can significantly speed up the time needed in each iteration by specifying !RIJCOSX. The keyword
implies TrafoStep RI . The COSX approximation is used for the construction of the Fock matrices. In this case,
an additional auxiliary basis (/J auxiliary basis) is mandatory.

! SV(P) def2-svp/C RIJCOSX def2/J
! moread
%moinp "Test-CASSCF-Benzene-2.mrci.nat"

# Commented out: Detailed settings of the auxiliary basis in the %basis block,
# where the AuxJ and AuxC slot are mandatory.
# %basis
# auxJ "def2/J" # "AutoAux"
# auxC "def2-svp/C" # "AutoAux", "def2/JK"
# end

%casscf nel 6
norb 6
nroots 1
mult 1

end

The speedup and accuracy is similar to what is observed in RHF and UHF calculations. In this example the RIJCOSX
leads to an error of 1 mEh. The methodology performs better for the computation of energy differences, where it
profits from error cancellation. The RIJCOSX is ideally suited to converge large-scale systems. Note that for large
calculations the integral cut-offs and numerical grids should be tightened. See section Using the RI Approximation
for Hartree-Fock and Hybrid DFT (RIJCOSX) for details. With a floppy numerical grid setting the accuracy as
well as the convergence behavior of CASSCF deteriorate. The RIJK approximation offers an alternative ansatz.
The latter is set with !RIJK and can also be run in conventional mode (conv) for additional speed-up. With conv,
a single auxiliary basis must be provided that is sufficiently larger to approximate the Fock matrices as well the
gradient/Hessian integrals. In direct mode an additional auxiliary basis set can be set for the AuxC slot.

! SV(P) RIJK def2/JK

# Commented out: Detailed settings of the auxiliary basis in the %basis block,
# where only the auxJK slot must be set.
# %basis
# auxJK "def2/JK" # or "AutoAux"
# end

The RIJK methodology is more accurate and robust for CASSCF e.g. here the error is just 0.5 mEH.
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Organic molecules with nearly double occupied orbitals can be challenge for the orbital optimization process. We
compare calculations done with/without the NR solver:

! SV(P)
! moread
%moinp "Test-CASSCF-Benzene-2.mrci.nat"

%casscf nel 6
norb 6
nroots 1
mult 1
# overwriting default settings with NR close to convergence
switchstep NR

end

The NR variant takes 5 cycles to converge, whereas the default (SuperCI_PT) requires 8 cycles. In general, first
order methods, take more iterations compared to the NR method. However, first order methods are much cheaper
than the NR and therefore it may pay off to do a few iterations more rather than switching to the expensive second
order methods. Moreover, second order methods are less robust and may diverge in certain circumstances (too far
from convergence). When playing with the convergence settings, there is always a trade-off between speed versus
robustness. The default settings are chosen carefully.[459] Facing convergence problems, it can be useful to use
an alternative scheme (orbstep SuperCI and switchstep DIIS) in conjunction with a level-shifts (ShiftUp,
ShiftDn). Alternatively, changing the guess orbitals may avoid convergence problems as well.

Robust Convergence with TRAH-CASSCF

The restricted-step second-order converger TRAH Quadratic Convergence is now also available for both state-
specific and state-averaged CASSCF calculations.[382] To activate TRAH for your CASSCF calculation, you just
need to add !TRAH in one of the simple input lines and add an auxiliary basis.

! TRAH Def2-SVP Def2-SVP/C TightSCF

%casscf
nel 6
norb 6
mult 1
nroots 2

end

*xyz 0 1
N 0.0 0.0 0.0
N 0.0 0.0 1.1

end

In most cases, there is no need to play with any input parameters. The only exception is the choice of active molec-
ular orbital representations that can have a significant impact on the convergence rate for spin-coupled systems. As
can be seen from Fig. Fig. 6.14, for such calculations localized active orbitals perform best. In any other case, the
natural orbitals (default) should be employed.
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Fig. 6.14: SXPT and TRAH error convergence using different choices for the active-orbital basis.

Possible input options for the active-orbital basis are

%casscf
TRAHCAS
#ActiveMOs NotSet
#ActiveMOs Canonical
#ActiveMOs Localized
ActiveMOs Natural # default

end
end

Active Orbitals Meaning
Natural Keeps the one-electron density matrix (1-RDM) diagonal. Default
Localized A Foster-Boys localization of active MOs is performed in every macro iteration.

This is recommended for spin-coupled systems.

NotSet The active MO basis is not changed. Primarily debug option.
Canonical Keeps the total active-MO Fock matrix diagonal. Experimental option.

Note that, in contrast to the SCF program, there is no AutoTRAH feature for CASSCF yet. The TRAH feature has
to be requested explicitly in the input.
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Breaking Chemical Bonds

Let us turn to the breaking of chemical bonds. As a first example we study the dissociation of the H2 molecule.
Scanning a bond, we have two potential setups for the calculation: a) scan from the inside to the outside or b) from
the outside to inside. Of course both setups yield identical results, but they differ in practical aspects i.e. conver-
gence properties. In general, scanning from the outside to the inside is the recommended procedure. Using the
default guess (PModel), starting orbitals are much easier identified than at shorter distances, where the antibonding
orbitals are probably ‘impure’ and hence would require some additional preparation. To ensure a smooth potential
energy surface, in all subsequent geometry steps, ORCA reads the converged CASSCF orbitals from the previous
geometry step. In the following, TightSCF is used to tighten the convergence settings of CASSCF.

!Def2-SVP TightSCF

%casscf
nel 2
norb 2
mult 1
nroots 1
end

# Scanning from the outside to the inside
%paras
R [4.1 3.8 3.5 3.2 2.9 2.6 2.4 2.2

2 1.7 1.5 1.3 1.1 1 0.9 0.8
0.75 0.7 0.65 0.6]

end

* xyz 0 1
H 0.0 0.0 0.0
H 0.0 0.0 {R}
end

The resulting potential energy surface (PES) is depicted in Fig. 6.15 together with PESs obtained from RHF and
broken-symmetry UHF calculations (input below).

! RHF Def2-SVP TightSCF

# etc...

And

! UHF Def2-SVP TightSCF

%scf
FlipSpin 1
FinalMs 0.0

end

# etc...

ò Note

The FlipSpin option does not work together with the parameter scan. Only the first structure will undergo a
spin flip. Therefore, at the current status, a separate input file (including the coordinates or with a corresponding
coordinate file) has to be provided for each structure that is scanned along the PES.
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Fig. 6.15: Potential Energy Surface of the H2 molecule from RHF, UHF and CASSCF(2,2) calculations (Def2-SVP
basis).

It is obvious, that the CASSCF surface is concise and yields the correct dissociation behavior. The RHF surface
is roughly parallel to the CASSCF surface in the vicinity of the minimum but then starts to fail badly as the H-H
bond starts to break. The broken-symmetry UHF solution is identical to RHF in the vicinity of the minimum and
dissociates correctly. It is, however, of rather mediocre quality in the intermediate region where it follows the RHF
surface.

A more challenging case is to dissociate the N-N bond of the N2 molecule correctly. Using CASSCF with the
six p-orbitals we get a nice potential energy curve (The depth of the minimum is still too shallow compared to
experiment by some 1 eV or so. A good dissociation energy requires a dynamic correlation treatment on top of
CASSCF and a larger basis set).
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Fig. 6.16: Potential Energy Surface of the N2 molecule from CASSCF(6,6) calculations (Def2-SVP basis).

One can use the H2 example to illustrate the state-averaging feature. Since we have two active electrons we have two
singlets and one triplet. Let us average the orbitals over these three states (we take equal weights for all multiplicity
blocks):

!Def2-SVP TightSCF

%casscf
nel 2
norb 2
mult 3,1
nroots 1,2
end

# Scanning from the outside to the inside
%paras
R [4.1 3.8 3.5 3.2 2.9 2.6 2.4 2.2

2 1.7 1.5 1.3 1.1 1 0.9 0.8
0.75 0.7 0.65 0.6]

end

* xyz 0 1
H 0 0 0
H 0 0 {R}
end

which gives:
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Fig. 6.17: State averaged CASSCF(2,2) calculations on H2 (two singlets, one triplet; Def2-SVP basis). The grey
curve is the ground state CASSCF(2,2) curve

One observes, that the singlet and triplet ground states become degenerate for large distances (as required) while
the second singlet becomes the ionic singlet state which is high in energy. If one compares the lowest root of the
state-averaged calculation (in green) with the dedicated ground state calculation (in gray) one gets an idea of the
energetic penalty that is associated with averaged as opposed to dedicated orbitals.

A more involved example is the rotation around the double bond in C2H4. Here, the 𝜋-bond is broken as one twists
the molecule. The means the proper active space consists of two active electron in two orbitals.

The input is (for fun, we average over the lowest two singlets and the triplet):

!def2-SVP TightSCF

%casscf
nel 2
norb 2
mult 3,1
nroots 1,2
end

%paras
Alpha = 0,180,37
end

* int 0 1
C 0 0 0 0 0 0
C 1 0 0 1.34 0 0
H 1 2 0 1.07 120 0
H 1 2 3 1.07 120 180
H 2 1 3 1.07 120 {Alpha}
H 2 1 3 1.07 120 {Alpha+180}
edn
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Fig. 6.18: State averaged CASSCF(2,2) calculations on C2H4 (two singlets, one triplet; SV(P) basis). The grey
curve is the state averaged energy.

We can see from this plot, that the CASSCF method produces a nice ground state surface with the correct periodicity
and degeneracy at the end points, which represent the planar ethylene molecule. At 90∘ one has a weakly coupled
diradical and the singlet and triplet states become nearly degenerate, again as expected. Calculations with larger
basis sets and inclusion of dynamic correlation would give nice quantitative results.

Excited States

As a final example, we do a state-average calculation on H2CO in order to illustrate excited state treatments. We
expect from the ground state (basically closed-shell) a n → 𝜋* and a 𝜋 → 𝜋* excited state which we want to
describe. For the n→ 𝜋* we also want to calculate the triplet since it is well known experimentally. First we take
DFT orbitals as starting guess.

! BP86 Def2-SVP TightSCF

*int 0 1
C 0 0 0 0.00 0.0 0.00
O 1 0 0 1.20 0.0 0.00
H 1 2 0 1.10 120.0 0.00
H 1 2 3 1.10 120.0 180.00
end

In this example the DFT calculation produces the desired active space (n,𝜋 and𝜋* orbitals) without further modi-
fication (e.g. swapping orbitals). In general it is advised to verify the final converged orbitals.

! Def2-SVP TightSCF MOREAD

%moinp "orbs.gbw"

%casscf
(continues on next page)
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(continued from previous page)

nel 4
norb 3
mult 1,3
nroots 3,1
end

*int 0 1
C 0 0 0 0.00 0.0 0.00
O 1 0 0 1.20 0.0 0.00
H 1 2 0 1.10 120.0 0.00
H 1 2 3 1.10 120.0 180.00
end

We get:

-----------------------------
SA-CASSCF TRANSITION ENERGIES
------------------------------

LOWEST ROOT (ROOT 0 ,MULT 1) = -113.805194041 Eh -3096.797 eV

STATE ROOT MULT DE/a.u. DE/eV DE/cm**-1
1: 0 3 0.129029 3.511 28318.5
2: 1 1 0.141507 3.851 31057.3
3: 2 1 0.453905 12.351 99620.7

The triplet n → 𝜋* states is spot on with the experiment excitation energy of 3.5 eV.[726] Similarly, the singlet
n → 𝜋* excited state is well reproduced compared to 3.79 eV and 4.07 eV reported in the literature.[726, 879]
Only the singlet 𝜋 → 𝜋* excited state stands out compared to the theoretical estimate of 9.84 eV computed with
MR-AQCC.[543]. The good results are very fortuitous given the small basis set, the minimal active space and the
complete neglect of dynamical correlation.

The state-average procedure might not do justice to the different nature of the states (n → 𝜋* versus 𝜋 → 𝜋*).
The agreement should be better with the orbitals optimized for each state. In ORCA, state-specific optimization
are realized adjusting the weights i.e. for the second singlet excited root:

Second-Singlet:
%casscf

nel 4
norb 3
mult 1
nroots 3
weights[0] = 0,0,1 # weights for the roots

end

Note, that state-specific orbital optimization are challenging to converge and often prone to root-flipping.[511]

To analyze electronic transitions, natural transition orbitals (NTO) are available for state-averaged CASSCF (and
also CASCI) calculations. NTOs are switched on for every ground- to excited-state transition by just adding DoNTO
true to the %casscf ... end input block, i.e.

%casscf
nel 4
norb 3
mult 1,3
nroots 3,1
DoNTO true

end

For each excitation, the most dominant natural occupation numbers (singular values >1.e-4) are printed for each
transition. A set of donor orbitals and a set of acceptor orbitals, each of dimension Nbf x (Nocc + Nact), are created
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and stored in files with unique names. We obtain for the previous formamide example the following CASSCF NTO
output

==========================================
CASSCF Natural Transition Orbitals
==========================================

------------------------------------------------
NATURAL TRANSITION ORBITALS FOR STATE 1 1A
------------------------------------------------

STATE 1 1A : E= 0.141508 au 3.851 eV 31057.3 cm**-1

Threshold for printing occupation numbers 1.0000e-04

0 : n= 1.30882812
1 : n= 0.02641080

=> Natural Transition Orbitals (donor ) were saved in Test-CASSCF.H2CO-1.casscf.1-1A_nto-
→˓donor.gbw
=> Natural Transition Orbitals (acceptor) were saved in Test-CASSCF.H2CO-1.casscf.1-1A_nto-
→˓acceptor.gbw

------------------------------------------------
NATURAL TRANSITION ORBITALS FOR STATE 2 1A
------------------------------------------------

STATE 2 1A : E= 0.453905 au 12.351 eV 99620.7 cm**-1

Threshold for printing occupation numbers 1.0000e-04

0 : n= 1.30519478
1 : n= 0.24869813
2 : n= 0.00471742

=> Natural Transition Orbitals (donor ) were saved in Test-CASSCF.H2CO-1.casscf.2-1A_nto-
→˓donor.gbw
=> Natural Transition Orbitals (acceptor) were saved in Test-CASSCF.H2CO-1.casscf.2-1A_nto-
→˓acceptor.gbw

For each transition, plots of the NTO pairs can be generated with the orca_plot program (see Sec. Orbital and
Density Plots for details), e.g. acceptor orbitals of the 2 1A1 state in interactive mode:

orca_plot Test-CASSCF.H2CO-1.casscf.2-1A_nto-acceptor.gbw -i

Fig. 6.19: Most dominant natural transition orbital (NTO) pair for the 2 1A1 (S2) transition in formaldehyde.

Alternatively, NTOs can also be computed directly in orca_plot from the CASSCF transition density matrices.
Those need to be stored and kept in the density container by invoking

! KeepTransDensity
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CASSCF Natural Orbitals as Input for Coupled-Cluster Calculations

Consider the possibility that you are not sure about the orbital occupancy of your system. Hence you carry out
some CASSCF calculation for various states of the system in an effort to decide on the ground state. You can of
course follow the CASSCF by MR-MP2 or MR-ACPF or SORCI calculations to get a true multireference result for
the state ordering. Yet, in some cases you may also want to obtain a coupled-cluster estimate for the state energy
difference. Converging coupled-cluster calculation on alternative states in a controlled manner is anything but
trivial. Here a feature of ORCA might be helpful. The best single configuration that resembles a given CASSCF
state is built from the natural orbitals of this state. These orbitals are also ordered in the right way to be input into
the MDCI program. The convergence to excited states is, of course, not without pitfalls and limitations as will
become evident in the two examples below.

As an example, consider some ionized states of the water cation:

First, we generate the natural orbitals for each state with the help of the MRCI module. To this end we run a state
average CASSCF for the lowest three doublet states and pass that information on to the MRCI module that does a
CASCI calculation and produces the natural orbitals:

! ano-pVDZ TightSCF

%casscf
nel 7
norb 6
nroots 3
mult 2
end

%mrci
tsel 0
tpre 0
donatorbs 2
densities 5,1
newblock 2 *
nroots 3
excitations none
refs
cas(7,6)
end

end
end

* int 1 2
O 0 0 0 0.000000 0.000 0.000
H 1 0 0 1.012277 0.000 0.000
H 1 2 0 1.012177 109.288 0.000
end

This produces the files Basename.bm_sn.nat where “m” is the number of the block (m = 0 correspond to the
doublet in this case) and “n” stands of the relevant state (n = 0,1,2).

These natural orbitals are then fed into unrestricted QCISD(T) calculations:

! ano-pVDZ TightSCF QCISD(T) MOREAD NoIter

%moinp "H2O+.b0_s0.nat"

* int 1 2
O 0 0 0 0.000000 0.000 0.000
H 1 0 0 1.012277 0.000 0.000
H 1 2 0 1.012177 109.288 0.000
*

As a reference we also perform a SORCI on the same system
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! ano-pVDZ TightSCF SORCI

%casscf
nel 7
norb 6
nroots 3
mult 2
end

* int 1 2
O 0 0 0 0.000000 0.000 0.000
H 1 0 0 1.012277 0.000 0.000
H 1 2 0 1.012177 109.288 0.000
*

we obtain the transition energies:

SORCI QCISD(T) (in cm-1)
D0 0 0.0
D1 16269 16293
D2 50403 50509

Thus, in this example the agreement between single- and multireference methods is good and the unrestricted
QCISD(T) method is able to describe these excited doublet states. The natural orbitals have been a reliable way to
guide the CC equations into the desired solutions. This will work in many cases.

Large Scale CAS-SCF calculations using ICE-CI

The CASSCF procedure can be used for the calculation of spin-state energetics of molecules showing a multi-
reference character via the state-averaged CASSCF protocol as described in the CASSCF section The Complete
Active Space Self-Consistent Field (CASSCF) Module. The main obstacle in getting qualitatively accurate spin-
state energetics for molecules with many transition metal centers is the proper treatment of the static-correlation
effects between the large number of open-shell electrons. In this section, we describe how one can effectively
perform CASSCF calculations on such systems containing a large number of high-spin open-shell transition metal
atoms.

As an example, consider the Iron-Sulfur dimer [Fe(III)2SR2]
2− molecule. In this system, the Fe(III) centers can

be seen as being made up mostly of S=5/2 local spin states (lower spin states such as 3/2 and 1/2 will have small
contributions due to Hunds’ rule.) The main hurdle while using the CASSCF protocol on such systems (with
increasing number of metal atoms) is the exponential growth of the Hilbert space although the physics can be
effectively seen as occurring in a very small set of configuration state functions (CSFs). Therefore, in order to
obtain qualitatively correct spin-state energetics, one need not perform a Full-CI on such molecules but rather a
CIPSI like procedure using the ICE-CI solver should give chemically accurate results. In the case of the Fe(III)
dimer, one can imagine that the ground singlet state is composed almost entirely of the CSF where the two Fe(III)
centers are coupled antiferromagnetically. Such a CSF is represented as follows:⃒⃒

Ψ𝑆=0
0

⟩︀
= [1, 1, 1, 1, 1,−1,−1,−1,−1,−1]

In order to make sense of this CSF representation, one needs to clarify a few points which are as follows:

• First, in the above basis the 10 orbitals are localized to 5 on each Fe center (following a high-spin UHF/UKS
calculation.)

• Second, the orbitals are ordered (as automatically done in ORCA_LOC) such that the first five orbitals lie
on one Fe(III) center and the last five orbitals on the second Fe(III) center.

Using this ordering, one can read the CSF shown above in the following way: The first five 1 represent the five
electrons on the first Fe(III) coupled in a parallel fashion to give a S=5/2 spin. The next five -1 represent two points:

• First, the five consecutive -1 signify the presence of five ferromagnetically coupled electrons on the second
Fe(III) center resulting in a local S=5/2 spin state.
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• Second, the second set of spins are coupled to the first 1 via anti-parallel coupling as signified by the sign of
the last five -1 entries.

Therefore, we can see that using the CSF representation, one can obtain an extremely compact representation of
the wavefunction for molecules consisting of open-shell transition metal atoms. This protocol of using localized
orbitals in a specified order to form compact CSF representations for transition metal systems can be systematically
extended for large molecules.

We will use the example of the Iron-Sulfur dimer [Fe(III)2SR2]
2− to demonstrate how to prepare a reference CSF

and perform spin-state energetics using the state-averaged CASSCF protocol. In such systems, often one can obtain
an estimate of the energy gap between the singlet-state and the high-spin states from experiment. Ab initio values
for this gap be obtained using the state-averaged CASSCF protocol using the input shown below.

! def2-SVP MOREAD

%moinp "locorbs.gbw"

%casscf
nel 10
norb 10
mult 11,1
nroots 1,1
refs # reference for multiplicity 11
{ 1 1 1 1 1 1 1 1 1 1}

end
refs # reference for multiplicity 1
{ 1 1 1 1 1 -1 -1 -1 -1 -1}

end
cistep ice

ci
icetype 1

end
actorbs unchanged
end

* xyz -2 11
Fe 0.000000000 0.000000000 -1.343567812
Fe 0.000000000 0.000000000 1.343567812
S 1.071733501 1.373366082 0.000000000
S 1.346714284 -1.345901486 -2.651621449
S -1.346714284 1.345901486 -2.651621449
S -1.071733501 -1.373366082 0.000000000
S -1.346714284 1.345901486 2.651621449
S 1.346714284 -1.345901486 2.651621449
C -2.485663304 0.362543393 -3.600795276
H -3.319937516 0.596731755 -3.505882795
H -2.347446507 0.388292903 -4.463380590
H -2.472404709 -0.485711203 -3.404167343
C 2.485663304 -0.362543393 -3.600795276
H 3.319937516 -0.596731755 -3.505882795
H 2.347446507 -0.388292903 -4.463380590
H 2.472404709 0.485711203 -3.404167343
C 2.485663304 -0.362543393 3.600795276
H 2.347446507 -0.388292903 4.463380590
H 3.319937516 -0.596731755 3.505882795
H 2.472404709 0.485711203 3.404167343
C -2.485663304 0.362543393 3.600795276
H -3.319937516 0.596731755 3.505882795
H -2.472404709 -0.485711203 3.404167343
H -2.347446507 0.388292903 4.463380590
*

The main keyword that needs to be used here (unlike in other CAS-SCF calculations) is the actorbs keyword.
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Since we are using a local basis with a specific ordering of the orbitals, in order to represent our wavefunction
it is imperative to preserve the local nature of the orbitals as well as the orbital ordering. Therefore, we do not
calculate natural orbitals at the end of the CASSCF calculation (as is traditionally done) instead we impose the
orbitals to be as similar to the input orbitals as possible. This is automatically enabled for intermediate CASSCF
macro iterations. The resulting CASSCF calculation provides a chemically intuitive and simple wavefunction and
transition energy as shown below:

---------------------------------------------
CAS-SCF STATES FOR BLOCK 1 MULT=11 NROOTS= 1
---------------------------------------------

STATE 0 MULT=11: E= -5066.8462457411 Eh W= 0.5000 DE= 0.000 eV 0.0 cm**-1
1.00000 ( 1.000000000) CSF = 1+1+1+1+1+1+1+1+1+1+

---------------------------------------------
CAS-SCF STATES FOR BLOCK 2 MULT= 1 NROOTS= 1
---------------------------------------------

STATE 0 MULT= 1: E= -5066.8548894831 Eh W= 0.5000 DE= 0.000 eV 0.0 cm**-1
0.98159 (-0.990753235) CSF = 1+1+1+1+1+1-1-1-1-1-

-----------------------------
SA-CASSCF TRANSITION ENERGIES
------------------------------

LOWEST ROOT (ROOT 0 ,MULT 1) = -5066.854889483 Eh -137876.131 eV

STATE ROOT MULT DE/a.u. DE/eV DE/cm**-1
1: 0 11 0.008644 0.235 1897.1

As we can see from the output above, 98% of the wavefunction for the singlet-state is given by a single CSF which
we gave as a reference CSF. This CSF has a very simple chemical interpretation representing the anti-parallel
coupling between the two high-spin Fe(III) centers. Since Iron-Sulfur molecules show a strong anti-ferromagnetic
coupling, we expect the singlet state to be lower in energy than the high-spin (S=5) state. The CASSCF transition
energies show essentially this fact. The transition energy is about 2000cm−1 which is what one expects from a
CASSCF calculation on such sulfide bridged transition-metal molecules.

6.1.8 N-Electron Valence State Perturbation Theory (NEVPT2)

NEVPT2 is an internally contracted multireference perturbation theory, which applies to CASSCF type wavefunc-
tions. The NEVPT2 method, as described in the original papers of Angeli et al, comes in two flavor the strongly
contracted NEVPT2 (SC-NEVPT2) and the so called partially contracted NEVPT2 (PC-NEVPT2).[44, 45, 46]
In fact, the latter employs a fully internally contracted wavefunction and should more appropriately called FIC-
NEVPT2. Both methods produces energies of similar quality as the CASPT2 approach.[366, 757] The strongly
and fully internally contracted NEVPT2 are implemented in ORCA together with a number of approximations
that makes the methodology very attractive for large scale applications. In conjunction with the RI approxima-
tion systems with active space of to 16 active orbitals and 2000 basis functions can be computed. With the newly
developed DLPNO version of the FIC-NEVPT2 the size of the molecules does not matter anymore.[344] For a
more complete list of keywords and features, we refer to detailed documentation section N-Electron Valence State
Pertubation Theory.

Besides corrections to the correlation energy, ORCA features UV, IR, CD and MCD spectra as well as EPR pa-
rameters for NEVPT2. These properties are computed using the “quasi-degenerate perturbation theory” that is
described in section CASSCF Properties. The NEVPT2 corrections enter as “improved diagonal energies” in this
formalism. ORCA also features the multi-state extension (QD-NEVPT2) for the strongly contracted NEVPT2 vari-
ant.[48, 493] Here, the reference wavefunction is revised in the presence of dynamical correlation. For systems,

6.1. Single Point Energies and Gradients 149



ORCA Manual, Release 6.0

where such reference relaxation is important, the computed spectroscopic properties will improve.

As a simple example for NEVPT2, consider the ground state of the nitrogen molecule N2 . After defining the
computational details of our CASSCF calculation, we insert “!SC-NEVPT2” as simple input or specify “PTMethod
SC_NEVPT2” in the %casscf block. Please note the difference in the two keywords’ spelling: Simple input uses
hyphen, block input uses underscore for technical reasons. There are more optional settings, which are described
in section N-Electron Valence State Pertubation Theory of this manual.

!def2-svp nofrozencore PAtom
%casscf nel 6

norb 6
mult 1
PTMethod SC_NEVPT2 # SC_NEVPT2 for strongly contracted NEVPT2

# FIC_NEVPT2 for the fully internally contracted NEVPT2
# DLPNO_NEVPT2 for the FIC-NEVPT2 with DLPNO
# DLPNO requires: trafostep RI and an aux basis

end

* xyz 0 1
N 0.0 0.0 0.0
N 0.0 0.0 1.09768
*

For better control of the program flow it is advised to split the calculation into two parts. First converge the CASSCF
wave function and then in a second step read the converged orbitals and execute the actual NEVPT2.

---------------------------------------------------------------
ORCA-CASSCF

---------------------------------------------------------------

...
PT2-SETTINGS:
A PT2 calculation will be performed on top of the CASSCF wave function (PT2 = SC-NEVPT2)
...
---------------------------------------------------------------

< NEVPT2 >
---------------------------------------------------------------
...
===============================================================

NEVPT2 Results
===============================================================

*********************
MULT 1, ROOT 0
*********************

Class V0_ijab : dE = -0.017748
Class Vm1_iab : dE = -0.023171
Class Vm2_ab : dE = -0.042194
Class V1_ija : dE = -0.006806
Class V2_ij : dE = -0.005056
Class V0_ia : dE = -0.054000
Class Vm1_a : dE = -0.007091
Class V1_i : dE = -0.001963

---------------------------------------------------------------
Total Energy Correction : dE = -0.15802909

---------------------------------------------------------------
Zero Order Energy : E0 = -108.98888640

---------------------------------------------------------------
Total Energy (E0+dE) : E = -109.14691549

---------------------------------------------------------------

Introducing dynamic correlation with the SC-NEVPT2 approach lowers the energy by 150 mEh. ORCA also
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prints the contribution of each “excitation class V” to the first order wave function. We note that in the case of
a single reference wavefunction corresponding to a CAS(0,0) the V0_ij,ab excitation class produces the exact
MP2 correlation energy. Unlike older versions of ORCA (pre version 4.0), NEVPT2 calculations employ the
frozen core approximation by default. Results from previous versions can be obtained with the added keyword
!NoFrozenCore.

In chapter Breaking Chemical Bonds the dissociation of the N2 molecule has been investigated with the CASSCF
method. Inserting PTMethod SC_NEVPT2 into the %casscf block we obtain the NEVPT2 correction as additional
information.

! def2-svp nofrozencore
%casscf nel 6

norb 6
mult 1
PTMethod SC_NEVPT2

end

# scanning from the outside to the inside
%paras

R = 2.5,0.7, 30
end

*xyz 0 1
N 0.0 0.0 0.0
N 0.0 0.0 {R}
*

Fig. 6.20: Potential Energy Surface of the N2 molecule from CASSCF(6,6) and NEVPT2 calculations (def2-SVP).

All of the options available in CASSCF can in principle be applied to NEVPT2. Since NEVPT2 is implemented
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as a submodule of CASSCF, it will inherit all settings from CASSCF (!tightscf, !UseSym, !RIJCOSX, . . . ).

NOTE

• NEVPT2 analytic gradients are not available, but numerical gradients are!

6.1.9 Complete Active Space Perturbation Theory: CASPT2 and CASPT2-K

The fully internally contracted CASPT2 (FIC-CASPT2) approach shares its wave function ansatz with the FIC-
NEVPT2 approach mentioned in the previous section.[40] The two methods differ in the definition of the zeroth
order Hamiltonian. The CASPT2 approach employs the generalized Fock-operator, which may result in intruder
states problems (singularities in the perturbation expression). Real and imaginary level shifting techniques are
introduced to avoid intruder states.[270, 732] Note that both level shifts are mutually exclusive. Since level shifts
in general affect the total energies, they should be avoided or chosen as small as possible. As argued by Roos and
coworkers, CASPT2 systematically underestimates open-shell energies, since the Fock operator itself is not suited
to describe excitations into and out of partially occupied orbitals. The deficiency can be adjusted with the inclusion
of IPEA shifts - an empirical parameter.[295] While the implementation of the canonical CASPT2 with real and
imaginary shifts is validated against OpenMOLCAS.[253], the ORCA version differs in the implementation of the
IPEA shifts and yields slightly different results. The IPEA shift, 𝜆, is added to the matrix elements of the internally
contracted CSFs Φ𝑝𝑟𝑞𝑠 = 𝐸𝑝𝑞𝐸

𝑟
𝑠 |Ψ0 > with the generalized Fock operator

< Φ𝑝
′𝑟′

𝑞′𝑠′ |𝐹 |Φ
𝑝𝑟
𝑞𝑠 > + =< Φ𝑝

′𝑟′

𝑞′𝑠′ |Φ
𝑝𝑟
𝑞𝑠 > ·

𝜆

2
· (4 + 𝛾𝑝𝑝 − 𝛾𝑞𝑞 + 𝛾𝑟𝑟 − 𝛾𝑠𝑠),

where 𝛾𝑝𝑞 =< Ψ0|𝐸𝑝𝑞 |Ψ0 > is the expectation value of the spin-traced excitation operator.[441] The labels p,q,r,s
refer to general molecular orbitals (inactive, active and virtual). Irrespective of the ORCA implementation, the
validity of the IPEA shift in general remains questionable and is thus by default disabled.[922]

ORCA features an alternative approach, denoted as CASPT2-K, that reformulates the zeroth order Hamiltonian
itself.[460] Here, two additional Fock matrices are introduced for excitation classes that add or remove electrons
from the active space. The new Fock matrices are derived from the generalized Koopmans’ matrices corresponding
to electron ionization and attachment processes. The resulting method is less prone to intruder states and the same
time more accurate compared to the canonical CASPT2 approach. For a more detailed discussion, we refer to the
paper by Kollmar et al.[460]

The CASPT2 and CASPT2-K methodologies are called in complete analogy to the NEVPT2 branch in ORCA and
can be combined with the resolution of identity (RI) approximation.

%casscf
...

PTMethod FIC_CASPT2 # fully internally contracted CASPT2
FIC_CASPT2K # CASPT2-K (revised H0)

# Optional settings
PTSettings
CASPT2_rshift 0.0 # (default) real level shift
CASPT2_ishift 0.0 # (default) imaginary level shift
CASPT2_IPEAshift 0.0 # (default) IPEA shift
end

end

The RI approximated results are comparable to the CD-CASPT2 approach presented elsewhere.[50] For a general
discussion of the RI and CD approximations, we refer to the literature.[885] Many of the input parameter are shared
with the FIC-NEVPT2 approach. A list with the available options is presented in section Complete Active Space
Peturbation Theory : CASPT2 and CASPT2-K .

In this short section, we add the CASPT2 results to the previously computed NEVPT2 potential energy surface of
the N2 molecule.

! def2-svp nofrozencore
%casscf nel 6

(continues on next page)
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(continued from previous page)

norb 6
mult 1
PTMethod FIC_CASPT2 # fully internally contracted CASPT2

end

# scanning from the outside to the inside
%paras

R = 2.5,0.7, 30
end

*xyz 0 1
N 0.0 0.0 0.0
N 0.0 0.0 {R}
*

The CASPT2 output lists the settings prior to the computation. The printed reference weights should be checked.
Small reference weights indicate intruder states. Along the lines, the program also prints the smallest denomi-
nators in the perturbation expression (highlighted in the snippet below). Small denominator may lead to intruder
states.

---------------------------------------------------------------
ORCA-CASSCF
---------------------------------------------------------------

...
PT2-SETTINGS:
A PT2 calculation will be performed on top of the CASSCF wave function (PT2 = CASPT2)
CASPT2 Real Levelshift ... 0.00e+00
CASPT2 Im. Levelshift ... 0.00e+00
CASPT2 IPEA Levelshift ... 0.00e+00
...
---------------------------------------------------------------

< CASPT2 >
---------------------------------------------------------------
...
-----------------------------------
CASPT2-D Energy = -0.171839049
-----------------------------------

Class V0_ijab: dE= -0.013891923
Class Vm1_iab: dE= -0.034571085
Class Vm2_ab : dE= -0.040985427
Class V1_ija : dE= -0.003511548
Class V2_ij : dE= -0.000579508
Class V0_ia : dE= -0.075176596
Class Vm1_a : dE= -0.002917335
Class V1_i : dE= -0.000205627

smallest energy denominator IJAB = 3.237539973
smallest energy denominator ITAB = 2.500295823
smallest energy denominator IJTA = 2.339868413
smallest energy denominator TUAB = 1.664398302
smallest energy denominator IJTU = 1.342421639
smallest energy denominator ITAU = 1.496042538
smallest energy denominator TUVA = 0.706288250
smallest energy denominator ITUV = 0.545304334

...
Iter EPT2 EHylleraas residual norm Time

1 -0.17183905 -0.17057203 0.03246225 0.0
2 -0.17057203 -0.17119523 0.00616509 0.0

(continues on next page)
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(continued from previous page)

3 -0.17117095 -0.17121211 0.00086389 0.0
4 -0.17120782 -0.17121281 0.00013292 0.0
5 -0.17121273 -0.17121282 0.00000990 0.0
6 -0.17121283 -0.17121282 0.00000159 0.0
7 -0.17121282 -0.17121282 0.00000020 0.0

CASPT2 calculation converged in 7 iterations

...
===============================================================
CASPT2 Results
===============================================================

*********************
MULT 1, ROOT 0
*********************

Class V0_ijab : dE = -0.013831560889
Class Vm1_iab : dE = -0.034124733943
Class Vm2_ab : dE = -0.041334010085
Class V1_ija : dE = -0.003446396316
Class V2_ij : dE = -0.000584401134
Class V0_ia : dE = -0.074688029120
Class Vm1_a : dE = -0.002962355569
Class V1_i : dE = -0.000241331405

---------------------------------------------------------------
Total Energy Correction : dE = -0.17121281846205

---------------------------------------------------------------
Reference Energy : E0 = -108.66619981448225
Reference Weight : W0 = 0.94765190644139

---------------------------------------------------------------
Total Energy (E0+dE) : E = -108.83741263294431

---------------------------------------------------------------

Note that the program prints CASPT2-D results prior entering the CASPT2 iterations.[40] In case of intruder states,
the residual equation may not converge. The program will not abort. Hence, it is important to check convergence
for every CASPT2 run. In this particular example with the small basis sets, there are no intruder states.
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Fig. 6.21: Potential Energy Surface of the N2 molecule from CASSCF(6,6) and CASPT2 calculations (def2-SVP).

The potential energy surface in Fig. 6.21 is indeed very similar to the FIC-NEVPT2 approach, which is more
efficient (no iterations) and robust (absence of intruder states). The figure also shows the CASPT2-K results,
which is typically a compromise between the two methods. As expected, the largest deviation from CASPT2 is
observed at the dissociation limit, where the open shell character dominates the reference wave function. In this
example, the discrepancy between the three methods is rather subtle. However, the results may differ substantially
on some challenging systems, such as Chromium dimer studied in the CASPT2-K publication. [460]. Despite its
flaws, the CASPT2 method is of historical importance and remains a popular methodology. In the future we might
consider further extension such as the (X)MS-CASPT2.[793]

6.1.10 2nd order Dynamic Correlation Dressed Complete Active Space method
(DCD-CAS(2))

Non-degenerate multireference perturbation theory (MRPT) methods, such as NEVPT2 or CASPT2, have the
0th order part of the wave function fixed by a preceding CASSCF calculation. The latter can be a problem if
the CASSCF states are biased towards a wrong state composition in terms of electron configurations. In these
instances, a quasi-degenerate or multi-state formulation is necessary, for example the QD-NEVPT2 described in
Section Quasi-Degenerate SC-NEVPT2. A drawback of these approaches is that the results depend on the number
of included states. The DCD-CAS(2) offers an alternative uncontracted approach, where a dressed CASCI matrix
is constructed. Its diagonalization yields correlated energies and 0th order states that are remixed in the CASCI
space under the effect of dynamic correlation.[653]

The basic usage is very simple: One just needs a %casscf block and the simple input keyword !DCD-CAS(2) .
The following example is a calculation on the LiF molecule. It possesses two singlet states that can be qualitatively
described as ionic (Li^+^ and F−) and covalent (neutral Li with electron in 2s orbital and neutral F with hole in
2𝑝𝑧 orbital). At distances close to the equilibrium geometry, the ground state is ionic, while in the dissociation
limit the ground state is neutral. Somewhere in between, there is an avoided crossing of the adiabatic potential
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energy curves where the character of the two states quickly changes (see figure Fig. 7.7 for potential energy curves
for this system at the (QD)NEVPT2 level). At the CASSCF level, the neutral state is described better than the ionic
state, with the result that the latter is too high in energy and the avoided crossing occurs at a too small interatomic
distance. In the region where the avoided crossing actually takes place, the CASSCF states are then purely neutral
or purely ionic. DCD-CAS(2) allows for a remixing of the states in the CASCI space under the effect of dynamic
correlation, which will lower the ionic state more in energy than the neutral one. The input file is as follows:

! def2-TZVP DCD-CAS(2)
!moread

%moinp "casorbs.gbw" # guess with active orbitals in place

%casscf
nel 2
norb 2
mult 1
nroots 2
actorbs locorbs

end

*xyz 0 1
Li 0.0 0.0 0.0
F 0.0 0.0 5.5
*

Since none of the standard guesses (!PAtom, !PModel, etc.) produces the correct active orbitals (Li 2s and F
2p~z~), we read them from the file casorbs.gbw. We also use the actorbs locorbs option to preserve the atomic
character of the active orbitals and interpret the states in terms of neutral and ionic components easier. The following
is the state composition of LiF at an interatomic distance of 5.5 angstrom at the CASSCF and DCD-CAS(2) levels.

---------------------------------------------
CAS-SCF STATES FOR BLOCK 1 MULT= 1 NROOTS= 2
---------------------------------------------

ROOT 0: E= -106.8043590118 Eh
0.99395 [ 1]: 11
0.00604 [ 2]: 02

ROOT 1: E= -106.7485794535 Eh 1.518 eV 12242.2 cm**-1
0.99396 [ 2]: 02
0.00604 [ 1]: 11

---------------------------------------
DCD-CAS(2) STATES

---------------------------------------

ROOT 0: E= -107.0917611937 Eh
0.60590 [ 2]: 02
0.39410 [ 1]: 11

ROOT 1: E= -107.0837717163 Eh 0.217 eV 1753.5 cm**-1
0.60590 [ 1]: 11
0.39410 [ 2]: 02

One can clearly see that while the CASSCF states are purely neutral (dominated by CFG 11) or purely ionic
(dominated by CFG 02), the DCD-CAS(2) states are mixtures of neutral and ionic contributions. The calculation
indicates that the interatomic distance of 5.5 is in the avoided crossing region. Note that the energies that are
printed together with the DCD-CAS(2) state composition are the ones that are obtained from diagonalization of
the DCD-CAS(2) dressed Hamiltonian. For excited states, these energies suffer from what we call ground state
bias (see the original paper for a discussion [653]). A perturbative correction has been devised to overcome this
problem. Our standard choice is first-order bias correction. The corrected energies are also printed in the output
file and those energies should be used in production use of the DCD-CAS(2) method:
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---------------------------------------------------------
BIAS-CORRECTED (ORDER 1) STATE AND TRANSITION ENERGIES
=========================================================
ROOT Energy/a.u. DE/a.u. DE/eV DE/cm**-1
=========================================================

0: -107.093214435 0.000000 0.000 0.0
1: -107.084988306 0.008226 0.224 1805.4

Last but not least, spin orbit coupling (SOC) and spin spin coupling (SSC) are implemented in conjunction with the
DCD-CAS(2) method in a QDPT-like procedure and a variety of different magnetic and spectroscopic properties
can be also calculated. We refer to the detailed documentation (Section Dynamic Correlation Dressed CAS) for
further information.

. Warning

Note that the computational cost of a DCD-CAS(2) calculation scales as roughly the 3rd power of the size of
the CASCI space. This makes calculations with active spaces containing more than a few hundred CSFs very
expensive!

6.1.11 Full Configuration Interaction Energies

ORCA provides several exact and approximate approaches to tackle the full configuration interaction (FCI) prob-
lem. These methods are accessible via the CASSCF module (see Section General Description) or the ICE module
(described in Section Approximate Full CI Calculations in Subspace: ICE-CI).

In the following, we compute the FCI energy of the lithium hydride molecule using the CASSCF module, where
a typical input requires the declaration of an active space. The latter defines the number of active electron and
orbitals, which are evaluated with the FCI ansatz. In the special case that all electrons and orbitals are treated
with the FCI ansatz, we can use the keyword DoFCI in the %CASSCF block and let the program set the active space
accordingly. In this example, we focus on the singlet ground state. Note that excited states for arbitrary multiplicities
can be computed with the keywords Mult and NRoots. The FCI approach is invariant to orbital rotations and thus
orbital optimization is skipped in the CASSCF module. Nevertheless, it is important to employ a set of meaningful
orbitals, e.g. from a converged Hartree-Fock calculation, to reduce the number of FCI iterations.

# Hartree-Fock orbitals
!def2-tzvp RHF

*xyz 0 1
Li 0 0 0
H 0 0 1.597

*

The output of the Hartree-Fock calculation also reports on the total number of electrons and orbitals in your system
(see snippet below).

Number of Electrons NEL .... 4
Basis Dimension Dim .... 20

In the given example, there are 4 electrons in 20 orbitals, which is a “CAS(4,20)”. Reading the converged RHF
orbitals, we can start the FCI calculation.

!def2-tzvp extremescf

!moread
%moinp "RHF.gbw"

%maxcore 2000

(continues on next page)
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%casscf
DoFCI true # sets NEL 4 and NORB 20 in this example.

end

*xyz 0 1
Li 0 0 0
H 0 0 1.597

*

The output reports on the detailed CI settings, the number of configuration state functions (CSFs) and the CI
convergence thresholds.

CI-STEP:
CI strategy ... General CI
Number of multiplicity blocks ... 1
BLOCK 1 WEIGHT= 1.0000
Multiplicity ... 1
#(Configurations) ... 8455
#(CSFs) ... 13300
#(Roots) ... 1
ROOT=0 WEIGHT= 1.000000

PrintLevel ... 1
N(GuessMat) ... 512
MaxDim(CI) ... 10
MaxIter(CI) ... 64
Energy Tolerance CI ... 1.00e-13
Residual Tolerance CI ... 1.00e-13
Shift(CI) ... 1.00e-04
...

The program then prints the actual CI iterations, the final energy, and the composition of the wave function in terms
of configurations (CFGs).

------------------
CAS-SCF ITERATIONS
------------------

MACRO-ITERATION 1:
--- Inactive Energy E0 = 0.99407115 Eh
--- All densities will be recomputed
CI-ITERATION 0:
-8.012799617 0.526896429727 ( 0.25)
CI-ITERATION 1:
-8.047996328 0.001601312242 ( 0.25)
CI-ITERATION 2:
-8.048134967 0.000022625293 ( 0.25)
CI-ITERATION 3:
-8.048137773 0.000000462227 ( 0.25)
CI-ITERATION 4:
-8.048137841 0.000000035496 ( 0.25)
CI-ITERATION 5:
-8.048137845 0.000000001357 ( 0.25)
CI-ITERATION 6:
-8.048137845 0.000000000254 ( 0.25)
CI-ITERATION 7:
-8.048137845 0.000000000006 ( 0.25)
CI-ITERATION 8:
-8.048137845 0.000000000001 ( 0.25)
CI-ITERATION 9:

(continues on next page)
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-8.048137845 0.000000000000 ( 0.25)
CI-PROBLEM SOLVED
DENSITIES MADE

<<<<<<<<<<<<<<<<<<INITIAL CI STATE CHECK>>>>>>>>>>>>>>>>>>

BLOCK 1 MULT= 1 NROOTS= 1
ROOT 0: E= -8.0481378449 Eh
0.97242 [ 0]: 22000000000000000000
0.00296 [ 99]: 20000002000000000000
0.00258 [ 89]: 20000010001000000000
0.00252 [ 85]: 20000020000000000000

Aside from energies, the CASSCF module offers a number of properties (g-tensors, ZFS, . . . ), which are described
in Section CASSCF Properties.

The exact solution of the FCI problem has very steep scaling and is thus limited to smaller problems (at most active
spaces of 16 electrons in 16 orbitals). Larger systems are accessible with approximate solutions, e.g. with the
density matrix renormalization group approach (DMRG), described in Section Density Matrix Renormalization
Group, or the iterative configuration expansion (ICE) reported in Section Approximate Full CI Calculations in
Subspace: ICE-CI . For fun, we repeat the calculation with the ICE-CI ansatz, which offers a more traditional
approach to get an approximate full CI result.

!def2-tzvp extremescf

!moread
%moinp "RHF.gbw"

%maxcore 2000

%ice
Nel 4
Norb 20

end

*xyz 0 1
Li 0 0 0
H 0 0 1.597

*

The single most important parameter to control the accuracy is TGen. It is printed with the more refined settings in
the output. We note passing that the wave function expansion and its truncation can be carried out in the basis of
CSFs, configurations, or determinants. The different strategies are discussed in detail by Chilkuri et al. [171, 172].

ICE-CI:
General Strategy ... CONFIGURATIONS (all CSFs to a given CFG, spin␣

→˓adapted)
Max. no of macroiterations ... 12
Variational selection threshold ... -1.000e-07
negative! => TVar will be set to 1.000e-07*Tgen=1.000e-11
Generator selection threshold ... 1.000e-04
Excitation level ... 2
Selection on initial CSF list ... YES
Selection on later CSFs lists ... YES

...

******************************
* ICECI MACROITERATION 3 *
******************************

(continues on next page)
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# of active configurations = 2808
Initializing the CI ... (CI/Run=3,2 UseCC=0)done ( 0.0 sec)
Building coupling coefficients ... (CI/Run=3,2)Calling BuildCouplings_RI UseCCLib=0␣
→˓DoRISX=0
CI_BuildCouplings NCFG= 2808 NORB=20 NEL=4 UseCCLib=0 MaxCore=2000
PASS 1 completed. NCFG= 2808 NCFGK= 8416 MaxNSOMOI=4 MaxNSOMOK=4
PASS 2 completed.
PASS 3 completed.
Memory used for RI tree = 2.99 MB (av. dim= 35)
Memory used for ONE tree = 1.32 MB (av. dim= 46)
Memory used for coupling coefficients= 0.01 MB
done ( 0 sec)
Now calling CI solver (4095 CSFs)

****Iteration 0****
Maximum residual norm : 0.000293130557

****Iteration 1****
Maximum residual norm : 0.000000565920

****Iteration 2****
Maximum residual norm : 0.000001755176

****Iteration 3****
Maximum residual norm : 0.000000435942
Rebuilding the expansion space

****Iteration 4****

*** CONVERGENCE OF ENERGIES REACHED ***
CI problem solved in 0.4 sec

CI SOLUTION :
STATE 0 MULT= 1: E= -8.0481340246 Eh W= 1.0000 DE= 0.000 eV 0.0 cm**-1
0.97249 : 22000000000000000000
Selecting new configurations ... (CI/Run=3,2)done ( 0.0 sec)
# of selected configurations ... 2747
# of generator configurations ... 43 (NEW=1 (CREF=43))
Performing single and double excitations relative to generators ... done ( 0.0 sec)
# of configurations after S+D ... 7038
Selecting from the generated configurations ... done ( 0.1 sec)
# of configurations after Selection ... 2808
Root 0: -8.048134025 -0.000000023 -8.048134048
==>>> CI space seems to have converged. No new configurations
maximum energy change ... 1.727e-05 Eh

********* ICECI IS CONVERGED *********
Initializing the CI ... (CI/Run=3,3 UseCC=0)done ( 0.0 sec)
Building coupling coefficients ... (CI/Run=3,3)Calling BuildCouplings_RI␣

→˓UseCCLib=0 DoRISX=
CI_BuildCouplings NCFG= 2808 NORB=20 NEL=4 UseCCLib=0 MaxCore=2000
PASS 1 completed. NCFG= 2808 NCFGK= 8416 MaxNSOMOI=4 MaxNSOMOK=4
PASS 2 completed.
PASS 3 completed.
Memory used for RI tree = 2.99 MB (av. dim= 35)
Memory used for ONE tree = 1.32 MB (av. dim= 46)
Memory used for coupling coefficients= 0.01 MB
done ( 0 sec)
Now calling CI solver (4095 CSFs)

****Iteration 0****

(continues on next page)
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Maximum residual norm : 0.000000471011

****Iteration 1****

*** CONVERGENCE OF ENERGIES REACHED ***
CI problem solved in 0.1 sec

CI SOLUTION :
STATE 0 MULT= 1: E= -8.0481340245 Eh W= 1.0000 DE= 0.000 eV 0.0 cm**-1
0.97249 : 22000000000000000000

With Hartree-Fock orbitals and the default settings, the ICE converges in 3 macro iterations to an energy of
−8.048134047513 𝐸h. The deviation from the exact solution is just 3.8× 10−6 𝐸h in this example.

6.1.12 Efficient Calculations with Atomic Natural Orbitals

Atomic natural orbitals are a special class of basis sets. They are represented by the orthonormal set of orbitals that
diagonalizes a spherically symmetric, correlated atomic density. The idea is to put as much information as possible
into each basis functions such that one obtains the best possible result with the given number of basis functions.
This is particularly important for correlated calculations where the number of primitives is less an issue than the
number of basis functions.

Usually, ANO basis sets are “generally contracted” which means that for any given angular momentum all prim-
itives contribute to all basis functions. Since the concept of ANOs only makes sense if the underlying set of
primitives is large, the calculations readily become very expensive unless special precaution is taken in the integral
evaluation algorithms. ORCA features special algorithms for ANO basis sets together with accurate ANO basis
sets for non-relativistic calculations. However, even then the integral evaluation is so expensive that efficiency can
only be realized if all integrals are stored on disk and are re-used as needed.

In the first implementation, the use of ANOs is restricted to the built-in ANO basis sets (ano-pV𝑛Z, saug-ano-
pV𝑛Z, aug-ano-pV𝑛Z, 𝑛 = D, T, Q, 5). These are built upon the cc-pV6Z primitives and hence, the calculations
take significant time.

ò Note

• Geometry optimizations with ANOs are discouraged; they will be very inefficient.

The use of ANOs is recommended in the following way:

! ano-pVTZ Conv TightSCF CCSD(T)
%maxcore 2000
* int 0 1
C 0 0 0 0 0 0
O 1 0 0 1.2 0 0
H 1 2 0 1.1 120 0
H 1 2 3 1.1 120 180
*

This yields:

ano-pVTZ:
E(SCF) = -113.920388785
E(corr)= -0.427730189

Compare to the cc-pVTZ value of:
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cc-pVTZ:
E(SCF) = -113.911870901
E(corr)= -0.421354947

Thus, the ANO-based SCF energy is ca. 8–9 mEh lower and the correlation energy almost 2 mEh lower than with
the cc-basis set of the same size. Usually, the ANO results are much closer to the basis set limit than the cc-results.
Also, ANO values extrapolate very well (see section Automatic extrapolation to the basis set limit)

Importantly, the integrals are all stored in this job. Depending on your system and your patience, this may be
possible up to 300–500 basis functions. The ORCA correlation modules have been rewritten such that they deal
efficiently with these stored integrals. Thus, we might as well have used ! MO-CCSD(T) or ! AO-CCSD(T) ,
both of which would perform well.

Yet, the burden of generating and storing all four-index integrals quickly becomes rather heavy. Hence, the com-
bination of ANO basis sets with the RI-JK technique is particularly powerful and efficient. For example:

! ano-pVTZ cc-pVTZ/JK RI-JK Conv TightSCF RI-CCSD(T)

For the SCF, this works very well and allows for much larger ANO based calculations to be done efficiently. Also,
RI-MP2 can be done very efficiently in this way. However, for higher order correlation methods such as CCSD(T)
the logical choice would be RI-CCSD(T) which is distinctly less efficient than the AO or MO based CCSD(T)
(roughly a factor of two slower). Hence, ORCA implements a hybrid method where the RI approximation is used
to generate all four index integrals. This is done via the “RI-AO” keyword:

! ano-pVTZ cc-pVTZ/JK RI-AO Conv TightSCF AO-CCSD(T)

In this case either AO-CCSD(T) or MO-CCSD(T) would both work well. This does not solve the storage bottleneck
with respect to the four index integrals of course. If this becomes a real issue, then RI-CCSD(T) is mandatory. The
error in the total energy is less than 0.1 mEh in the present example.

ò Note

• With conventional RI calculations the use of a second fit basis set is not possible and inconsistent
results will be obtained. Hence, stick to one auxiliary basis!

6.1.13 Local-SCF Method

The Local-SCF (LSCF) method developed by X. Assfeld and J.-L. Rivail ([55]) allows to optimize a single de-
terminant wave function under the constraint of keeping frozen (i.e. unmodified) a subset of orbitals. Also, op-
timized orbitals fulfill the condition of orthogonality with the frozen ones. The LSCF method can be applied to
restricted/unrestricted Hartree-Fock or DFT Kohn-Sham wavefunctions.

To use the LSCF method, one chooses the spin-up and spin-down frozen orbitals with the “LSCFalpha” and “LSCF-
beta” keywords, respectively. Frozen orbitals are specified using intervals of orbital indexes. In the following
example, the selection “0,4,5,6,10,10” for the alpha frozen orbitals means that the orbitals ranging from 0 to 4
(0,4,5,6,10,10), 5 and 6 (0,4,5,6,10,10) and the orbital 10 (0,4,5,6,10,10) will be frozen. In the case of the beta
orbitals, the orbitals with indexes 0, 1, 2, 3 and 5 will be frozen. Up to 5 intervals (2*5 numbers) are allowed.

#
# Example of LSCF Calculation
#
! UKS B3LYP/G SVP TightSCF
%scf
LSCFalpha 0,4,5,6,10,10
LSCFbeta 0,3,5,5
end
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For the sake of user-friendliness, two other keywords are available within the LSCF method. They can be used to
modify the orbital first guess, as read from the gbw file with the same name or another gbw file with the “MOInp”
keyword.

The “LSCFCopyOrbs” keyword allows to copy one orbital into another one. The input works by intervals like the
LSCFalpha/LSCFbeta selections. However, be aware that spin-up orbital indexes range from 0 to M-1 (where M
is the size of the basis set), while spin-down orbital indexes range from M to 2M-1. In the following example, with
M=11, the user copies the fifth spin-up orbital in the fifth spin-down orbital.

%scf
LSCFalpha 0,4,5,6,10,10
LSCFbeta 0,3,5,5
LSCFCopyOrbs 4,15

end

The second keyword is “LSCFSwapOrbs” and allows to swap the indexes of subsets made of two orbitals. In the
following example, still with M=11, the user swaps the fifth spin-up orbital with the fifth spin-down orbital.

%scf
LSCFalpha 0,4,5,6,10,10
LSCFbeta 0,3,5,5
LSCFSwapOrbs 4,15

end

³ Caution

During the LSCF procedure, frozen occupied orbitals energies are fixed at -1000 Hartrees and frozen
virtual orbitals energies at 1000 Hartrees. This means that the frozen occupied orbitals and the frozen
virtual orbitals are placed respectively at the beginning and at the end of the indexation.

6.1.14 Adding finite electric field

Electric fields can have significant influences on the electronic structure of molecules. In general, when an elec-
tric field is applied to a molecule, the electron cloud of the molecule will polarize along the direction of the
field. The redistribution of charges across the molecule will then influence the wavefunction of the molecule.
Even when polarization effects are not significant, the electric field still exerts a drag on the negatively and pos-
itively charged atoms of the molecule in opposite directions, and therefore affect the orientation and structure of
the molecule. The combination of electrostatic and polarization effects make electric fields a useful degree of
freedom in tuning e.g. reactivities, molecular structures and spectra [786]. Meanwhile, the energy/dipole mo-
ment/quadrupole moment changes of the system in the presence of small dipolar or quadrupolar electric fields are
useful for calculating many electric properties of the system via numerical differentiation, including the dipole
moment, quadrupole moment, dipole-dipole polarizability, quadrupole-quadrupole polarizability, etc. Such finite
difference property calculations can be conveniently done using compound scripts in the ORCA Compound Scripts
Repository (https://github.com/ORCAQuantumChemistry/CompoundScripts/tree/main/Polarizabilities).

In ORCA, a uniform (or equivalently speaking, dipolar) electric field can be added to a calculation via the following
keyword:

%scf
EField 0.1, 0.0, 0.0 # x, y, z components (in au) of the electric field

end

Although the keyword is in the %scf block, it applies the electric field to all other methods (post-HF methods,
multireference methods, TDDFT, etc.) as well, except XTB and force field methods (as well as any method that
involves XTB or force fields, e.g. QM/XTB and QM/MM) for which the electric field contributions are not imple-
mented and will result in an abort. Analytic gradient contributions of the electric field are available for all methods
(except XTB and MM) that already support analytic gradients, but analytic Hessian contributions are not.
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The sign convention of the electric field is chosen in the following way: suppose that the electric field is generated by
a positive charge in the negative z direction, and a negative charge in the positive z direction, then the z component
of the electric field is positive. This convention is consistent with most but not all other programs [786], so care
must be taken when comparing the results of ORCA with other programs.

Another important aspect is the gauge origin of the electric field. The gauge origin of the electric field is the
point (or more accurately speaking, one of the points - as there are infinitely many such points) where the electric
potential due to the electric field is zero. Different choices of the gauge origin do not affect the geometry and
wavefunction of the molecule, as they do not change the electric field felt by the molecule, but they do change the
energy of the molecule. The default gauge origin is the (0,0,0) point of the Cartesian coordinate system, but it is
possible to choose other gauge origins:

%scf
EFieldOrigin CenterOfMass # use center of mass

CenterOfNucCharge # use center of nuclear charge
0.0, 0.0, 0.0 # use given X,Y,Z as origin (default: 0,0,0)

# in the units chosen for the coordinates (Angstrom/Bohr)
end

Note the default gauge origin of the electric field is different from the default gauge origin of the ELPROP mod-
ule, which is the center of mass. If the user chooses the center of mass/nuclear charge as the gauge origin of the
electric field, the gauge origin will move as the molecule translates; this has important consequences. For ex-
ample, in an MD simulation of a charged molecule in an electric field, the molecule will not accelerate, unlike
when EFieldOrigin is fixed at a given set of coordinates, where the molecule will accelerate forever. In gen-
eral, CenterOfMass and CenterOfNucCharge are mostly suited for the finite difference calculation of electric
properties, where one frequently wants to choose the center of mass or nuclear charge as the gauge origin of the
resulting multipole moment or polarizability tensor. Instead, a fixed origin is expected to be more useful for simu-
lating the changes of wavefunction, geometry, reactivity, spectra etc. under an externally applied electric field, as
experimentally the electric field is usually applied in the lab frame, rather than the comoving frame of the molecule.

Similar to EField, one can also add a quadrupolar field:

%scf
QField 0.1, 0.0, 0.0, 0.05, 0.0, 0.0 # xx, yy, zz, xy, xz, yz components (in au)

# of the quadrupolar field
end

The gauge origin of the quadrupolar field is the same as that of the dipolar electric field. Moreover, the QField
can be used together with the EField keyword. This allows one to simulate a gradually varying electric field, for
example the following input specifies an electric field that has a strength of 0.01 au at the gauge origin ((0,0,0) by
default), pointing to the positive z direction, and increases by 0.001 au for every Bohr as one goes in the positive z
direction:

%scf
EField 0.0, 0.0, 0.01
QField 0.0, 0.0, 0.001, 0.0, 0.0, 0.0

end

As a second example, one can also simulate an ion trap:

%scf
QField -0.01, -0.01, -0.01, 0.0, 0.0, 0.0

end

Under this quadrupolar field setting, a particle will feel an electric field that points towards the gauge origin, whose
strength (in au) is 0.01 times the distance to the gauge origin (in Bohr). This will keep cations close to the origin,
but pushes anions away from the origin. Unfortunately, there is no analytic gradient available for quadrupolar
fields.

NOTE

• An au (atomic unit) is a fairly large unit for electric fields: 1 au = 51.4 V/Angstrom. By comparison, charged
residues in proteins, as well as scanning tunneling microscope (STM) tips, typically generate electric fields
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within about 1 V/Angstrom; electrode surfaces usually generate electric fields within 0.1 V/Angstrom under
typical electrolysis conditions [786]. If the molecule is not close to the source of the electric field, it is even
harder to generate strong electric fields: for example, a 100 V voltage across two metal plates that are 1 mm
apart generates an electric field of merely 10−5 V/Angstrom. Therefore, if experimentally a certain strength
of homogeneous electric field seems to promote a reaction, but no such effect is found in calculation, please
consider the possibility that the experimentally observed reactivity is due to a strong local electric field near
the electrode surface (that is much higher than the average field strength in the system), or due to other
effects such as electrolysis. Conversely, if you predict a certain molecular property change at an electric
field strength of, e.g. > 0.1 au, it may be a non-trivial question whether such an electric field can be easily
realized experimentally.

• The electric field breaks the rotational symmetry of the molecule, in the sense that rotating the molecule
can change its energy. Therefore, geometry optimizations in electric fields cannot be done with internal
coordinates. When the user requests geometry optimization, the program automatically switches to Carte-
sian coordinates if it detects an electric field. While Cartesian coordinates allow the correct treatment of
molecular rotation, they generally lead to poor convergence, so a large number of iterations is frequently
necessary.

• Similarly, when the molecule is charged, its energy is not invariant with respect to translations. However,
when there is only a dipolar electric field but no other translational symmetry-breaking forces (quadrupolar
field, point charges, wall potentials), a charged molecule will accelerate forever in the field, and its position
will never converge. Therefore, for geometry optimizations within a purely dipolar electric field and no wall
potentials, we do not allow global translations of the molecule, even when translation can reduce its energy.
For MD simulations we however do allow the global translations of the molecule by default. If this is not
desired, one can fix the center of mass in the MD run using the CenterCOM keyword (section Run).

• For frequency calculations in electric fields, we do not project out the translational and rotational contri-
butions of the Hessian (equivalent to setting ProjectTR false in %freq; see Frequency calculations -
numerical and analytical for details). Therefore, the frequencies of translational and rotational modes can
be different from zero, and can mix with the vibrational modes. When the electric field is extremely small
but not zero, the “true” translational/rotational symmetry breaking of the Hessian may be smaller than the
symmetry breaking due to numerical error; this must be kept in mind when comparing the frequency re-
sults under small electric fields versus under zero electric field (in the latter case ProjectTR is by default
true). Besides, when the translational and rotational frequencies exceed CutOffFreq (which is 1 cm−1 by
default; see section Frequency calculations - numerical and analytical), their thermochemical contributions
are calculated as if they are vibrations.

• While the program allows the combination of electric fields with an implicit solvation model, the results
must be interpreted with caution, because the solvent medium does not feel the electric field. The results
may therefore differ substantially from those given by experimental setups where both the solute and the
solvent are subjected to the electric field. If the solvent’s response to the electric field is important, one
should use an explicit solvation model instead. Alternatively, one can also simulate the electric field in the
implicit solvent by adding inert ions (e.g. Na+, Cl−) to the system. Similarly, implicit solvation models
cannot describe the formation of electrical double layers in the electric field and their influence on solute
properties, so in case electrical double layers are important, MD simulations with explicit treatment of the
ions must be carried out.

• The electric field not only contributes to the core Hamiltonian, but has extra contributions in GIAO calcu-
lations, due to the magnetic field derivatives of dipole integrals. In the case of a dipolar electric field, the
GIAO contributions have been implemented, making it possible to study e.g. the effect of electric fields on
NMR shieldings, and as a special case, nucleus independent chemical shieldings (NICSs), which are useful
tools for analyzing aromaticity. Quadrupolar fields cannot be used in GIAO calculations at the moment.
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6.2 SCF Stability Analysis

The SCF stability will give an indication whether the SCF solution is at a local minimum or a saddle point.[80, 780]
It is available for RHF/RKS and UHF/UKS. In the latter case, the SCF is restarted by default using new unrestricted
start orbitals if an instability was detected. For a demonstration, consider the following input:

! BHLYP def2-SVP NORI

%scf
guess hcore
HFTyp UHF
STABPerform true
end

* xyz 0 1
h 0.0 0.0 0.0
h 0.0 0.0 1.4
*

The HCORE guess leads to a symmetric/restricted guess, which does not yield the unrestricted solution. The same
is often true for other guess options. For more details on the stability analysis, see Section SCF Stability Analysis.

6.3 Geometry Optimizations, Surface Scans, Transition States,
MECPs, Conical Intersections, IRC, NEB

The usage of analytic gradients is necessary for efficient geometry optimization. In ORCA 5.0, the following
methods provide analytic first derivatives

• Hartree-Fock (HF) and DFT (including the RI, RIJK and RIJCOSX approximations)

• MP2, RI-MP2 and DLPNO-MP2

• TD-DFT for excited states

• CAS-SCF

When the analytic gradients are not available, it is possible to evaluate the first derivatives numerically by finite
displacements. This is available for all methods.

The coordinate system chosen for geometry optimization affects the convergence rate, with redundant internal
coordinates being usually the best choice.

Some methods for locating transition states (TS) require second derivative matrices (Hessian), implemented ana-
lytically for HF, DFT and MP2. Additionally, several approaches to construct an initial approximate Hessian for
TS optimization are available. A very useful feature for locating complicated TSs is the Nudged-Elastic Band
method in combination with the TS finding algorithm (NEB-TS, ZOOM-NEB-TS). An essential feature for chem-
ical processes involving excited states is the conical intersection optimizer. Another interesting feature are MECP
(Minimum Energy Crossing Point) optimizations.

For very large systems ORCA provides a very efficient L-BFGS optimizer, which makes use of the orca_md module.
It can also be invoked via simple keywords described at the end of this section.
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6.3.1 Geometry Optimizations

Optimizations are fairly easy as in the following example:

! B3LYP/G SV(P) Opt
* int 0 1

C 0 0 0 0.0000 0.000 0.00
O 1 0 0 1.2029 0.000 0.00
H 1 2 0 1.1075 122.016 0.00
H 1 2 3 1.1075 122.016 180.00

*

An optimization with the RI method (the BP functional is recommend) would simply look like:

! BP SV(P) OPT
* int 0 1

C 0 0 0 0.0000 0.000 0.00
O 1 0 0 1.2029 0.000 0.00
H 1 2 0 1.1075 122.016 0.00
H 1 2 3 1.1075 122.016 180.00

*

An optimization of the first excited state of ethylene:

! BLYP SVP OPT

%tddft
IRoot 1

end

* xyz 0 1
C 0.000000 0.000000 0.666723
C 0.000000 0.000000 -0.666723
H 0.000000 -0.928802 1.141480
H -0.804366 -0.464401 -1.341480
H 0.000000 0.928802 1.241480
H 0.804366 0.464401 -1.241480
*

6.3.2 Numerical Gradients

If the analytic gradient is not available, the numerical gradient can simply be requested via:

! NumGrad

as in the following example:

!CCSD(T) TZVPP
!Opt NumGrad
* int 0 1
C 0 0 0 0 0 0
O 1 0 0 1.2 0 0
H 1 2 0 1.1 120 0
H 1 2 3 1.1 120 180
*

NOTE

• Be aware that the numerical gradient is quite expensive. The time for one gradient calculation is equal to 6
× (number of atoms) × (time for one single point calculation).
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• The numerical gradient can be calculated in a multi-process run, using a maximum of three times the number
of atoms (see section Calling the Program with Multiple Processes).

More details on various options, geometry convergence criteria and the like are found in section Geometry Opti-
mization.

6.3.3 Some Notes and Tricks

ò Note

• TightSCF in the SCF part is set as default to avoid the buildup of too much numerical noise in the
gradients.

• Even if the optimization does not converge, the ORCA output may still end with “****ORCA TERMI-
NATED NORMALLY****”. Therefore do not rely on the presence of this line as an indicator of whether
the geometry optimization is converged! Rather, one should instead rely on the fact that, an optimiza-
tion job that terminates because the maximum number of iterations has been reached, will generate the
following output message:

. Warning

The optimization did not converge but reached the maximum number of
optimization cycles. Please check your results very carefully.

While a successfully converged job will generate the following message instead:

***********************HURRAY********************
*** THE OPTIMIZATION HAS CONVERGED ***
*************************************************

� Tip

• In rare cases the redundant internal coordinate optimization fails. In this case, you may try to use COPT
(optimization in Cartesian coordinates). This will likely take many more steps to converge but should be
stable.

• For optimizations in Cartesian coordinates the initial guess Hessian is constructed in internal coordinates
and thus these optimizations should converge only slightly slower than those in internal coordinates.
Nevertheless, if you observe a slow convergence behaviour, it may be a good idea to compute a Hessian
initially (perhaps at a lower level of theory) and use InHess read in order to improve convergence.

• At the beginning of a TS optimization more information on the curvature of the PES is needed than a
model Hessian can give. The best choice is analytic Hessian, available for HF, DFT and MP2. In other
cases (e.g. CAS-SCF), the numerical evaluation is necessary. Nevertheless you do not need to calculate
the full Hessian when starting such a calculation. With ORCA we have good experience with approx-
imations to the exact Hessian. Here it is recommended to either directly combine the TS optimization
with the results of a relaxed surface scan or to use the Hybrid Hessian as the initial Hessian, depending
on the nature of the TS mode. Note that these approximate Hessians do never replace the exact Hessian
at the end of the optimization, which is always needed to verify the minimum or first order saddle point
nature of the obtained structure.
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6.3.4 Initial Hessian for Minimization

The convergence of a geometry optimization crucially depends on the quality of the initial Hessian. In the simplest
case it is taken as a unit matrix (in redundant internal coordinates we use 0.5 for bonds, 0.2 for angles and 0.1 for
dihedrals and improper torsions). However, simple model force-fields like the ones proposed by Schlegel, Lindh,
Swart or Almlöf are available and lead to much better convergence. The different guess Hessians can be set via the
InHess option which can be either unit, Almloef, Lindh, Swart or Schlegel in redundant internal coordinates.
Since version 2.5.30, these model force-fields (built up in internal coordinates) can also be used in optimizations
in Cartesian coordinates.

For minimizations we recommend the Almloef Hessian, which is the default for minimizations. The Lindh and
SchlegelHessian yield a similar convergence behaviour. From version 4.1?, there is also the option for the Swart
model Hessian, which is less parametrized and should improve for weakly interacting and/or unusual structures.
Of course the best Hessian is the exact one. Read may be used to input an exact Hessian or one that has been
calculated at a lower level of theory (or a “faster” level of theory). From version 2.5.30 on this option is also
available in redundant internal coordinates. But we have to point out that the use of the exact Hessian as initial
one is only of little help, since in these cases the convergence is usually only slightly faster, while at the same time
much more time is spent in the calculation of the initial Hessian.

To sum it up: we advise to use one of the simple model force-fields for minimizations.

6.3.5 Coordinate Systems for Optimizations

The coordinate system for the optimization can be chosen by the coordsys variable that can be set to cartesian
or redundantwithin the %geom block. The default is the redundant internal coordinate system. If the optimization
with redundant fails, you can still try cartesian. If the optimization is then carried out in Cartesian displacement
coordinates with a simple model force-field Hessian, the convergence will be only slightly slower. With a unit
matrix initial Hessian very slow convergence will result.

A compound job two_step_opt.inp that first computes a semi-empirical Hessian to start from is shown below:

* int 0 1
C 0 0 0 0 0 0
O 1 0 0 1.3 0 0
H 1 2 0 1.1 110 0
H 1 2 3 1.1 110 180
*

%compound
# Step 1: semiempirical calculation of the Hessian
New_Step
! AM1 NumFreq
Step_End

# Step 2: optimization starting from previous Hessian
New_Step
!B3LYP def2-svp def2/J Opt
%geom
InHess
Read
InHessName "two_step_opt_Compound_1.hess"
# this file must be either a .hess file from a
# frequency run or, a .opt/.carthess file left over from a
# previous geometry optimization
end
Step_End

End
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� Tip

• For transition metal complexes MNDO, AM1 or PM3 Hessians are not available. You can use ZINDO/1
or NDDO/1 Hessians instead. They are of lower quality than MNDO, AM1 or PM3 for organic molecules
but they are still far better than the standard unit matrix choice.

• If the quality of the initial semi-empirical Hessian is not sufficient you may use a “quick” RI-DFT job
(e.g. BP def2-sv(p) defgrid1)

• In semi-empirical geometry optimizations on larger molecules or in general when the molecules become
larger the redundant internal space may become large and the relaxation step may take a significant
fraction of the total computing time.

For condensed molecular systems and folded molecules (e.g. a U-shaped carbon chain) atoms can get very close
in space, while they are distant in terms of number of bonds connecting them. As damping of optimization steps in
internal coordinates might not work well for these cases, convergence can slow down. ORCA’s automatic internal
coordinate generation takes care of this problem by assigning bonds to atom pairs that are close in real space, but
distant in terms of number of bonds connecting them.

%geom
AddExtraBonds true # switch on/off assigning bonds to atom pairs that are

# connected by more than <Max_Length> bonds and are less
# than <MaxDist> Ang. apart (default true)

AddExtraBonds_MaxLength 10 # cutoff for number of bonds connecting the two
# atoms (default 10)

AddExtraBonds_MaxDist 5 # cutoff for distance between two atoms (default 5 Ang.)
end

For solid systems modeled as embedded solids the automatically generated set of internal coordinates might become
very large, rendering the computing time spent in the optimization routine unnecessarily large. Usually, in such
calculations the cartesian positions of outer atoms, coreless ECPs and point charges are constrained during the
optimization - thus most of their internal coordinates are not needed. By requesting:

%geom
ReduceRedInts true
end

only the required needed internal coordinates (of the constrained atoms) are generated.

OBS: If the step in redundant fails badly and only Cartesian constrains are set (or no constrains), ORCA will
fallback to a cartesian step automatically. This can be turned off by setting CARTFALLBACK to FALSE.

6.3.6 Constrained Optimizations

You can perform constrained optimizations which can, at times, be extremely helpful. This works as shown in the
following example:

! RKS B3LYP/G SV(P) Opt
%geom Constraints

{ B 0 1 1.25 C }
{ A 2 0 3 120.0 C }
end

end

* int 0 1
C 0 0 0 0.0000 0.000 0.00
O 1 0 0 1.2500 0.000 0.00
H 1 2 0 1.1075 122.016 0.00
H 1 2 3 1.1075 122.016 180.00

*
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Constraining bond distances : { B N1 N2 value C }
Constraining bond angles : { A N1 N2 N1 value C }
Constraining dihedral angles : { D N1 N2 N3 N4 value C }
Constraining cartesian coordinates : { C N1 C }

ò Note

• Like for normal optimizations you can use numerical gradients (see Numerical Gradients.) for con-
strained optimizations. In this case the numerical gradient will be evaluated only for non-constrained
coordinates, saving a lot of computational effort, if a large part of the structure is constrained.

• “value” in the constraint input is optional. If you do not give a value, the present value in the structure is
constrained. For cartesian constraints you can’t give a value, but always the initial position is constrained.

• It is recommended to use a value not too far away from your initial structure.

• It is possible to constrain whole sets of coordinates:

all bond lengths where N1 is involved : { B N1 * C}
all bond lengths : { B * * C}
all bond angles where N2 is the central atom: { A * N2 * C }
all bond angles : { A * * * C }
all dihedral angles with central bond N2-N3 : { D * N2 N3 * C }
all dihedral angles : { D * * * * C }

• For Cartesian constraints lists of atoms can be defined:

a list of atoms (10 to 17) with Cartesian constraints : { C 10:17 C}

• Coordinates along a single Cartesian direction can be frozen as described in section Special definitions.

• If there are only a few coordinates that have to be optimized you can use the invertConstraints option:

%geom Constraints
{ B 0 1 C }
end

invertConstraints true # only the C-O distance is optimized
# does not affect Cartesian coordinates

end

• In some cases it is advantageous to optimize only the positions of the hydrogen atoms and let the remaining
molecule skeleton fixed:

%geom optimizehydrogens true
end

ò Note

• In the special case of a fragment optimization (see next point) the optimizehydrogens keyword does
not fix the heteroatoms, but ensures that all hydrogen positions are relaxed.

• In Cartesian optimization, only Cartesian constraints are allowed.
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6.3.7 Constrained Optimizations for Molecular Clusters (Fragment Optimization)

If you want to study systems, which consist of several molecules (e.g. the active site of a protein) with constraints,
then you can either use cartesian constraints (see above) or use ORCA’s fragment constraint option. ORCA allows
the user to define fragments in the system. For each fragment one can then choose separately whether it should be
optimized or constrained. Furthermore, it is possible to choose fragment pairs whose distance and orientation with
respect to each other should be constrained. Here, the user can either define the atoms which make up the connection
between the fragments, or the program chooses the atom pair automatically via a closest distance criterion. ORCA
then chooses the respective constrained coordinates automatically. An example for this procedure is shown below.

The coordinates are taken from a crystal structure [PDB-code 2FRJ]. In our gas phase model we choose only a
small part of the protein, which is important for its spectroscopic properties. Our selection consists of a heme-
group (fragment 1), important residues around the reaction site (lysine (fragment 2) and histidine (fragment 3)), an
important water molecule (fragment 4), the NO-ligand (fragment 5) and part of a histidine (fragment 6) coordinated
to the heme-iron. In this constrained optimization we want to maintain the position of the heteroatoms of the heme
group. Since the protein backbone is missing, we have to constrain the orientation of lysine and histidine (fragments
2 and 3) side chains to the heme group. All other fragments (the ones which are directly bound to the heme-iron
and the water molecule) are fully optimized internally and with respect to the other fragments. Since the crystal
structure does not reliably resolve the hydrogen positions, we relax also the hydrogen positions of the heme group.

# !! If you want to run this optimization: be aware
# !! that it will take some time!
! BP86 SV(P) Opt
%geom

ConstrainFragments { 1 } end # constrain all internal
# coordinates of fragment 1

ConnectFragments
{1 2 C 12 28} # connect the fragments via the atom pair 12/28 and 15/28 and

(continues on next page)
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(continued from previous page)

{1 3 C 15 28} # constrain the internal coordinates connecting
# fragments 1/2 and 1/3

{1 5 O}
{1 6 O}
{2 4 O}
{3 4 O}

end
optimizeHydrogens true # do not constrain any hydrogen position

end
* xyz 1 2
Fe(1) -0.847213 -1.548312 -1.216237 newgto "TZVP" end
N(5) -0.712253 -2.291076 0.352054 newgto "TZVP" end
O(5) -0.521243 -3.342329 0.855804 newgto "TZVP" end
N(6) -0.953604 -0.686422 -3.215231 newgto "TZVP" end
N(3) -0.338154 -0.678533 3.030265 newgto "TZVP" end
N(3) -0.868050 0.768738 4.605152 newgto "TZVP" end
N(6) -1.770675 0.099480 -5.112455 newgto "TZVP" end
N(1) -2.216029 -0.133298 -0.614782 newgto "TZVP" end
N(1) -2.371465 -2.775999 -1.706931 newgto "TZVP" end
N(1) 0.489683 -2.865714 -1.944343 newgto "TZVP" end
N(1) 0.690468 -0.243375 -0.860813 newgto "TZVP" end
N(2) 1.284320 3.558259 6.254287
C(2) 5.049207 2.620412 6.377683
C(2) 3.776069 3.471320 6.499073
C(2) 2.526618 2.691959 6.084652
C(3) -0.599599 -0.564699 6.760567
C(3) -0.526122 -0.400630 5.274274
C(3) -0.194880 -1.277967 4.253789
C(3) -0.746348 0.566081 3.234394
C(6) 0.292699 0.510431 -6.539061
C(6) -0.388964 0.079551 -5.279555
C(6) 0.092848 -0.416283 -4.078708
C(6) -2.067764 -0.368729 -3.863111
C(1) -0.663232 1.693332 -0.100834
C(1) -4.293109 -1.414165 -0.956846
C(1) -1.066190 -4.647587 -2.644424
C(1) 2.597468 -1.667470 -1.451465
C(1) -1.953033 1.169088 -0.235289
C(1) -3.187993 1.886468 0.015415
C(1) -4.209406 0.988964 -0.187584
C(1) -3.589675 -0.259849 -0.590758
C(1) -3.721903 -2.580894 -1.476315
C(1) -4.480120 -3.742821 -1.900939
C(1) -3.573258 -4.645939 -2.395341
C(1) -2.264047 -4.035699 -2.263491
C(1) 0.211734 -4.103525 -2.488426
C(1) 1.439292 -4.787113 -2.850669
C(1) 2.470808 -3.954284 -2.499593
C(1) 1.869913 -2.761303 -1.932055
C(1) 2.037681 -0.489452 -0.943105
C(1) 2.779195 0.652885 -0.459645
C(1) 1.856237 1.597800 -0.084165
C(1) 0.535175 1.024425 -0.348298
O(4) -1.208602 2.657534 6.962748
H(3) -0.347830 -1.611062 7.033565
H(3) -1.627274 -0.387020 7.166806
H(3) 0.121698 0.079621 7.324626
H(3) 0.134234 -2.323398 4.336203
H(3) -1.286646 1.590976 5.066768
H(3) -0.990234 1.312025 2.466155
H(4) -2.043444 3.171674 7.047572

(continues on next page)
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H(2) 1.364935 4.120133 7.126900
H(2) 0.354760 3.035674 6.348933
H(2) 1.194590 4.240746 5.475280
H(2) 2.545448 2.356268 5.027434
H(2) 2.371622 1.797317 6.723020
H(2) 3.874443 4.385720 5.867972
H(2) 3.657837 3.815973 7.554224
H(2) 5.217429 2.283681 5.331496
H(2) 5.001815 1.718797 7.026903
H(6) -3.086380 -0.461543 -3.469767
H(6) -2.456569 0.406212 -5.813597
H(6) 1.132150 -0.595619 -3.782287
H(6) 0.040799 1.559730 -6.816417
H(6) 0.026444 -0.139572 -7.404408
H(6) 1.392925 0.454387 -6.407850
H(1) 2.033677 2.608809 0.310182
H(1) 3.875944 0.716790 -0.424466
H(1) 3.695978 -1.736841 -1.485681
H(1) 3.551716 -4.118236 -2.608239
H(1) 1.487995 -5.784645 -3.308145
H(1) -1.133703 -5.654603 -3.084826
H(1) -3.758074 -5.644867 -2.813441
H(1) -5.572112 -3.838210 -1.826943
H(1) -0.580615 2.741869 0.231737
H(1) -3.255623 2.942818 0.312508
H(1) -5.292444 1.151326 -0.096157
H(1) -5.390011 -1.391441 -0.858996
H(4) -1.370815 1.780473 7.384747
H(2) 5.936602 3.211249 6.686961
*

ò Note

• You have to connect the fragments in such a way that the whole system is connected.

• You can divide a molecule into several fragments.

• Since the initial Hessian for the optimization is based upon the internal coordinates: Connect the frag-
ments in a way that their real interaction is reflected.

• This option can be combined with the definition of constraints, scan coordinates and the
optimizeHydrogens option (but: its meaning in this context is different to its meaning in a normal
optimization run, relatively straightforward see section Geometry Optimization).

• Can be helpful in the location of complicated transition states (with relaxed surface scans).

6.3.8 Adding Arbitrary Wall Potentials

For some applications, it might be interesting to add arbitrary wall potentials during the geometry optimization. For
example, if you want to optimize an intermolecular complex and need that both structures stick together, without
one flying away during the optimization, or when using microsolvation.

In ORCA you can add three kinds of arbitrary “wall potentials”: an ellipsoid or spherical of the form

𝑉 =

(︂
|R−O|
𝑟𝑎𝑑𝑖𝑢𝑠

)︂30

or a rectangular box potential with 6 walls of the form

𝑉 = 𝑒5(R−𝑤𝑎𝑙𝑙)
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These can be given in two ways: by explicitly defining the origin of the potential and its limits, e.g:

%GEOM ELLIPSEPOT 0,0,0,5,3,4 # the last are the a,b and c radii

or:

%GEOM SPHEREPOT 0,0,0,5 # the last is the radius

or:

%GEOM BOXPOT 0,0,0,4,-4,3,-3,6,-6 # maxx, minx, maxy, miny, maxz and minz last

where the first three numbers are the center and the last is the radius for the sphere (or a,b and c for the ellipsoid)
and the max and min x,y and z dimensions of the box. All numbers should be given in Ångström.

In case a single number is given instead, the walls will be automatically centered around the centroid of the molecule
and that number will be added to the minimum sphere or box that is necessary to contain the molecule. For example:

%GEOM SPHEREPOT 2

or:

%GEOM BOXPOT 2

will build a minimum wall centered on the centroid that encloses the molecule and add 2 Ångström on top of it.
Still on the sphere case, a negative number like

%GEOM SPHEREPOT -2

will make the total radius of the sphere to be Ångström.

OBS: This will apply to regular geometry optimizations, as well as to the Global Optimizer (GOAT).

6.3.9 Relaxed Surface Scans

A final thing that comes in really handy are relaxed surface scans, i.e. you can scan through one coordinate while
all others are relaxed. It works as shown in the following example:

! B3LYP/G SV(P) Opt
%geom Scan

B 0 1 = 1.35, 1.10, 12 # C-O distance that will be scanned
end

end

* int 0 1
C 0 0 0 0.0000 0.000 0.00
O 1 0 0 1.3500 0.000 0.00
H 1 2 0 1.1075 122.016 0.00
H 1 2 3 1.1075 122.016 180.00

*

In the example above the value of the bond length between C and O will be changed in 12 equidistant steps from
1.35 down to 1.10 Ångströms and at each point a constrained geometry optimization will be carried out.

ò Note

• If you want to perform a geometry optimization at a series of values with non-equidistant steps you can
give this series in square brackets, [ ]. The general syntax is as follows:

B N1 N2 = initial-value, final-value, NSteps
or:
B N1 N2 [value1 value2 value3 ... valueN]
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• In addition to bond lengths you can also scan bond angles and dihedral angles:

B N1 N2 = ... # bond length
A N1 N2 N3 = ... # bond angle
D N1 N2 N3 N4 = ... # dihedral angle

� Tip

• As in constrained geometry optimizations it is possible to start the relaxed surface scan with a different
scan parameter than the value present in your molecule. But keep in mind that this value should not be
too far away from your initial structure.

A more challenging example is shown below. Here, the H-atom abstraction step from CH4 to OH-radical is com-
puted with a relaxed surface scan (vide supra). The job was run as follows:

! B3LYP SV(P) Opt SlowConv NoTRAH
%geom scan B 1 0 = 2.0, 1.0, 15 end end
* int 0 2
C 0 0 0 0.000000 0.000 0.000
H 1 0 0 1.999962 0.000 0.000
H 1 2 0 1.095870 100.445 0.000
H 1 2 3 1.095971 90.180 119.467
H 1 2 3 1.095530 95.161 238.880
O 2 1 3 0.984205 164.404 27.073
H 6 2 1 0.972562 103.807 10.843
*

It is obvious that the reaction is exothermic and passes through an early transition state in which the hydrogen
jumps from the carbon to the oxygen. The structure at the maximum of the curve is probably a very good guess for
the true transition state that might be located by a transition state finder.

You will probably find that such relaxed surface scans are incredibly useful but also time consuming. Even the
simple job shown below required several hundred single point and gradient evaluations (convergence problems
appear for the SCF close to the transition state and for the geometry once the reaction partners actually dissociate
– this is to be expected). Yet, when you search for a transition state or you want to get insight into the shapes of
the potential energy surfaces involved in a reaction it might be a good idea to use this feature. One possibility to
ease the burden somewhat is to perform the relaxed surface scan with a “fast” method and a smaller basis set and
then do single point calculations on all optimized geometries with a larger basis set and/or higher level of theory.
At least you can hope that this should give a reasonable approximation to the desired surface at the higher level of
theory – this is the case if the geometries at the lower level are reasonable.
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Fig. 6.22: Relaxed surface scan for the H-atom abstraction from CH4 by OH-radical (B3LYP/SV(P)).

Multidimensional Scans

After several requests from our users ORCA now allows up to three coordinates to be scanned within one calcula-
tion.

! B3LYP/G SV(P) Opt
%geom Scan

B 0 1 = 1.35, 1.10, 12 # C-O distance that will be scanned
B 0 2 = 1.20, 1.00, 5 # C-H distance that will be scanned
A 2 0 1 = 140, 100, 5 # H-C-O angle that will be scanned
end

end

* int 0 1
C 0 0 0 0.0000 0.000 0.00
O 1 0 0 1.3500 0.000 0.00
H 1 2 0 1.1075 122.016 0.00
H 1 2 3 1.1075 122.016 180.00

*

ò Note

• For finding transition state structures of more complicated reaction paths ORCA now offers its very
efficient NEB-TS implementation (see section Nudged Elastic Band Method).

• 2-dimensional or even 3-dimensional relaxed surface scans can become very expensive - e.g. requesting
10 steps per scan, ORCA has to carry out 1000 constrained optimizations for a 3-D scan.

• The results can depend on the direction of the individual scans and the ordering of the scans.
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Simultaneous multidimensional scans, in which all scan coordinates are changed at the same time, can be requested
via the following keyword (which brings the cost of a multidimensional relaxed surface scan down to the cost of a
single relaxed surface scan):

%geom
Scan B 0 1 = 3, 1, 15 end
Scan B 1 2 = 1, 3, 15 end
Simul_Scan true

end

6.3.10 Multiple XYZ File Scans

A different type of scan is implemented in ORCA in conjunction with relaxed surface scans. Such scans produce
a series of structures that are typically calculated using some ground state method. Afterwards one may want to
do additional or different calculations along the generated pathway such as excited state calculations or special
property calculations. In this instance, the “multiple XYZ scan” feature is useful. If you request reading from a
XYZ file via:

* xyzfile Charge Multiplicity FileName

this file could contain a number of structures. The format of the file is:

Number of atoms M
Comment line

AtomName1 X Y Z
AtomName2 X Y Z
...
AtomNameM X Y Z
>
Number of atoms M

Comment line
AtomName1 X Y Z
...

Thus, the structures are simply of the standard XYZ format and they are provided one after the other. There is no
need to add any extra character between them. This was the case for ORCA versions older than 6.0.0, where the
structures were separated by a “>” sign. The user can still use this format, if preferred, but is not needed anymore.
After processing the XYZ file, single point calculations are performed on each structure in sequence and the results
are collected at the end of the run in the same kind of trajectory.dat files as produced from trajectory calculations.

In order to aid in using this feature, the relaxed surface scans produce a file called MyJob.allxyz that is of the
correct format to be re-read in a subsequent run.

6.3.11 Transition States

Introduction to Transition State Searches

If you provide a good estimate for the structure of the transition state (TS) structure, then you can find the respective
transition state with the following keywords (in this example we take the structure with highest energy of the above
relaxed surface scan):

! B3LYP SV(P) TightSCF SlowConv OptTS
# performs a TS optimization with the EF-algorithm
# Transition state: H-atom abstraction from CH4 to OH-radical

%geom
Calc_Hess true # calculation of the exact Hessian

# before the first optimization step

(continues on next page)
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(continued from previous page)

end

* int 0 2
C 0 0 0 0.000000 0.000 0.000
H 1 0 0 1.285714 0.000 0.000
H 1 2 0 1.100174 107.375 0.000
H 1 2 3 1.100975 103.353 119.612
H 1 2 3 1.100756 105.481 238.889
O 2 1 3 1.244156 169.257 17.024
H 6 2 1 0.980342 100.836 10.515

*

ò Note

• You need a good guess of the TS structure. Relaxed surface scans can help in almost all cases (see also
example above).

• For TS optimization (in contrast to geometry optimization) an exact Hessian, a Hybrid Hessian or a
modification of selected second derivatives is necessary.

• Analytic Hessian evaluation is available for HF and SCF methods, including the RI and RIJCOSX ap-
proximations and canonical MP2.

• Check the eigenmodes of the optimized structure for the eigenmode with a single imaginary frequency.
You can also visualize this eigenmode with orca_pltvib (section Animation of Vibrational Modes) or
any other visualization program that reads ORCA output files.

• If the Hessian is calculated during the TS optimization, it is stored as basename.001.hess, if it is re-
calculated several times, then the subsequently calculated Hessians are stored as basename.002.hess,
basename.003.hess, . . .

• If you are using the Hybrid Hessian, then you have to check carefully at the beginning of the TS opti-
mization (after the first three to five cycles) whether the algorithm is following the correct mode (see TIP
below). If this is not the case you can use the same Hybrid Hessian again via the inhess read keyword
and try to target a different mode (via the TS_Mode keyword, see below).

In the example above the TS mode is of local nature. In such a case you can directly combine the relaxed surface
scan with the TS optimization with the

! ScanTS

command, as used in the following example:

! B3LYP SV(P) TightSCF SlowConv
! ScanTS # perform a relaxed surface scan and TS optimization

# in one calculation
%geom scan B 1 0 = 2.0, 1.0, 15 end end
* int 0 2
C 0 0 0 0.000000 0.000 0.000
H 1 0 0 1.999962 0.000 0.000
H 1 2 0 1.095870 100.445 0.000
H 1 2 3 1.095971 90.180 119.467
H 1 2 3 1.095530 95.161 238.880
O 2 1 3 0.984205 164.404 27.073
H 6 2 1 0.972562 103.807 10.843
*

ò Note
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• The algorithm performs the relaxed surface scan, aborts the Scan after the maximum is surmounted,
chooses the optimized structure with highest energy, calculates the second derivative of the scanned
coordinate and finally performs a TS optimization.

• If you do not want the scan to be aborted after the highest point has been reached but be carried out up
to the last point, then you have to type:

%geom
fullScan true # do not abort the scan with !ScanTS

end

As transition state finder we implemented the quasi-Newton like Hessian mode following algorithm.[67, 241, 365,
389, 399, 513, 763, 764, 765] This algorithm maximizes the energy with respect to one (usually the lowest) eigen-
mode and minimizes with respect to the remaining 3𝑁 − 7(6) eigenmodes of the Hessian.

� Tip

• You can check at an early stage if the optimization will lead to the “correct” transition state. After the
first optimization step you find the following output for the redundant internal coordinates:

---------------------------------------------------------------------------
Redundant Internal Coordinates

(Angstroem and degrees)
Definition Value dE/dq Step New-Value comp.(TS mode)

----------------------------------------------------------------------------
1. B(H 1,C 0) 1.2857 0.013136 0.0286 1.3143 0.58
2. B(H 2,C 0) 1.1002 0.014201 -0.0220 1.0782
3. B(H 3,C 0) 1.1010 0.014753 -0.0230 1.0779
4. B(H 4,C 0) 1.1008 0.014842 -0.0229 1.0779
5. B(O 5,H 1) 1.2442 -0.015421 -0.0488 1.1954 0.80
6. B(H 6,O 5) 0.9803 0.025828 -0.0289 0.9514
7. A(H 1,C 0,H 2) 107.38 -0.001418 -0.88 106.49
8. A(H 1,C 0,H 4) 105.48 -0.002209 -0.46 105.02
9. A(H 1,C 0,H 3) 103.35 -0.003406 0.08 103.43
10. A(H 2,C 0,H 4) 113.30 0.001833 0.35 113.65
11. A(H 3,C 0,H 4) 113.38 0.002116 0.26 113.64
12. A(H 2,C 0,H 3) 112.95 0.001923 0.45 113.40
13. A(C 0,H 1,O 5) 169.26 -0.002089 4.30 173.56
14. A(H 1,O 5,H 6) 100.84 0.003097 -1.41 99.43
15. D(O 5,H 1,C 0,H 2) 17.02 0.000135 0.24 17.26
16. D(O 5,H 1,C 0,H 4) -104.09 -0.000100 0.52 -103.57
17. D(O 5,H 1,C 0,H 3) 136.64 0.000004 0.39 137.03
18. D(H 6,O 5,H 1,C 0) 10.52 0.000078 -0.72 9.79
----------------------------------------------------------------------------

Every Hessian eigenmode can be represented by a linear combination of the redundant internal coordinates. In
the last column of this list the internal coordinates, that represent a big part of the mode which is followed uphill,
are labelled. The numbers reflect their magnitude in the TS eigenvector (fraction of this internal coordinate in the
linear combination of the eigenvector of the TS mode). Thus at this point you can already check whether your TS
optimization is following the right mode (which is the case in our example, since we are interested in the abstraction
of H1 from C0 by O5.

• If you want the algorithm to follow a different mode than the one with lowest eigenvalue, you can either
choose the number of the mode:

%geom
TS_Mode {M 1} # {M 1} mode with second lowest eigenvalue

end # (default: {M 0}, mode with lowest eigenvalue)
end

or you can give an internal coordinate that should be strongly involved in this mode:
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%geom
TS_Mode {B 1 5} # bond between atoms 1 and 5,

end # you can also choose an angle: {A N1 N2 N1}
# or a dihedral: {D N1 N2 N3 N4}

end

� Tip

• If you look for a TS of a breaking bond the respective internal coordinate might not be included in the
list of redundant internal coordinates due to the bond distance being slightly too large, leading to slow
or even no convergence at all. In order to prevent that behavior a region of atoms that are active in the
TS search can be defined, consisting of e.g. the two atoms of the breaking bond. During the automatic
generation of the internal coordinates the bond radii of these atoms (and their neighbouring atoms) are
increased, making it more probable that breaking or forming bonds in the TS are detected as bonds.

%geom
TS_Active_Atoms { 1 2 3 } # atoms that are involved in TS, e.g. for proton

end # transfer the proton, its acceptor and its donor
TS_Active_Atoms_Factor 1.5 # factor by which the cutoff for bonds is increased for

# the above defined atoms.
# (Default 1.5, i.e. increased by 50%)

end

Hessians for Transition State Calculations

For transition state (TS) optimization a simple initial Hessian, which is used for minimization, is not sufficient. In a
TS optimization we are looking for a first order saddle point, and thus for a point on the PES where the curvature is
negative in the direction of the TS mode (the TS mode is also called transition state vector, the only eigenvector of
the Hessian at the TS geometry with a negative eigenvalue). Starting from an initial guess structure the algorithm
used in the ORCA TS optimization has to climb uphill with respect to the TS mode, which means that the starting
structure has to be near the TS and the initial Hessian has to account for the negative curvature of the PES at that
point. The simple force-field Hessians cannot account for this, since they only know harmonic potentials and thus
positive curvature.

The most straightforward option in this case would be (after having looked for a promising initial guess structure
with the help of a relaxed surface scan) to calculate the exact Hessian before starting the TS optimization. With
this Hessian (depending on the quality of the initial guess structure) we know the TS eigenvector with its negative
eigenvalue and we have also calculated the exact force constants for all other eigenmodes (which should have
positive force constants). For the HF, DFT methods and MP2, the analytic Hessian evaluation is available and is
the best choice, for details see section Frequencies (Vibrational Frequencies).

When only the gradients are available (most notably the CASSCF), the numerical calculation of the exact Hessian
is very time consuming, and one could ask if it is really necessary to calculate the full exact Hessian since the only
special thing (compared to the simple force-field Hessians) that we need is the TS mode with a negative eigenvalue.

Here ORCA provides two different possibilities to speed up the Hessian calculation, depending on the nature of
the TS mode: the Hybrid Hessian and the calculation of the Hessian value of an internal coordinate. For both
possibilities the initial Hessian is based on a force-field Hessian and only parts of it are calculated exactly. If
the TS mode is of very local nature, which would be the case when e.g. cleaving or forming a bond, then the
exactly calculated part of the Hessian can be the second derivative of only one internal coordinate, the one which
is supposed to make up the TS mode (the formed or cleaved bond). If the TS mode is more complicated and more
delocalized, as e.g. in a concerted proton transfer reaction, then the hybrid Hessian, a Hessian matrix in which the
numerical second derivatives are calculated only for those atoms, which are involved in the TS mode (for more
details, see section Geometry Optimization), should be sufficient. If you are dealing with more complicated cases
where these two approaches do not succeed, then you still have the possibility to start the TS optimization with a
full exact Hessian.

Numerical Frequency calculations are quite expensive. You can first calculate the Hessian at a lower level of theory
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or with a smaller basis set and use this Hessian as input for a subsequent TS optimization:

%geom
inhess Read # this command comes with:
InHessName "yourHessian.hess" # filename of Hessian input file

end

Another possibility to save computational time is to calculate exact Hessian values only for those atoms which
are crucial for the TS optimization and to use approximate Hessian values for the rest. This option is very useful
for big systems, where only a small part of the molecule changes its geometry during the transition and hence the
information of the full exact Hessian is not necessary. With this option the coupling of the selected atoms are
calculated exactly and the remaining Hessian matrix is filled up with a model initial Hessian:

%geom
Calc_Hess true
Hybrid_Hess {0 1 5 6} end # calculates a Hybrid Hessian with

# exact calculation for atoms 0, 1, 5 and 6
end

For some molecules the PES near the TS can be very far from ideal for a Newton-Raphson step. In such a case
ORCA can recalculate the Hessian after a number of steps:

%geom
Recalc_Hess 5 # calculate the Hessian at the beginning

# and recalculate it after 5,10,15,... steps
end

Another solution in that case is to switch on the trust radius update, which reduces the step size if the Newton-
Raphson steps behave unexpected and ensures bigger step size if the PES seems to be quite quadratic:

%geom
Trust 0.3 # Trust <0 - use fixed trust radius (default: -0.3 au)

# Trust >0 - use trust radius update, i.e. 0.3 means:
# start with trust radius 0.3 and use trust radius update

end

Special Coordinates for Transition State Optimizations

• If you look for a TS of a breaking bond the respective internal coordinate might not be included in the
list of redundant internal coordinates (but this would accelerate the convergence). In such a case (and of
course in others) you can add coordinates to or remove them from the set of autogenerated redundant internal
coordinates (alternatively check the TS_Active_Atoms keyword):

# add ( A ) or remove ( R ) internal coordinates
%geom

modify_internal
{ B 10 0 A } # add a bond between atoms 0 and 10
{ A 8 9 10 R } # remove the angle defined

# by atoms 8, 9 and 10
{ D 7 8 9 10 R } # remove the dihedral angle defined

end # by atoms 7, 8, 9 and 10
end
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6.3.12 MECP Optimization

There are reactions where the analysis of only one spin state of a system is not sufficient, but where the reactivity
is determined by two or more different spin states (Two- or Multi-state reactivity). The analysis of such reactions
reveals that the different PESs cross each other while moving from one stationary point to the other. In such a case
you might want to use the ORCA optimizer to locate the point of lowest energy of the crossing surfaces (called the
minimum energy crossing point, MECP).

As an example for such an analysis we show the MECP optimization of the quartet and sextet state of [FeO]+.

!B3LYP TZVP Opt SurfCrossOpt SlowConv
%mecp

Mult 4
end
* xyz +1 6
Fe 0.000000 0.000000 0.000000
O 0.000000 0.000000 1.670000
*

• For further options for the MECP calculation, see section Minimum Energy Crossing Points.

� Tip

You can often use a minimum or TS structure of one of the two spin states as initial guess for your MECP-
optimization. If this doesn’t work, you might try a scan to get a better initial guess.

The results of the MECP optimization are given in the following output. The distance where both surfaces cross
is at 1.994 Å. In this simple example there is only one degree of freedom and we can also locate the MECP via a
parameter scan. The results of the scan are given in Fig. 6.23 for comparison. Here we see that the crossing occurs
at a Fe-O-distance of around 2 Å.

For systems with more than two atoms a scan is not sufficient any more and you have to use the MECP optimization.

***********************HURRAY********************
*** THE OPTIMIZATION HAS CONVERGED ***
*************************************************

-------------------------------------------------------------------
Redundant Internal Coordinates
--- Optimized Parameters ---
(Angstroem and degrees)

Definition OldVal dE/dq Step FinalVal
-------------------------------------------------------------------

1. B(O 1,Fe 0) 1.9939 -0.000001 0.0000 1.9939
-------------------------------------------------------------------

*******************************************************
*** FINAL ENERGY EVALUATION AT THE STATIONARY POINT ***
*** (AFTER 8 CYCLES) ***
*******************************************************

------------------------------------- ----------------
Energy difference between both states -0.000000061
------------------------------------- ----------------
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Fig. 6.23: Parameter scan for the quartet and sextet state of [FeO]+ (B3LYP/SV(P)).

A more realistic example with more than one degree of freedom is the MECP optimization of a structure along the
reaction path of the CH3O↔ CH2OH isomerization.

!B3LYP SV SurfCrossOpt SurfCrossNumFreq
%mecp Mult 1

end
*xyz 1 3
C 0.000000 0.000000 0.000000
H 0.000000 0.000000 1.300000
H 1.026719 0.000000 -0.363000
O -0.879955 0.000000 -1.088889
H -0.119662 -0.866667 0.961546
*

ò Note

• To verify that a stationary point in a MECP optimization is a minimum, you have to use an adapted
frequency analysis, called by SurfCrossNumFreq (see section Minimum Energy Crossing Points).
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6.3.13 Conical Intersection Optimization

OBS.: It is currently only available using TD-DFT, will be expanded in future versions. More details about the
specific options on Conical Intersections.

A conical intersection (CI) is a complicated 3N-8 dimensional space, where two potential energy surfaces cross and
the energy difference between these two states is zero. Inside this so-called “seam-space” minima and transition
states can exist. Locating these minima is essential to understand photo-chemical processes, that are governed by
non-adiabatic events, as e.g. photoisomerization, photostability - similar to locating transition states for chemical
reactions.

As an example for such an analysis we show the conical intersection optimization of the ground and first excited
state of singlet ethylene.

ò Note

Even though locating the CI of a TD-DFT excited state and the reference state is supported, it is not the rec-
ommended way of finding the ground state-excited state CI, because such CIs are not described properly by
TD-DFT (in particular, TD-DFT even predicts the wrong dimensionality for the intersection space). Instead,
it is advised to use SF-TD-DFT for this purpose, e.g. use the 𝑇1 state as the reference state, and calculate both
the 𝑆0 and 𝑆1 states as excited states. (vide infra)

!B3LYP DEF2-SVP CI-OPT
%TDDFT IROOT 1 END
* xyz 0 1
C 0.595560237 -0.010483480 -0.000284187
C -0.831313750 0.167231832 0.001482505
H -1.381857976 0.227877089 0.963419721
H 1.265119434 0.874806815 0.006897459
H -1.382258208 0.243775568 -0.959090898
H 1.027489724 -1.032962768 -0.008829646
*

� Tip

You can often use a structure between the optimized structures of both states for your CI-optimization. If this
doesn’t work, you might try a scan to get a better initial guess.

The results of the CI-optimization are given in the following output. The energy difference between the ground and
excited state is printed as E diff. (CI), being reasonabley close for a conical intersection. For a description of the
calculation of the non-adiabatic couplings at this geometry, see section Numerical non-adiabatic coupling matrix
elements.

.--------------------.
----------------------|Geometry convergence|-------------------------
Item value Tolerance Converged
---------------------------------------------------------------------
Energy change 0.0000164283 0.0000050000 NO
E diff. (CI) 0.0000025162 0.0001000000 YES
RMS gradient 0.0000068173 0.0001000000 YES
MAX gradient 0.0000136891 0.0003000000 YES
RMS step 0.0000358228 0.0020000000 YES
MAX step 0.0000821130 0.0040000000 YES
........................................................
Max(Bonds) 0.0000 Max(Angles) 0.00
Max(Dihed) 0.00 Max(Improp) 0.00
---------------------------------------------------------------------

(continues on next page)
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(continued from previous page)

Everything but the energy has converged. However, the energy
appears to be close enough to convergence to make sure that the
final evaluation at the new geometry represents the equilibrium energy.
Convergence will therefore be signaled now

***********************HURRAY********************
*** THE OPTIMIZATION HAS CONVERGED ***
*************************************************

---------------------------------------------------------------------------
Redundant Internal Coordinates

--- Optimized Parameters ---
(Angstroem and degrees)

Definition OldVal dE/dq Step FinalVal
----------------------------------------------------------------------------
1. B(C 1,C 0) 1.3254 -0.000005 -0.0000 1.3254
2. B(H 2,C 1) 1.1270 0.000004 -0.0000 1.1270
3. B(H 3,C 0) 1.1271 -0.000002 0.0000 1.1271
4. B(H 4,C 1) 1.1271 0.000000 -0.0000 1.1271
5. B(H 5,C 0) 1.1271 -0.000002 0.0000 1.1271
6. A(H 3,C 0,H 5) 106.00 0.000001 -0.00 106.00
7. A(C 1,C 0,H 5) 126.97 -0.000013 0.00 126.97
8. A(C 1,C 0,H 3) 127.03 0.000011 -0.00 127.03
9. A(C 0,C 1,H 4) 127.03 0.000013 -0.00 127.03
10. A(H 2,C 1,H 4) 106.01 0.000001 -0.00 106.01
11. A(C 0,C 1,H 2) 126.96 -0.000014 0.00 126.96
12. D(H 2,C 1,C 0,H 5) 73.60 0.000000 -0.00 73.59
13. D(H 4,C 1,C 0,H 3) 72.78 -0.000001 0.00 72.78
14. D(H 4,C 1,C 0,H 5) -106.81 0.000001 -0.00 -106.82
15. D(H 2,C 1,C 0,H 3) -106.82 -0.000002 0.00 -106.81
----------------------------------------------------------------------------

*******************************************************
*** FINAL ENERGY EVALUATION AT THE STATIONARY POINT ***
*** (AFTER 12 CYCLES) ***
*******************************************************

CI minima between excited states In an analogous way, the conical intersection minima between two excited
states can be requested by selection both an IROOT and a JROOT, shown below.

!B3LYP DEF2-SVP CI-OPT
%TDDFT IROOT 2

JROOT 1
#IROOTMULT TRIPLET would search in the triplet PES
#SF TRUE would search for the S0-S1 CI from a T1 reference, using SF-TD-DFT
# (but remember to set the multiplicity as 3 instead of 1)

END
* xyz 0 1
C 0.595560237 -0.010483480 -0.000284187
C -0.831313750 0.167231832 0.001482505
H -1.381857976 0.227877089 0.963419721
H 1.265119434 0.874806815 0.006897459
H -1.382258208 0.243775568 -0.959090898
H 1.027489724 -1.032962768 -0.008829646
*
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6.3.14 Constant External Force - Mechanochemistry

Constant external force can be applied on the molecule within the EFEI formalism[719] by pulling on the two
defined atoms. To apply the external force, use the POTENTIALS in the geom block. The potential type is C for
Constant force, indexes of two atoms (zero-based) and the value of force in nN.

! def2-svp OPT
%geom

POTENTIALS
{ C 2 3 4.0 }

end
end

* xyz 0 1
O 0.73020 -0.07940 -0.00000
O -0.73020 0.07940 -0.00000
H 1.21670 0.75630 0.00000
H -1.21670 -0.75630 0.00000
*

The results are seen in the output of the SCF procedure, where the total energy already contains the force term.

----------------
TOTAL SCF ENERGY
----------------

Total Energy : -150.89704913 Eh -4106.11746 eV

Components:
Nuclear Repulsion : 36.90074715 Eh 1004.12038 eV
External potential : -0.25613618 Eh -6.96982 eV
Electronic Energy : -187.54166010 Eh -5103.26802 eV

6.3.15 Intrinsic Reaction Coordinate

The Intrinsic Reaction Coordinate (IRC) is a special form of a minimum energy path, connecting a transition state
(TS) with its downhill-nearest intermediates. A method determining the IRC is thus useful to determine whether
a transition state is directly connected to a given reactant and/or a product.

ORCA features its own implementation of Morokuma and coworkers’ popular method.[412] The IRC method can
be simply invoked by adding the IRC keyword as in the following example.

! B3LYP SV(P) TightSCF KDIIS SOSCF Freq IRC
* xyz 0 2

C -0.000 0.001 -0.000
H 1.290 0.005 -0.006
H -0.330 1.050 -0.002
H -0.252 -0.532 -0.929
H -0.286 -0.545 0.911
O 2.499 0.220 0.065
H 2.509 1.085 0.525

*

For more information and further options see section Intrinsic Reaction Coordinate.

ò Note

• The same method and basis set as used for optimization and frequency calculation should be used for the
IRC run.
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• The IRC keyword can be requested without, but also together with OptTS, ScanTS, NEB-TS, AnFreq
and NumFreq keywords.

• In its default settings the IRC code checks whether a Hessian was computed before the IRC run. If that is
not the case, and if no Hessian is defined via the %irc block, a new Hessian is computed at the beginning
of the IRC run.

• A final trajectory (_IRC_Full_trj.xyz) is generated which contains both directions, forward and back-
ward, by starting from one endpoint and going to the other endpoint, visualizing the entire IRC. Forward
(_IRC_F_trj.xyz and _IRC_F.xyz) and backward (_IRC_B_trj.xyz and _IRC_B.xyz) trajectories and xyz
files contain the IRC and the last geometry of that respective run.

6.3.16 Printing Hessian in Internal Coordinates

When a Hessian is available, it can be printed out in redundant internal coordinates as in the following example:

! opt
%geom inhess read

inhessname "h2o.hess"
PrintInternalHess true

end
*xyz 0 1

O 0.000000 0.000000 0.000000
H 0.968700 0.000000 0.000000
H -0.233013 0.940258 0.000000

*

ò Note

• The Hessian in internal coordinates is (for the input printHess.inp) stored in the file
printHess_internal.hess.

• The corresponding lists of redundant internals is stored in printHess.opt.

• Although the !Opt keyword is necessary, an optimization is not carried out. ORCA exits after storing
the Hessian in internal coordinates.

6.3.17 Using model Hessian from previous calculations

If you had a geometry optimization interrupted, or for some reason want to use the model Hessian updated from
a previous calculation, you can do that by passing a basename.opt file, a basename.carthess file or the initial
Hessian on a new calculation.

%GEOM InHess READ
InHessName "basename.carthess"

END
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6.3.18 Geometry Optimizations using the L-BFGS optimizer

Optimizations using the L-BFGS optimizer are done in Cartesian coordinates. They can be invoked quite simple
as in the following example:

! L-Opt
! MM
%mm

ORCAFFFILENAME "CHMH.ORCAFF.prms"
end
*pdbfile 0 1 CHMH.pdb

Using this optimizer systems with 100s of thousands of atoms can be optimized. Of course, the energy and gradient
calculations should not become the bottleneck for such calculations, thus MM or QM/MM methods should be used
for such large systems.

The default maximum number of iterations is 200, and can be increased as follows:

! L-Opt
%geom

maxIter 500 # default 200
end
*pdbfile 0 1 CHMH.pdb

Only the hydrogen positions can be optimized with the following command:

! L-OptH

But also other elements can be exclusively optimized with the following command:

! L-OptH
%geom
OptElement F # optimize fluorine only when L-OptH is invoked.

# Does not work with the regular optimizer.
end

When fragments are defined for the system, each fragment can be optimized differently (similar to the fragment
optimization described above). The following options are available:

FixFrags
Freeze the coordinates of all atoms of the specified fragments.

RelaxHFrags
Relax the hydrogen atoms of the specified fragments. Default for all atoms if !L-OptH is defined.

RelaxFrags
Relax all atoms of the specified fragments. Default for all atoms if !L-Opt is defined.

RigidFrags
Treat each specified fragment as a rigid body, but relax the position and orientation of these rigid bodies.

ò Note

• The fragments have to be defined after the coordinate input.

A more complex example is depicted in the following:

! L-OptH
%mm

ORCAFFFILENAME "CHMH.ORCAFF.prms"
end
*pdbfile 0 1 CHMH.pdb

(continues on next page)
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(continued from previous page)

%geom
Frags
2 {8168:8614} end # First the fragments need to be defined
3 {8615:8699} end # Note that all other atoms belong to
4 {8700:8772} end # fragment 1 by default
5 {8773:8791} end #

RelaxFrags {2} end # Fragment 2 is fully relaxed
RigidFrags {3 4 5} end # Fragments 3, 4 and 5 are treated as rigid bodies each.
end

6.3.19 Nudged Elastic Band Method

The Nudged Elastic Band (NEB) method is used to find a minimum energy path (MEP) connecting given reactant
and product state minima on the energy surface. An initial path is generated and represented by a discrete set of
configurations of the atoms, referred to as images of the system. The number of images is specified by the user
and has to be large enough to obtain sufficient resolution of the path. The implementation in ORCA is described
in detail in the article by Ásgeirsson et. al.[4] and in section Nudged Elastic Band Method along with the input
options. The most common use of the NEB method is to find the highest energy saddle point on the potential
energy surface specifying the transition state for a given initial and final state. Rigorous convergence to a first
order saddle point can be obtained with the climbing image NEB (CI-NEB), where the highest energy image is
pushed uphill in energy along the tangent to the path while relaxing downhill in orthogonal directions. Another
method for finding a first order saddle point is the NEB-TS which uses the CI-NEB method with a loose tolerance
to begin with and then switches over to the OptTS method to converge on the saddle point. This combination can
be a good choice for calculations of complex reactions where the ScanTS method fails or where 2D relaxed surface
scans are necessary to find a good initial guess structure for the OptTS method. The zoomNEB variants are a good
choice in case of very complex transition states with long tails. For more and detailed information on the various
NEB variants implemented in ORCA please consult section Nudged Elastic Band Method.

In their simplest form NEB, NEB-CI and NEB-TS only require the reactant and product state configurations (one
via the xyz block, and the other one via the keyword neb_end_xyzfile):

!NEB-TS # or !NEB or !NEB-CI or !ZOOM-NEB-TS or !ZOOM-NEB-CI
# or !Fast-NEB-TS (corresponds to IDPP-TS defined in the NEB-TS manuscript)
# or !Loose-NEB-TS (corresponds to default NEB-TS in the NEB-TS manuscript)

%neb
neb_end_xyzfile "final.xyz"
end

Below is an example of an NEB-TS run involving an intramolecular proton transfer within acetic acid. The simplest
input is

!XTB NEB-TS
%neb
neb_end_xyzfile "final.xyz"
end

*xyz 0 1
C 0.416168 0.038758 -0.014077
C 0.041816 0.011798 1.439610
O 1.524458 0.176600 -0.453888
O -0.654209 -0.127881 -0.803857
H -0.391037 -0.126036 -1.737478
H -0.913438 0.507022 1.585301
H -0.057787 -1.026455 1.750845
H 0.819515 0.485425 2.030252
*

Where the final.xyz structure contains the corresponding structure with the proton on the other oxygen.

The initial path is reasonable and the CI calculation can be switched on after five NEB iterations.
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Starting iterations:

Optim. Iteration HEI E(HEI)-E(0) max(|Fp|) RMS(Fp) dS
Switch-on CI threshold 0.020000

LBFGS 0 4 0.081017 0.073897 0.018915 3.2882
LBFGS 1 5 0.070244 0.056668 0.013913 3.2770
LBFGS 2 5 0.062934 0.038972 0.008763 3.3376
LBFGS 3 5 0.057358 0.032076 0.006535 3.3950
LBFGS 4 4 0.053260 0.019015 0.003599 3.4826

Image 4 will be converted to a climbing image in the next iteration (max(|Fp|) < 0.0200)

Optim. Iteration CI E(CI)-E(0) max(|Fp|) RMS(Fp) dS max(|FCI|) RMS(FCI)
Convergence thresholds 0.020000 0.010000 0.002000 0.001000

The CI run converges after another couple of iterations:

*********************H U R R A Y*********************
*** THE NEB OPTIMIZATION HAS CONVERGED ***
*****************************************************

Subsequently a summary of the MEP is printed:

---------------------------------------------------------------
PATH SUMMARY

---------------------------------------------------------------
All forces in Eh/Bohr.

Image Dist.(Ang.) E(Eh) dE(kcal/mol) max(|Fp|) RMS(Fp)
0 0.000 -14.45993 0.00 0.00011 0.00004
1 0.426 -14.44891 6.91 0.00092 0.00033
2 0.652 -14.42864 19.63 0.00084 0.00038
3 0.805 -14.41132 30.50 0.00075 0.00027
4 0.932 -14.40562 34.08 0.00057 0.00018 <= CI
5 1.044 -14.41047 31.03 0.00057 0.00024
6 1.153 -14.42200 23.80 0.00103 0.00034
7 1.280 -14.43666 14.60 0.00098 0.00037
8 1.476 -14.45106 5.56 0.00106 0.00033
9 1.869 -14.45988 0.03 0.00013 0.00006

Additionally, detailed information on the highest energy image (or the CI) is printed:

---------------------------------------------------------------
INFORMATION ABOUT SADDLE POINT

---------------------------------------------------------------

Climbing image .... 4
Energy .... -14.40561577 Eh
Max. abs. force .... 9.5976e-04 Eh/Bohr

-----------------------------------------
SADDLE POINT (ANGSTROEM)

-----------------------------------------
C 0.040867 0.007347 -0.497635
C -0.075595 0.017879 0.979075
O 1.122340 0.126074 -1.145534
O -0.928470 -0.137946 -1.298318
H 0.165808 -0.021676 -2.055704
H -0.996979 0.514720 1.271668
H -0.116377 -1.013504 1.327873
H 0.788406 0.507105 1.418575

(continues on next page)
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(continued from previous page)

-----------------------------------------
FORCES (Eh/Bohr)

-----------------------------------------
C -0.000646 -0.000111 0.000086
...

-----------------------------------------
UNIT TANGENT

-----------------------------------------
C -0.246569 -0.031821 -0.019359
...

=> Unit tangent is an approximation to the TS mode at the saddle point

Next a TS optimization is performed on the CI from the NEB run.

Finally, a TS optimization is started, after which the MEP information is updated by including the TS structure:

---------------------------------------------------------------
PATH SUMMARY FOR NEB-TS

---------------------------------------------------------------
All forces in Eh/Bohr. Global forces for TS.

Image E(Eh) dE(kcal/mol) max(|Fp|) RMS(Fp)
0 -14.45993 0.00 0.00011 0.00004
1 -14.44891 6.91 0.00092 0.00033
2 -14.42864 19.63 0.00084 0.00038
3 -14.41132 30.50 0.00075 0.00027
4 -14.40562 34.08 0.00057 0.00018 <= CI

TS -14.40562 34.08 0.00033 0.00013 <= TS
5 -14.41047 31.03 0.00057 0.00024
6 -14.42200 23.80 0.00103 0.00034
7 -14.43666 14.60 0.00098 0.00037
8 -14.45106 5.56 0.00106 0.00033
9 -14.45988 0.03 0.00013 0.00006

Note that here both TS and CI are printed for comparison.

6.4 GOAT: global geometry optimization and ensemble generator

If instead of trying to optimize a single structure, starting from a given guess geometry, you want to find the global
minimum or the ensemble around it, ORCA features a Global Optimizer Algorithm (GOAT) inspired by Wales and
Doye’s basin-hopping [878], Goedecker’s minima hopping [306], Simulated Annealing and Taboo Search.

The idea is to start from somewhere on the potential energy surface (PES; red ball on Fig. 6.24), go first to the
nearest local minimum (blue ball), and from there start pushing “uphill” on a random direction until a barrier
is crossed. Then a new minimum is found and the process is restarted, with another uphill push followed by an
optimization. After several of these GOAT iterations (uphill + downhill), if no new global minimum was found
between the two last global iterations.
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Fig. 6.24: A simple depiction of the difference between a regular geometry optimization (above), and the GOAT
global optimizer (below). By using the latter, one finds not only one local minimum but the global one and the
conformational ensemble around it.

Since structures are collected along the way to the global minimum, we have in the end not only the global minimum,
but also the conformational ensemble for that molecule, meaning all the conformations it can have and their relative
energies. This is also useful later to compute Boltzmann-averaged spectra and properties.

The idea is similar to what is done with CREST from the group of Prof. Grimme [698], except that no metadynamics
is required and thus much less gradient runs are needed. It is thus suitable not only for super fast methods such as
XTB and force-fields, but can also be used directly using DFT or with any method available in ORCA.

Please note that there is no ab initio way to find global minima for arbitrary unknown functions, and stochastic
methods are the most efficient on finding these. The drawback is that it is based on random choices, so that many
geometry optimizations are needed - here in the order of 100× the number of atoms. Good news is: these can be
efficiently parallelized (even multinode) and this number can be brought down to less than 3× the number of atoms
(see below)!
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6.4.1 GOAT simple usage example - Histidine

Let’s start with a simple example, the amino acid histidine:

Fig. 6.25: A histidine molecule.

By simply looking at its Lewis structure, it is not at all evident that there are actually at least 20 conformers in the
3 kcal/mol range from the global minimum on the XTB PES! In order to find them, one can run:

!XTB GOAT #XTB version 6.4.0
* xyz 0 1
N -0.13033 -0.28496 -0.67901
C 1.30551 -0.36383 -0.41824
C 1.51611 -1.04435 0.94169
O 0.58926 -1.43597 1.64771
C 1.97932 1.02323 -0.44331
H 2.41593 1.27074 0.53237
H 1.24598 1.81337 -0.65132
C 3.04894 1.09545 -1.48009
N 2.77779 1.01389 -2.82650
C 3.97051 1.07618 -3.48654
H 4.04071 1.01588 -4.56429
N 4.97724 1.21154 -2.65295
C 4.41545 1.24248 -1.40412
H 5.02774 1.35929 -0.51882
H 1.85722 0.88822 -3.24287
H -0.75420 -0.54264 0.08211
H 1.72153 -1.03742 -1.17913
H -0.47113 0.20468 -1.50142
O 2.79298 -1.20515 1.35271
H 3.59528 -0.86615 0.74156
*

The command to call the global optimizer is simply !GOAT, like you would with !OPT, and its options can be given
under the %GOAT block as usual. You can give it together with any other method available in ORCA, but it needs
to be a fast one because a lot of geometry optimizations need to be done. Here we will just use GFN2 (or !XTB).
What will happen next is:

1. First a regular geometry optimization will be done to find the minimum closest to the input structure.

2. With that information in hand, the number of necessary GOAT iterations will be computed and divided
among NWorkers (8 by default).

3. Each Worker has its own parameters and will run a certain number of geometry optimizations.

4. After all workers in a global cycle are done, data will be collected and a new cycle will begin. There will be
at least a “Minimum global steps” number of global cycles like this.

5. Once the difference between two global steps is negligible, it stops, collects everything and prints the en-
semble energies and a file with all structures.
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6.4.2 Understanding the output

After the usual geometry optimization, the output looks like:

Global parameters
-----------------
GOAT version ... default
Minimum global steps ... 3
Number of base workers ... 4
Split workers by ... 2
Final number of workers ... 8
Number of available CPUs ... 16
Parameter list (worker : temperature) ... 0 : 2903.97, 1 : 1451.98,

2 : 725.99, 3 : 363.00,
4 : 2903.97, 5 : 1451.98,
6 : 725.99, 7 : 363.00

GradComp (mean : sigma) ... 1.00 : 0.50
Number of atoms ... 20
Number of fragments ... 1
Flexibility parameter ... 0.45
Optimizations per global step ... 160
Optimizations per worker ... 20

Filtering criteria
------------------
RMSD ... 0.125 Angs (atom. pos.)
EnDiff ... 0.100 kcal/mol
RotConst ... 1.00-2.50 %
Maximum Conf. Energy ... 6.000 kcal/mol

Thermodynamics
--------------
Ensemble temperature ... 298.15 K
Degeneracy of conformers ... 1
*No rotamers will be included in Gconf

On the top there is some general information. Most important here is that we have 8 workers and 1 CPU, meaning
each worker will run only after the other is done. If you want to speed up, just add more CPUs via e.g., !PAL8 and
workers will run in parallel making it 8x faster. GOAT can also run multinode, so feel free to use any number of
processors via %PAL. In the end the filtering criteria used to differentiate conformers and rotamers is printed.

The default filtering is precisely the same as that of CREST: RMSD of atomic positions together with the rotational
constant, considering its anisotropy. For GOAT-EXPLORE (see below), the default RMSD metric is based on the
eigenvalues of the distance matrix instead, since it is invariant to translations, rotations and the atom ordering,
which changes quite often in these cases.

After that, the algorithm starts:

------------------------------------------------------------------------------
Iter MinTemp MaxEn GradComp NOpt NProcs Output
------------------------------------------------------------------------------
0 2903.97 60.00 1.00 : 0.50 20 2 HIS.goat.0.0.out
1 1451.98 60.00 1.00 : 0.50 20 2 HIS.goat.0.1.out
2 725.99 60.00 1.00 : 0.50 20 2 HIS.goat.0.2.out
3 363.00 60.00 1.00 : 0.50 20 2 HIS.goat.0.3.out
4 2903.97 60.00 1.00 : 0.50 20 2 HIS.goat.0.4.out
5 1451.98 60.00 1.00 : 0.50 20 2 HIS.goat.0.5.out
6 725.99 60.00 1.00 : 0.50 20 2 HIS.goat.0.6.out
7 363.00 60.00 1.00 : 0.50 20 2 HIS.goat.0.7.out

GOAT Global Iter 1
Iter Min En Sconf Gconf

(continues on next page)
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Hartree cal/(molK) kcal/mol
=========================================

1 -34.346656 4.432 -0.551

0 2903.97 60.00 1.00 : 0.50 20 2 HIS.goat.0.0.out
1 1451.98 60.00 1.00 : 0.50 20 2 HIS.goat.0.1.out
2 725.99 60.00 1.00 : 0.50 20 2 HIS.goat.0.2.out
3 363.00 60.00 1.00 : 0.50 20 2 HIS.goat.0.3.out
4 2903.97 60.00 1.00 : 0.50 20 2 HIS.goat.0.4.out
5 1451.98 60.00 1.00 : 0.50 20 2 HIS.goat.0.5.out
6 725.99 60.00 1.00 : 0.50 20 2 HIS.goat.0.6.out
7 363.00 60.00 1.00 : 0.50 20 2 HIS.goat.0.7.out

GOAT Global Iter 2
Iter Min En Sconf Gconf

Hartree cal/(molK) kcal/mol
=========================================

1 -34.346656 4.432 -0.551
2 -34.346656 4.528 -0.559

0 2903.97 60.00 1.00 : 0.50 20 2 HIS.goat.0.0.out
1 1451.98 60.00 1.00 : 0.50 20 2 HIS.goat.0.1.out
2 725.99 60.00 1.00 : 0.50 20 2 HIS.goat.0.2.out
3 363.00 60.00 1.00 : 0.50 20 2 HIS.goat.0.3.out
4 2903.97 60.00 1.00 : 0.50 20 2 HIS.goat.0.4.out
5 1451.98 60.00 1.00 : 0.50 20 2 HIS.goat.0.5.out
6 725.99 60.00 1.00 : 0.50 20 2 HIS.goat.0.6.out
7 363.00 60.00 1.00 : 0.50 20 2 HIS.goat.0.7.out

GOAT Global Iter 3
Iter Min En Sconf Gconf

Hartree cal/(molK) kcal/mol
=========================================

1 -34.346656 4.432 -0.551
2 -34.346656 4.528 -0.559
3 -34.346656 4.541 -0.560

Global minimum found!
Writing structure to HIS.globalminimum.xyz

On the top header one can see what are the temperatures used, the maximum energy allowed during an uphill
step, the maximum coefficient for gradient reflection, the number of optimizations done per worker, the number of
processors used for each and the local output file name.

The names of the output files are chosen as BaseName.goat.globaliteration.workernumber.out. These
are deleted after the run by default, but can be kept by setting KEEPWORKERDATA TRUE under %GOAT.

During each global iteration, the minimum energy so far, the conformational entropy 𝑆conf and the conformational
Gibbs free energy𝐺conf are printed. Since there are no rotamers here, the entropy is calculated only on the basis
of the conformer energies and its convergence hints to the completeness of the ensemble created.
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6.4.3 The final ensemble

In this case, as you can see, it already found the global minimum after the first global cycle with E = -34.346656
Hartree, but it keeps running for at least 3 cycles, following the defaults. This happens because it is a small
molecule, but it is not necessarily so and more cycles will be done if needed.

The final relative energies of the ensemble are printed afterwards, together with a BaseName.finalensemble.
xyz file:

# Final ensemble info #
Conformer Energy Degen. % total % cumul.

(kcal/mol)
------------------------------------------------------

0 0.000 1 37.96 37.96
1 0.503 1 16.25 54.20
2 0.914 1 8.11 62.32
3 1.159 1 5.37 67.68
4 1.297 1 4.25 71.94
5 1.320 1 4.09 76.03

(...)
41 5.180 1 0.01 99.98
42 5.199 1 0.01 99.99
43 5.491 1 0.00 99.99
44 5.547 1 0.00 99.99
45 5.861 1 0.00 100.00

Conformers below 3 kcal/mol: 22
Lowest energy conformer : -34.346656 Eh
Sconf at 298.15 K : 4.54 cal/(molK)
Gconf at 298.15 K : -0.56 kcal/mol

Writing final ensemble to HIS.finalensemble.xyz

Just for the record, here is how the four lowest lying conformers look like:
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Fig. 6.26: The four lowest conformers found for histidine on the XTB PES.

Whenever using GOAT, the EnforceStrictConvergence policy from ORCA’s optimizer is set to TRUE. This is
recommended here the ensure equal criteria for different molecules in the ensemble. It can be turned off by setting
%GEOM EnforceStrictConvergence FALSE END.

The regular optimization thresholds are already good, but it might also be a good idea to use !TIGHTOPT to make
sure all your ensemble molecules are well converged, specially for the GOAT-EXPLORE!

6.4.4 GOAT-ENTROPY: expanding ensemble completeness by maximizing en-
tropy

If you want to be as complete as possible in terms of the ensemble, you can use the !GOAT-ENTROPY keyword
instead. This will not only try to find the global minimum until the energy is converged, but will actually only stop
when the ∆𝑆conf also converges to less than 0.1 cal/(molK), which is equivalent to maximizing the conformational
entropy (the threshold can be altered – see keyword list below).

This will push the algorithm so that all conformers around the global minimum should be found together with it.
Both temperature and ∆𝑆conf can be changed via specific keywords shown at the list below. A higher temperature
will make the ∆𝑆conf more sensitive to changes in high energy conformational regions and should make the search
even more complete.
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Being more explicit, the conformational entropy, enthalpy and Gibbs free energy are calculated according to:

𝑆conf = 𝑅

[︂
ln
∑︁

𝑔′𝑖𝑒
−𝐸𝑖𝛽 +

∑︀
𝑔′𝑖(𝐸𝑖𝛽)𝑒

−𝐸𝑖𝛽∑︀
𝑔′𝑖(𝐸𝑖𝛽)𝑒

−𝐸𝑖𝛽

]︂
[︀
𝐻(𝑇 )−𝐻(0)

]︀
conf

= 𝑅𝑇

∑︀
𝑔𝑖(𝐸𝑖𝛽)𝑒

−𝐸𝑖𝛽∑︀
𝑔𝑖(𝐸𝑖𝛽)𝑒−𝐸𝑖𝛽

where 𝛽 = 1
𝑘𝐵𝑇

and 𝑔𝑖 is the “degeneracy” of conformer 𝑖, i.e. its number of rotamers. This is the correct approach
to deal with degenerate states [700]. The only difference from the reference above is that 𝑔′𝑖 is always one and we
don’t discriminate any factor for “geometrical enantiomers”.

6.4.5 More on the Δ𝑆conf

It is important to say that, by default, the ∆𝑆conf is not the same as that found by a default CREST run. There
it includes also the rotamer degeneracy on the calculation of the entropy, while here that is 1. The reasons for that
are:

1. There are formal arguments for using only one, assuming that rotamers are indistinguishable. Please check
Grimme’s reference [700] for details.

2. For systems with many rotamers, e.g. molecules with 3 tert-butyl groups which give rise to at least (273)
19683 rotamers per conformer, the algorithm will never find all of these anyway.

3. When calling GOAT-ENTROPY, it is the entropy of the conformers that will be maximized, not of the ensem-
ble. That guarantees the maximal distribution of different conformers during these searches.

Once the final ensemble is found and if you know how many rotamers per conformer you have (assuming a constant
number, like the tert-butyl case), one can reset that number by using READENSEMBLE "ensemble.xyz" to read it
and CONFDEGEN to set a degeneracy. In the previous example that would be CONFDEGEN 19683 and would give
you the desired ∆𝐺conf for that given ensemble.

Finding rotamers automatically

It is always possible to switch on the automatic search for rotamers and their degeneracy by setting CONFDEGEN
AUTO if that is what you want. They will be added to the ensemble instead of being filtered out and the full ensemble
will be saved in files named .confrot.xyz.

Another approach would be to assume that, since the algorithm might find all rotamers for some conformers but
not for all, one might set the degeneracy of all equal to the maximum value found so far (CONFDEGEN AUTOMAX).
Let’s take as an example a system with a tert-butyl + a methyl group with 81 rotamers per conformer. GOAT will
hardly find 81 rotamers for every single conformer, but if it finds them for one conformer, all the others will also
have that same number.

Please be aware that there are cases where different conformers might have different numbers of rotamers (e.g.
decane or long alkyl chains), and these cases should be treated with care.

6.4.6 GOAT-EXPLORE: global minima of atomic clusters or topology-free free
PES searches

In case you want to find the lowest energy conformer for a cluster or don’t want to keep the initial topology at all,
you can use the !GOAT-EXPLORE option instead. This will possibly break all bonds and find the lowest energy
structure for that given set of atoms, be that a nanoparticle or an organic molecule.

For instance, let’s find the minimum of an Au8 nanoparticle on the GFN1 PES, starting from just a random ag-
glomeration of gold atoms:
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!XTB1 GOAT-EXPLORE PAL16 #XTB version 6.4.0
%GOAT NWORKERS 16 END
* xyz 0 1
Au -1.39858 2.62611 -0.79278
Au -2.50552 -0.07122 0.67538
Au -0.52174 -2.57892 -0.02415
Au 0.78881 0.39733 0.21816
Au 1.21116 1.90621 -2.64617
Au -1.19205 -0.30099 -2.30429
Au -0.33808 -1.07129 2.90822
Au -0.85565 2.15342 2.41956
*

Please note that there is a minimum number of optimizations per worker that must be respected in order for the
algorithm to make sense. Otherwise, on the limit, one optimization per worker would mean almost nothing happens.
This minimum number is max(N, 15) for the regular GOAT and max(3N, 45) for GOAT-EXPLORE and GOAT-
REACT (see below), where N is the number of atoms. The searches using free topology are more demanding
because there are many more degrees of freedom.

When the minimum number of optimizations per worker is reached, the information is printed on the bottom of
the header as:

GOAT version ... explore
Minimum global steps ... 3
Number of base workers ... 4
Split workers by ... 4
Final number of workers ... 16
Number of available CPUs ... 1
Parameter list (worker : temperature) ... 0 : 2903.97, 1 : 1451.98,

2 : 725.99, 3 : 363.00,
4 : 2903.97, 5 : 1451.98,
6 : 725.99, 7 : 363.00,
8 : 2903.97, 9 : 1451.98,
10 : 725.99, 11 : 363.00,
12 : 2903.97, 13 : 1451.98,
14 : 725.99, 15 : 363.00

GradComp (mean : sigma) ... 1.00 : 0.50
Number of atoms ... 8
Number of fragments ... 1
Flexibility parameter ... 1.00
Optimizations per global step ... 528
Optimizations per worker ... 66
*Reached the minimum optimizations per worker [fmax(3 * NAtoms, 45)]!

The global minimum found is a 𝐷4ℎ planar structure, the same as found on the literature for the Au8 cluster using
other DFT methods [54]:
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Fig. 6.27: The lowest energy conformer of the Au8 cluster on the GFN1 PES.

6.4.7 GOAT-REACT: an algorithm for automatic reaction pathway exploration

Another variant of the GOAT algorithm was created to allow for automatic reaction exploration, which in the end
is nothing more than an exploration on the collective PES of reactant and product.

Here the user can be really creative and there are many different ways to explore this algorithm, but let us start with
a simple reaction: the gas phase reaction of ethylene and singlet oxygen.
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Fig. 6.28: What could be the products of the reaction between ethylene and singlet oxygen?

After running the following input:

!XTB GOAT-REACT
* XYZ 0 1
C -3.26482 -0.47497 0.33191
C -2.16518 0.24269 0.35382
H -4.23539 -0.01923 0.27823
H -3.23979 -1.54754 0.37118
H -2.19035 1.31540 0.31866
H -1.19481 -0.21295 0.41157
O -3.42426 -0.30941 2.30779
O -2.17088 0.05188 2.32517
*

the output looks more or less similar to the regular GOAT-EXPLORE, except for a few differences:

1. The maximum barriers GOAT is allowed to cross are higher.

2. The very initial geometry optimization is skipped by default.

3. AUTOWALL is set to TRUE which means that an ellipsoid wall potential is added using the maximum x,y,z
dimensions of the molecule + 5 Angs as radii.

Another important factor is the maximum topological difference (MAXTOPODIFF), which is set to 8 by default, as
printed on the output:

Global parameters
-----------------

GOAT version ... react
Max. topological diff. ... 8
Minimum global steps ... 3
Number of base workers ... 4

MAXTOPODIFF is a key concept here. If one simply looks for all possible topological permutations between reactants
and products, even simple systems such as this could lead to an enormous number of combinations.

We defined the topological difference simply as the sum of broken bonds + formed bonds from some reference
structure, which is taken from the structure obtained after the first geometry optimization inside the GOAT iterations
(before any uphill step).

There will be more files printed than usual, the most important ones are:

1. Basename.products.xyz – contains all reactomers and all their conformers for the reaction. It is usually
a very large file.
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2. Basename.products.topodiff2.xyz – contains only those separated with topodiff 2 from the reference
structure, and so on.

3. Basename.products.unique.xyz – contains a list of all topologically unique products, without their
conformers or rotamers, only the lowest energy conformer is printed. Here the reference structure will come
first and the others will be shown with their relative energy difference in kcal/mol.

Some of the products found as an example for this reaction are:

product 1
methanol + CO

product 2
acetylene + H2O2

product 3
formaldehyde

product 4
oxidized epoxy

Fig. 6.29: Some products automatically found by GOAT-REACT using the input given above.

ò Note

Please be aware that singlet oxygen is so reactive that even the first optimization leads to a cyclization reaction
and the reaction product is then taken as the reference structure.

s Important

The use of force-fields like the GFN-FF is not recommended here, because it is not supposed to break bonds.
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6.4.8 Some general observations

Default frozen coordinates during uphill step

During the uphill phase only, by default GOAT will freeze:

1. all bonds,

2. all angles involving two sp2 atoms within the same ring,

3. all dihedrals around a strong bond (d(B,C) < [0.9 x (sum of covalent radii)]).

“sp2 atoms” are here loosely defined only for C, N and O with less than 4,3 and 2 bonds respectively.

The first freeze is to avoid change of topology by bond breaking. The second and third are to avoid going over
very high energy barriers on changing these angles, which in practice, unless under very special circumstances will
never flip anyway!

These constraints are automatically lifted for GOAT-EXPLORE and can also be set to FALSE with their specific
keywords.

Parallelization of GOAT

GOAT will profit from a large number of cores in a different way than most ORCA jobs, because it distributes the
necessary work along different workers. It can also work multidone and distribute these workers through different
nodes.

Since there is usually a regular first optimization step before starting GOAT, which will not profit from a large
number of cores, these are limited by the flag MAXCORESOPT and set to a maximum of 32. After that, GOAT
will switch back to use all cores provided. We do not recommend changing that maximum number, because it will
probably only make things slower, but it can be controlled inside the %GOAT block.

Tips and extra details

ò Note

• GOAT will work with any method in ORCA, all you need is the gradient. That includes using DFT,
QM/MM, ONIOM, broken-symmetry states, excited states etc.

• Be aware that DFT is much costlier than XTB. It is perfectly possible to run GOAT with R2SCAN-3C,
but be prepared to use many cores or wait for a few days :D. We recommend at least %PAL NPROCS 32
END, to have 8 workers with 4 cores each. Hybrid DFT is even heavier, so if you want to use B3LYP,go
with at least NPROCS 64 - and don’t hurry. The aim is to do a global search here, it does not come for
free!

• In many cases, it might be useful to use GFNUPHILL GFNFF to use the GFN-FF force-field PES during
the uphill steps. There, an exact potential is not really needed as the main objective is to take structures
out of their current minimum and GOAT will run much faster, only using the chosen method for the
actual optimizations. GFN2XTB, GFN1XTB or GFN0XTB are also valid options.

• For methods that need bond breaking, such as GOAT-EXPLORE or GOAT-REACT, GFNUPHILL GFNFF
cannot be used because the GFN-FF will not allow for bond breaking. Choose GFN2XTB, GFN1XTB
or GFN0XTB.

• You can always check what the workers are doing by looking into the Basename.goat.x.x.out files.
The first number refers to the global iteration and the second to the specific worker. This is an ORCA
output (with some suppressed printing to save space) that can be opened in most GUIs.

• GOAT will automatically detect fragments at the very beginning, even before the first geometry opti-
mization. It will also respect fragments given via the geometry blocks. You can turn this off by setting
AUTOFRAG to FALSE under %GOAT.
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• Amide bond chirality is not frozen by default, which means the input topology you gave for amides (cis
or trans) may change. If you want to freeze it, set FREEZEAMIDES to TRUE.

• Similarly double bonds outside rings can also change their topology. Choose FREEZECISTRANS TRUE
in order to freeze those dihedrals.

• For certain molecules, it might be interesting to limit the coordination number of certain atoms, in that
case use MAXCOORDNUMBER.

• GOAT will respect the choices from the %GEOM block for the geometries so you can use all kinds of
constraints you need for other types of coordinate freeze. It can also be combined with all kinds of
arbitrary wall potentials available (see Section 6.3.8).

• If you want to push only certain atoms uphill, you can give a list to UPHILLATOMS. In that case the uphill
force shown in Fig. 6.24 will be applied only to the coordinates involving those atoms and the rest of the
molecule will only react to that. This is useful for conformational searches on parts of a bigger system.

• By default conformers up to 12.0 kcal/mol from the global minimum are included, this can be changed
by setting MAXEN.

6.4.9 Basic keyword list

Here we present a basic list of options to be given under %GOAT:

%GOAT

#
# general options
#

MAXITER 128 # defines an arbitrary number of max GOAT geom opt iters per worker.
MAXOPTITER 256 # maximum number of geometry optimizations per GOAT iter.

SKIPINITIALOPT TRUE # if you want to skip the initial optimization (default FALSE).

RANDOMSEED TRUE # set it to FALSE to have a deterministic GOAT run. since the
# geometry optimization can change due to numerical differences
# it might not be fully deterministic in some cases.

READENSEMBLE "name.xyz" # an ensemble file to be read. the comment line should
# have the format "Energy (float)", as generated by GOAT.
# nothing will be done, except that the filters
# will be reapplied.

AUTOWALL TRUE # automatically create an ellipsoid wall potential
# around the structure (+5 Angs)? (default is FALSE).

TEMPLIST 3000, 2000, 750, 500 # a list of temperatures, defines the number
# of basic workers, in Kelvin. do not change
# unless you know what to do.

MAXCORESOPT 32 # the max. number of cores used during the very first opt

#
# worker options
#

NWORKERS AUTO # define the number of workers (default AUTO).
# AUTO for an automatic ideal assignment,
# or give any number multiple of 4 (number of temperatures).

MAXITERMULT 3 # a simple keyword to multiply the number of geometry

(continues on next page)
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(continued from previous page)

# optimizations per worker. will quickly
# increase MAXITER.

KEEPWORKERDATA FALSE # set to TRUE to keep the worker outputs
# (might be a lot of data!).

WORKERRANDOMSTART TRUE # after the first cycle, each worker starts with a random
# structure from the previous set up to 3 kcal/mol
# instead of the lowest energy only.
# at least one starts from the lowest (default TRUE).

#
# uphill step
#

UPHILLATOMS {0:2 5 14:29} END # if given, only those atoms listed will be pushed,
# uphill others will just respond to it.

GFNUPHILL GFNFF # use GFN-FF only during the uphill steps? GFN2XTB, GFN1XTB or
# GFN0XTB are also valid options for the respective methods.

#
# filtering and screening
#

ALIGN FALSE # align all final conformers with respect to the
# lowest energy one?

ENDIFF 0.1 # minimum energy difference needed to differentiate
# conformers, in kcal/mol.

MAXEN 6.0 # the maximum relative energy of a conformer to
# be taken, in kcal/mol. 6 kcal/mol by default.

RMSD 0.125 # minimum RMSD to differentiate conformers, in Angstroem.
ROTCONSTDIFF 0.01 # maximum difference for the rotational constant, in %.
RMSDMETRIC EIGENVALUE # use eigenvalues of distance matrix for RMSD?

# default is RMSD in general
# and EIGENVALUE for GOAT-EXPLORE.

#
# entropy mode
#

MAXENTROPY FALSE # add delta Gconf as convergence criteria (default FALSE)?
CONFTEMP 298.15 # temperature used to compute the free energy, in Kelvin.
MINDELS 0.1 # the minimum entropy difference between two iterations

# to signal convergence, in cal/(molK).
CONFDEGEN 2 # set an arbitrary degeneracy per conformer?

AUTO # find that automatically based on the RMSD.
AUTOMAX # same as AUTO, but take the largest value as reference

# for all conformers.

#
# free topology
#

FREEHETEROATOMS FALSE # free all atoms besides H and C.
FREENONHATOMS FALSE # self explained.
FREEFRAGMENTS FALSE # free interfragment topology, i.e., bonds between fragments

might be formed or broken during the search but bonds
within the same fragment will be kept.

# we don't recommend changing these unless you really need to!
FREEZEBONDS FALSE # freeze bonds uphill (default TRUE)?
FREEZEANGLES FALSE # freeze sp2 angles and dihedrals uphill (default TRUE)?

(continues on next page)
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(continued from previous page)

FREEZECISTRANS FALSE # freeze cis-trans isomers outside rings (default FALSE)?
FREEZEAMIDES FALSE # freeze amide cis/trans chirality (default FALSE)?

MAXCOORDNUMBER 10, 4, 11, 6 # a list of "atom number, coordination number" that
# will define the maximum coordination number for
# those listed atoms, taken from distance-based criteria.
# in this case atom 10 will have a maximum of 4 and
# atom 11 a maximum of 6. others follow defaults.

#
# goat react
#

MAXTOPODIFF 8 # the maximum topological difference that is allow. Topodiff
# is simply defined based on number of broken + number of formed bonds
# using ORCA's regular distance based criteria [1.3 * (sum of Cov. Radii)]

END

6.5 Vibrational Frequencies

Vibrational frequency calculations are available through analytical differentiation of the SCF energy as well as one-
or two-sided numerical differentiation of analytical gradients, i.e. for Hartree-Fock and DFT models. For meth-
ods without analytical gradient a numerically calculated gradient can be used (keyword NumGrad) for numerical
frequencies. Please note, that this will be a very time consuming calculation.

The use of vibrational frequency calculations is fairly simple:

# any Hartree-Fock or DFT model can be used here
! BP def2-TZVP

# Tight SCF convergence is advisable to minimize the numerical
# noise in the frequencies.
! TightSCF

# perform a geometry optimization first
! Opt

# Run an analytical or numerical frequency calculation afterwards
! AnFreq # or just ``! Freq''
# numerical:
! NumFreq

# details of the numerical frequency calculation
%freq CentralDiff true # use central-differences (this is the default)

Increment 0.005 # increment in bohr for the
# differentiation (default 0.005)

end

! bohrs
* xyz 0 1
O -1.396288 -0.075107 0.052125
O 1.396289 -0.016261 -0.089970
H -1.775703 1.309756 -1.111179
H 1.775687 0.140443 1.711854
*

At the end of the frequency job you get an output like this:
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-----------------------
VIBRATIONAL FREQUENCIES
-----------------------

0: 0.00 cm**-1
1: 0.00 cm**-1
2: 0.00 cm**-1
3: 0.00 cm**-1
4: 0.00 cm**-1
5: 0.00 cm**-1
6: 311.78 cm**-1
7: 887.65 cm**-1
8: 1225.38 cm**-1
9: 1394.81 cm**-1
10: 3624.88 cm**-1
11: 3635.73 cm**-1

This output consists of the calculated vibrational frequencies, the vibrational modes and the thermochemical prop-
erties at 298.15 K. In the example above there are six frequencies which are identically zero. These frequencies
correspond to the rotations and translations of the molecule. They have been projected out of the Hessian before
the calculation of the frequencies and thus, the zero values do not tell you anything about the quality of the Hessian
that has been diagonalized. The projection can be turned off by PROJECTTR FALSE under %FREQ, so that the
frequencies of the translations and rotations can deviate from zero and the deviations represent a metric of the nu-
merical error of the Hessian calculation. This is done automatically when there is e.g. an external electric field that
makes the exact translational and/or rotational modes have non-zero frequencies (see section Adding finite electric
field). However, in normal cases where the molecule is expected to obey both translational and rotational invari-
ance, it is strongly discouraged to turn off PROJECTTR when calculating thermochemical quantities (especially
entropies and Gibbs free energies). This is because when the frequencies of translational and rotational modes
exceed CutOffFreq (which is 1 cm−1 by default), their contributions to the partition function will be calculated
using the formulas for vibrations. As a result, the calculated entropy is inaccurate (due to treating translations and
rotations as vibrations), is sensitive to numerical noise, and in particular exhibits a finite jump when the (theo-
retically zero) frequencies of the translational and rotational modes cross CutOffFreq. Therefore, the only case
where the user needs to turn off PROJECTTR manually is when the exact Hessian is expected to have zero transla-
tional and rotational frequencies, and one wants to check how much the translational and rotational eigenvalues of
the actually computed Hessian deviate from zero. The thermochemical quantities from such a calculation are less
reliable and should not be used; even if they differ considerably from the results with PROJECTTR TRUE, this does
not necessarily mean that the latter are unreliable.

Without PROJECTTR FALSE, the reliability of the calculated frequencies has to be judged by comparison of calcu-
lations with different convergence criteria, increments, integration grids etc. The numerical error in the frequencies
may reach 50 cm−1 but should be considerably smaller in most cases. Significant negative frequencies indicate
saddle points of the energy hypersurface and prove that the optimization has not resulted in an energy minimum.

OBS: By default, the Hessian is made translation invariant by applying the “acoustic sum rule” ([788]), which
reduces the effect of noise from numerical integration coming from DFT or COSX, except for the Partial and
Hybrid Hessians where it does not make sense. It can be set to false by using TRANSINVAR FALSE under
%FREQ.

6.5.1 Mass dependencies

Of course the calculated frequencies depend on the masses used for each atom. While this can be influenced later
through the orca_vib routine (see Section Isotope Shifts for more detail) and individually for each atom in the
geometry input, one might prefer using a set of precise atomic masses rather than the set of atomic weights (which
are set as default). This can be achieved through the !Mass2016 keyword, which triggers Orca to use those atomic
masses representing either the most abundant isotope or the most stable isotope (if all isotopes are unstable) of a
certain element (e.g. the mass of 35𝐶𝑙 for chlorine or the mass of 98𝑇𝑐).
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ò Note

The calculation of numerical frequencies puts rather high demands on both computer time and accuracy. In
order to get reliable frequencies make sure that:

• Your SCF is tightly converged. A convergence accuracy of at least 10−7 Eh in the total energy and 10−6
in the density is desirable.

• Grids of at least DEFGRID2 (default) are used.

• The use of two-sided (i.e. central) differences increases the computation time by a factor of two but gives
more accurate and reliable results.

• Small auxiliary basis sets like DGauss/J or DeMon/J may not result in fully converged frequencies (up to
40 cm−1 difference compared to frequencies calculated without RI). The def2/J universal auxiliary basis
sets of Weigend that are now the default in ORCA (or the SARC/J for scalar relativistic calculations) are
thought to give sufficiently reliable results.

• Possibly, the convergence criteria of the geometry optimization need to be tightened in order to get fully
converged results.

• If you can afford it, decrease the numerical increment to 0.001 Bohr or so. This puts even higher demands
on the convergence characteristics of the SCF calculation but should also give more accurate numerical
second derivatives. If the increment is too small or too high inaccurate results are expected.

The calculation of analytical frequencies is memory consuming. To control memory consumption the %maxcore
parameter must be set. For example %maxcore 8192 - use 8 Gb of memory per processor for the calculation.
The user should provide the value according to the computer available memory. The batching based on %maxcore
parameter will be introduced automatically to overcome probable memory shortage.

Numerical frequency calculations are restartable (but analytical frequency calculations are not). If the numerical
frequencies job died for one reason or another you can simply continue from where it stopped as in the following
example:

! STO-3G NumFreq
%freq Restart true # restart an old calculation

# this requires .res.* files to be present
end

* int 0 1
C 0 0 0 0.0000 0 0
C 1 0 0 1.2160 0 0
H 1 2 0 1.083 180 0
H 2 1 3 1.083 180 0

*

ò Note

• You must not change the level of theory, basis set or any other detail of the calculation. Any change will
produce an inconsistent, essentially meaningless Hessian.

• The geometry at which the Hessian is calculated must be identical. If you followed a geometry optimiza-
tion by a frequency run then you must restart the numerical frequency calculation from the optimized
geometry.

• Numerical frequencies can be performed in multi-process mode. Please see section Calling the Program
with Multiple Processes (“Hints on the use of parallel ORCA”) for more information.

• The restart of Numerical frequencies will take off from the result files produced during the preceding
run (BaseName.res.%5d.Type, whith Type being Dipoles, Gradients - and if requested Ramans or
Nacmes). Please make sure that all these local result files get copied to your compute directory. If restart
is set and no local files to be found, ORCA will restart from scratch. If ORCA finds a Hessian file on
disk, it will only repeat the subsequent analysis.
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• The Hessian can be transformed to redundant internal coordinates. More information can be found in
section Printing Hessian in Internal Coordinates.

6.6 Excited States Calculations

A plethora of methods to compute excited states exists in ORCA . In the following section, we illustrate typical
single-reference approaches. Multi-reference methods, such as NEVPT2 or MRCI, are described elsewhere in the
manual.

6.6.1 Excited States with RPA, CIS, CIS(D), ROCIS and TD-DFT

ORCA features a module to perform TD-DFT, single-excitation CI (CIS) and RPA. The module works with either
closed-shell (RHF or RKS) or unrestricted (UHF or UKS) reference wavefunctions. For DFT models the module
automatically chooses TD-DFT and for HF wavefunctions the CIS model. If the RI approximation is used in the
SCF part it will also be used in the excited states calculation. A detailed documentation is provided in section
Excited States via RPA, CIS, TD-DFT and SF-TDA.

General Use

In its simplest form it is only necessary to provide the number of roots sought:

! B3LYP DEF2-SVP

%TDDFT NROOTS 10
TRIPLETS TRUE

END

* int 0 1
C 0 0 0 0.00 0.0 0.00
O 1 0 0 1.20 0.0 0.00
H 1 2 0 1.08 120 0.00
H 1 2 3 1.08 120 180.00

*

The triplets parameter is only valid for closed-shell references. If chosen as true the program will also determine the
triplet excitation energies in addition to the singlets. We will discuss many more options in the following sections.

Spin-Flip

The collinear spin-flip version of CIS/TDA (always starting from an open-shell reference!) can be invoked in a
similar manner, using:

%tddft
nroots 5
sf true

end

Please check Sec. Collinear Spin-Flip TDA (SF-TD-DFT) for more details on how to use it, and how to understand
its results.
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Population analysis

If you want to print excited-state charges and bond orders, you can use UPOP TRUE under %TDDFT to get the
analysis from the unrelaxed density and !ENGRAD if you want to use the relaxed density. Multiple states can be
indicated by the IROOTLIST and TROOTLIST keywords. For more details please check Sec. Population Analysis
of Excited States.

Use of TD-DFT for the Calculation of X-ray Absorption Spectra

In principle X-ray absorption spectra are “normal” absorption spectra that are just taken in a special high-energy
wavelength range. Due to the high energy of the radiation employed (several thousand eV), core-electrons rather
than valence electrons are excited. This has two consequences: a) the method becomes element specific because
the core-level energies divide rather cleanly into regions that are specific for a given element. b) the wavelength of
the radiation is so short that higher-order terms in the expansion of the light-matter interaction become important.
Most noticeably, quadrupole intensity becomes important.

X-ray absorption spectra can be generally divided into three regions: a) the pre-edge that corresponds to transitions
of core electrons into low lying virtual orbitals that lead to bound states. b) the rising edge that corresponds to
excitations to high-lying states that are barely bound, and c) the extended X-ray absorption fine structure region
(EXAFS) that corresponds to electrons being ejected from the absorber atom and scattered at neighbouring atoms.

With the simple TD-DFT calculations described here, one focuses the attention on the pre-edge region. Neither
the rising edge nor the EXAFS region are reasonably described with standard electronic structure methods and
no comparison should be attempted. In addition, these calculations are restricted to K-edges as the calculation of
L-edges is much more laborious and requires a detailed treatment of the core hole spin orbit coupling.

It is clearly hopeless to try to calculate enough states to cover all transitions from the valence to the pre-edge
region. Hence, instead one hand-selects the appropriate donor core orbitals and only allows excitations out of
these orbitals into the entire virtual space. This approximation has been shown to be justified.[200] One should
distinguish two situations: First, the core orbital in question may be well isolated and unambiguously defined. This
is usually the case for metal 1s orbitals if there is only one metal of the given type in the molecule. Secondly,
there may be several atoms of the same kind in the molecule and their core orbitals form the appropriate symmetry
adapted linear combinations dictated by group theory. In this latter case special treatment is necessary: The sudden
approximation dictates that the excitations occurs from a local core orbital. In previous versions of the program
you had to manually localize the core holes. In the present version there is an automatic procedure that is described
below.

A typical example is TiCl4. If we want to calculate the titanium K-edge, the following input is appropriate:

! BP86 ZORA ZORA-def2-TZVP(-f) SARC/J TightSCF

%tddft OrbWin[0] = 0,0,-1,-1
NRoots 25
DoHigherMoments true
DoFullSemiclassical true
end

* int 0 1
Ti 0 0 0 0 0 0
Cl 1 2 3 2.15 0 0
Cl 1 2 3 2.15 109.4712 0
Cl 1 2 3 2.15 109.4712 120
Cl 1 2 3 2.15 109.4712 240
*

ò Note

• The absolute transition energies from such calculations are off by a few hundred electron volts due to the
shortcomings of DFT. The shift is constant and very systematic for a given element. Hence, calibration
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is possible and has been done for a number of edges already. Calibration depends on the basis set!

• Electric quadrupole contributions and magnetic dipole contributions have been invoked with
DoHigherMoments true (check section One Photon Spectroscopy for more information), which is es-
sential for metal edges. For ligand edges, the contributions are much smaller.

• OrbWin is used to select the single donor orbital (in this case the metal 1s). The LUMO (45) and last
orbital in the set (174) are selected automatically if “-1” is given. This is different from previous program
versions where the numbers had to be given manually.

The output contains standard TD-DFT output but also:

-----------------------------------------------------------------------------------------------
→˓---------------------------------

ABSORPTION SPECTRUM COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC␣
→˓QUADRUPOLE SPECTRUM
-----------------------------------------------------------------------------------------------
→˓---------------------------------

Transition Energy Energy Wavelength fosc(D2) fosc(M2) fosc(Q2) ␣
→˓fosc(D2+M2+Q2) D2/TOT M2/TOT Q2/TOT

(eV) (cm-1) (nm) (au) (au*1e6) (au*1e6)
-----------------------------------------------------------------------------------------------
→˓---------------------------------

This section contains the relevant output since it combines electric dipole, electric quadrupole and magnetic dipole
transition intensities into the final spectrum. Importantly, there is a gauge issue with the quadrupole intensity: the
results depend on the where the origin is placed. We have proposed a minimization procedure that guarantees the
fastest possible convergence of the multipole expansion.[201]

The spectra are plotted by calling

orca_mapspc MyOutput.out ABSQ -eV -x04890 -x14915 -w1.3

Starting from ORCA version 4.1 one may obtain origin independent transition moments formulations which can
be combined with the multipole moments up to 2nd order to regenerate the electric dipole, electric quadrupole
and magnetic dipole contributions in either length or the velocity representations. This requires in addition to the
electric dipole (D), electric quadrupole (Q) and magnetic dipole (m) intensities the corresponding electric dipole -
magnetic quadrupole (DM) and the electric dipole - electric octupole (DO) intensities.[811][95]. See also section
General Use.

These spectra are requested by (check section One Photon Spectroscopy for more information)

DoHigherMoments true
DecomposeFoscLength true
DecomposeFoscVelocity true

Resulting in:

-----------------------------------------------------------------------------------------------
→˓---------------------------------

ABSORPTION SPECTRUM COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC␣
→˓QUADRUPOLE SPECTRUM (Origin Independent, Length)
-----------------------------------------------------------------------------------------------
→˓---------------------------------

Transition Energy Energy Wavelength fosc(D2) fosc(M2) fosc(Q2)␣
→˓fosc(D2+M2+Q2+DM+DO) D2/TOT M2/TOT Q2/TOT

(eV) (cm-1) (nm) (au) (au*1e6) (au*1e6)
-----------------------------------------------------------------------------------------------
→˓---------------------------------
...

(continues on next page)
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-----------------------------------------------------------------------------------------------
→˓----------------------------------

ABSORPTION SPECTRUM COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC␣
→˓QUADRUPOLE SPECTRUM (Origin Independent, Velocity)
-----------------------------------------------------------------------------------------------
→˓----------------------------------

Transition Energy Energy Wavelength fosc(P2) fosc(M2) fosc(Q2)␣
→˓fosc(P2+M2+Q2+PM+PO) P2/TOT M2/TOT Q2/TOT

(eV) (cm-1) (nm) (au) (au*1e6) (au*1e6)
-----------------------------------------------------------------------------------------------
→˓----------------------------------
...

The Origin Independent transition moments spectra are plotted by calling:

orca_mapspc MyOutput.out ABSOI/ABSVOI -eV -x04890 -x14915 -w1.3

Although the multipole moments up to 2nd order:

• Only approximate origin independence is achieved by using the length approximation for distances from the
excited atom up to about 5 Angstrom.

• Can form negative intensities which can be partly cured by using larger basis sets.

Starting from ORCA version 6.0 the full semi-classical ligth-matter interaction[95][398][528] can be computed by
including the keyword:

DoFullSemiclassical true

Resulting in:

-----------------------------------------------------------------------------
ABSORPTION SPECTRUM VIA FULL SEMI-CLASSICAL FORMULATION

-----------------------------------------------------------------------------
Transition Energy Energy Wavelength fosc(FFMIO)

(eV) (cm-1) (nm)
-----------------------------------------------------------------------------

The full-semiclassical transition moments:

• Behave like the multipole expansion in the velocity representation.

• They are by definition origin independent they do not suffer from artificial negative values like the multipole
moments beyond 1st order.

Now, let us turn to the Cl K-edge. Looking at the output of the first calculation, we have:

----------------
ORBITAL ENERGIES
----------------

NO OCC E(Eh) E(eV)
0 2.0000 -180.132624 -4901.6579
1 2.0000 -101.520058 -2762.5012
2 2.0000 -101.520052 -2762.5010
3 2.0000 -101.520048 -2762.5010
4 2.0000 -101.520048 -2762.5010
5 2.0000 -19.823233 -539.4176
6 2.0000 -16.411730 -446.5859
7 2.0000 -16.411729 -446.5858
8 2.0000 -16.411729 -446.5858
9 2.0000 -9.280963 -252.5478
10 2.0000 -9.280957 -252.5477

(continues on next page)
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11 2.0000 -9.280953 -252.5476
12 2.0000 -9.280953 -252.5476
13 2.0000 -7.037815 -191.5087
14 2.0000 -7.037805 -191.5084
15 2.0000 -7.037791 -191.5080
16 2.0000 -7.037791 -191.5080
17 2.0000 -7.035288 -191.4399
18 2.0000 -7.035287 -191.4399

....

And looking at the energy range or the orbital composition, we find that orbitals 1 through 4 are Cl 1s-orbitals.
They all have the same energy since they are essentially non-interacting. Hence, we can localize them without
invalidating the calculation. To this end, you can invoke the automatic localization for XAS which modifies the
input to:

! BP86 ZORA ZORA-def2-TZVP(-f) SARC/J TightSCF

%tddft XASLoc[0] = 1,4
OrbWin[0] = 1,1,-1,-1
NRoots 25
DoHigherMoments true
DoFullSemiclassical true
end

* int 0 1
Ti 0 0 0 0 0 0
Cl 1 2 3 2.15 0 0
Cl 1 2 3 2.15 109.4712 0
Cl 1 2 3 2.15 109.4712 120
Cl 1 2 3 2.15 109.4712 240
*

• This localizes the orbitals 1 through 4 of operator 0 (the closed-shell) and then allows excitations (arbitrarily)
from core hole 1 only. You could choose any of the three other localized 1s orbitals instead without changing
the result. You could even do all four core holes simultaneously (they produce identical spectra) in which
case you have the entire ligand K-edge intensity and not just the one normalized to a single chlorine (this
would be achieved with OrbWin[0] = 1,4,-1,-1).

• If you have a spin unrestricted calculation, you need to give the same XASLoc and OrbWin information for
the spin-down orbitals as well.

Quite nice results have been obtained for a number of systems in this way.[713]

Excited State Geometry Optimization

For RPA, CIS, TDA and TD-DFT the program can calculate analytic gradients. With the help of the IRoot key-
word, a given state can be selected for geometry optimization. Note however, that if two states cross during the
optimization it may fail to converge or fail to converge to the desired excited state (see section Root Following
Scheme for Difficult Cases below)! If you want to follow a triplet state instead of the singlet, please set IROOT-
MULT to TRIPLET.

! HF DEF2-SVP Opt

%CIS NRoots 1
IRoot 1
end

* int 0 1
C 0 0 0 0.00 0.0 0.00
O 1 0 0 1.20 0.0 0.00

(continues on next page)
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H 1 2 0 1.08 120 0.00
H 1 2 3 1.08 120 180.00

*

Note that this example converges to a saddle point as can be verified through a numerical frequency calculation
(which is also possible with the methods mentioned above). The excited state relaxed density matrix is available
from such gradient runs (MyJob.cisp when using the KeepDens keyword) and can be used for various types of
analysis. Note that the frozen core option is available starting from version 2.8.0.

Root Following Scheme for Difficult Cases

In case there is a root flipping after a step during the geometry optimization, it might be impossible to converge an
excited state geometry using the regular methods. To help in those cases, the flag FOLLOWIROOT might be set
to TRUE. Then, excited state wavefunction will be analyzed and compared with the reference one (more below),
and the IROOT will be automatically adjusted to keep homing the target state.

One example of such a calculation is:

! wB97X OPT
%TDDFT

NROOTS 5
IROOT 3
FOLLOWIROOT TRUE

END
* xyz 0 1
N 0.0 0.0 0.0
H 0.0 0.0 1.0
H 0.0 -0.9 0.5
H 0.0 0.9 0.5
*

This will ask for an optimization of the third excited state of ammonia. At some point, there is a state crossing and
what was state 3 now becomes state 2. The algorithm will recognize this and automatically change the IROOT
flag, to keep following the same state. FOLLOWIROOT also works with spin-adapted triplets and spin-flip states.

In cases where you want to keep the comparison only with the density from the very first computed excited state,
e.g. the one you get on the first cycle of a geometry optimization, you can use FIRKEEPFIRSTREF, as in:

%TDDFT
NROOTS 5
IROOT 3
FOLLOWIROOT TRUE
FIRKEEPFIRSTREF TRUE # default false

END

Criteria to Follow IROOTs - starting from ORCA6

Starting from ORCA6 we have a much more robust algorithm to follow these excited states, inspired by some of
the recent literature [820] [135]. The algorithm now works as follows, after each excited state calculation using
CIS/TDDFT:

1. Given a reference state, take all states within an energy difference of up to 1 eV to it. We don’t want to check
states that are too far apart in energy. Controlled by %TDDFT FIRENTHRESH 1.0 END, number in eV.

2. Now take all states with a difference of 𝑆2 not larger than 0.5. We don’t want to compare singlets to triplets.
Controlled by %TDDFT FIRS2THRESH 0.5 END.

3. Calculate the overlap between the transition densities of all states with the reference - this is the core part.
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4. In case there is ambiguity - that is if two states have overlaps differing by only 0.05 - take the one with the
closer transition dipole angle. Controlled by %TDDFT FIRSTHRESH 0.05 END.

5. Update the IROOT to the state that went best on all these tests.

ò Note

These FIR keywords are specific to Follow IRoot.

Now by default we might also update the reference state from time to time in case the separation of states is very
clear. The way it work is:

1. If the best overlap is larger than FIRMINOVERLAP, which is 0.5 by default and FIRDYNOVERLAP is FALSE, we
will assume that the overlap is good enough and we will always update the reference. However, the default
is FIRDYNOVERLAP TRUE, which means also have a second check for robustness.

2. If FIRDYNOVERLAP TRUE and the best overlap is larger than 0.5 (or FIRMINOVERLAP), we will check for
the ratio between the best and the second best states. If this ratio is between 0.3 and 0.6 (controlled by
%TDDFT FIRDYNOVERRATIO 0.3,0.6 END), it means that there is a clear separation between the best and
the second best and the reference can be updated safely. If the ratio is too close to 1, both states are too
similar and it would be dangerous to update the reference state. If it is too close to zero, they are easy to
distinguish and we don’t need to update the reference yet [820].

s Important

It is important to stress that this will not necessarily solve all problems (root flipping can be particularly bad
if the system is highly symmetric), for the excited states may change too much during the optimization. If that
happens, it is advisable to restart the calculation after some steps and check which IROOT you still want. This
can also be used when calculating numerical gradients and Hessians, in case you suspect of root flipping after
the displacements.

s Important

This algorithm is completely general and should work for any excited state method, as long as there are transition
densities. We will include more methods in the future when possible.

Doubles Correction

For CIS (and also for perturbatively corrected time-dependent double-hybrid functionals) the program can calculate
a doubles correction to the singles-only excited states. The theory is due to Head-Gordon and co-workers [371].

%cis dcorr n # n=1,2,3,4 are four different algorithms that
# lead to (essentially) the same result but differ
# in the way the rate-limiting steps are handled

Spin-component scaling versions of CIS(D) can be evoked in the %cis block by setting DOSCS TRUE and the
four scaling parameters, as defined by Head-Gordon and co-workers [718], in the following order: same-spin
indirect term (CTss), opposite-spin indirect term(CTos), same-spin direct term(CUss), and opposite-spin direct
term(CUos). Note that this implementation only works for the version with the parameter 𝜆 = 1 as defined in
Ref. [718]. The example below shows how to apply the SCS-CIS(D) version with 𝜆 = 1 whose usage has been
advocated in Ref. [311]. The user is able to specify other scaling parameters.

%cis
dcorr # n=1,2,3,4
doscs true # set SCS-CIS(D) to true (default: false)

(continues on next page)
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scspar 0.333, 1.2, 0.43, 1.24 #SCS-CIS(D) scaling parameters in this order
CTss, CTos, CUss, CUos

end

Note the use of commas to separate the parameters. These parameters do not communicate with the SCS/SOS
parameters set for ground-state SCS/SOS-MP2 in the %mp2 block.

ò Note

• CIS(D) is often a quite big improvement over CIS.

• The cost of the (D) correction is O(N5) and therefore comparable to RI-MP2. Since there are quite a few
things more to be done for (D) compared to RI-MP2, expect the calculations to take longer. In the most
elementary implementation the cost is about two times the time for RI-MP2 for each root.

• The (D) correction is compatible with the philosophy of the double-hybrid density functionals and should
be used if these functionals are combined with TD-DFT. The program takes this as the default but will
not enforce it. The (D) correction can be used both in a TD-DFT and TDA-DFT context.

• In our implementation it is only implemented together with the RI approximation and therefore you need
to supply an appropriate (“/C”) fitting basis.

• The program will automatically put the RI-MP2 module into operation together with the (D) correction.
This will result in the necessary integrals becoming available to the CIS module.

• Singlet-triplet excitations can be calculated by setting TRIPLETS TRUE in the %cis or %tddft blocks,
respectively. The implementation has been tested for double hybrids in Ref. [145].

• For spin-adapted triplets (TRIPLETS TRUE), the only option available currently is DCORR 1.

• Spin-component and spin-opposite scaling techniques for double-hybrids within the TD- and TDA-DFT
frameworks, as defined by Schwabe and Goerigk [772], can be evoked in the same way in the %tddft block
as described for SCS-CIS(D) above. While user-defined parameters can be entered in such a way, a series
of new functionals are available through normal keywords, which use the herein presented SCS/SOS-
CIS(D) implementation. [147] See Sec. Choice of Functional for a list of those functionals.

Spin-orbit coupling

It also possible to include spin-orbit coupling between singlets and triplets calculated from TD-DFT by using quasi-
degenerate perturbation theory (please refer to the relevant publication [198]), similarly to what is done in ROCIS.
In order to do that, the flag DOSOC must be set to TRUE. The reduced matrix elements are printed and the new
transition dipoles between all SOC coupled states are also printed after the regular ones. This option is currently
still not compatible with double hybrids, but works for all other cases including CPCM. All the options regarding
the SOC integrals can be altered in the %rel block, as usual.

%CIS DOSOC TRUE END

Please have in mind that, as it is, you can only calculate the SOC between excited singlets and the spin-adapted
triplets. There is no SOC starting from a UHF/UKS wavefunction. If you want more information printed such as
the full SOC matrix or triplet-triplet couplings, please set a higher PRINTLEVEL.
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SOC and ECPs

ORCA currently does not have SOC integrals for ECPs, and these are by default ignored in the SOC module. If
you try to use ORCA together with ECPs, an abort message will be printed. If you absolutely need to use ECPs,
for instance for embedded potentials, please use:

%TDDFT FORCEECP TRUE END

OBS.: Do not use ECPs in atoms where SOC might be important. In that case, always use all-electron basis
functions or the results will not make sense.

Geometry Optimization of SOC States

If you want to compute geometries for the SOC states, just choose SOCGRAD TRUE and a given IROOT. The
weigthed “unrelaxed” gradient will then be calculated after selecting the CIS/TD-DFT states with contribution
larger than 0.01%. Each gradient will be calculated separately and, after that, the final SOC gradient will be
computed as a weighted sum. Setting IROOT 0 in this case corresponds to ask for the SOC ground state, which is
NOT necessarily equal to the ground state from HF/DFT.

Transient spectra

If one wants to compute transient spectra, or transition dipoles starting from a given excited state, the option
DOTRANS must be set to TRUE and an IROOT should be given for the initial state (the default is 1). If DOTRANS
ALL is requested instead, the transition dipoles between all states are computed. The transient transition dipoles
will then be printed after the normal spectra. This option is currently only available for CIS/TDA and is done usng
the expectation value formalism, as the other transition dipole moments in ORCA.

%cis
DOTRANS TRUE

#or
DOTRANS ALL

end

Non-adiabatic coupling matrix elements

The CIS module can compute the non-adiabatic coupling matrix elements (NACME) between ground and an
excited state given by an IROOT, ⟨Ψ𝐺𝑆 | 𝜕

𝜕𝑅𝑥
|Ψ𝐼𝑅𝑂𝑂𝑇 ⟩ [783]. These can also include LR-CPCM effects if

!CPCM(solvent) is chosen in the main input, ZORA effects and will make use of RIJ and COSX, if they are
chosen for the SCF. The usage is simple, e.g.:

!PBE0 DEF2-SVP TIGHTSCF
%TDDFT NROOTS 5

IROOT 2
NACME TRUE

END
* xyz 0 1
O 0.000000000 0.000000000 0.611403292
C 0.000000000 0.000000000 -0.613232096
H 0.931880792 0.000000000 -1.200880848
H -0.931880792 0.000000000 -1.200880848
*

By choosing NACME TRUE under %TDDFT, a regular gradient calculation will be done, and the NACMEs will
be computed together with it. After the usual gradient output, the NACMEs will be printed as:
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---------------------------------
CARTESIAN NON-ADIABATIC COUPLINGS

<GS|d/dx|ES>
---------------------------------

1 O : -0.161958900 -0.000000135 0.000001029
2 C : -0.088213027 -0.000000024 0.000000167
3 H : 0.226241398 0.000000001 -0.109102154
4 H : 0.226241406 -0.000000000 0.109102161

Difference to translation invariance:
: 0.2023108777 -0.0000001585 0.0000012017

Norm of the NACs ... 0.4002363416
RMS NACs ... 0.1155382798
MAX NAC ... 0.2262414063

The NACMEs are given under the Cartesian basis; this may differ from some other programs where NACMEs are
given under the normal mode basis. To obtain NACMEs under the normal mode basis, one can perform an internal
conversion (IC) rate calculation (see Internal Conversion Rates (unpublished)) and obtain them from the output
file.

NACMEs with built-in electron-translation factor

As you can see, the calculation above does not have full translation invariance! That is a feature of NACs calculated
from CI wavefunctions, due to the Born-Oppenheimer approximation. It can be somehow fixed by including the
so-called “electron-translation factors” (ETFs) [252], and those are added with ETF TRUE under %TDDFT. By
now using the input:

!PBE0 DEF2-SVP
%TDDFT NROOTS 5

IROOT 2
NACME TRUE
ETF TRUE

END
* xyz 0 1
O 0.000000000 0.000000000 0.611403292
C 0.000000000 0.000000000 -0.613232096
H 0.931880792 0.000000000 -1.200880848
H -0.931880792 0.000000000 -1.200880848
*

one gets the following output:

---------------------------------
CARTESIAN NON-ADIABATIC COUPLINGS

<GS|d/dx|ES>
with built-in ETFs

---------------------------------

1 O : -0.071334028 -0.000001941 0.000003727
2 C : -0.362514525 -0.000000130 -0.000000776
3 H : 0.217014763 0.000000003 -0.128968922
4 H : 0.217014813 -0.000000002 0.128968939

Difference to translation invariance:
: 0.0001810232 -0.0000020693 0.0000029689

Norm of the NACs ... 0.5137724505

(continues on next page)
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RMS NACs ... 0.1483133313
MAX NAC ... 0.3625145251

where the residual translation variance is due to the DFT and COSX grids only.

. Warning

These are the recommended NACs to be used with any kind of dynamics or conical intersection optimization,
otherwise moving the center of mass of you system would already change the couplings!

Numerical non-adiabatic coupling matrix elements

The numerical non-adiabatic coupling matrix elements between ground and excited states from CIS/TD-DFT can
be calculated in a numerical fashion, by setting the NumNACME flag on the main input line:

! NumNACME

ORCA will then calculate both the NACMEs and the numerical gradient for a given IROOT at the same cost. Please
be careful with the SCF options and GRID sizes since there are displacements involved, for more information check
Numerical Gradients. All options regarding step size and so on can be changed from %NUMGRAD.

These are current implemented in both RHF/RKS and UHF/UKS, but only for CIS/TDA and RPA/TD-DFT, no
multireference methods yet. For the latter case, the overlap of the |𝑋 − 𝑌 ⟩ vector is used [517].

Restricted Open-shell CIS

In addition to the CIS/TD-DFT description of excited states, ORCA features the orca_rocis module to perform
configuration interaction with single excitations calculations using a restricted open-shell Hartree–Fock (ROHF)
reference. It can be used to calculate excitation energies, absorption intensities and CD UHFintensities. In general,
ROCIS calculations work on restricted open-shell HF reference functions but in this implementation it is possible
to enter the calculations with RHF (only for closed-shell molecules) or UHF reference functions as well. If the
calculation starts with an UHF/UKS calculation, it will automatically produce the quasi-restricted orbitals which
will then be used for the subsequent ROCIS calculations. Note that if the reference function is a RHF/RKS function
the method produces the CIS results. The module is invoked by providing the number of roots sought in the %rocis
block of the input file:

! SVP TightSCF

%rocis NRoots 2
MaxDim 5 #Davidson expansion space = MaxDim * NRoots

end

* xyz -2 2
Cu 0.00 0.00 0.00
Cl 2.25 0.00 0.00
Cl -2.25 0.00 0.00
Cl 0.00 2.25 0.00
Cl 0.00 -2.25 0.00
*

In this example the MaxDim parameter is given in addition to the number of roots to be calculated. It controls the
maximum dimension of the expansion space in the Davidson procedure that is used to solve the CI problem.

The use of ROCIS is explained in greater detail in section Excited States via ROCIS and DFT/ROCIS.

Starting from ORCA 6.0, the General-Spin ROCIS (GS-ROCIS) implementation is available. This new imple-
mentation can handle arbitrary CSFs as references. For this, one would use the CSF-ROHF method to obtain the
reference wavefunction for which ROCIS will be performed. The GS-ROCIS calculation can be invoked as follows:
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%scf
HFTyp ROHF
ROHF_CASE USER_CSF or AF_CSF
etc.

end

%rocis
DoGenROCIS true # Turns the General-Spin ROCIS procedure on
ReferenceMult 1 # The reference wavefunction multiplicity (it needs to agree with the ROHF␣

→˓solution)
etc.

end

Currently, there is no DFT/ROCIS implemented for the General-Spin procedure. Spin-Orbit coupling is also not
available in the present version.

6.6.2 Excited States for Open-Shell Molecules with CASSCF Linear Response
(MC-RPA)

ORCA has the possibility to calculate excitation energies, oscillator and rotatory strengths for CASSCF wave func-
tions within the response theory (MC-RPA) formalism.[380, 417, 902] The main scope of MC-RPA is to simiulate
UV/Vis and ECD absorption spectra of open-shell molecules like transition metal complexes and organic radicals.
MC-RPA absorption spectra are usually more accurate than those obtained from the state-averaged CASSCF ansatz
as orbital relaxation effects for excited states are taken into account. The computational costs are ususally larger
than those of SA-CASSCF and should be comparable to a TD-DFT calculation for feasible active space sizes.

General Use

MC-RPA needs a converged state-specific CASSCF calculation of the electronic ground state. The only necessary
information that the user has to provide is the desired number of excited states (roots). All other keywords are
just needed to control the Davidson algorithm or post process the results. A minimal input for calculating the four
lowest singlet excited states of ethylene could like the following:

#
# CASSCF + MCRPA for C2H4
#
! DEF2-SVP DEF2-TZVP/C VeryTightSCF

%casscf
nel 2
norb 2
mult 1
nroots 1
gtol 1e-6
etol 1e-10
end

%mcrpa
nroots 8
end

* int 0 1
C 0 0 0 0 0 0
C 1 0 0 1.3385 0 0
H 1 2 0 1.07 120 0
H 1 2 3 1.07 120 180
H 2 1 3 1.07 120 0
H 2 1 3 1.07 120 180
*
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After the residual norm is below a user-given threshold TolR we get the following information

Final Eigenvalues

State Eigenvalue RMSD error Converged
0 0.3352792890 2.4181038930e-07 T
1 0.3484190806 9.8077823429e-07 T
2 0.3514832140 2.7908735363e-07 T
3 0.3741119713 2.9210937348e-07 T

4 roots were CONVERGED within 19 iterations!
64 Sigma vectors were computed in total!

and the absorption and ECD spectrum

-----------------------------------------------------------------------------------------------
→˓-----

ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-----------------------------------------------------------------------------------------------
→˓-----

Transition Energy Energy Wavelength fosc(D2) D2 DX DY ␣
→˓DZ

(eV) (cm-1) (nm) (au**2) (au) (au) ␣
→˓(au)
-----------------------------------------------------------------------------------------------
→˓-----
0-1A -> 1-1A 9.123912 73589.3 135.9 0.430770278 1.92711 -1.38820 0.00000 -0.

→˓00000
0-1A -> 2-1A 9.483952 76493.2 130.7 0.009915149 0.04267 -0.00000 0.00000 -0.

→˓20657
0-1A -> 3-1A 9.564384 77142.0 129.6 0.000000000 0.00000 -0.00000 0.00000 -0.

→˓00000
0-1A -> 4-1A 10.180358 82110.1 121.8 0.000000000 0.00000 0.00000 0.00000 0.

→˓00000
0-1A -> 5-1A 10.187869 82170.7 121.7 0.000000000 0.00000 0.00000 -0.00000 0.

→˓00000
0-1A -> 6-1A 10.995304 88683.1 112.8 0.000000000 0.00000 -0.00000 -0.00000 -0.

→˓00000
0-1A -> 7-1A 12.188654 98308.1 101.7 0.000000000 0.00000 0.00000 -0.00000 -0.

→˓00000
0-1A -> 8-1A 12.543751 101172.2 98.8 0.000000000 0.00000 -0.00000 0.00000 0.

→˓00000

...
------------------------------------------------------------------------------------------

CD SPECTRUM VIA TRANSITION VELOCITY DIPOLE MOMENTS
------------------------------------------------------------------------------------------

Transition Energy Energy Wavelength R MX MY MZ
(eV) (cm-1) (nm) (1e40*cgs) (au) (au) (au)

------------------------------------------------------------------------------------------
0-1A -> 1-1A 9.123912 73589.3 135.9 -0.00000 -0.00000 -0.00000 -0.00000
0-1A -> 2-1A 9.483952 76493.2 130.7 0.00000 -0.00000 -0.00000 0.00000
0-1A -> 3-1A 9.564384 77142.0 129.6 0.00000 0.69943 -0.00000 0.00000
0-1A -> 4-1A 10.180358 82110.1 121.8 -0.00000 0.15776 0.00000 -0.00000
0-1A -> 5-1A 10.187869 82170.7 121.7 0.00000 0.00000 -0.73302 0.00000
0-1A -> 6-1A 10.995304 88683.1 112.8 -0.00000 0.00000 -0.54038 -0.00000
0-1A -> 7-1A 12.188654 98308.1 101.7 -0.00000 0.00000 0.00000 -0.00000
0-1A -> 8-1A 12.543751 101172.2 98.8 0.00000 0.00000 0.00000 -0.90854
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Capabilities

At the moment, we can simulate UV/Vis and ECD absorption spectra by computing excitation energies, oscillator
and rotatory strengths. The code is parallelized and the computational bottleneck is the integral direct AO-Fock
matrix construction. All intermediates that depend on the number of states are stored on disk, which makes the
MC-RPA implementation suitable for computing many low-lying electronic states of larger molecules. Abelian
point-group symmetry can be exploited in the calculation (up to D2h). But there are no calculations of spin-flip
excitations possible at the moment. That means all excited states will have the same spin as the reference state,
which is specified in the %casscf input block.

It is also possible to analyze and visualize the ground-to-excited-state transitions by means of natural transition
orbitals[562] (NTO), which is explained in more detail in section Excited States via MC-RPA.

For further details, please study our recent publications[379, 380].

6.6.3 Excited States with EOM-CCSD

The methods described in the previous section are all based on the single excitation framework. For a more accurate
treatment, double excitations should also be considered. The equation of motion (EOM) CCSD method (and the
closely related family of linear response CC methods) provides an accurate way of describing excited, ionized
and electron attached states based on singles and doubles excitations within the coupled-cluster framework. In
this chapter, the typical usage of the EOM-CCSD routine will be described, along with a short list of its present
capabilities. A detailed description will be given in Section Excited States via EOM-CCSD.

General Use

The simplest way to perform an EOM calculation is via the usage of the EOM-CCSD keyword, together with the
specification of the desired number of roots:

! RHF EOM-CCSD cc-pVDZ TightSCF

%mdci
nroots 9

end

*xyz 0 1
C 0.016227 -0.000000 0.000000
O 1.236847 0.000000 -0.000000
H -0.576537 0.951580 -0.000000
H -0.576537 -0.951580 -0.000000

*

The above input will call the EOM routine with default settings. The main output is a list of excitation energies,
augmented with some further state specific data. For the above input, the following output is obtained:

----------------------
EOM-CCSD RESULTS (RHS)
----------------------

IROOT= 1: 0.147823 au 4.022 eV 32443.5 cm**-1
Amplitude Excitation
0.107945 4 -> 8
0.665496 7 -> 8
0.104633 7 -> 8 6 -> 8
Ground state amplitude: 0.000000

Percentage singles character= 92.32

IROOT= 2: 0.314133 au 8.548 eV 68944.3 cm**-1
Amplitude Excitation

(continues on next page)

6.6. Excited States Calculations 223



ORCA Manual, Release 6.0

(continued from previous page)

0.671246 7 -> 9
Ground state amplitude: -0.000000

Percentage singles character= 90.42

IROOT= 3: 0.343833 au 9.356 eV 75462.6 cm**-1
Amplitude Excitation
-0.670633 5 -> 8
-0.112538 6 -> 8 5 -> 8
Ground state amplitude: 0.000000

Percentage singles character= 92.00

IROOT= 4: 0.364199 au 9.910 eV 79932.5 cm**-1
Amplitude Excitation
0.102777 4 -> 10
-0.484661 6 -> 8
0.438311 7 -> 10
-0.167512 6 -> 8 6 -> 8
Ground state amplitude: -0.021060

Percentage singles character= 87.22

IROOT= 5: 0.389398 au 10.596 eV 85463.0 cm**-1
Amplitude Excitation
0.646812 4 -> 8
-0.122387 7 -> 8
0.171366 7 -> 8 6 -> 8
Ground state amplitude: 0.000000

Percentage singles character= 87.47

IROOT= 6: 0.414587 au 11.281 eV 90991.4 cm**-1
Amplitude Excitation
-0.378418 6 -> 8
-0.537292 7 -> 10
-0.124246 6 -> 8 6 -> 8
Ground state amplitude: -0.061047

Percentage singles character= 89.13

IROOT= 7: 0.423861 au 11.534 eV 93026.7 cm**-1
Amplitude Excitation
0.673806 7 -> 11
Ground state amplitude: 0.000000

Percentage singles character= 93.14

IROOT= 8: 0.444201 au 12.087 eV 97490.8 cm**-1
Amplitude Excitation
0.664877 6 -> 9
0.130475 6 -> 9 6 -> 8
Ground state amplitude: -0.000000

Percentage singles character= 87.17

IROOT= 9: 0.510514 au 13.892 eV 112044.8 cm**-1
Amplitude Excitation
-0.665791 6 -> 10
0.114259 6 -> 15
-0.124374 6 -> 10 6 -> 8
Ground state amplitude: -0.000000

The IP and EA versions can be called using the keywords IP-EOM-CCSD and EA-EOM-CCSD respectively. For
open-shell systems (UHF reference wavefunction), IP/EA-EOM-CCSD calculations require an additional key-
words. Namely, an IP/EA calculation involving the removal/attachment of an 𝛼 electron is requested by setting
the DoAlpha keyword to true in the %mdci block, while setting the DoBeta keyword to true selects an IP/EA
calculation for the removal/attachment of a 𝛽 electron. Note that DoAlpha and DoBeta cannot simultaneously be
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true and that the calculation defaults to one in which DoAlpha is true if no keyword is specified on input. A simple
example of the input for a UHF IP-EOM-CCSD calculation for the removal of an 𝛼 electron is given below.

! IP-EOM-CCSD cc-pVDZ
%mdci
DoAlpha true
NRoots 7
end

*xyz 0 3
O 0.0 0.0 0.0
O 0.0 0.0 1.207

*

Capabilities

At present, the EOM routine is able to perform excited, ionized and electron attached state calculations, for both
closed- or open-shell systems, using RHF or UHF reference wavefunctions, respectively. It can be used for serial
and parallel calculations. The method is available in the back-transformed PNO and DLPNO framework enabling
the calculation of large molecules - see Section Excited States with PNO based coupled cluster methods and Sec-
tion Excited States with DLPNO based coupled cluster methods. In the closed-shell case (RHF), a lower scaling
version can be invoked by setting the CCSD2 keyword to true in the %mdci section. The latter is a second order
approximation to the conventional EOM-CCSD. For the time being, the most useful information provided is the list
of the excitation energies, the ionization potentials or the electron affinities. The ground to excited state transition
moments are also available for the closed-shell implementation of EE-EOM-CCSD.

6.6.4 Excited States with ADC2

Among the various approximate correlation methods available for excited states, one of the most popular one
is algebraic diagrammatic construction(ADC) method. The ADC has it origin in the Green’s function theory.
It expands the energy and wave-function in perturbation order and can directly calculate the excitation energy,
ionization potential and electron affinity, similar to that in the EOM-CCSD method. Because of the symmetric
eigenvalue problem in ADC, the calculation of properties are more straight forward to calculate than EOM-CCSD.
In ORCA, only the second-order approximation to ADC(ADC2) is implemented. It scales as O(𝑁5) power of the
basis set.

General Use

The simplest way to perform an ADC2 calculation is via the usage of the ADC2 keyword, together with the specifi-
cation of the desired number of roots:

! ADC2 cc-pVDZ cc-pVDZ/C TightSCF

%mdci
nroots 9

end

*xyz 0 1
C 0.016227 -0.000000 0.000000
O 1.236847 0.000000 -0.000000
H -0.576537 0.951580 -0.000000
H -0.576537 -0.951580 -0.000000

*

The above input will call the ADC2 routine with default settings. The main output is a list of excitation energies,
augmented with some further state specific data. The integral transformation in the ADC2 implementation of
ORCA is done using the density-fitting approximation. Therefore, one need to specify an auxiliary basis. For the
above input, the following output is obtained:
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----------------------
ADC(2) RESULTS (RHS)
----------------------

IROOT= 1: 0.146914 au 3.998 eV 32243.8 cm**-1
Amplitude Excitation
-0.116970 4 -> 8
-0.672069 7 -> 8

IROOT= 2: 0.286012 au 7.783 eV 62772.3 cm**-1
Amplitude Excitation
-0.659777 7 -> 9

IROOT= 3: 0.341919 au 9.304 eV 75042.4 cm**-1
Amplitude Excitation
-0.676913 5 -> 8

IROOT= 4: 0.352206 au 9.584 eV 77300.2 cm**-1
Amplitude Excitation
-0.126824 4 -> 10
0.360690 6 -> 8
-0.547669 7 -> 10

IROOT= 5: 0.393965 au 10.720 eV 86465.3 cm**-1
Amplitude Excitation
-0.551344 6 -> 8
-0.363451 7 -> 10
-0.109270 6 -> 8 6 -> 8

IROOT= 6: 0.404946 au 11.019 eV 88875.5 cm**-1
Amplitude Excitation
0.669682 4 -> 8
-0.126557 7 -> 8

IROOT= 7: 0.412800 au 11.233 eV 90599.2 cm**-1
Amplitude Excitation
0.100274 4 -> 11
0.671884 7 -> 11

IROOT= 8: 0.439251 au 11.953 eV 96404.6 cm**-1
Amplitude Excitation
-0.674114 6 -> 9
-0.104541 6 -> 9 6 -> 8

IROOT= 9: 0.486582 au 13.241 eV 106792.5 cm**-1
Amplitude Excitation
-0.654624 5 -> 9

The transition moment for ADC2 in ORCA is calculated using an EOM-like expectation value approach, unlike
the traditionally used intermediate state representation. However, the two approaches gives almost identical result.

--------------------------------------------------------------------
SPECTRUM FOR LEFT-RIGHT TRANSITION MOMENTS

--------------------------------------------------------------------

-----------------------------------------------------------------------------------------------
→˓-----

ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-----------------------------------------------------------------------------------------------
→˓-----

Transition Energy Energy Wavelength fosc(D2) D2 DX DY ␣
→˓DZ

(eV) (cm-1) (nm) (au**2) (au) (au) ␣
→˓(au)
-----------------------------------------------------------------------------------------------
→˓-----
0-1A -> 1-1A 3.997726 32243.8 310.1 0.000000000 0.00000 0.00000 -0.00000 0.

→˓00000
0-1A -> 2-1A 7.782776 62772.3 159.3 0.096710371 0.50720 0.00000 -0.70536 0.

(continues on next page)
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→˓00000
0-1A -> 3-1A 9.304078 75042.5 133.3 0.002261744 0.00992 -0.00000 -0.00000 0.

→˓09835
0-1A -> 4-1A 9.584003 77300.2 129.4 0.007937829 0.03381 0.18502 0.00000 -0.

→˓00000
0-1A -> 5-1A 10.720332 86465.3 115.7 0.465055079 1.77067 1.32377 0.00000 0.

→˓00000
0-1A -> 6-1A 11.019150 88875.4 112.5 0.000000000 0.00000 0.00000 0.00000 0.

→˓00000
0-1A -> 7-1A 11.232869 90599.2 110.4 0.022236623 0.08080 -0.00000 0.28105 0.

→˓00000
0-1A -> 8-1A 11.952640 96404.5 103.7 0.009103120 0.03109 -0.00000 0.00000 -0.

→˓17328
0-1A -> 9-1A 13.240575 106792.5 93.6 0.071433742 0.22021 -0.46692 0.00000 0.

→˓00000

The IP and EA versions can be called using the keywords IP-ADC2 and EA-ADC2, respectively.

Capabilities

At present, the ADC2 module is able to perform excited, ionized and electron attached state calculations, only for
closed-shell systems. No open-shell version of the ADC2 is currently available. Below are all the parameters that
influence the ADC2 module.

%mdci
#ADC2 parameters - defaults displayed

NDav 20 # maximum size of reduced space (i.e. 20*NRoots)
CheckEachRoot true # check convergence for each root separately
RootHoming true # apply root homing
DoLanczos false # use the Lanczos procedure rather than Davidson
UseCISUpdate true # use diagonal CIS for updating
NInitS 0 # number of roots in the initial guess, if 0, use preset value
DoRootwise false # solves for each root separately,

# more stable for large number of roots
FOLLOWCIS false # follows the initial singles guess

end

One can notice that features available in the ADC2 module is quite limited as compared to the EOM module and
the option to specifically target the core-orbitals are yet not available. A word of caution, The ‘second order
black magic’ of ADC2 can fail in many of the cases. The readers are encouraged to try the DLPNO based EOM-
CCSD methods(Excited States with DLPNO based coupled cluster methods) which are much more accurate and
computationally efficient.
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6.6.5 Excited States with STEOM-CCSD

The STEOM-CCSD method provides an efficient way to calculate excitation energies, with an accuracy comparable
to the EOM-CCSD approach, at a nominal cost. A detailed description will be given in Section Excited States via
STEOM-CCSD.

General Use

The simplest way to perform a STEOM calculation is using the STEOM-CCSD keyword, together with the specifi-
cation of the desired number of roots (NRoots):

! STEOM-CCSD cc-pVDZ TightSCF

%mdci
NRoots 9 # Number of excited states
DoDbfilter true # Remove doubly excited states

end

*xyz 0 1
C 0.016227 -0.000000 0.000000
O 1.236847 0.000000 -0.000000
H -0.576537 0.951580 -0.000000
H -0.576537 -0.951580 -0.000000

*

The above input calls the STEOM routine with default settings, where, for instance, the doubly excited states are
eliminated (DoDbFilter true). The main output is a list of excitation energies, augmented with some further
state specific data. The STEOMCC approach in ORCA uses state-averaged CIS natural transition orbitals (NTO)
for the selection of the active space. For the above input, the following output is obtained:

------------------
STEOM-CCSD RESULTS
------------------

IROOT= 1: 0.146552 au 3.988 eV 32164.5 cm**-1
Amplitude Excitation
0.196225 4 -> 8
-0.979974 7 -> 8

Amplitude Excitation in Canonical Basis
-0.153212 4 -> 8
0.977931 7 -> 8
-0.121980 7 -> 13

IROOT= 2: 0.308608 au 8.398 eV 67731.7 cm**-1
Amplitude Excitation
-0.141414 4 -> 9
0.988498 7 -> 9

Amplitude Excitation in Canonical Basis
-0.989700 7 -> 9

IROOT= 3: 0.336979 au 9.170 eV 73958.3 cm**-1
Amplitude Excitation
-0.994070 5 -> 8

Amplitude Excitation in Canonical Basis
0.983934 5 -> 8
-0.137018 5 -> 13

IROOT= 4: 0.362974 au 9.877 eV 79663.6 cm**-1
(continues on next page)
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Amplitude Excitation
0.177265 4 -> 10
0.825223 6 -> 8
-0.500412 7 -> 10
-0.118642 7 -> 12

Amplitude Excitation in Canonical Basis
-0.152751 4 -> 10
-0.821991 6 -> 8
0.506004 7 -> 10

IROOT= 5: 0.402096 au 10.942 eV 88249.9 cm**-1
Amplitude Excitation
0.100684 5 -> 11
0.617781 6 -> 8
0.761064 7 -> 10

Amplitude Excitation in Canonical Basis
-0.612814 6 -> 8
-0.754151 7 -> 10

IROOT= 6: 0.421001 au 11.456 eV 92399.1 cm**-1
Amplitude Excitation
-0.165095 4 -> 11
0.983905 7 -> 11

Amplitude Excitation in Canonical Basis
0.121348 4 -> 11
-0.983982 7 -> 11

IROOT= 7: 0.445178 au 12.114 eV 97705.3 cm**-1
Amplitude Excitation
0.995471 6 -> 9

Amplitude Excitation in Canonical Basis
-0.989647 6 -> 9

IROOT= 8: 0.462852 au 12.595 eV 101584.3 cm**-1
Amplitude Excitation
-0.985707 4 -> 8
-0.130220 6 -> 10

Amplitude Excitation in Canonical Basis
0.975461 4 -> 8
-0.147945 4 -> 13
0.128680 6 -> 10

IROOT= 9: 0.512757 au 13.953 eV 112537.1 cm**-1
Amplitude Excitation
0.121760 4 -> 8
-0.989185 6 -> 10

Amplitude Excitation in Canonical Basis
-0.121079 4 -> 8
0.979589 6 -> 10
-0.154643 6 -> 15

The first set of excitation amplitudes, printed for each root, have been calculated in the CIS NTO (Natural Transition
Orbitals) basis. The second set of amplitudes have been evaluated in the RHF canonical basis.
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Capabilities

At present, the STEOM routine is able to calculate excitation energies, for both closed- or open-shell systems,
using an RHF or UHF reference function, respectively. It can be used for both serial and parallel calculations.
The method is available in the back-tranformed PNO and DLPNO framework allowing the calculation of large
molecules (Section Capabilities and Excited States with DLPNO based coupled cluster methods). In the closed-
shell case (RHF), a lower scaling version can be invoked by setting the CCSD2 keyword to true in the %mdci section,
which sets a second order approximation to the exact parent approach. The transition moments can also be obtained
for closed- and open-shell systems. For more details see Section Excited States via STEOM-CCSD.

6.6.6 Excited States with IH-FSMR-CCSD

The intermediate Hamiltonian Fock-space coupled cluster method (IH-FSMR-CCSD) provides an alternate way to
calculate excitation energies, with an accuracy comparable to the STEOM-CCSD approach. A detailed description
is given in Section General Description.

General Use

The IH-FSMR-CCSD calculation is called using the simple input keyword IH-FSMR-CCSD and specifying the
desired number of excited states (NRoots) in the %mdci block.:

! IH-FSMR-CCSD cc-pVDZ TightSCF

%mdci
nroots 6

end

*xyz 0 1
C 0.016227 -0.000000 0.000000
O 1.236847 0.000000 -0.000000
H -0.576537 0.951580 -0.000000
H -0.576537 -0.951580 -0.000000

*

The above input will call the IH-FSMR-CCSD routine with default settings. The main output is a list of excitation
energies, augmented with some further state specific data. The IH-FSMR-CCSD approach in ORCA uses state-
averaged CIS natural transition orbitals(NTO) for the selection of the active space - similar to STEOM-CCSD. For
the above input, the following output is obtained:

------------------
IH-FSMR-CCSD RESULTS
------------------

IROOT= 1: 0.144300 au 3.927 eV 31670.2 cm**-1
Amplitude Excitation
-0.173154 4 -> 8
-0.984515 7 -> 8
Ground state amplitude: 0.000000

Percentage Active Character 99.93

Amplitude Excitation in Canonical Basis
-0.170951 4 -> 8
0.976572 7 -> 8
-0.111271 7 -> 13

IROOT= 2: 0.309445 au 8.420 eV 67915.3 cm**-1
Amplitude Excitation
0.993733 7 -> 9

(continues on next page)
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Ground state amplitude: 0.000000

Percentage Active Character 99.65

Amplitude Excitation in Canonical Basis
-0.991663 7 -> 9

IROOT= 3: 0.335928 au 9.141 eV 73727.6 cm**-1
Amplitude Excitation
0.994414 5 -> 8
Ground state amplitude: 0.000000

Percentage Active Character 98.98

Amplitude Excitation in Canonical Basis
-0.986238 5 -> 8
0.122237 5 -> 13

IROOT= 4: 0.358174 au 9.746 eV 78610.1 cm**-1
Amplitude Excitation
-0.176281 4 -> 10
0.736812 6 -> 8
-0.594366 7 -> 10
-0.213482 7 -> 12
Ground state amplitude: 0.000000

Percentage Active Character 92.76

Warning:: the state may have not converged with respect to active space
-------------------- Handle with Care --------------------

Amplitude Excitation in Canonical Basis
-0.184685 4 -> 10
0.734266 6 -> 8
0.630467 7 -> 10

IROOT= 5: 0.385852 au 10.500 eV 84684.8 cm**-1
Amplitude Excitation
-0.981051 4 -> 8
0.179230 7 -> 8
Ground state amplitude: 0.000000

Percentage Active Character 99.86

Amplitude Excitation in Canonical Basis
-0.973509 4 -> 8
0.112468 4 -> 13
-0.178795 7 -> 8

IROOT= 6: 0.445155 au 12.113 eV 97700.1 cm**-1
Amplitude Excitation
-0.996250 6 -> 9
Ground state amplitude: 0.000000

Percentage Active Character 99.38

Amplitude Excitation in Canonical Basis
-0.992457 6 -> 9

The first set of excitation amplitudes, printed for each root, have been calculated in the CIS NTO (Natural Transition
Orbitals) basis. The second set of amplitudes have been evaluated in the RHF canonical basis.

6.6. Excited States Calculations 231



ORCA Manual, Release 6.0

Capabilities

At present, the IH-FSMR-CCSD routine is able to calculate excitation energies, for only closed shell systems using
an RHF reference. It can be used for both serial and parallel calculations. In the closed-shell case (RHF), a lower
scaling version can be invoked by using bt-PNO approximation. The transition moments and solvation correction
can be obtained using the CIS approximation.

6.6.7 Excited States with PNO based coupled cluster methods

The methods described in the previous section are performed over a canonical CCSD or MP2 ground state. The use
of canonical CCSD amplitudes restricts the use of EOM-CC and STEOM-CC methods to small molecules. The
use of MP2 amplitudes is possible (e.g. the EOM-CCSD(2) or STEOM-CCSD(2) approaches), but it seriously
compromises the accuracy of the method.

The bt-PNO-EOM-CCSD methods gives an economical compromise between accuracy and computational cost by
replacing the most expensive ground state CCSD calculation with a DLPNO based CCSD calculation. The typical
deviation of the results from the canonical EOM-CCSD results is around 0.01 eV. A detailed description will be
given in Excited States using PNO-based coupled cluster.

General Use

The simplest way to perform a PNO based EOM calculation is via the usage of the bt-PNO-EOM-CCSD keyword,
together with the specification of the desired number of roots. The specification of an auxilary basis set is also
required, just as for ground state DLPNO-CCSD calculations.

! bt-PNO-EOM-CCSD def2-TZVP def2-TZVP/C def2/J TightSCF

%mdci
nroots 9

end

*xyz 0 1
C 0.016227 -0.000000 0.000000
O 1.236847 0.000000 -0.000000
H -0.576537 0.951580 -0.000000
H -0.576537 -0.951580 -0.000000

*

The output is similar to that from a canonical EOM-CCSD calculation:

----------------------
EOM-CCSD RESULTS (RHS)
----------------------

IROOT= 1: 0.145339 au 3.955 eV 31898.3 cm**-1
Amplitude Excitation
-0.402736 2 -> 8
-0.101455 2 -> 13
0.402595 3 -> 8
0.101420 3 -> 13
0.231140 6 -> 8
-0.231142 7 -> 8
Ground state amplitude: 0.000000
IROOT= 2: 0.311159 au 8.467 eV 68291.5 cm**-1
Amplitude Excitation
-0.382967 2 -> 9
0.382816 3 -> 9
0.257265 6 -> 9
-0.257276 7 -> 9

(continues on next page)
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Ground state amplitude: 0.000000
IROOT= 3: 0.337350 au 9.180 eV 74039.8 cm**-1
Amplitude Excitation
0.342418 2 -> 8
0.342586 3 -> 8
-0.257991 4 -> 8
0.257936 5 -> 8
0.172202 6 -> 8
0.172230 7 -> 8
Ground state amplitude: 0.000010
IROOT= 4: 0.348181 au 9.474 eV 76416.9 cm**-1
Amplitude Excitation
0.393166 2 -> 11
-0.393020 3 -> 11
-0.246227 6 -> 11
0.246232 7 -> 11
Ground state amplitude: 0.000001
IROOT= 5: 0.354611 au 9.649 eV 77828.2 cm**-1
Amplitude Excitation
0.226219 2 -> 10
-0.226139 3 -> 10
-0.385817 4 -> 8
-0.385755 5 -> 8
-0.100298 6 -> 10
0.100300 7 -> 10
Ground state amplitude: 0.032619
IROOT= 6: 0.379574 au 10.329 eV 83307.0 cm**-1
Amplitude Excitation
0.214487 2 -> 8
-0.214423 3 -> 8
0.402942 6 -> 8
-0.402947 7 -> 8
Ground state amplitude: -0.000001
IROOT= 7: 0.386805 au 10.525 eV 84893.8 cm**-1
Amplitude Excitation
-0.337735 2 -> 10
-0.113836 2 -> 14
0.337611 3 -> 10
0.113798 3 -> 14
-0.182472 4 -> 8
-0.182457 5 -> 8
0.239131 6 -> 10
-0.239136 7 -> 10
Ground state amplitude: 0.038944
IROOT= 8: 0.440569 au 11.989 eV 96693.8 cm**-1
Amplitude Excitation
-0.463727 4 -> 9
-0.463700 5 -> 9
Ground state amplitude: -0.000004
IROOT= 9: 0.447197 au 12.169 eV 98148.3 cm**-1
Amplitude Excitation
-0.107379 2 -> 8
0.385138 2 -> 13
0.107343 3 -> 8
-0.385019 3 -> 13
-0.254544 6 -> 13
0.254548 7 -> 13
Ground state amplitude: 0.000000

The IP and EA versions can be called by using the keywords bt-PNO-IP-EOM-CCSD and bt-PNO-EA-EOM-
CCSD, respectively. Furthermore, the STEOM version can be invoked by using the keywords bt-PNO-STEOM-
CCSD.
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Capabilities

All of the features of canonical EOM-CC and STEOM-CC are available in the PNO based approaches for both
closed- and open-shell systems.

6.6.8 Excited States with DLPNO based coupled cluster methods

The DLPNO-STEOM-CCSD method uses the full potential of DLPNO to reduce the computational scaling while
keeping the accuracy of STEOM-CCSD.

Important: DLPNO-STEOM-CCSD is currently only available for closed-shell systems!

General Use

The simplest way to perform a DLPNO based STEOM calculation is via the usage of the STEOM-DLPNO-CCSD
keyword, together with the specification of the desired number of roots. The specification of an auxiliary basis set
is also required, just as for ground state DLPNO-CCSD calculations.

As any CCSD methods, it is important to allow ORCA to access a significant amount of memory. In term of scaling
the limiting factor of the method is the size of temporary files and thus the disk space. For molecules above 1500
basis functions it starts to increase exponentially up to several teraoctets.

Here is the standard input we would recommend for STEOM-DLPNO-CCSD calculations. More information on the
different keywords and other capabilities are available in the detailed part of the manual Excited States via STEOM-
CCSD, Excited States via DLPNO-STEOM-CCSD. The following publications referenced some applications for
this method either in organic molecules [100], [805] or for Semiconductors [213].

! STEOM-DLPNO-CCSD def2-TZVP def2-TZVP/C def2/J TightSCF

%mdci
NRoots 6
DoRootWise true
OThresh 0.005
VThresh 0.005
TCutPNOSingles 1e-11
NDAV 400
DoStoreSTEOM true
DoSimpleDens false
AddL2Term True
DTol 1e-5

end

* xyz 0 1
C 0.016227 -0.000000 0.000000
O 1.236847 0.000000 -0.000000
H -0.576537 0.951580 -0.000000
H -0.576537 -0.951580 -0.000000

*

The output is similar to that from a canonical DLPNO-STEOM-CCSD calculation:

------------------
STEOM-CCSD RESULTS
------------------

IROOT= 1: 0.144275 au 3.926 eV 31664.7 cm**-1
Amplitude Excitation
-0.142146 4 -> 8
-0.988793 7 -> 8
Ground state amplitude: -0.000000

(continues on next page)
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Percentage Active Character 99.79

Amplitude Excitation in Canonical Basis
-0.134936 4 -> 8
-0.955031 7 -> 8
0.236745 7 -> 13

IROOT= 2: 0.308093 au 8.384 eV 67618.5 cm**-1
Amplitude Excitation
-0.971471 7 -> 9
-0.214898 7 -> 10
Ground state amplitude: -0.000000

Percentage Active Character 99.67

Amplitude Excitation in Canonical Basis
-0.956930 7 -> 9
0.236567 7 -> 11
-0.102574 7 -> 16

IROOT= 3: 0.331796 au 9.029 eV 72820.8 cm**-1
Amplitude Excitation
0.993677 5 -> 8
Ground state amplitude: -0.000000

Percentage Active Character 98.87

Amplitude Excitation in Canonical Basis
-0.957218 5 -> 8
0.250144 5 -> 13
0.105963 5 -> 18

IROOT= 4: 0.346876 au 9.439 eV 76130.5 cm**-1
Amplitude Excitation
-0.104900 4 -> 10
0.198181 7 -> 9
-0.972571 7 -> 10
Ground state amplitude: 0.000000

Percentage Active Character 99.65

Amplitude Excitation in Canonical Basis
0.100880 4 -> 11
0.218876 7 -> 9
0.956922 7 -> 11
-0.113898 7 -> 19

IROOT= 5: 0.347460 au 9.455 eV 76258.7 cm**-1
Amplitude Excitation
-0.139550 4 -> 11
-0.106648 4 -> 12
-0.801181 6 -> 8
-0.455618 7 -> 11
-0.302466 7 -> 12
Ground state amplitude: 0.027266

Percentage Active Character 87.08

Warning:: the state may have not converged with respect to active space
-------------------- Handle with Care --------------------

(continues on next page)
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Amplitude Excitation in Canonical Basis
-0.163789 4 -> 10
-0.785695 6 -> 8
0.159147 6 -> 13
-0.527842 7 -> 10
0.133087 7 -> 17

IROOT= 6: 0.379059 au 10.315 eV 83193.9 cm**-1
Amplitude Excitation
-0.983700 4 -> 8
0.155238 7 -> 8
Ground state amplitude: -0.000000

Percentage Active Character 99.48

Amplitude Excitation in Canonical Basis
-0.951092 4 -> 8
0.235048 4 -> 13
0.157713 7 -> 8

STEOM-CCSD done ( 2.4 sec)
Transforming integrals ... done

--------------------------------------------------------------------
UNRELAXED EXCITED STATE DIPOLE MOMENTS

--------------------------------------------------------------------
E(eV) DX(au) DY(au) DZ(au) |D|(D)

IROOT= 0: 0.000 -0.928848 -0.000000 -0.000000 2.360944
IROOT= 1: 3.926 -0.627710 -0.000000 -0.000002 1.595512
IROOT= 2: 8.384 1.034480 -0.000000 -0.000000 2.629438
IROOT= 3: 9.029 -0.401280 -0.000000 0.000000 1.019972
IROOT= 4: 9.439 -0.250433 0.000000 0.000002 0.636550
IROOT= 5: 9.455 0.304050 0.000000 -0.000000 0.772833
IROOT= 6: 10.315 -1.244475 0.000000 0.000000 3.163205
--------------------------------------------------------------------

...

-----------------------------------------------------------------------------------------------
→˓-----

ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-----------------------------------------------------------------------------------------------
→˓-----

Transition Energy Energy Wavelength fosc(D2) D2 DX DY ␣
→˓DZ

(eV) (cm-1) (nm) (au**2) (au) (au) ␣
→˓(au)
-----------------------------------------------------------------------------------------------
→˓-----
0-1A -> 1-1A 3.925923 31664.7 315.8 0.000000000 0.00000 -0.00000 -0.00000 0.

→˓00000
0-1A -> 2-1A 8.383625 67618.5 147.9 0.088173876 0.42929 -0.00000 0.65546 -0.

→˓00000
0-1A -> 3-1A 9.028624 72820.8 137.3 0.000908615 0.00411 0.00000 -0.00000 -0.

→˓06033
0-1A -> 4-1A 9.438972 76130.5 131.4 0.057997877 0.25080 0.00000 -0.49380 -0.

→˓00000
0-1A -> 5-1A 9.454876 76258.7 131.1 0.029389253 0.12687 0.35160 -0.00000 -0.

→˓00000

(continues on next page)
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0-1A -> 6-1A 10.314723 83193.9 120.2 0.000000000 0.00000 -0.00000 0.00000 0.
→˓00000

...

STEOM-CCSD done in ( 1.3)

The IP and EA versions can be called by using the keywords IP-EOM-DLPNO-CCSD and EA-EOM-DLPNO-
CCSD, respectively. As in canonical STEOM-CCSD, the first set of excitation amplitudes, printed for each root,
are calculated in the CIS NTO (Natural Transition Orbitals) basis, while the second set is evaluated in the RHF
canonical basis.

6.6.9 Excited States with DeltaSCF

The DeltaSCF approach can converge the SCF directly to excited states. Since this method involves a few more
details, it is more thoroughly described on its specific section, please check DeltaSCF: Converging to Arbitrary
Single-Reference Wavefunctions.

6.7 Multireference Configuration Interaction and Pertubation The-
ory

6.7.1 Introductory Remarks

ORCA contains a multireference correlation module designed for traditional (uncontracted) approaches (configura-
tion interaction, MR-CI, and perturbation theory, MR-PT). For clarification, these approaches have in common that
they consider excitations from each and every configuration state function (CSF) of the reference wavefunction.
Hence, the computational cost of such approaches grows rapidly with the size of the reference space (e.g. CAS-
CI). Internally contracted on the other hand define excitations with respect to the entire reference wavefunction
and hence do not share the same bottlenecks. ORCA also features internally contracted approaches (perturbation
theory, NEVPT2 and configuration interaction, FIC-MRCI), which are described elsewhere in the manual.

ò Note

NEVPT2 is typically the method of choice as it is fast and easy to use. It is highly recommended to check
the respective section, when new to the field. The following chapter focuses on the traditional multi-reference
approaches as part of the orca_mrci module.

Although there has been quite a bit of experience with it, this part of the program is still somewhat hard to use
and requires patience and careful testing before the results should be accepted. While we try to make your life as
easy as possible, you have to be aware that ultimately any meaningful multireference ab initio calculation requires
more insight and planning from the user side than standard SCF or DFT calculation or single reference correlation
approaches like MP2 – so don’t be fainthearted! You should also be aware that with multireference methods it is
very easy to let a large computer run for a long time and still to not produce a meaningful result – your insight is
a key ingredient to a successful application! Below a few examples illustrate some basic uses of the orca_mrci
module.
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RI-approximation

First of all, it is important to understand that the default mode of the MR-CI module in its present implementation
performs a full integral transformation from the AO to the MO basis. This becomes very laborious and extremely
memory intensive beyond approximately 200 MOs that are included in the CI. Alternatively, one can construct
molecular electron-electron repulsion integrals from the resolution of the identity (RI) approximation. Thus a
meaningful auxiliary basis set must be provided if this option is chosen. We recommend the fitting bases developed
by the TurboMole developers for MP2 calculations. These give accurate transition energies; however, the error in
the total energies is somewhat higher and may be on the order of 1 mEh or so. Check IntMode to change the default
mode for the integral transformation. Note that in either way, the individually selecting MRCI module requires to
have all integrals in memory which sets a limit on the size of the molecule that can be studied.

Individual Selection

Secondly, it is important to understand that the MR-CI module is of the individually selecting type. Thus, only those
excited configuration state functions (CSFs) which interact more strongly than a given threshold (T sel) with the
0th order approximations to the target states will be included in the variational procedure. The effect of the rejected
CSFs is estimated using second order perturbation theory. The 0th order approximations to the target states are
obtained from the diagonalization of the reference space configurations. A further approximation is to reduce the
size of this reference space through another selection – all initial references which contribute less than a second
threshold (T pre) to the 0th order states are rejected from the reference space.

Single excitations

One important aspect concerns the single excitations. If the reference orbitals come from a CASSCF calculation
the matrix elements between the reference state and the single excitations vanishes and the singles will not be
selected. However, they contribute to fourth and higher orders in perturbation theory and may be important for
obtaining smooth potential energy surfaces and accurate molecular properties. Hence, the default mode of the
MRCI module requires to include all of the single excitations via the flag AllSingles =true. This may lead to
lengthy computations if the reference spaces becomes large!

Reference Spaces

Third, the reference spaces in the MR-CI module can be of the complete active space (CAS(n-electrons,m-
orbitals) ) or restricted active space (RAS, explained later) type. It is important to understand that the program
uses the orbitals around the HOMO-LUMO gap as provided by the user to build up the reference space! Thus, if
the orbitals that you want to put in the active space are not coming “naturally” from your SCF calculation in the
right place you have to reorder them using the “moread” and “rotate” features together with the NoIter direc-
tive. To select the most meaningful and economic reference space is the most important step in a multireference
calculation. It always requires insight from the user side and also care and, perhaps, a little trial and error.

Size Consistency

Fourth, it is important to understand that CI type methods are not size consistent. Practically speaking the energy
of the supermolecule A-B with noninteracting A and B fragments is not equal to the energies of isolated A and
isolated B. There are approximate ways to account for this (ACPF, AQCC and CEPA methods) but the effect will
be present in the energies, the more so the more electrons are included in the treatment. The same is not true for
the perturbation theory based methods which are size consistent as long as the reference wavefunction is.
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Performance

There are many flags that control the performance of the MR-CI program. Please refer to chapter 0 for a description
of possible flags, thresholds and cut-offs. The most important thresholds are Tsel and Tpre, and for SORCI also Tnat.

For some methods, like ACPF, it is possible to compare the performance of the MRCI module with the performance
of the MDCI module. The MDCI module has been written to provide optimum performance if no approximations
are introduced. The MRCI module has ben written more with the idea of flexibility rather than the idea of perfor-
mance. Let us compare the performance of the two programs in a slightly nontrivial calculation – the zwitter-ionic
form of serine. We compare the selecting MRCI approach with the approximation free MDCI module. The molec-
ular size is such that still all four index integrals can be stored in memory.

Table 6.8: Comparison of the performance of the MRCI and MDCI modules for a single reference calculation with
the bn-ANO-DZP basis set on the zwitter-ionic form of serine (14 atoms, 133 basis functions).

Module Method T sel(Eh) Time (sec) Energy (Eh)
MRCI ACPF 10−6 3277 -397.943250
MDCI ACPF 0 1530 -397.946429
MDCI CCSD 0 2995 -397.934824
MDCI CCSD(T) 0 5146 -397.974239

The selecting ACPF calculation selects about 15% of the possible double excitations and solves a secular problem
of size≈ 360,000 CSFs. The MDCI module ACPF calculation optimizes approximately 2.5 million wavefunction
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amplitudes — and this is not a large molecule or a large basis set! Despite the fact that the MDCI module makes
no approximation, it runs twice as fast as the selected MRCI module and an estimated 50 times faster than the
unselected MRCI module! This will become even more pronounced for the larger and more accurate basis sets
that one should use in such calculations anyways. The error of the selection is on the order of 3 mEh or 2 kcal/mol
in the total energy. One can hope that at least part of this error cancels upon taking energy differences.1 The more
rigorous CCSD calculation takes about a factor of two longer than the ACPF calculation which seems reasonable.
The triples add another factor of roughly 2 in this example but this will increase for larger calculations since it has
a steeper scaling with the system size. The ACPF energy is intermediate between CCSD and CCSD(T) which is
typical — ACPF overshoots the effects of disconnected quadruples which partially compensates for the neglect of
triples.

These timings will strongly depend on the system that you run the calculation on. Nevertheless, what you should
take from this example are the message that if you can use the MDCI module, do it.

The MDCI module can avoid a full integral transformation for larger systems while the MRCI module can use
selection and the RI approximation for larger systems. Both types of calculation will become very expensive very
quickly! Approximate MDCI calculations are under development.

Symmetry

The MRCI program really takes advantage of symmetry adapted orbitals. In this case the MRCI matrix can be
blocked according to irreducible representations and be diagonalized irrep by irrep. This is a big computational
advantage and allows one to converge on specific excited states much more readily than if symmetry is not taken
into account.

The syntax is relatively easy. If you specify:

newblock 1 *
nroots 8
refs cas(4,4) end
end

Then the “*” indicates that this is to be repeated in each irrep of the point group. Thus, in C2𝑣 the program would
calculate 8 singlet roots in each of the four irreps of the C2𝑣 point group thus leading to a total of 32 states.

Alternatively, you can calculate just a few roots in the desired irreps:

newblock 1 0
nroots 3
refs cas(4,4) end
end

newblock 1 2
nroots 5
refs cas(4,4) end
end

newblock 3 1
nroots 1
refs cas(4,4) end
end

In this example, we would calculate 3 singlet roots in the irrep “0” (which is A1), then five roots in irrep “2” (which
is B1) and then 1 triplet root in irrep 1 (which is B2).

Obviously, the results with and without symmetry will differ slightly. This is due to the fact that without symmetry
the reference space will contain references that belong to “wrong” symmetry but will carry with them excited
configurations of “right” symmetry. Hence, the calculation without use of symmetry will have more selected CSFs
and hence a slightly lower energy. This appears to be unavoidable. However, the effects should not be very large
for well designed reference spaces since the additional CSFs do not belong to the first order interacing space.

1 Depending on whether one wants to take a pessimistic or an optimistic view one could either say that this result shows what can be achieved
with a code that is dedicated to a single determinant reference. Alternatively one could (and perhaps should) complain about the high price one
pays for the generality of the MRCI approach. In any case, the name of the game would be to develop MR approaches that are equally efficient
to single reference approaches. See FIC-MRCI chapter for more information.
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6.7.2 A Tutorial Type Example of a MR Calculation

Perhaps, the most important use of the MR-CI module is for the calculation of transition energies and optical
spectra. Let us first calculate the first excited singlet and triplet state of the formaldehyde molecule using the MR-
CI method together with the Davidson correction to approximately account for the effect of unlinked quadruple
substitutions. We deliberately choose a somewhat small basis set for this calculation which is already reasonable
since we only look at a valence excited state and want to demonstrate the principle.

Suppose that we already know from a ground state calculation that the HOMO of H2CO is an oxygen lone pair
orbitals and the LUMO the 𝜋*MO. Thus, we want to calculate the singlet and triplet n→ 𝜋* transitions and nothing
else. Consequently, we only need to correlate two electrons in two orbitals suggesting a CAS(2,2) reference space.

# A simple MRCI example
! def2-SVP def2-SVP/C UseSym

%method frozencore fc_ewin
end

%mrci ewin -3,1000
CIType MRCI
EUnselOpt FullMP2
DavidsonOpt Davidson1
UseIVOs true
tsel 1e-6
tpre 1e-2
MaxMemInt 256
MaxMemVec 32
IntMode FullTrafo
AllSingles true
Solver Diag
# ground state 1A1
NewBlock 1 0

NRoots 1
Excitations cisd
Refs CAS(2,2) end
End

# HOMO LUMO transition 1A2
NewBlock 1 1

NRoots 1
Excitations cisd
Refs CAS(2,2) end
End

# HOMO LUMO triplet transition 3A2
NewBlock 3 1

NRoots 1
Excitations cisd
Refs CAS(2,2) end
end

end

* int 0 1
C 0 0 0 0.000000 0.000 0.000
O 1 0 0 1.200371 0.000 0.000
H 1 2 0 1.107372 121.941 0.000
H 1 2 3 1.107372 121.941 180.000
*

This input – which is much more than what is really required - needs some explanations: First of all, we choose a
standard RHF calculation with the SVP basis set and we assign the SV/C fitting basis although it is not used in the
SCF procedure at all. In the %mrci block all details of the MR-CI procedure are specified. First, EWin (%method
frozencore fc_ewin) selects the MOs within the given orbital energy range to be included in the correlation
treatment. The CIType variable selects the type of multireference treatment. Numerous choices are possible and
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MRCI is just the one selected for this application.

ò Note

The CIType statement selects several default values for other variables. So it is a very good idea to place this
statement at the beginning of the MR-CI block and possibly overwrite the program selected defaults later. If
you place the CIType statement after one of the values which it selects by default your input will simply be
overwritten!

The variables EUnselOpt and DavidsonOpt control the corrections to the MR-CI energies. EUnselOpt specifies
the way in which the MR-CI energies are extrapolated to zero threshold TSel. Here we choose a full MR-MP2
calculation of the missing contributions to be done after the variational step, i.e. using the relaxed part of the
reference wavefunction as a 0th order state for MR-PT. The DavidsonOpt controls the type of estimate made for the
effect of higher substitutions. Again, multiple choices are possible but the most commonly used one (despite some
real shortcomings) is certainly the choice Davidson1. The flag UseIVOs instructs the program to use “improved
virtual orbitals”. These are virtual orbitals obtained from a diagonalization of the Fock operator from which one
electron has been removed in an averaged way from the valence orbitals. Thus, these orbitals “see” only a 𝑁 − 1
electron potential (as required) and are not as diffuse as the standard virtual orbitals from Hartree-Fock calculations.
If you input DFT orbitals in the MR-CI moldule (which is perfectly admittable and also recommended in some
cases, for example for transition metal complexes) then it is recommended to turn that flag off since the DFT orbitals
are already o.k. in this respect. The two thresholds Tsel and Tpre are already explained above and represent the
selection criteria for the first order interacting space and the reference space respectively. Tsel is given in units
of Eh and refers to the second order MR-MP2 energy contribution from a given excited CSF. 10−6 Eh is a pretty
good value. Reliable results for transition energies start with ≈ 10−5; however, the total energy is converging
pretty slowly with this parameter and this is one of the greatest drawbacks of individually selecting CI procedures!
(see below). Tpre is dimensionless and refers to the weight of a given initial reference after diagonalization of
the given initial reference space (10−4 is a pretty good value and there is little need to go much lower. Aggressive
values such as 10−2 only select the truly leading configurations for a given target state which can be time saving.
Intermediate values are not really recommended). The parameters MaxMemInt and MaxMemVec tell the program
how much memory (in MB) it is allowed to allocate for integrals and for trial and sigma-vectors respectively.

The flag IntMode tells the program to perform a full integral transformation. This is possible for small cases with
less than, say, 100–200 MOs. In this case that it is possible it speeds up the calculations considerably. For larger
molecules you have to set this flag to RITrafo which means that integrals are recomputed on the fly using the RI
approximation which is more expensive but the only way to do the calculation. To switch between the possible
modes use:

%mrci IntMode FullTrafo # exact 4 index transformation
RITrafo # use auxiliary basis sets

For small molecules or if high accuracy in the total energies is required it is much better to use the exact four index
transformation. The limitations are that you will run out of disk space or main memory with more than ca. 200–300
MOs.

The variable Solver can be diag (for Davidson type diagonalization) or DIIS for multirrot DIIS type treatments.

%mrci Solver Diag # Davidson solver
DIIS # Multiroot DIIS

For CI methods, the diag solver is usually preferable. For methods like ACPF that contain nonlinear terms, DIIS
is imperative.

Next in the input comes the definition of what CI matrices are to be constructed and diagonalized. Each multiplicity
defines a block of the CI matrix which is separately specified. Here we ask for two blocks – singlet and triplet. The
general syntax is:

NewBlock Multiplicity Irrep
NRoots 1 # Number of roots to determine
Excitations cisd # Type of excitations

(continues on next page)
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Refs CAS(NEl,NOrb) end # Reference space def.
end # Finalize the block

Now that all input is understood let us look at the outcome of this calculation:

The first thing that happens after the SCF calculation is the preparation of the frozen core Fock matrix and the
improved virtual orbitals by the program orca_ciprep. From the output the energies of the IVOs can be seen.
In this case the LUMO comes down to –8.2 eV which is much more reasonable than the SCF value of +3. . . . eV.
Concomitantly, the shape of this MO will be much more realistic and this important since this orbital is in the
reference space!

------------------------------------------------------------------------------
ORCA CI-PREPARATION

------------------------------------------------------------------------------

Reading the GBW file ... done
Symmetry usage ... ON

One-Electron Matrix ... test1.H.tmp
GBW-File ... test1.gbw
Improved virtual orbitals ... test1.ivo
First MO in the CI ... 2
Internal Fock matrix ... test1.fi.tmp
LastInternal Orbital ... 6
Integral package used ... LIBINT
Reading the GBW file ... done
Symmetry usage ... ON

Reading the one-electron matrix ... done
Forming inactive density ... done
Forming averaged valence density ...
Scaling the occupied orbital occupation numbers
First MO ... 2
Last MO ... 7
Number of electrons in the range ... 12
Scaling factor ... 0.917

done
Forming internal density ... done
Forming Fock matrix/matrices ...
Nuclear repulsion ... 31.371502
Core repulsion ... 31.371502
One-electron energy ... -114.942080
Fock-energy ... -94.993431
Final value ... -73.596254
done
Modifying virtual orbitals ...
Last occupied MO ... 7
Total number of MOs ... 38
Number of virtual MOs ... 30
Doing diagonalization with symmetry
The improved virtual eigenvalues:

0: -0.2955 au -8.041 eV 2- B2
1: -0.0701 au -1.907 eV 6- A1
2: -0.0176 au -0.479 eV 3- B1
3: 0.0064 au 0.175 eV 7- A1
4: 0.2922 au 7.951 eV 8- A1
5: 0.2948 au 8.021 eV 3- B2
6: 0.3836 au 10.439 eV 4- B1
7: 0.4333 au 11.790 eV 9- A1
8: 0.4825 au 13.128 eV 5- B1

(continues on next page)

6.7. Multireference Configuration Interaction and Pertubation Theory 243



ORCA Manual, Release 6.0

(continued from previous page)

9: 0.5027 au 13.680 eV 10- A1
10: 0.7218 au 19.642 eV 11- A1
11: 0.8351 au 22.723 eV 4- B2
12: 0.9371 au 25.501 eV 6- B1
13: 1.0265 au 27.933 eV 1- A2
14: 1.1141 au 30.317 eV 12- A1
15: 1.2869 au 35.017 eV 5- B2
16: 1.4605 au 39.743 eV 7- B1

...

done
Transforming integrals ... done
Storing passive energy ... done ( -73.59625384 Eh)
Transforming internal FI ... done

.... done with the Frozen Core Fock matrices

The next step is to transform the electron-electron repulsion integrals into the MO basis:

-------------------------
SHARK HALF TRANSFORMATION
-------------------------

Number of basis functions ... 38
Number of operators ... 1

Operator 0: 2- 37

Integral generator used ... SHARK
Contraction scheme used ... SEGMENTED CONTRACTION
MaxCore in resort ... 256 MB

Half transformed integrals for op= 0 ... test1.SHARK_MNPQ0.tmp
Resorted half transformed integrals ... test1.JAO.tmp
Starting integral generation + half trafo...
Half trafo (segmented) done. Total time = 0.1 sec. integrals= 0.0 sec trafo= 0.0 sec
Starting integral resorting ... done ( 0.0 sec)

SHARK half integral transformation done. Total time = 0.1 sec.

-------------------
FULL TRANSFORMATION
-------------------

Processing MO 10
Processing MO 20
Processing MO 30
Full transformation done
Number of integrals made ... 222111
Number of integrals stored ... 59070
Timings:
Time for first half transformation ... 0.068 sec
Time for second half transformation ... 0.014 sec
Total time ... 0.086 sec

This will result in a few additional disk files required by orca_mrci. The program then tells you which multiplic-
ities will be treated in this MRCI run:

------------------
CI-BLOCK STRUCTURE
------------------

(continues on next page)
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Number of CI-blocks ... 3

===========
CI BLOCK 1
===========
Multiplicity ... 1
Irrep ... 0
Number of reference defs ... 1

Reference 1: CAS(2,2)

Excitation type ... CISD
Excitation flags for singles:

1 1 1 1
Excitation flags for doubles:

1 1 1 / 1 1 1 / 1 1 1

===========
CI BLOCK 2
===========
Multiplicity ... 1
Irrep ... 1
Number of reference defs ... 1

Reference 1: CAS(2,2)

Excitation type ... CISD
Excitation flags for singles:

1 1 1 1
Excitation flags for doubles:

1 1 1 / 1 1 1 / 1 1 1

===========
CI BLOCK 3
===========
Multiplicity ... 3
Irrep ... 1
Number of reference defs ... 1

Reference 1: CAS(2,2)

Excitation type ... CISD
Excitation flags for singles:

1 1 1 1
Excitation flags for doubles:

1 1 1 / 1 1 1 / 1 1 1

--------------------------------------------------------------------
-------------------- ALL SETUP TASKS ACCOMPLISHED ------------------
-------------------- ( 0.139 sec) ------------------
--------------------------------------------------------------------

Now that all the setup tasks have been accomplished the MRCI calculation itself begins.

###################################################
# #
# M R C I #
# #
# TSel = 1.000e-06 Eh #
# TPre = 1.000e-02 #
# TIntCut = 1.000e-10 Eh #
# Extrapolation to unselected MR-CI by full MP2 #
# DAVIDSON-1 Correction to full CI #
# #

(continues on next page)
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###################################################

---------------------
INTEGRAL ORGANIZATION
---------------------

Reading the one-Electron matrix ... done
E0 read was -73.596253835266
Reading the internal Fock matrix ... assuming it to be equal to the one-electron␣
→˓matrix!!!
done
Preparing the integral list ... done
Loading the full integral ... done
Making the simple integrals ... done

***************************************
* CI-BLOCK 1 *
***************************************

Configurations with insufficient # of SOMOs WILL be rejected
Building a CAS(2,2) for multiplicity 1 and irrep=A1
Reference Space:
Initial Number of Configurations : 2
Internal Orbitals : 2 - 6
Active Orbitals : 7 - 8
External Orbitals : 9 - 37
The number of CSFs in the reference is 2
Calling MRPT_Selection with N(ref)=2

In the first step, the reference space is diagonalized. From this CI, the most important configurations are selected
with Tpre:

------------------
REFERENCE SPACE CI
------------------

Pre-diagonalization threshold : 1.000e-02
Warning: Setting NGuessMat to 512
N(ref-CFG)=2 N(ref-CSF)=2

****Iteration 0****
Lowest Energy : -113.779221580786
Maximum Energy change : 113.779221580786 (vector 0)
Maximum residual norm : 0.000000000000

*** CONVERGENCE OF RESIDUAL NORM REACHED ***
Reference space selection using TPre= 1.00e-02

... found 1 reference configurations (1 CSFs)
... now redoing the reference space CI ...

Warning: Setting NGuessMat to 512
N(ref-CFG)=1 N(ref-CSF)=1

****Iteration 0****
Lowest Energy : -113.778810013503
Maximum Energy change : 113.778810013503 (vector 0)
Maximum residual norm : 0.000000000000

*** CONVERGENCE OF RESIDUAL NORM REACHED ***

246 Chapter 6. Running Typical Calculations



ORCA Manual, Release 6.0

In this case, the CAS space only has 2 correctly symmetry adapted CSFs one of which (the closed-shell determinant)
is selected. In general, larger CAS spaces usually carry around a lot of unnecessary CSFs which are not needed for
anything and then the selection is important to reduce the computational effort. The result of the second reference
space CI is printed:

----------
CI-RESULTS
----------

The threshold for printing is 0.30 percent
The weights of configurations will be printed. The weights are summed over
all CSFs that belong to a given configuration before printing

STATE 0: Energy= -113.778810014 Eh RefWeight= 1.0000 0.00 eV 0.0 cm**-1
1.0000 : h---h---[20]

Energy is the total energy in Eh. In the present case we can compare to the SCF energy -113.778810014 Eh and
find that the reference space CI energy is identical, as it has to be since the lowest state coincides with the reference
space. RefWeight gives the weight of the reference configurations in a CI state. This is 1.0 in the present case
since there were only reference configurations. The number 1.000 is the weight of the following configuration in
the CI vector. The description of the configuration h—h—[20]p—p— is understood as follows:2 The occupation
of the active orbitals is explicitly given in square brackets. Since the HOMO orbitals is number 7 from the SCF
procedure, this refers to MOs 7 and 8 in the present example since we have two active orbitals. The 2 means doubly
occupied, the 0 means empty. Any number (instead of —) appearing after an h gives the index of an internal orbital
in which a hole is located. Simarly, any number after a p gives the index of an virtual (external) MO where a particle
is located. Thus h—h—[20] is a closed shell configuration and it coincides with the SCF configuration—this was
of course to be expected. The second root (in CI-Block 2) h—h—[11] by comparison refers to the configuration
in which one electron has been promoted from the HOMO to the LUMO and is therefore the desired state that we
wanted to calculate. Things are happy therefore and we can proceed to look at the output.

The next step is the generation of excited configurations and their selection based on Tsel:

------------------------------
MR-PT SELECTION TSel= 1.00e-06
------------------------------

Setting reference configurations WITH use of symmetry
Building active patterns WITH use of symmetry

Selection will be done from 1 spatial configurations
Selection will make use of spatial symmetry
( 0) Refs : Sel: 1CFGs/ 1CSFs Gen: 1CFGs/ 1CSFs (␣
→˓ 0.000 sec)
Building active space densities ... 0.002 sec
Building active space Fock operators ... 0.000 sec
( 1) (p,q)->(r,s): Sel: 1CFGs/ 1CSFs Gen: 1CFGs/ 1CSFs (␣
→˓ 0.000 sec)
( 2) (i,-)->(p,-): Sel: 1CFGs/ 1CSFs Gen: 1CFGs/ 1CSFs (␣
→˓ 0.000 sec)
( 3) (i,j)->(p,q): Sel: 8CFGs/ 8CSFs Gen: 8CFGs/ 8CSFs (␣
→˓ 0.000 sec)
( 4) (i,p)->(q,r): Sel: 0CFGs/ 0CSFs Gen: 1CFGs/ 1CSFs (␣
→˓ 0.000 sec)
( 5) (p,-)->(a,-): Sel: 8CFGs/ 8CSFs Gen: 8CFGs/ 8CSFs (␣
→˓ 0.000 sec)
( 6) (i,-)->(a,-): Sel: 52CFGs/ 52CSFs Gen: 52CFGs/ 52CSFs (␣
→˓ 0.000 sec)
( 7) (i,j)->(p,a): Sel: 95CFGs/ 166CSFs Gen: 96CFGs/ 167CSFs (␣

(continues on next page)

2 Note that for printing we always sum over all linearly independent spin couplings of a given spatial configuration and only print the summed
up weight for the configuration rather than for each individual CSF of the configuration.
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→˓ 0.000 sec)
( 8) (i,p)->(q,a): Sel: 21CFGs/ 42CSFs Gen: 22CFGs/ 44CSFs (␣
→˓ 0.000 sec)
( 9) (p,q)->(r,a): Sel: 3CFGs/ 3CSFs Gen: 5CFGs/ 5CSFs (␣
→˓ 0.000 sec)
(10) (i,p)->(a,b): Sel: 555CFGs/ 1082CSFs Gen: 584CFGs/ 1139CSFs (␣
→˓ 0.001 sec)
(11) (p,q)->(a,b): Sel: 124CFGs/ 124CSFs Gen: 148CFGs/ 148CSFs (␣
→˓ 0.000 sec)
(12) (i,j)->(a,b): Sel: 1688CFGs/ 2685CSFs Gen: 1887CFGs/ 2947CSFs (␣
→˓ 0.001 sec)

Selection results:
Total number of generated configurations: 2814
Number of selected configurations : 2557 ( 90.9%)
Total number of generated CSFs : 4522
Number of selected CSFS : 4173 ( 92.3%)

The selected tree structure:
Number of selected Internal Portions : 11
Number of selected Singly External Portions: 27

average number of VMOs/Portion : 6.39
percentage of selected singly externals : 22.83

Number of selected Doubly External Portions: 21
average number of VMOs/Portion : 107.59
percentage of selected doubly externals : 27.76

Here, the program loops through classes of excitations. For each excitation it produces the excited configurations
(CFGs) and from it the linearly independent spin functions (CSFs) which are possible within the configuration. It
then calculates the interaction with the contracted 0𝑡ℎ order roots and includes all CSFs belonging to a given CFG
in the variational space if the largest second order perturbation energy is larger or equal to Tsel. In the present case
≈136,000 CSFs are produced of which 25% are selected. For larger molecules and basis sets it is not uncommon
to produce 109–1010 configurations and then there is no choice but to select a much smaller fraction than 20%. For
your enjoyment, the program also prints the total energies of each state after selection:

Diagonal second order perturbation results:
State E(tot) E(0)+E(1) E2(sel) E2(unsel)

Eh Eh Eh Eh
----------------------------------------------------------------
0 -114.108350270 -113.778810014 -0.329433 -0.000107

You can ignore this output if you want. In cases that the perturbation procedure is divergent (not that uncommon!)
the total energies look strange—don’t worry—the following variational calculation is still OK. The second order
perturbation energy is here divided into a selected part E2(sel) and the part procedure by the unselected config-
urations E2(unsel). Depending on the mode of EUnselOpt this value may already be used later as an estimate
of the energetic contribution of the unselected CSFs.3

Now we have≈ 4,200 CSFs in the variational space of CI block 1 and proceed to diagonalize the Hamiltonian over
these CSFs using a Davidson or DIIS type procedure:

------------------------
DAVIDSON-DIAGONALIZATION
------------------------

Dimension of the eigenvalue problem ... 4173
Number of roots to be determined ... 1
Maximum size of the expansion space ... 4

(continues on next page)

3 In this case the maximum overlap of the 0𝑡ℎ order states with the final CI vectors is computed and the perturbation energy is added to
the “most similar root”. This is of course a rather crude approximation and a better choice is to recomputed the second order energy of the
unselected configurations rigorously as is done with EUnselOpt = FullMP2.
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Maximum number of iterations ... 35
Convergence tolerance for the residual ... 1.000e-06
Convergence tolerance for the energies ... 1.000e-06
Orthogonality tolerance ... 1.000e-14
Level Shift ... 0.000e+00
Constructing the preconditioner ... o.k.
Building the initial guess ... o.k.
Number of trial vectors determined ... 4

****Iteration 0****
Size of expansion space: 3
Lowest Energy : -113.937028067251
Maximum Energy change : 113.937028067251 (vector 0)
Maximum residual norm : 0.741727830968

****Iteration 1****
Size of expansion space: 4
Lowest Energy : -114.082265676116
Maximum Energy change : 0.145237608865 (vector 0)
Maximum residual norm : 0.012707561344
Rebuilding the expansion space

****Iteration 2****
Size of expansion space: 2
Lowest Energy : -114.085350429118
Maximum Energy change : 0.003084753001 (vector 0)
Maximum residual norm : 0.002880697397

****Iteration 3****
Size of expansion space: 3
Lowest Energy : -114.086043274125
Maximum Energy change : 0.000692845007 (vector 0)
Maximum residual norm : 0.000098595378

****Iteration 4****
Size of expansion space: 4
Lowest Energy : -114.086074300143
Maximum Energy change : 0.000031026018 (vector 0)
Maximum residual norm : 0.000004959126
Rebuilding the expansion space

****Iteration 5****
Size of expansion space: 2
Lowest Energy : -114.086076038587
Maximum Energy change : 0.000001738444 (vector 0)
Maximum residual norm : 0.000000572348

*** CONVERGENCE OF RESIDUAL NORM REACHED ***

Storing the converged CI vectors ... test1.mrci.vec

*** DAVIDSON DONE ***
Returned from DIAG section

The procedure converges on all roots simultaneously and finishes after six iterations which is reasonable. Now the
program calculates the Davidson correction (DavidsonOpt) which is printed for each root.

Davidson type correction:
Root= 0 W= 0.912 E0= -113.778810014 ECI= -114.086076039 DE=-0.026913

Already in this small example the correction is pretty large, ca. 27 mEh for the ground state (and≈ 36 mEh for the
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excited state, later in the output). Thus, a contribution of ≈ 9 mEh = 0.25 eV is obtained for the transition energy
which is certainly significant. Unfortunately, the correction becomes unreliable as the reference space weight drops
or the number of correlated electrons becomes large. Here 0.912 and 0.888 are still OK and the system is small
enough to expect good results from the Davidson correction.

The next step is to estimate the correction for the unselected configurations:

Unselected CSF estimate:
Full relaxed MR-MP2 calculation ...

Selection will be done from 1 spatial configurations
Selection will make use of spatial symmetry
Selection will make use of spatial symmetry
Selection will make use of spatial symmetry
done
Selected MR-MP2 energies ...

Root= 0 E(unsel)= -0.000106931

In the present case this is below 1 mEh and also very similar for all three states such that it is not important for the
transition energy.

----------
CI-RESULTS
----------

The threshold for printing is 0.30 percent
The weights of configurations will be printed. The weights are summed over
all CSFs that belong to a given configuration before printing

STATE 0: Energy= -114.113096211 Eh RefWeight= 0.9124 0.00 eV 0.0 cm**-1
0.9124 : h---h---[20]
0.0114 : h 6h 6[22]

The final ground state energy is -114.113096211 which is an estimate of the full CI energy in this basis set. The
leading configuration is still the closed-shell configuration with a weight of ≈ 91%. However, a double excita-
tion outside the reference space contributes some 1%. This is the excitation MO6,MO6 →LUMO,LUMO. This
indicates that more accurate results are expected once MO6 is also included in the reference space (this is the
HOMO-1). The excited state is dominated by the HOMO-LUMO transition (as desired) but a few other single- and
double- excitations also show up in the final CI vector.

Now that all CI vectors are known we can order the states according to increasing energy and print (vertical)
transition energies:

-------------------
TRANSITION ENERGIES
-------------------

The lowest energy is -114.113096211 Eh

State Mult Irrep Root Block mEh eV 1/cm
0 1 A1 0 0 0.000 0.000 0.0
1 3 A2 0 2 134.086 3.649 29428.4
2 1 A2 0 1 148.499 4.041 32591.8

This result is already pretty good and the transition energies are within ≈ 0.1 eV of their experimental gas phase
values (≈ 3.50 and ≈ 4.00 eV) and may be compared to the CIS values of 3.8 and 4.6 eV which are considerably
in error.

In the next step the densities and transition densities are evaluated and the absorption and CD spectra are calculated
(in the dipole length formalism) for the spin-allowed transitions together with state dipole moments:
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-----------------------------------------------------------------------------------------------
→˓-----

ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-----------------------------------------------------------------------------------------------
→˓-----

Transition Energy Energy Wavelength fosc(D2) D2 DX DY ␣
→˓DZ

(eV) (cm-1) (nm) (au**2) (au) (au) ␣
→˓(au)
-----------------------------------------------------------------------------------------------
→˓-----
0-1A1 -> 0-1A2 4.040866 32591.8 306.8 0.000000000 0.00000 -0.00000 0.00000 0.

→˓00000

------------------------------------------------------------------------------------------
CD SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

------------------------------------------------------------------------------------------
Transition Energy Energy Wavelength R MX MY MZ

(eV) (cm-1) (nm) (1e40*cgs) (au) (au) (au)
------------------------------------------------------------------------------------------

0-1A1 -> 0-1A2 4.040866 32591.8 306.8 -0.00000 -0.00000 -0.00000 0.59348

------------------------------------------------------------------------------
STATE DIPOLE MOMENTS

------------------------------------------------------------------------------
Root Block TX TY TZ |T|

(Debye) (Debye) (Debye) (Debye)
------------------------------------------------------------------------------

0 0 0.00000 -0.00000 2.33244 2.33244
0 2 0.00000 -0.00000 1.45831 1.45831
0 1 0.00000 -0.00000 1.58658 1.58658

Here the transition is symmetry forbidden and therefore has no oscillator strength. The state dipole moment for the
ground state is 2.33 Debye which is somewhat lower than 2.87 Debye from the SCF calculation. Thus, the effect of
correlation is to reduce the polarity consistent with the interpretation that the ionicity of the bonds, which is always
overestimated by HF theory, is reduced by the correlation. Finally, you also get a detailed population analysis for
each generated state density which may be compared to the corresponding SCF analysis in the preceding part of
the output.

This concludes the initial example on the use of the MR-CI module. The module leaves several files on disk most
of which are not yet needed but in the future will allow more analysis and restart and the like. The .ivo file is a
standard .gbw type file and the orbitals therein can be used for visualization. This is important in order to figure
out the identity of the generated IVOs. Perhaps they are not the ones you wanted and then you need to re-run the
MR-CI with the IVOs as input, NoIter and the IVO feature in the new run turned off! We could use the IVOs as
input for a state averaged CASSCF calculation:

! moread UseSym KDIIS
%moinp "Test-SYM-MRCI-H2CO.ivo"

%casscf nel 2
norb 2
irrep 0,1,1
mult 1,1,3
nroots 1,1,1
end

If we based a MR-ACPF calculation on this reference space we will find that the calculated transition energies are
slightly poorer than in the MRCI+Q calculation. This is typical of approximate cluster methods that usually require
somewhat larger reference spaces for accurate results. A similar result is obtained with SORCI.
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%mrci CIType SORCI
tsel 1e-6
tpre 1e-4
tnat 1e-5
AllSingles true
doNatOrbs true
IntMode FullTrafo
# ground state 1A1
NewBlock 1 0
NRoots 1
Excitations cisd
Refs CAS(2,2) end
End

# HOMO LUMO transition 1A2
NewBlock 1 1
NRoots 1
Excitations cisd
Refs CAS(2,2) end
End

# HOMO LUMO triplet transition 3A2
NewBlock 3 1
NRoots 1
Excitations cisd
Refs CAS(2,2) end
End

end

This gives:

State Mult Irrep Root Block mEh eV 1/cm
0 1 A1 0 0 0.000 0.000 0.0
1 3 A2 0 2 144.563 3.934 31728.0
2 1 A2 0 1 161.179 4.386 35374.7

This is systematically 0.4 eV too high. But let us look at the approximate average natural orbital (AANOs) occu-
pation numbers:

------------------------
AVERAGE NATURAL ORBITALS
------------------------

Trace of the density to be diagonalized = 12.000000
Sum of eigenvalues = 12.000000
Natural Orbital Occupation Numbers:
N[ 2] ( A1)= 1.99831062
N[ 3] ( A1)= 1.99761604
N[ 4] ( A1)= 1.99479313
N[ 5] ( B1)= 1.99016881
N[ 6] ( B2)= 1.95818285
N[ 7] ( B1)= 1.33014178
N[ 8] ( B2)= 0.70688423
N[ 9] ( B1)= 0.00988561
N[ 10] ( A1)= 0.00436843

This shows that there is a low-occupancy orbital (MO6) that has not been part of the reference space. Thus, we try
the same calculation again but now with one more active orbital and two more active electrons:

! moread
%moinp "Test-SYM-MRCI-H2CO.gbw"

%casscf nel 4
norb 3

(continues on next page)
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irrep 0,1,1
mult 1,1,3
nroots 1,1,1
end

%mrci CIType SORCI
tsel 1e-6
tpre 1e-4
tnat 1e-5
AllSingles true
doNatOrbs true
IntMode FullTrafo
# ground state 1A1
NewBlock 1 0

NRoots 1
Excitations cisd
Refs CAS(4,3) end
End

# HOMO LUMO transition 1A2
NewBlock 1 1

NRoots 1
Excitations cisd
Refs CAS(4,3) end
End

# HOMO LUMO triplet transition 3A2
NewBlock 3 1

NRoots 1
Excitations cisd
Refs CAS(4,3) end
End

end

This gives:

State Mult Irrep Root Block mEh eV 1/cm
0 1 A1 0 0 0.000 0.000 0.0
1 3 A2 0 2 145.494 3.959 31932.3
2 1 A2 0 1 162.222 4.414 35603.6

Which is now fine since all essential physics has been in the reference space. Inspection of the occupation numbers
show that there is no suspicious orbital any more. Note that this is still a much more compact calculation that the
MRCI+Q.

Likewise, we get an accurate result from MRACPF with the extended reference space.

State Mult Irrep Root Block mEh eV 1/cm
0 1 A1 0 0 0.000 0.000 0.0
1 3 A2 0 2 134.985 3.673 29625.8
2 1 A2 0 1 148.330 4.036 32554.6

However, the SORCI calculation is much more compact. For larger molecules the difference becomes more and
more pronounced and SORCI or even MRDDCI2 (with or without +Q) maybe the only feasible methods—if at all.
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6.7.3 Excitation Energies between Different Multiplicities

As an example for a relatively accurate MRCI+Q calculation consider the following job which calculates the triplet-
ground and as the first excited singlet states of O2.

! ano-pVQZ RI-AO cc-pVQZ/JK VeryTightSCF NoPop Conv UseSym RI-MP2 PModel
%mp2 density relaxed natorbs true end
%base "O2"
* xyz 0 3
O 0 0 0
O 0 0 1.2
*

$new_job
! ano-pVQZ RI-AO cc-pVQZ/JK VeryTightSCF NoPop Conv UseSym KDIIS
! moread
%moinp "O2.mp2nat"
%casscf nel 8

norb 6
irrep 1,0,1
nroots 1,2,1
mult 3,1,1
trafostep ri
switchstep nr
end

%mrci citype mrci
tsel 1e-7
tpre 1e-5
newblock 3 1 nroots 1 refs cas(8,6) end end
newblock 1 0 nroots 2 refs cas(8,6) end end
newblock 1 1 nroots 1 refs cas(8,6) end end
end

* xyz 0 3
O 0 0 0
O 0 0 1.2
*

Note that the linear molecule is run in D2ℎ. This creates a slight problem as the CASSCF procedure necessarily
breaks the symmetry of the 1∆ state.

LOWEST ROOT (ROOT 0, MULT 3, IRREP B1g) = -149.765383866 Eh -4075.323 eV

STATE ROOT MULT IRREP DE/a.u. DE/eV DE/cm**-1
1: 0 1 B1g 0.033334 0.907 7316.0
2: 0 1 Ag 0.033650 0.916 7385.3
3: 1 1 Ag 0.062381 1.697 13691.1

The result of the MRCI+Q is:

-------------------
TRANSITION ENERGIES
-------------------

The lowest energy is -150.176905551 Eh

State Mult Irrep Root Block mEh eV 1/cm
0 3 B1g 0 0 0.000 0.000 0.0
1 1 B1g 0 2 36.971 1.006 8114.2
2 1 Ag 0 1 38.021 1.035 8344.7
3 1 Ag 1 1 62.765 1.708 13775.2
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These excitation energies are accurate to within a few hundred wavenumbers. Note that the ≈ 200 wavenumber
splitting in the degenerate 1∆ state is due to the symmetry breaking of the CAS and the individual selection.
Repeating the calculation with the MP2 natural orbitals gives an almost indistinguishable result and a ground state
energy that is even lower than what was found with the CASSCF orbitals. Thus, such natural orbitals (that might
often be easier to get) are a good substitute for CASSCF orbitals and at the same time the symmetry breaking due
to the use of symmetry appears to be difficult to avoid.

-------------------
TRANSITION ENERGIES
-------------------

The lowest energy is -150.177743426 Eh

State Mult Irrep Root Block mEh eV 1/cm
0 3 B1g 0 0 0.000 0.000 0.0
1 1 B1g 0 2 37.369 1.017 8201.5
2 1 Ag 0 1 38.237 1.040 8392.1
3 1 Ag 1 1 62.731 1.707 13767.9

6.7.4 Correlation Energies

The logic we are following here is the following: CID minus SCF gives the effect of the doubles; going to CISD
gives the effect of the singles; QCISD(=CCD) minus CID gives the effect of the disconnected quadruples. QCISD
minus QCID gives simultaneously the effect of the singles and the disconnected triples. They are a bit difficult to
separate but if one looks at the singles alone and compares with singles + disconnected triples, a fair estimate is
probably obtained. Finally, QCISD(T) minus QCISD gives the effect of the connected triples. One could of course
also use CCSD instead of QCISD but I felt that the higher powers of T1 obscure the picture a little bit—but this is
open to discussion of course.

First H2O/TZVPP at its MP2/TZVPP equilibrium geometry (𝑇pre = 10−6 and 𝑇sel = 10−9 Eh for the MRCI and
MRACPF calculations):

Excitation class Energy (Eh) Delta-Energy (mEh)
None (RHF) -76.0624

Doubles (CID) -76.3174 255
+Singles (CISD) -76.3186 1
+Disconnected Quadruples (QCID) -76.3282 11
+Disconnected Triples (QCISD) -76.3298 2
+Connected Triples (QCISD(T)) -76.3372 7
CASSCF(8,6) -76.1160

CASSCF(8,6) + MRCI -76.3264 210
CASSCF(8,6) + MRCI+Q -76.3359 10
CASSCF(8,6) + MRACPF -76.3341 218

One observes quite good agreement between single- and multireference approaches. In particular, the contribution
of the disconnected triples and singles is very small. The estimate for the disconnected quadruples is fairly good
from either the multireference Davidson correction or the ACPF and the agreement between CCSD(T) and these
MR methods is 2-3 mEh in the total energy which is roughly within chemical accuracy.

In order to also have an open-shell molecule let us look at NH with a N-H distance of 1.0 Å using the TZVPP basis
set.
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Excitation class Energy (Eh) Delta-Energy (mEh)
None (UHF) -54.9835

Doubles (CID) -55.1333 150
+Singles (CISD) -55.1344 1
+Disconnected Quadruples (QCID) -55.1366 3
+Disconnected Triples (QCISD) -55.1378 1
+Connected Triples (QCISD(T)) -55.1414 4
CASSCF(6,5) -55.0004

CASSCF(6,5) + MRCI -55.1373 137
CASSCF(6,5) + MRCI+Q -55.1429 6
CASSCF(6,5) + MRACPF -55.1413 141

Again, the agreement is fairly good and show that both single- and multiple reference approaches converge to the
same limit.

6.7.5 Thresholds

Now we choose the CO molecule (1.128 Ångström) with the SVP basis set and study the convergence of the results
with respect to the selection threshold. Comparison to high level single-reference approaches is feasible (The SCF
energy is -112.645 946 Eh).

Reference Values for Total Energies

The single-reference values are:

BD: -112.938 48002
CCSD: -112.939 79145

QCISD: -112.941 95700
BD(T): -112.950 17278

CCSD(T): -112.950 63889
QCISD(T): -112.951 37425
MP4(SDTQ): -112.954 80113

The calculations without connected triples (BD, CCSD, QCISD) are about the best what can be achieved without
explicitly considering triple excitations. The CCSD is probably the best in this class. As soon as connected triples
are included the CCSD(T), QCISD(T) and BD(T) values are close and from experience they are also close to the
full CI values which is then expected somewhere between –112.950 and –112.952 Eh.

Convergence of Single Reference Approaches with Respect to Tsel

Next it is studied how these single reference methods converge with Tsel:

Closed-Shell ACPF:
Tsel Energy (NCSF) Energy (NCSF)
(Eh) AllSingles=true AllSingles=false
TSel=0 -112.943 387 (5671)
TSel=1e-14 -112.943 387 (2543) -112.943 387 (2478)
TSel=1e-10 -112.943 387 (2543) -112.941 023 (2453)
TSel=1e-08 -112.943 387 (2451) -112.937 087 (2346)
TSel=1e-06 -112.943 350 (2283) -112.937 046 (2178)
TSel=1e-05 -112.943 176 (1660) -112.936 821 (1555)
TSel=1e-04 -112.944 039 ( 782) -112.938 381 ( 677)
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It is clear that the convergence is erratic if the singles are not automatically included. This is the reason for making
this the default from release 2.6.35 on. In the present case singles will only be selected due to round-off errors since
by Brillouin’s theorem the singles have zero-interaction with the ground state determinant. Thus, for individually
selecting single-reference methods it is a good idea to automatically include all single-excitations in order to get
converged results. The alternative would be a different singles selection procedure which has not yet been developed
however. The selection of doubles appear to converge the total energies reasonably well. It is seen that the selection
selects most CSFs between 10−5 and 10−7 Eh. Already a threshold of 10−6 Eh yields an error of less than 0.1
mEh which is negligible in relation to reaction energies and the like. Even 10−5 Eh gives an error of less than 0.1
kcal/mol.

Convergence of Multireference Approaches with Respect to Tpre

We next turn to multireference treatments. Here we want to correlate all valence electrons in all valence orbitals and
therefore a CAS(10,8) is the appropriate choice. We first ask for the converged value of Tpre by using Tsel =10−14
and obtain for MRCI+Q:

TPre = 1e-1: -112.943 964
1e-2: -112.952 963
1e-3: -112.953 786
1e-4: -112.954 019
1e-5: -112.954 336
1e-6: -112.954 416
1e-7: -112.954 440

Thus, pretty good convergence is obtained for Tpre = 10−4 − 10−6. Hence 10−4 is the default.

To show a convenient input consider the following:

\
#
# Here we calculate the CO ground state correlation energy with several methods
#
! Def2-SVP Def2-SV/C RI-MP2 CCSD(T)
%base "1"

%mp2 density relaxed
donatorbs true
end

* int 0 1
C 0 0 0 0.000000 0.000 0.000
O 1 0 0 1.128 0.000 0.000
*

$new_job

! aug-SVP MRACPF
! moread
%moinp "1.mp2nat"
# the CASSCF is done with MP2 natural orbitals which is a good idea and
# secondly we use a large level shift in order to help convergence
%casscf nel 10

norb 8
mult 1
nroots 1
shiftup 2
shiftdn 2
end

%mrci tsel 1e-8
tpre 1e-6

(continues on next page)
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end

* int 0 1
C 0 0 0 0.000 0.000 0.000
O 1 0 0 1.128 0.000 0.000
*

This job computes at the same time all of the below and demonstrates once more the agreement between consequent
single- and multireference correlation methods

SCF = -112.6459
RI-MP2 = -112.9330
CCSD = -112.9398
CCSD(T) = -112.9506
CASSCF(10,8) = -112.7769
MRACPF = -112.9514

6.7.6 Energy Differences - Bond Breaking

For the calculation of energy differences we start again with the reference CCSD(T) calculation; this method is one
of the few which can claim chemical accuracy in practical applications:

Reference Total Energies for N2 at 1.0977 Angstr\"{o}m with
The SVP basis
E(CCSD) = -109.163 497
E(CCSD(T))= -109.175 625

Nitrogen Atom (4S), SVP basis, unrestricted
E(CCSD) = -54.421 004
E(CCSD(T))= -54.421 7183

Energy Difference:
Delta-E(CCSD) = -0.321 489 = 8.75 eV
Delta-E(CCSD(T))= -0.332 188 = 9.04 eV

The basis set is of course not suitable for quantitative comparison to experimental values. However, this is not the
point here in these calculations which are illustrative in nature. The SVP basis is just good enough to allow for a
method assessment without leading to excessively expensive calculations.

This is now to be compared with the corresponding energy differences computed with some single-reference ap-
proaches. A typical input is (this is a somewhat old-fashioned example – in the present program version you would
do a full valence CASSCF(10,8) or CASSCF(6,6) and invoke the MR-methods with a single keyword):

! HF def2-SVP def2-TZVPP/C VeryTightSCF NoPop

%base "1"

* xyz 0 1
N 0 0 0
N 0 0 1.0977
*
%method

frozencore fc_ewin
end

%mrci
EWin -3,1000
CIType MRACPF2a
Solver DIIS
IntMode FullTrafo
UseIVOs true

(continues on next page)
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AllSingles true
TSel 1e-14
TPre 1e-05
TNat 0.0
ETol 1e-10
RTol 1e-10
NewBlock 1 *

NRoots 1
Excitations CISD
refs CAS(0,0) end

end
end

$new_job

! ROHF def2-SVP def2-TZVPP/C VeryTightSCF NoPop PModel

%base "2"

* xyz 0 4
N 0 0 0
*
%method

frozencore fc_ewin
end

%mrci
EWin -3,1000
CIType MRACPF2a
IntMode FullTrafo
UseIVOs true
AllSingles true
TSel 1e-14
TPre 1e-05
TNat 0.0
ETol 1e-10
RTol 1e-10
NewBlock 4 *

NRoots 1
Excitations CISD
refs CAS(3,3) end

end
end

The results are:

Single reference approaches:
Method N2-Molecule N-Atom Delta-E
CISD+Q : -109.167 904 -54.422 769 8.77 eV
ACPF : -109.166 926 -54.421 783 8.80 eV
ACPF2 : -109.166 751 -54.421 333 8.82 eV
ACPF2a : -109.166 730 -54.421 186 8.83 eV
CEPA1 : -109.159 721 -54.422 564 8.56 eV
CEPA2 : -109.172 888 -54.422 732 8.91 eV
CEPA3 : -109.161 034 -54.422 589 8.59 eV
AQCC : -109.160 574 -54.420 948 8.67 eV
CEPA-0 : -109.174 924 -54.422 951 8.95 eV

With exception is CEPA1 and CEPA3, the results are OK. The reason for the poor performance of these methods is
simply that the formalism implemented is only correct for closed shells – open shells require a different formalism
which we do not have available in the MRCI module (but in the single reference MDCI module). Due to the simple
approximations made in CEPA2 it should also be valid for open shells and the numerical results are in support of
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that.

Next we turn to the multireference methods and take a CAS(10,8) reference as for CO in order to correlate all
valence electrons.4

Multi reference approaches:
Method N2-Molecule N-Atom Delta-E
MRCISD+Q: -109.180 089 -54.422 667 9.11 eV
MRACPF : -109.178 708 -54.421 685 9.12 eV
MRACPF2 : -109.177 140 -54.421 236 9.11 eV
MRAQCC : -109.175 947 -54.420 851 9.10 eV
SORCI : -109.179 101 -54.422 703 9.08 eV

This test calculation pleasingly shows the high consistency of multireference approaches which all converge more
or less to the same result which must be accurate.

6.7.7 Energy Differences - Spin Flipping

There are a number of interesting situations in which one is interested in a small energy difference which arises
from two states of different multiplicity but same orbital configuration. This is the phenomenon met in diradicals
or in magnetic coupling in transition metal complexes. As a primitive model for such cases one may consider the
hypothetical molecule H-Ne-H in a linear configuration which will be used as a model in this section.

The reference value is obtained by a MR-ACPF calculation with all valence electrons active (again, this example
is somewhat old fashioned – in the present program version you would do a CASSCF calculation followed by MR
methods with a single keyword):

! ROHF def2-SVP def2-TZVPP/C VeryTightSCF NoPop
%basis

NewAuxCGTO Ne "AutoAux" end
end
* xyz 0 3
H 0 0 0
Ne 0 0 2.0
H 0 0 4.0
*
%method frozencore fc_ewin

end

%mrci EWin -3,1000
CIType MRACPF2a
IntMode FullTrafo
Solver DIIS
UseIVOs true
TSel 0
TPre 1e-10
ETol 1e-09
RTol 1e-09
DoDDCIMP2 true
NewBlock 1 *

NRoots 1
Excitations CISD
refs CAS(10,6) end
end

NewBlock 3 *
NRoots 1
Excitations CISD
refs CAS(10,6) end

(continues on next page)

4 Most of these results have been obtained with a slightly earlier version for which the MR energies are a little different from that what the
present version gives. The energy differences will not be affected.
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end
end

which gives the reference value 108 cm−1. We now compare that to several other methods which only have the
two “magnetic” orbitals (the 1s’s on the hydrogens) in the active space:

... same as above
%mrci EWin -10,1000

CIType MRDDCI3
... same as previously
NewBlock 1 *

NRoots 1
refs CAS(2,2) end
end

NewBlock 3 *
NRoots 1
refs CAS(2,2) end
end

end

This gives the result:

Method S-T gap
MR-CI+Q : 98 cm-1
MR-CI : 93 cm-1
MR-ACPF : 98 cm-1
MR-ACPF2 : 98 cm-1
MR-ACPF2a: 97 cm-1
MR-AQCC : 95 cm-1
SORCI : 131 cm-1
MR-DDCI2 : 85 cm-1
MR-DDCI3 : 130 cm-1

All these methods give good results with SORCI leading to a somewhat larger error than the others. The (difference
dedicated CI) DDCI2 method slightly underestimates the coupling which is characteristic of this method. It is nice
in a way that DDCI3 gives the same result as SORCI since SORCI is supposed to approximate the DDCI3 (or better
the IDDCI3) result which it obviously does.

This splitting can also be studied using broken symmetry HF and DFT methods as explained elsewhere in this
manual:

Method S-T gap
UHF : 70 cm-1
B3LYP/G : 240 cm-1
BP86 : 354 cm-1
PW91 : 234 cm-1
PBE : 234 cm-1
PBE0 : 162 cm-1
RPBE : 242 cm-1

This confirms the usual notions; UHF underestimates the coupling and DFT overestimates it, less so for hybrid
functionals than for GGAs. The BP86 is worse than PW91 or PBE. The PBE0 hybrid may be the best of the
DFT methods. For some reason most of the DFT methods give the best results if the BS state is simply taken as
an approximation for the true open-shell singlet. This is, in our opinion, not backed up by theory but has been
observed by other authors too.

Now let us study the dependence on Tsel as this is supposed to be critical (we use the DDCI3 method):

Tsel S-T gap
1e-04 121
1e-05 128

(continues on next page)
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1e-06 132
1e-07 131
1e-08 131
1e-10 131
1e-12 131
0 131

The convergence is excellent once AllSingles are included.

6.7.8 Potential Energy Surfaces

Another situation where multireference approaches are necessary is when bond breaking is studied and one wants to
calculate a full potential energy surface. Say we want to compute the potential energy surface of the CH molecule.
First we have to figure out which states to include. Hence, let us first determine a significant number of roots for
the full valence CASSCF reference state (we use a small basis set in order to make the job fast).

! ANO-pVDZ VeryTightSCF NoPop Conv

%casscf nel 5
norb 5
nroots 2
mult 2
end

%mrci CIType MRCI
NewBlock 2 *

excitations none
NRoots 15
refs CAS(5,5) end
end

NewBlock 4 *
excitations none
NRoots 15
refs CAS(5,5) end
end

end

* xyz 0 2
C 0 0 0
H 0 0 1.15
*

This yields:

-------------------
TRANSITION ENERGIES
-------------------

The lowest energy is -38.308119994 Eh

State Mult Irrep Root Block mEh eV 1/cm
0 2 -1 0 0 0.000 0.000 0.0
1 2 -1 1 0 0.000 0.000 0.0
2 4 -1 0 1 14.679 0.399 3221.6
3 2 -1 2 0 126.464 3.441 27755.7
4 2 -1 3 0 126.464 3.441 27755.7
5 2 -1 4 0 132.689 3.611 29121.8
6 2 -1 5 0 164.261 4.470 36051.2
7 2 -1 6 0 305.087 8.302 66958.9
8 2 -1 7 0 305.087 8.302 66958.9

(continues on next page)
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9 4 -1 1 1 328.911 8.950 72187.7
10 4 -1 2 1 452.676 12.318 99350.8
11 4 -1 3 1 452.676 12.318 99350.8
12 2 -1 8 0 460.116 12.520 100983.9
13 2 -1 9 0 463.438 12.611 101712.9
14 2 -1 10 0 463.438 12.611 101712.9
...

Thus, if we want to focus on the low-lying states we should include five doublet and one quartet root. Now we run
a second job with these roots and scan the internuclear distance.

! ano-pVDZ VeryTightSCF NoPop Conv MRCI+Q

%casscf nel 5
norb 5
nroots 5,1
mult 2,4
shiftup 2
end

%paras R = 0.8,2.5,25
end

* xyz 0 2
C 0 0 0
H 0 0 {R}
*

The surfaces obtained in this run are shown in Fig. 6.30. You can nicely see the crossing of the 2Σ and 2∆ states
fairly close to the equilibrium distance and also the merging of the 4Σ state with 2Π and 2Σ towards the asymptote
that where C-H dissociates in a neutral C-atom in its 3P ground state and a neutral hydrogen atom in its 2S ground
state. You can observe that once AllSingles is set to true (the default), the default settings of the MRCI module
yield fairly smooth potential energy surfaces.
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Fig. 6.30: Potential energy surfaces for some low-lying states of CH using the MRCI+Q method

In many cases one will focus on the region around the minimum where the surface is nearly quadratic. In this
case one can still perform a few (2, 3, 5, ) point polynomial fitting from which the important parameters can be
determined. The numerical accuracy and the behavior with respect to 𝑇sel has to be studied in these cases since the
selection produces some noise in the procedure. We illustrate this with a calculation on the HF molecule:

! ano-pVDZ VeryTightSCF NoPop Conv MRCI+Q

%paras R = 0.85,1.1,7
end

%casscf nel 8
norb 5
nroots 1 mult 1
shiftup 2.5 shiftdn 2.5 switchstep nr gtol 1e-5
end

%mrci tsel 1e-8
tpre 1e-5
end

* xyz 0 1
F 0 0 0
H 0 0 {R}
*

The output contains the result of a Morse fit:

264 Chapter 6. Running Typical Calculations



ORCA Manual, Release 6.0

Morse-Fit Results:
Re = 0.93014 Angstroem
we = 4111.2 cm**-1
wexe = 79.5 cm**-1

Which may be compared with the CCSD(T) values calculated with the same basis set:

Morse-Fit Results:
Re = 0.92246 Angstroem
we = 4209.8 cm**-1
wexe = 97.6 cm**-1

The agreement between MRCI+Q and CCSD(T) results is fairly good.

6.7.9 Multireference Systems - Ozone

The ozone molecule is a rather classical multireference system due to its diradical character. Let us look at the
three highest occupied and lowest unoccupied MO (the next occupied MO is some 6 eV lower in energy and the
next virtual MO some 10 eV higher in energy):

(a) (a) MO-9 (b) (b) MO-10 (c) (c) MO 11(HOMO)

(d) (d) MO 12(LUMO)

Fig. 6.31: Frontier MOs of the Ozone Molecule.

These MOs are two 𝜎 lone pairs which are high in energy and then the symmetric and antisymmetric combinations
of the oxygen 𝜋 lone pairs. In particular, the LUMO is low lying and will lead to strong correlation effects since
the (HOMO)2 → (LUMO)2 excitation will show up with a large coefficient. Physically speaking this is testimony
of the large diradical character of this molecule which is roughly represented by the structure ↑O-O-O↓. Thus,
the minimal active space to treat this molecule correctly is a CAS(2,2) space which includes the HOMO and the
LUMO. We illustrate the calculation by looking at the RHF, MP2 MRACPF calculations of the two-dimensional
potential energy surface along the O–O bond distance and the O-O-O angle (experimental values are 1.2717 Å and
116.78∘).

! ano-pVDZ VeryTightSCF NoPop MRCI+Q Conv

%paras R = 1.20,1.40,21

(continues on next page)
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Theta = 100,150,21
end

%casscf nel 2
norb 2
mult 1
nroots 1
end

%mrci tsel 1e-8
tpre 1e-5
end

* int 0 1
O 0 0 0 0 0 0
O 1 0 0 {R} 0 0
O 1 2 0 {R} {Theta} 0
*

This is a slightly lengthy calculation due to the 441 energy evaluations required. RHF does not find any meaningful
minimum within the range of examined geometries. MP2 is much better and comes close to the desired minimum
but underestimates the O–O distance by some 0.03 Å. CCSD(T) gives a very good angle but a O–O distance
that is too long. In fact, the largest doubles amplitude is ≈ 0.2 in these calculations (the HOMO–LUMO double
excitation) which indicates a near degeneracy calculation that even CCSD(T) has problems to deal with. Already
the CAS(2,2) calculation is in qualitative agreement with experiment and the MRCI+Q calculation then gives
almost perfect agreement.

The difference between the CCSD(T) and MRCI+Q surfaces shows that the CCSD(T) is a bit lower than the
MRCI+Q one suggesting that it treats more correlation. However, CCSD(T) does it in an unbalanced way. The
MRCI calculation employs single and double excitations on top of the HOMO-LUMO double excitation, which
results in triples and quadruples that apparently play an important role in balancing the MR calculation. These
excitations are treated to all orders explicitly in the MRCI calculation but only approximately (quadruples as simul-
taneous pair excitations and triples perturbatively) in the coupled-cluster approach. Thus, despite the considerable
robustness of CC theory in electronically difficult situations it is not applicable to genuine multireference problems.

This is a nice result despite the too small basis set used and shows how important it can be to go to a multirefer-
ence treatment with a physically reasonable active space (even if is only 2 × 2) in order to get qualitatively and
quantitatively correct results.

(a) (a) RHF (b) (b) CASSCF(2,2) (c) (c) MP2 (d) (d) CCSD(T) (e) (e) MRCI+Q

(f) (f) Difference
CCSD(T)/MRCI+Q

Fig. 6.32: 2D potential energy surface for the 𝑂3 molecule calculated with different methods
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6.7.10 Size Consistency

Finally, we want to study the size consistency errors of the methods. For this we study two non-interacting HF
molecules at the single reference level and compare to the energy of a single HF molecule. This should give a
reasonably fair idea of the typical performance of each method (energies in Eh)5:

E(HF) E(HF+HF) |Difference|
CISD+Q -100.138 475 -200.273 599 0.00335
ACPF -100.137 050 -200.274 010 0.00000
ACPF2 -100.136 913 -200.273 823 0.00000
AQCC -100.135 059 -200.269 792 0.00032

The results are roughly as expected – CISD+Q has a relatively large error, ACPF and ACPF/2 are perfect for this
type of example; AQCC is not expected to be size consistent and is (only) about a factor of 10 better than CISD+Q
in this respect. CEPA-0 is also size consistent.

6.7.11 Efficient MR-MP2 Calculations for Larger Molecules

Uncontracted MR-MP2 approaches are nowadays outdated. They are much more expensive than internally con-
tracted e.g. the NEVPT2 method described in section N-Electron Valence State Pertubation Theory. Moreover,
MR-MP2 is prone to intruder states, which is a major obstacle for practical applications. For historical reasons, this
section is dedicated to the traditional MR-MP2 approach that is available since version 2.7.0 ORCA. The imple-
mentation avoids the full integral transformation for MR-MP2 which leads to significant savings in terms of time
and memory. Thus, relatively large RI-MR-MP2 calculations can be done with fairly high efficiency. However, the
program still uses an uncontracted first order wavefunction which means that for very large reference space, the
calculations still become untractable.

Consider for example the rotation of the stilbene molecule around the central double bond

(a) (a) (b) (b)

Fig. 6.33: Rotation of stilbene around the central double bond using a CASSCF(2,2) reference and correlating the
reference with MR-MP2.

The input for this calculation is shown below. The calculation has more than 500 basis functions and still runs
through in less than one hour per step (CASSCF-MR-MP2). The program takes care of the reduced number of
two-electron integrals relative to the parent MRCI method and hence can be applied to larger molecules as well.
Note that we have taken a “JK” fitting basis in order to fit the Coulomb and the dynamic correlation contributions
both with sufficient accuracy. Thus, this example demonstrates that MR-MP2 calculations for not too large reference
spaces can be done efficiently with ORCA (as a minor detail note that the calculations were started at a dihedral
angle of 90 degrees in order to make sure that the correct two orbitals are in the active space, namely the central
carbon p-orbitals that would make up the pi-bond in the coplanar structure).

5 Most of these numbers were obtained with a slightly older version but will not change too much in the present version.
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#
# Stilbene rotation using MRMP2
#
! def2-TZVP def2/JK RIJCOSX RI-MRMP2

%casscf nel 2
norb 2
end

%mrci maxmemint 2000
tsel 1e-8
end

%paras DIHED = 90,270, 19
end

* int 0 1
C 0 0 0 0.000000 0.000 0.000
C 1 0 0 1.343827 0.000 0.000
C 2 1 0 1.490606 125.126 0.000
C 1 2 3 1.489535 125.829 \{DIHED\}
C 4 1 2 1.400473 118.696 180.000
C 4 1 2 1.400488 122.999 0.000
C 6 4 1 1.395945 120.752 180.000
C 5 4 1 1.394580 121.061 180.000
C 8 5 4 1.392286 120.004 0.000
C 3 2 1 1.400587 118.959 180.000
C 3 2 1 1.401106 122.779 0.000
C 11 3 2 1.395422 120.840 180.001
C 12 11 3 1.392546 120.181 0.000
C 13 12 11 1.392464 119.663 0.000
H 1 2 3 1.099419 118.266 0.000
H 2 1 3 1.100264 118.477 179.999
H 5 4 1 1.102119 119.965 0.000
H 6 4 1 1.100393 121.065 0.000
H 7 6 4 1.102835 119.956 180.000
H 8 5 4 1.102774 119.989 180.000
H 9 8 5 1.102847 120.145 180.000
H 10 3 2 1.102271 120.003 0.000
H 11 3 2 1.100185 121.130 0.000
H 12 11 3 1.103001 119.889 180.000
H 13 12 11 1.102704 120.113 180.000
H 14 13 12 1.102746 119.941 180.000
*

6.7.12 Keywords

Here is a reasonably complete list of Keywords and their meaning. Note that the MRCI pogram is considered
legacy and we can neither guarantuee that the keywords still work as intended, nor is it likely that somebody will
be willing or able to fix a problem with any of them. Additional information is found in section 9.

%mrci
CIType MRCI

MRDDCI1
MRDDCI2
MRDDCI3

SORCI
SORCP

MRACPF

(continues on next page)

268 Chapter 6. Running Typical Calculations



ORCA Manual, Release 6.0

(continued from previous page)

MRACPF2
MRACPF2a
MRAQCC
MRCEPA_R
MRCEPA_0
MRMP2
MRMP3

MRRE2
MRRE3
MRRE4
CEPA1
CEPA2
CEPA3

# CSF selection and convergence thresholds
TSel 1e-14 # selection threshold
TPre 1e-05 # pre-diagonalization threshold
TNat 0.0 #
ETol 1e-10
RTol 1e-10

# Size consistency corrections and the like
EUnselOpt MaxOverlap

FullMP2
DavidsonOpt Davidson1

Davidson2
Siegbahn
Pople

NELCORR 15 # number of electrons correlated for MRACPF and
the like

# MRPT stuff
UsePartialTrafo true/false # speedups MRMP2
UseDiagonalContraction true/false # legacy
Partitioning EN # Epstein Nesbet

MP # Moeller Plesset
RE # Fink's partitioning

FOpt Standard # choice of Fock operators to be
used in MRPT

G0
G3

H0Opt Diagonal
Projected
Full

MRPT_b 0.2 # intruder state fudge factor
MRPT_SHIFT 1.0 # level shift

# Integral handling
IntMode FullTrafo # exact transformation (lots of memory)

RITRafo # RI integrals (slow!)
UseIVOs true/false # use improved virtual orbitals?

# Try at your own risk
CIMode Auto

Conv
Semidirect
Direct
Direct2
Direct3

(continues on next page)
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# orbital selection
EWin epsilon_min,epsilon_max # orbital energy window
MORanges First_internal, Last_Internal, First_active,
Last_Active, First-Virtual,Last_virtual # alternative MO
definition
XASMOs x1,x2,x3,... # List of XAS donor MOs (see above)

#density generation
Densities StateDens, TransitionDens

# StateDens= GS, GS_EL, GS_EL_SPIN, ALL_LOWEST,
ALL_LOWEST_EL, ALL_LOWEST_EL_SPIN, ALL, ALL_EL, ALL_EL_SPIN
# TransitionDens= FROM_GS_EL, FROMGS_EL_SPIN,FROM_LOWEST_EL, \\ FROM_LOWEST_EL_SPIN,

→˓FROM_ALL_EL,FROM_ALL_EL_SPIN
# Memory
MaxMemVec 1024 # in MB
MaxMemInt 1024 # in MB

# Diagonalizer
Solver DIIS

DIAG
NEWDVD

MaxDIIS
RelaxRefs true/false
LevelShift 0.0
MaxDim 15
NGuessMat 10
MaxIter 25
NGuessMatRefCI 100
DVDShift 1.0

# Bells and whistles
KeepFiles true/false
AllSingles true/false # Force all singles to be included
RejectInvalidRefs true/false # reject references with wrong
number of unpaired electrons or symmetry
DoDDCIMP2 true/false # do a MP2 correction for the missing
DDCI excitation class ijab
NatOrbIters 5 # number of natural orbital iterations
DoNatOrbs 0,1,2 # 0=not, 1=only average density, >=2= each
density
PrintLevel None, MINI, Normal, Large
PrintWFN 1
TPrintWFN 1e-3

# MREOM stuff (expert territory!)
DoMREOM true/false

# Definition of CI blocks
NewBlock multiplicity irrep

NRoots 1
Excitations none

CIS
CID
CISD

# active space definition
refs CAS(nel, norb) end
# or

(continues on next page)
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refs RAS(nel: ras1norb ras1nel / ras2norb / ras3norb ras3nel
) end
# or individual definition. Must yield the corret number of
electrons!
refs

{ 2 0 1 0 1 1 }
{ 2 0 1 1 0 1 }
end

end
end

6.8 MR-EOM-CC: Multireference Equation of Motion Coupled-
Cluster

The Multireference Equation of Motion Coupled-Cluster (MR-EOM-CC) methodology [193, 194, 203, 406, 407,
640] has been implemented in ORCA. The strength of the MR-EOM-CC methodology lies in its ability to calculate
many excited states from a single state-averaged CASSCF solution, for which only a single set of amplitudes needs
to be solved and the final transformed Hamiltonian is diagonalized over a small manifold of excited states only
through an uncontracted MRCI problem. Hence, a given MR-EOM calculation involves three steps, performed by
three separate modules in ORCA :

1. a state-averaged CASSCF calculation (CASSCF module),

2. the solution of amplitude equations and the calculation of the elements of the similarity transformed Hamil-
tonians (MDCI module),

3. and the uncontracted MRCI diagonalization of the final similarity transformed Hamiltonian (MRCI module).

The current implementation allows for MR-EOM-T|T†-h-v, MR-EOM-T|T†|SXD-h-v and MR-EOM-T|T†|SXD|U-
h-v calculations. A more detailed description of these methods and the available input parameters will be given in
Sec. Multireference Equation of Motion Coupled-Cluster (MR-EOM-CC) Theory. We also note that the theoretical
details underlying these methods can be found in Ref. [407]. In Sec. Multireference Equation of Motion Coupled-
Cluster (MR-EOM-CC) Theory, we will discuss a strategy for the selection of the state-averaged CAS and other
steps for setting up an MR-EOM calculation in detail. Furthermore, we will discuss how spin-orbit coupling effects
can be included in MR-EOM calculations, a projection scheme to aid with convergence difficulties in the iteration of
the 𝑇 amplitude equations, an orbital selection scheme to reduce the size of the inactive core and virtual subspaces
in the calculation of excitation energies and a strategy for obtaining nearly size-consistent results in MR-EOM.
The purpose of this section is simply to provide a simple example which illustrates the most basic usage of the
MR-EOM implementation in ORCA.

6.8.1 A Simple MR-EOM Calculation

Let us consider an MR-EOM-T|T†|SXD|U-h-v calculation on formaldehyde. An MR-EOM-T|T†|SXD|U-h-v cal-
culation is specified via the MR-EOM keyword along with the specification of a state-averaged CASSCF calculation
(i.e. CASSCF(nel, norb) calculation with the number of roots of each multiplicity to be included in the state-
averaging for the reference state) and the number of desired roots in each multiplicity block for the final MRCI
diagonalization. We note that the CASSCF module is described in sections Complete Active Space Self-Consistent
Field Method and The Complete Active Space Self-Consistent Field (CASSCF) Module and that a description of
the MRCI module is given in sections Multireference Configuration Interaction and Pertubation Theory and The
Multireference Correlation Module. Here, we have a state-averaged CAS(6,4) calculation, comprised of 3 singlets
and 3 triplets and we request 6 singlet roots and 6 triplet roots in our final MRCI diagonalization (i.e. the roots to
be computed in the MR-EOM-T|T†|SXD|U-h-v calculation):
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!MR-EOM def2-TZVP VeryTightSCF

%casscf # reference state
nel 6
norb 4
mult 1,3
nroots 3,3
end

%mdci
STol 1e-7

end

%mrci # final roots
newblock 1 *
nroots 6
refs cas(6,4) end

end
newblock 3 *
nroots 6
refs cas(6,4) end

end
end

* xyz 0 1
H 0.000000 0.934473 -0.588078
H 0.000000 -0.934473 -0.588078
C 0.000000 0.000000 0.000000
O 0.000000 0.000000 1.221104
*

One can alternatively perform an MR-EOM-T|T†-h-v or MR-EOM-T|T†|SXD-h-v calculation by replacing the
MR-EOM keyword, in the first line of the input above, by MR-EOM-T|Td or MR-EOM-T|Td|SXD, respectively. Namely,
replacing the first line of the input above with

!MR-EOM-T|Td def2-TZVP VeryTightSCF

runs the MR-EOM-T|T†-h-v calculation, while

!MR-EOM-T|Td|SXD def2-TZVP VeryTightSCF

runs the MR-EOM-T|T†|SXD-h-v calculation.

The final MRCI diagonalization manifold includes 2h1p, 1h1p, 2h, 1h and 1p excitations in MR-EOM-T|T†-h-v
calculations, 2h, 1p and 1h excitations in MR-EOM-T|T†|SXD-h-v calculations and 1h and 1p excitations in MR-
EOM-T|T†|SXD|U-h-v calculations. Note that in the %mdci block, we have set the convergence tolerance (STol)
for the residual equations for the amplitudes to 10−7, as this default value is overwritten with the usage of the
TightSCF, VeryTightSCF, etc. keywords. It is always important to inspect the values of the largest 𝑇 , 𝑆 (here,
we use 𝑆 to denote the entire set of 𝑆, 𝑋 and 𝐷 amplitudes) and 𝑈 amplitudes. If there are amplitudes that are
large (absolute values> 0.15), the calculated results should be regarded with suspicion. For the above calculation,
we obtain:

--------------------
LARGEST T AMPLITUDES
--------------------

8-> 13 8-> 13 0.060331
4-> 17 4-> 17 0.029905
8-> 9 8-> 9 0.028160
8-> 16 8-> 16 0.027266
6-> 20 6-> 20 0.025885

(continues on next page)
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8-> 21 8-> 21 0.025308
4-> 16 4-> 16 0.024803
8-> 12 8-> 12 0.023915
5-> 18 5-> 18 0.023553
8-> 23 8-> 23 0.023384
3-> 16 3-> 16 0.023182
7-> 19 7-> 19 0.023043
8-> 13 4-> 11 0.022010
3-> 19 3-> 19 0.021987
8-> 16 8-> 9 0.021230
8-> 9 8-> 16 0.021230

for the 𝑇 amplitudes,

--------------------
LARGEST S AMPLITUDES
--------------------

4-> 8 8-> 11 0.074048
3-> 8 8-> 9 0.064886
4-> 5 5-> 11 0.045479
3-> 8 8-> 16 0.042657
4-> 7 7-> 11 0.042598
4-> 5 5-> 17 0.042076
4-> 5 8-> 11 0.039958
4-> 8 8-> 17 0.037532
3-> 5 8-> 9 0.035907
4-> 7 7-> 17 0.035767
2-> 6 6-> 19 0.034148
3-> 5 5-> 10 0.033339
2-> 6 6-> 10 0.032691
4-> 6 6-> 11 0.032181
8-> 8 3-> 16 0.031775
2-> 7 7-> 22 0.031238

for the 𝑆 amplitudes, and

--------------------
LARGEST U AMPLITUDES
--------------------

3-> 8 3-> 8 0.026128
3-> 8 3-> 5 0.007683
2-> 8 2-> 8 0.006182
3-> 8 2-> 5 0.006154
2-> 8 3-> 5 0.004954
3-> 5 3-> 5 0.004677
4-> 8 4-> 8 0.003989
3-> 8 2-> 8 0.002040
2-> 8 3-> 8 0.002040
2-> 8 2-> 5 0.001818
4-> 8 4-> 5 0.001173
2-> 5 2-> 5 0.001107
4-> 5 4-> 5 0.000714
3-> 7 3-> 7 0.000607
3-> 6 3-> 6 0.000521
2-> 5 3-> 5 0.000365

for the 𝑈 amplitudes. Hence, one can see that there are no unusually large amplitudes for this calculation. We note
that there can be convergence issues with the 𝑇 amplitude iterations and that in such cases, the flag:

DoSingularPT true

should be added to the %mdci block. The convergence issues are caused by the presence of nearly singular 𝑇2
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amplitudes and setting the DoSingularPT flag to true activates a procedure which projects out the offending
amplitudes (in each iteration) and replaces them by suitable perturbative amplitudes. For more information, see
the examples in section A Projection/Singular PT Scheme to Overcome Convergence Issues in the T Amplitude
Iterations.

After the computation of the amplitudes and the elements of the similarity transformed Hamiltonians, within the
MDCI module, the calculation enters the MRCI module. For a complete, step by step description of the output of
an MRCI calculation, we refer the reader to the example described in section A Tutorial Type Example of a MR
Calculation. Let us first focus on the results for the singlet states (CI-BLOCK 1). Following the convergence of the
Davidson diagonalization (default) or DIIS procedure, the following results of the MRCI calculation for the singlet
states are printed:

----------
CI-RESULTS
----------

The threshold for printing is 0.30 percent
The weights of configurations will be printed. The weights are summed over
all CSFs that belong to a given configuration before printing

STATE 0: Energy= -114.321368425 Eh RefWeight= 0.9781 0.00 eV 0.0 cm**-1
0.0137 : h---h---[0222]
0.0756 : h---h---[1221]
0.8879 : h---h---[2220]

STATE 1: Energy= -114.176866027 Eh RefWeight= 0.9765 3.93 eV 31714.6 cm**-1
0.0039 : h---h---[1122]
0.9726 : h---h---[2121]
0.0071 : h---h 4[1222]
0.0085 : h---h 4[2221]

STATE 2: Energy= -113.988050555 Eh RefWeight= 0.9774 9.07 eV 73154.8 cm**-1
0.0044 : h---h---[1212]
0.9730 : h---h---[2211]
0.0063 : h---h 3[1222]
0.0041 : h---h 3[2221]

STATE 3: Energy= -113.963862283 Eh RefWeight= 0.8810 9.73 eV 78463.5 cm**-1
0.7459 : h---h---[1221]
0.0807 : h---h---[2022]
0.0533 : h---h---[2220]
0.0228 : h---h 4[2122]
0.0034 : h---h---[1220]p13
0.0072 : h---h---[1220]p18
0.0236 : h---h---[2120]p11
0.0148 : h---h---[2120]p14
0.0069 : h---h---[2120]p17
0.0056 : h---h---[2120]p20
0.0098 : h---h---[2210]p19

STATE 4: Energy= -113.931144468 Eh RefWeight= 0.0003 10.62 eV 85644.3 cm**-1
0.0045 : h---h---[0122]p9
0.0089 : h---h---[1121]p9
0.9333 : h---h---[2120]p9
0.0243 : h---h---[2120]p10
0.0080 : h---h---[2120]p12
0.0113 : h---h---[2120]p16

STATE 5: Energy= -113.929056780 Eh RefWeight= 0.6857 10.68 eV 86102.5 cm**-1
0.0061 : h---h---[0222]
0.0918 : h---h---[1221]
0.5784 : h---h---[2022]
0.0048 : h---h---[2202]
0.0047 : h---h---[2220]
0.2905 : h---h 4[2122]
0.0045 : h---h---[2021]p13

For each state, the total energy is given in 𝐸h; the weight of the reference configurations (RefWeight) in the given
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state is provided, and the energy differences from the lowest lying state are given in eV and cm−1. Also, in each
case, the weights and a description of the configurations which contribute most strongly to the given state are also
provided. See section A Tutorial Type Example of a MR Calculation for a discussion of the notation that is used for
the description of the various configurations. To avoid confusion, we note that in the literature concerning the MR-
EOM methodology [194, 203, 406, 407, 529, 530, 640], the term “%active” is used to denote the reference weight
multiplied by 100%. In general, RefWeight should be > 0.9, such that the states are dominated by reference
space configurations. This criterion is satisfied for the first three states and the reference weight of the fourth state
is sufficiently close to 0.9. However, the reference weights of the two higher lying states (especially state 4) are
too small and these states should be discarded as the resulting energies will be inaccurate (i.e. states with
significant contributions from configurations outside the reference space cannot be treated accurately) .

In the case of the triplet states (CI-BLOCK 2), we obtain the following results:

----------
CI-RESULTS
----------

The threshold for printing is 0.30 percent
The weights of configurations will be printed. The weights are summed over
all CSFs that belong to a given configuration before printing

STATE 0: Energy= -114.190840989 Eh RefWeight= 0.9693 0.00 eV 0.0 cm**-1
0.9691 : h---h---[2121]
0.0079 : h---h 4[1222]
0.0115 : h---h 4[2221]

STATE 1: Energy= -114.106733017 Eh RefWeight= 0.9941 2.29 eV 18459.6 cm**-1
0.9941 : h---h---[1221]

STATE 2: Energy= -114.015150051 Eh RefWeight= 0.9787 4.78 eV 38559.7 cm**-1
0.9786 : h---h---[2211]
0.0050 : h---h 3[1222]

STATE 3: Energy= -113.939299674 Eh RefWeight= 0.0006 6.84 eV 55206.9 cm**-1
0.0044 : h---h---[0122]p9
0.0084 : h---h---[1121]p9
0.9419 : h---h---[2120]p9
0.0131 : h---h---[2120]p10
0.0043 : h---h---[2120]p12
0.0173 : h---h---[2120]p16

STATE 4: Energy= -113.925571130 Eh RefWeight= 0.4017 7.22 eV 58220.0 cm**-1
0.3863 : h---h---[1122]
0.0154 : h---h---[2121]
0.1722 : h---h 4[1222]
0.4098 : h---h 4[2221]
0.0045 : h---h---[2120]p13

STATE 5: Energy= -113.910479339 Eh RefWeight= 0.0009 7.63 eV 61532.3 cm**-1
0.0088 : h---h---[0122]p10
0.0030 : h---h---[1121]p10
0.0120 : h---h---[2120]p9
0.9408 : h---h---[2120]p10
0.0106 : h---h---[2120]p16
0.0112 : h---h---[2120]p19

Here, we see that the first three states have reference weights which are > 0.9, while the reference weights of
the final three states are well below that threshold. Hence, the latter three states should be discarded from any
meaningful analysis.

Following the printing of the CI results for the final CI block, the states are ordered according to increasing energy
and the vertical transition energies are printed:

-------------------
TRANSITION ENERGIES
-------------------

(continues on next page)
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The lowest energy is -114.321368425 Eh

State Mult Irrep Root Block mEh eV 1/cm
0 1 -1 0 0 0.000 0.000 0.0
1 3 -1 0 1 130.527 3.552 28647.5
2 1 -1 1 0 144.502 3.932 31714.6
3 3 -1 1 1 214.635 5.841 47107.0
4 3 -1 2 1 306.218 8.333 67207.2
5 1 -1 2 0 333.318 9.070 73154.8
6 1 -1 3 0 357.506 9.728 78463.5
7 3 -1 3 1 382.069 10.397 83854.4
8 1 -1 4 0 390.224 10.619 85644.3
9 1 -1 5 0 392.312 10.675 86102.5

10 3 -1 4 1 395.797 10.770 86867.5
11 3 -1 5 1 410.889 11.181 90179.7

Furthermore, following the generation of the (approximate) densities, the absorption and CD spectra are printed:

==========================================
MR-EOM Non Relativistic Properties
==========================================

-----------------------------------------------------------------------------------------------
→˓-----

ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-----------------------------------------------------------------------------------------------
→˓-----

Transition Energy Energy Wavelength fosc(D2) D2 DX DY ␣
→˓DZ

(eV) (cm-1) (nm) (au**2) (au) (au) ␣
→˓(au)
-----------------------------------------------------------------------------------------------
→˓-----
0-1A -> 1-1A 3.932110 31714.6 315.3 0.000000000 0.00000 -0.00000 -0.00000 0.

→˓00000
0-1A -> 2-1A 9.070040 73154.8 136.7 0.002137450 0.00962 0.09808 -0.00000 -0.

→˓00000
0-1A -> 3-1A 9.728237 78463.5 127.4 0.157495738 0.66081 -0.00000 0.00000 -0.

→˓81290
0-1A -> 4-1A 10.618534 85644.3 116.8 0.025353906 0.09746 -0.00000 -0.31218 -0.

→˓00000
0-1A -> 5-1A 10.675343 86102.5 116.1 0.024673667 0.09434 -0.00000 -0.00000 0.

→˓30715

------------------------------------------------------------------------------------------
CD SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

------------------------------------------------------------------------------------------
Transition Energy Energy Wavelength R MX MY MZ

(eV) (cm-1) (nm) (1e40*cgs) (au) (au) (au)
------------------------------------------------------------------------------------------

0-1A -> 1-1A 3.932110 31714.6 315.3 -0.00000 0.00000 0.00000 0.56273
0-1A -> 2-1A 9.070040 73154.8 136.7 -0.00000 0.00000 -0.74486 0.00000
0-1A -> 3-1A 9.728237 78463.5 127.4 -0.00000 -0.00000 -0.00000 -0.00000
0-1A -> 4-1A 10.618534 85644.3 116.8 0.00000 0.35898 0.00000 -0.00000
0-1A -> 5-1A 10.675343 86102.5 116.1 0.00000 0.00000 -0.00000 -0.00000

. Warning

• It is important to note that the transition moments and oscillator strengths (and state dipole moments)
have been blindly computed by the MRCI module and currently, no effort has been made to include
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the effects of the various similarity transformations in the evaluation of these quantities. Hence these
quantities are only approximate and should only be used as a qualitative aid to determine which states
are dipole allowed or forbidden. Furthermore, since the calculated densities are approximate, so are the
results of the population analysis that are printed before the absorption and CD spectra.

• While both the CASSCF and MRCI modules can make use of spatial point-group symmetry to some
extent, the MR-EOM implementation is currently limited to calculations in 𝐶1 symmetry.

6.8.2 Capabilities

The MR-EOM methodology can be used to calculate a desired number of states for both closed- and open-shell
systems from a single state-averaged CASSCF solution. Currently, the approach is limited to serial calculations
and to smaller systems in smaller active spaces. One should be aware that in the most cost-effective MR-EOM-
T|T†|SXD|U-h-v approach (i.e. the smallest diagonalization manifold), an MRCI diagonalization is performed over
all 1h and 1p excited configurations out of the CAS, which will inevitably limit the size of the initial CAS which
can be used. We have also implemented an orbital selection scheme which can be used to reduce the size of the
inactive core and virtual subspaces in the calculation of excitation energies, and this can be employed to extend the
applicability of the approach to larger systems. The current implementation can also be used in conjunction with
the spin-orbit coupling submodule (General Description) of the MRCI module to calculate spin-orbit coupling
effects in MR-EOM calculations to first order. These and other features of the current implementation will be
discussed in Multireference Equation of Motion Coupled-Cluster (MR-EOM-CC) Theory.

6.8.3 Perturbative MR-EOM-PT

The MR-EOM family of methods now also features an almost fully perturbative approach called MR-EOMPT [501].
This method shares the features of the MR-EOMCC parent method while using non-iterative perturbative estimates
for the 𝑇 and 𝑆, �̂�, �̂� amplitudes. This slightly reduces the accuracy compared to iterative MR-EOMCC while
reducing runtime. Furthermore, convergence issues due to nearly singular 𝑇 and 𝑆, �̂�, �̂� amplitudes cannot occur
anymore.

This method can be invoked by adding the keyword DoMREOM_MRPT True to the %mdci block.

6.9 Solvation

ORCA features several implicit solvation models, including the fully integrated “conductor-like polarizable con-
tinuum (C-PCM)” and “Minnesota SMD” solvation models, which are available in all its components. With these
models, various types of calculations can be performed using a polarizable continuum with a realistic van der
Waals cavity as summarized below:

• Energies of molecules in solution with a finite dielectric constant 𝜀 using HF or any DFT method.

• Optimization of molecular structures in solution using HF or any DFT method with analytic gradients.

• Calculation of vibrational frequencies using the analytic Hessian for HF or any DFT method, provided that
the same calculation is available in vacuum.

• Calculation of solvent effects on response properties like polarizabilities through coupled-perturbed SCF
theory. For magnetic response properties, such as the g-tensor, the C-PCM response vanishes.

• Calculations of solvent shifts on transition energies using the time-dependent DFT or CIS method. The
refractive index of the solvent needs to be provided in addition to the dielectric constant.

• First order perturbation estimate of solvent effects on state and transition energies in multireference pertur-
bation and configuration-interaction calculations.

Other implicit solvation strategies are available in ORCA. In particular, an interface to the open source imple-
mentation of the COSMO-RS model (openCOSMO-RS), as well as different solvation models that can be used
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in XTB (ALPB, ddCOSMO, and CPCM-X). A detailed overview of the available implicit solvation methods and
their usage is provided in Sections ONIOM Methods, and Implicit Solvation Models.

As a simple example, let us compute the solvent effect on the 𝑛→ 𝜋* transition energy in formaldehyde with the
C-PCM model. This effect can be obtained by subtracting the solution-phase and gas-phase transition energies.
The gas-phase transition energy (4.633 eV) can be computed by using the following input:

! def2-TZVP

%cis nroots 1 end

*int 0 1
C 0 0 0 0.000000 0.000 0.000
O 1 0 0 1.200371 0.000 0.000
H 1 2 0 1.107372 121.941 0.000
H 1 2 3 1.107372 121.941 180.000
*

By adding the CPCM(water) flag to the input used for the gas-phase calculation, the transition energy can now be
computed using the C-PCM model with water as the solvent:

! def2-TZVP CPCM(water)

%cis nroots 1 end

*int 0 1
C 0 0 0 0.000000 0.000 0.000
O 1 0 0 1.200371 0.000 0.000
H 1 2 0 1.107372 121.941 0.000
H 1 2 3 1.107372 121.941 180.000
*

This C-PCM calculation yields a transition energy of 4.857 eV:

-----------------------------
CIS-EXCITED STATES (SINGLETS)
-----------------------------

the weights of the individual excitations are printed if larger than 1.0e-02

STATE 1: E= 0.178499 au 4.857 eV 39176.0 cm**-1 <S**2> = 0.000000
7a -> 8a : 0.929287 (c= -0.96399514)
7a -> 13a : 0.039268 (c= 0.19816055)
7a -> 18a : 0.016344 (c= 0.12784298)

Hence, water environment increases the transition energy by 0.224 eV. This increase can be attributed to the stabi-
lization of lone pair orbitals by the presence of water molecules.

6.10 ORCA SOLVATOR: Automatic Placement of Explicit Solvent
Molecules

From ORCA6, we also have a tool that can automatically place explicit solvent molecules to a given system. It can
be done using two different approaches: a STOCHASTIC method which is very fast but less accurate, or a DOCKING
approach which makes use of the DOCKER. The later is slower, but more accurate and is the default.
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6.10.1 First Example: Adding Water to a Histidine

As a very simple initial example, let’s take a Histidine aminoacid and add three explicit water molecules at the best
positions using the DOCKER and GFN2-XTB. The input to get this is as simple as:

!XTB ALPB(WATER) PAL16
%SOLVATOR NSOLV 3 END
* XYZ 0 1

N 0.885996 -0.961304 -0.120339
C 1.798313 0.104987 0.275069
C 1.249714 0.744242 1.567548
O 1.573032 1.831447 1.951866
C 2.049102 1.187937 -0.781297
C 2.714441 0.645674 -1.999072
N 2.728606 1.335092 -3.185194
C 3.401683 0.571600 -4.081842
N 3.805612 -0.545068 -3.552995
C 3.389082 -0.516790 -2.258890
O 0.397674 -0.041862 2.212628
H 0.272440 -0.853698 1.671197
H 1.339440 -1.612664 -0.750009
H 0.086389 -0.572348 -0.612909
H 2.756495 -0.353470 0.548654
H 2.661849 1.969568 -0.321790
H 1.092545 1.646672 -1.057454
H 2.328734 2.246496 -3.338113
H 3.566873 0.866218 -5.098496
H 3.616501 -1.333139 -1.602802

*

That is as simple as a regular input with the line %SOLVATOR NSOLV 3 END added. The solvent structure will be
automatically taken from the implicit solvation method (in this case ALPB(WATER)), and the three water molecules
will be added. The output will look like:

*****************
* ORCA Solvator *
*****************

Solvent chosen: WATER
Solvent radius: .... 1.69 Angs
Solvent max dimensions (x,y,z): .... 2.73, 2.32, 1.52 Angs
Number of solvent molecules to be added: .... 3 molecules
Method used to add the solvent: .... docking
Number of atoms of solvent molecule: .... 3 atoms
Coordinates of solvent in Angstroem:

O 0.000014 0.401429 0.000000
H 0.765192 -0.200729 0.000000
H -0.765206 -0.200700 0.000000

Solute radius: .... 5.27 Angs
Ellipsoid potential radii: .... 8.37, 6.28, 5.76 Angs

where the solvent chosen is printed, together with some details about its dimensions, the number of molecules to
be added and the method. The structure from the internal database is also always printed.

The process is then monitored per solvent molecule:

Adding solvent molecules to the solute ....

Iter Energy Einter dE Time

(continues on next page)
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(Eh) (kcal/mol) (kcal/mol) (min)
-------------------------------------------------------

1 -39.452446 -4.331670 -4.331670 0.26
2 -44.544347 -4.316639 0.015031 0.34
3 -49.636018 -4.171990 0.144649 0.40

Final radius after microsolvation: .... 4.88 Angs
Time needed for microsolvation : .... 60.54 s
Final structured saved to : HIS.solvator.xyz

****ORCA-SOLVATOR TERMINATED NORMALLY****

and the final result is printed to the file Basename.solvator.xyz. There will be also an intermediate file named
Basename.solvator.solventbuild.xyz with the solvent molecules added one by one.

ò Note

In contrast to the DOCKER, the solute is always frozen by default. Set FIXSOLUTE FALSE under the
%SOLVATOR block to change that.

On the output Einter is the interaction energy obtained from the DOCKER and dE is the different between the
current and the previous Einter.

In this case, the result looks like:

Fig. 6.34: Three water molecules added by the solvator.

ò Note

Currently the SOLVATOR is only working with the GFN-XTB and GFN-FF methods and the ALPB solvation
model. It will be expanded later to others.

6.10.2 Other Solvents

The method itself is agnostic to the solvent, and any other could have been used. The example above with DMSO
would be:

!XTB ALPB(DMSO) PAL16
%SOLVATOR NSOLV 3 END
* XYZFILE 0 1 HIS.xyz

and results in:
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Fig. 6.35: Three DMSO molecules added by the solvator.

and even a custom solvent can be given in the form of a .xyz file with:

%SOLVATOR SOLVENTFILE "solvent_file_name.xyz" END

As with the docker, the charge and multiplicty can be given to the solvent if given as two integers on the
comment line (default is neutral closed-shell). Since the ALPB method has a fixed number of solvents, right now
one can still not give a custom epsilon value for the custom solvents, but it needs to be approximated to the next
closest solvent.

As an example, let’s create a file named isopropanol.xyz with a solvent which is not on the ALPB list:

12
0 1
C -3.79410 2.24670 -0.09622
C -3.45574 0.76660 -0.18820
H -2.94382 2.85306 -0.42645
H -4.00575 2.53923 0.93817
H -4.66172 2.49512 -0.71492
C -4.60559 -0.10847 0.28691
H -4.84802 0.09429 1.33594
H -4.32886 -1.16657 0.22730
H -5.50341 0.05251 -0.31744
O -2.30376 0.49878 0.60542
H -3.20686 0.51239 -1.22373
H -2.51694 0.72259 1.52758

and run:
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!XTB ALPB(ETHANOL) PAL16
%SOLVATOR SOLVENTFILE "isopropanol.xyz" NSOLV 3 END
* XYZFILE 0 1 HIS.xyz

approximating the dielectric constant of isopropanol to that of ethanol. That might look not too accurate, but the
ALPB implicit solvation is also not a very good implicit solvation model anyway, so results will be quite similar.

Fig. 6.36: Three iso-propanol molecules added by the solvator.

6.10.3 The Stochastic Method for Multiple Solvents

In case you want to add a really large number of explicit solvent molecules, the STOCHASTIC mode will be signif-
icantly faster. Let’s add 100 water molecules on our target Histidine, now using CLUSTERMODE STOCHASTIC:

!XTB ALPB(WATER) PAL16
%SOLVATOR

NSOLV 100
CLUSTERMODE STOCHASTIC

END
* XYZFILE 0 1 HIS.xyz

The output will be somewhat different:

Solvent chosen: WATER
Solvent radius: .... 1.69 Angs
Solvent max dimensions (x,y,z): .... 2.73, 2.32, 1.52 Angs
Number of solvent molecules to be added: .... 100 molecules
Method used to add the solvent: .... stochastic
Number of atoms of solvent molecule: .... 3 atoms
Coordinates of solvent in Angstroem:

O 0.000014 0.401429 0.000000

(continues on next page)
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H 0.765192 -0.200729 0.000000
H -0.765206 -0.200700 0.000000

Solute radius: .... 5.27 Angs
Adding solvent molecules to the solute ....

Iter Target function Time
(Coulomb) (min)

-------------------------------
1 -4.659435e-07 0.00
2 -4.604606e-07 0.00
3 -2.519684e-07 0.00

(...)

Final radius after microsolvation: .... 9.79 Angs
Time needed for microsolvation : .... 5.11 s
Final structured saved to : HIS_STOCHASTIC.solvator.xyz

****ORCA-SOLVATOR TERMINATED NORMALLY****

and in a few seconds all solvent molecules are added as can be seen from the result:

Fig. 6.37: A hundred water molecules added by the solvator.

s Important

As the name says, the CLUSTERMODE STOCHASTIC is a probabilistic approach and is not nearly as accurate as
the DOCKING mode! Nonetheless it is useful for quite a few applications.
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6.10.4 Creating a Droplet

The regular stochastic method will create a solvation sphere around the solute following it shape and topology. In
case you want to create a solvent distribution with spherical symmetry, you have to use set the DROPLET TRUE
keyword, such as:

!XTB ALPB(WATER) PAL16
%SOLVATOR

NSOLV 100
CLUSTERMODE STOCHASTIC
DROPLET TRUE

END
* XYZFILE 0 1 HIS.xyz

And the result will look like:

Fig. 6.38: A hundred water molecules added by the solvator by enforcing spherical symmetry.

6.10.5 Creating a Droplet with a Defined Radius

Instead of defining the number of solvent molecules, one can also defined a maximum radius and the SOLVATOR
will add as many molecules as necessary until the radius is reached. This is only compatible with CLUSTERMODE
STOCHASTIC!

!XTB ALPB(WATER) PAL16
%SOLVATOR

RADIUS 15 # in angstroem
CLUSTERMODE STOCHASTIC

END
* XYZFILE 0 1 HIS.xyz
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The output in the end shows:

Desired sovent radius: .... 15.00 Angs
Actual sovent radius: .... 15.18 Angs
Final number of solvent molecules: .... 668 molecules

ò Note

The radius is taken from the centroid of the solute!

and a radius close to 15 Angstroem was achieved when 668 molecules are added:

Fig. 6.39: A droplet create with 668 water molecules to achieve a radius of approximately 15 Angstroem.

s Important

All examples described above work for any other solvents, including custom ones.

ò Note

The default DOCKER settings for the solvator are equivalent to !QUICKDOCK. For more accurate methods use
!NORMALDOCK or even !COMPLETEDOCK, however they will be much slower.

A complete list of keywords and more discussions on the topic can be found at the later section More on the ORCA
SOLVATOR
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6.11 Relativistic Calculations

ORCA features three different approximations to cover relativistic effects:

1. The „Exact 2 component“ (X2C) Hamiltonian

2. The Douglas-Kroll-Hess (DKH) Hamiltonian to second order

3. The 0th order regular approximation (ZORA) with a model potential

Earlier versions of ORCA supported a number of additional approximations, which are no longer supported.

The main relativistic Hamiltonian that will be pursued in further development is the X2C Hamiltonian. Of the three
alternatives, we believe that X2C has the best feature set and we recommend to all of our users to preferentially use
this method.

All three relativistic model Hamiltonians are implemented for scalar relativistic energy calculations and these
are carried through consistently through the entire program. Scalar relativity shows up as an additional effective
potential that is added to the one-electron matrix. Scalar relativistic corrections to the two-electron interaction
are not available in ORCA. Furthermore, self-consistent field calculations (HF, DFT, CASSCF) with inclusion of
spin-orbit-coupling (SOC) are also not available in ORCA but we will not exclude the possibility to add this feature
in a future version of the program.

A general overview and some practical recommendations are given in the next sections. For detailed documentation
and all available options see Relativistic Options.

6.11.1 Basis sets for relativistic calculations

The different scalar relativistic potentials have different shapes in the core region. Consequently, each one of
them requires specialized all electron basis sets that are optimized for the Hamiltonian at hand. The most com-
mon choices are listed in the sections Relativistically recontracted Karlsruhe basis sets and SARC basis sets with
all available options listed in Built-in Basis Sets. An uncontracted basis set of sufficient size will always work.
Likewise, uncontracted fitting basis sets in all forms of RI calculations are always appropriate.

� Hint

Use the !Decontract keyword to decontract the chosen (all-electron) basis set and make it suitable for any
relativistic Hamiltonian, as well as comparisons between them.

If large, uncontracted basis sets are used in scalar relativistic calculations, there is a distinct danger of variational
collapse. This behavior is related to the fact that the relativistic orbitals will diverge for a point nucleus. ORCA
features the Gaussian finite nucleus model of Dyall and Visscher for DKH and X2C. We recommend to always use
this feature (FiniteNuc) in relativistic calculations.

Given the fact relativistic all-electron calculations on heavy element compounds feature very steep core basis func-
tions, numeric integration, such as in DFT and COSX, may be challenging. ORCA features automatic procedures
that adapt the integration grids for the presence of steep basis functions. However, in case you experience strange
results, the numeric integration is one potential source of problem. The cure is to go to larger integration grids
and, in particular, increase the radial integration accuracy (IntAcc).
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6.11.2 Scalar-relativistic gradients and properties

Of the three model Hamiltonians, only X2C features analytic gradients. Hence, for geometry optimizations this is
also the preferred methods. For DKH and ZORA, the program automatically switches to the one-center approx-
imation. This requires some attention by the users since final single point energies obtained with the one-center
approximation are inconsistent with energies obtained without it. The one-center approximation is usually of suffi-
cient accuracy but we have observed cases in actual applications where it leads to clearly wrong geometries. Hence,
we strongly recommend to use the X2C Hamiltonian in this realm.

³ Caution

Geometry optimizations with DKH and ZORA (but not X2C) automatically use the one-center approximation.
When computing relative energies, do not mix energies from single-point calculations without the one-center
approximation with those from geometry optimizations that do make use of this feature.

If relativistic calculations are used for molecular properties there is a potential mismatch between non-
relativistically calculated property integrals and the relativistic Hamiltonian. The procedure to remove these incon-
sistencies is referred to as „picture change“. The picture change is usually carried through to the same level of ap-
proximation as the decoupling of the relativistic Hamiltonian into two-component and eventually to one-component
form. We strongly recommend to use picture change in all relativistic property calculations and consequently, this
is also the default. Relativistic property calculations without picture change are wildly inaccurate, in particular if
operators are involved that carry inverse powers of the electorn-nucleus distance. Picture change effects are imple-
mented for DKH and X2C and to some extent also for ZORA. However, they are not implemented for all properties
that ORCA can calculate. Please pay attention to the output of the property integral and property programs. Both
programs will explicitly state which picture change effects are included in the molecular integrals.

%rel
FiniteNuc true # Invoke the Gaussian finite nucleus model.
PictureChange 1 or 2 # First or second order picture change effects.

# Second order is potentially more accurate and more expensive.
end

6.11.3 Exact two-component method (X2C)

Despite the name, the X2C method is implemented in ORCA only as a scalar-relativistic, effective one-component
method. The theory and implementation are discussed in Exact Two-Component Theory (X2C), together with
appropriate references to cite in your work. In the simplest case, it is sufficient to add the X2C simple keyword to
the input and choose an appropriate basis set:

! X2C X2C-TZVPall X2C/J

The DLU approximation,[660] discussed in DLU approximation, is the recommended way to reduce the cost of
the X2C transformation, particularly for gradient/Hessian calculations, with minor loss of accuracy. It is available
via the simple input keyword DLU-X2C.

6.11.4 Douglas-Kroll-Hess (DKH)

The first- or second-order DKH method be requested via the simple input keywords DKH1 or DKH2, respectively
(DKH is an alias for the latter), together with appropriate basis sets:

! DKH DKH-def2-TZVP SARC/J

For most calculations, no other settings are needed. See The Douglas-Kroll-Hess Method for an overview of the
underlying theory.
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6.11.5 ZORA and IORA

The 0th order regular approximation (ZORA; pioneered by van Lenthe et al., see Ref. [864] and many follow
up papers by the Amsterdam group) implementation in ORCA essentially follows van Wüllen [867] and solves
the ZORA equations with a suitable model potential and a model density derived from accurate atomic ZORA
calculations. See Relativistic Options for explanation of the ModelPot and ModelDens keywords used to control
these models. If the relevant precautions are taken (see below), the use of the ZORA or IORA methods is as easy
as in the DKH/X2C case. For example:

! ZORA ZORA-def2-TZVP SARC/J
# for more detail use
%rel

ModelPot 1,1,1,1
ModelDens rhoZORA

end

. Attention

The ZORA method is highly dependent on numerical integration and it is very important to pay attention to the
subject of radial integration accuracy! By default, from ORCA 5.0 we consider that during the grid construction
and the defaults should work very well. Only for very problematic cases, consider using a higher IntAcc pa-
rameter or at least to increase the radial integration accuracy around the heavy atoms using SpecialGridAtoms
and SpecialGridIntAcc.

6.12 Calculation of Properties

6.12.1 Population Analysis and Related Things

Atomic population related things are not real molecular properties since they are not observables. They are never-
theless highly useful for interpreting experimental and computational findings. By default, ORCA provides very
detailed information about calculated molecular orbitals and bonds through Mulliken, Löwdin, and Mayer popu-
lation analyses. However, as it is easy to become overwhelmed by the extensive population analysis section of the
output, ORCA allows users to turn off most features.

! HF def2-SVP Mulliken Loewdin Mayer ReducedPOP

*xyz 0 1
C 0 0 0
O 0 0 1.13
*

The “ReducedPOP” keyword reduces the information printed out in the population analysis section, providing
orbital population of each atom with percent contribution per basis function type. This is highly useful in figuring
out the character of the MOs. Furthermore, one can request a printout of the MO coefficients through the output
block of the input file (see section Population Analyses and Control of Output) or using the keyword “PrintMOs”

The distribution of the frontier molecular orbitals (FMOs) over the system can be requested with the “FMOPop”
keyword:

! HF def2-SVP FMOPop

*xyz 0 1
C 0 0 0
O 0 0 1.13
*

This provides Mulliken and Loewdin population analyses on HOMO and LUMO:

288 Chapter 6. Running Typical Calculations



ORCA Manual, Release 6.0

----------------------------------------------
FRONTIER MOLECULAR ORBITAL POPULATION ANALYSIS
----------------------------------------------

ANALYZING ORBITALS: HOMO= 6 LUMO= 7

-------------------------------------------------------------------------
Atom Q(Mulliken) Q(Loewdin) Q(Mulliken) Q(Loewdin)

<<<<<<<<<<<<HOMO>>>>>>>>>>>> <<<<<<<<<<<<LUMO>>>>>>>>>>>>
-------------------------------------------------------------------------

0-C 0.937186 0.906827 0.804044 0.755610
1-O 0.062814 0.093173 0.195956 0.244390

-------------------------------------------------------------------------

Visualization of three-dimensional representation of MOs, natural orbitals, electron densities, and spin densities is
usually more intuitive than examining MO coefficients and it is is described in detail in section Orbital and Density
Plots. The files necessary for such visualizations can be readily generated with ORCA in various ways and then
opened in visualization software such as gOpenMol and Molekel.1 . In the following example, we briefly describe
visualization of MOs.

To visualize MOs withgOpenMol, the plt file of MOs can be generated in the gOpenMol_bin format from the
gbw file using orca_plot utility program or directly from the ORCA run through the %plots block of the input
file:

! HF def2-SVP XYZFile

%plots Format gOpenMol_bin
MO("CO-4.plt",4,0);
MO("CO-8.plt",8,0);
end

*xyz 0 1
C 0 0 0
O 0 0 1.13
*

In this input file, the MO("CO-4.plt",4,0); command is used to evaluare MO labeled as 4 for operator 0 and
then to strore it in the “CO-4.plt” file. For RHF and ROHF, one should always use operator 0. For UHF, operators
0 and 1 correspond to spin-up and spin-down orbitals, respectively.

When the produced plt files are opened with gOpenMol (see section Surface Plots for details), the textbook-like
𝜋 and 𝜋* MOs of the CO molecule are visualized as in Figure Fig. 6.40.

1 The Molekel developers ask for the following citation – please do as they ask:
MOLEKEL 4.2, P. Flukiger, H.P. Lüthi, S. Portmann, J. Weber, Swiss Center for Scientific Computing, Manno (Switzerland), 2000-2006.
S. Portmann, H.P.Łüthi. MOLEKEL: An Interactive Molecular Graphics Tool. CHIMIA (2000), 54, 766-770. The program appears to be

maintained by Ugo Varetto at this time.
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(a) (a) (b) (b)

Fig. 6.40: (a) 𝜋 and (b) 𝜋* MOs of the CO molecule obtained from the interface of ORCA to gOpenMol.

If the gOpenMol_ascii file format was requested, gOpenMol conversion utility or some other tools might then be
needed to convert this human-readable file to the machine-readable gOpenMol_bin format.

In order to use the interface to Molekel, an ASCII file in the Cube or Gaussian_Cube format needs to be generated.
Such ASCII files can be actually transferred between platforms. The Cube format can be requested in the %plots
block as:

! HF def2-SVP XYZFile

%plots Format Cube
MO("CO-4.cube",4,0);
MO("CO-8.cube",8,0);
end

*xyz 0 1
C 0 0 0
O 0 0 1.13
*

To visualize MOs strored in the *.cube file, start Molekel and, via a right mouse click, load the *.xyz file and/or
the *.cube file. lternatively, navigate to the surface menu, select the “gaussian-cube” format, and load the surface.
For orbitals, click the “both signs” button and select a countour value in the “cutoff” field. Then, click “create
surface”. The colour schemes and other fine details of the plots can be easily adjusted as desired. Finally, create
files via the “snapshot” feature of Molekel. Figure Fig. 6.41 demonstrates a Molekel variant of Figure Fig. 6.40.
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Fig. 6.41: (a) 𝜋 and (b) 𝜋* MOs of the CO molecule obtained from the interface of ORCA to Molekel.

It is worth noting that there are several other freeware programs, such as UCSF CHIMERA, that can read
Gaussian_Cube files and provide high-quality plots.

In some situations, visualization of the electronic structure in terms of localized molecular orbitals might be quite
helpful. As unitary transformations among occupied orbitals do not change the total wavefunction, such transforma-
tions can be applied to the canonical SCF orbitals with no change of the physical content of the SCF wavefunction.
The localized orbitals correspond more closely to the pictures of orbitals that chemists often enjoy to think about.
Localized orbitals according to the Pipek-Mezey population-localization scheme are quite easy to compute. For
example, the following run reproduces the calculations reported by Pipek and Mezey in their original paper for the
N2O4 molecule.

! HF STO-3G Bohrs

%loc
LocMet PipekMezey # localization method. Choices:

# PipekMezey (=PM)
# FosterBoys (=FB)

T_Core -1000 # cutoff for core orbitals
Tol 1e-8 # conv. Tolerance (default=1e-6)
MaxIter 20 # max. no of iterations (def. 128)
end

*xyz 0 1
N 0.000000 -1.653532 0.000000
N 0.000000 1.653532 0.000000
O -2.050381 -2.530377 0.000000
O 2.050381 -2.530377 0.000000
O -2.050381 2.530377 0.000000
O 2.050381 2.530377 0.000000
*

Based on the output file of this job, localized MOs consist of six core like orbitals (one for each N and one for each
O), two distinct lone pairs on each oxygen, a 𝜎- and a 𝜋-bonding orbital for each N-O bond and one N-N 𝜎-bonding
orbital which corresponds to the dominant resonance structure of this molecule. You will also find a file with the
extension .loc in the directory where you run the calculation. Like the standard gbw file, it can used to extract
files for plotting or as input for another calculation (warning! The localized orbitals have no well defined orbital
energy. If you do use them as input for another calculation use GuessMode=CMatrix in the %scf block).
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If you have access to a version of the gennbo program from Weinhold’s group2, you can also request natural
population analysis and natural bond orbital analysis. The interface is elementary and is invoked through the
keywords NPA and NBO, respectively:

! HF def2-SVP NPA XYZFile

* xyz 0 1
C 0 0 0
O 0 0 1.13

*

If you choose simple NPA, then you will only obtain a natural population analysis. When NBO is chosen instead,
the natural bond orbital analysis will also be carried out. ORCA leaves a FILE.47 file on disk. This file can be
edited to use all of the features of the gennbo program in the stand-alone mode. Please refer to the NBO manual
for further details.

6.12.2 Absorption and Fluorescence Bandshapes using ORCA_ASA

Please also consider using the more recent ORCA_ESD, described in Section Excited State Dynamics, to
compute bandshapes.

Bandshape calculations are nontrivial but can be achieved with ORCA using the procedures described in section
Simulation and Fit of Vibronic Structure in Electronic Spectra, Resonance Raman Excitation Profiles and Spectra
with the orca_asa Program. Starting from version 2.80, analytical TD-DFT gradients are available, which make
these calculations quite fast and applicable without expert knowledge to larger molecules.

ò Note

• Functionals with somewhat more HF exchange produce better results and are not as prone to “ghost
states” as GGA functionals unfortunately are!

• Calculations can be greatly sped up by the RI or RIJCOSX approximations!

• Analytic gradients for the (D) correction and hence for double-hybrid functionals are NOT available.

In a nutshell, let us look into the H2CO molecule. First we generate some Hessian (e.g. BP86/SV(P)). Then we
run the job that makes the input for the orca_asa program. For example, let us calculate the five lowest excited
states:

! aug-cc-pVDZ BHandHLYP TightSCF NMGrad

%tddft nroots 5 end

# this is ASA-specific input
%rr states 1,2,3,4,5

HessName "Test-ASA-H2CO-freq.hess"
ASAInput True
end

*int 0 1
C 0 0 0 0 0 0
O 1 0 0 1.2 0 0
H 1 2 0 1.1 120 0
H 1 2 3 1.1 120 180
*

The ORCA run will produce a file Test-ASA-H2CO.asa.inp that is an input file for the program that generates
various spectra. It is an ASCII file that is very similar in appearance to an ORCA input file:

2 Information about the NBO program can be found at http://nbo7.chem.wisc.edu
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#
# ASA input
#
%sim model IMDHO

method Heller

AbsRange 25000.0, 100000.0
NAbsPoints 1024

FlRange 25000.0, 100000.0
NFlPoints 1024

RRPRange 5000.0, 100000.0
NRRPPoints 1024

RRSRange 0.0, 4000.0
NRRSPoints 4000

# Excitation energies (cm**-1) for which rR spectra will
# be calculated. Here we choose all allowed transitions
# and the position of the 0-0 band
RRSE 58960, 66884, 66602

# full width half maximum of Raman bands in rR spectra
# (cm**-1):
RRS_FWHM 10.0

AbsScaleMode Ext
FlScaleMode Rel
# RamanOrder=1 means only fundamentals. For 2 combination
# bands and first overtones are also considered, for 3
# one has second overtones etc.
RamanOrder 1

# E0 means the adiabatic excitation energy
# EV would mean the vertical one. sprints vertical
# excitations in the TD-DFT output but for the input into
# the ASA program the adiabatic excitation energies are
# estimated. A rigorous calculation would of course in-
# volve excited state geometry optimization
EnInput E0

CAR 0.800
end

# These are the calculated electronic states and transition moments
# Note that this is in the Franck-Condon approximation and thus
# the transition moments have been calculated vertically
$el_states
5

1 32200.79 100.00 0.00 -0.0000 0.0000 -0.0000
2 58960.05 100.00 0.00 0.0000 -0.4219 0.0000
3 66884.30 100.00 0.00 -0.0000 0.4405 0.0000
4 66602.64 100.00 0.00 -0.5217 -0.0000 0.0000
5 72245.42 100.00 0.00 0.0000 0.0000 0.0000

# These are the calculated vibrational frequencies for the totally
# symmetric modes. These are the only ones that contribute. They
# correspond to x, H-C-H bending, C=O stretching and C-H stretching
# respectively
$vib_freq_gs
3

(continues on next page)
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(continued from previous page)

1 1462.948534
2 1759.538581
3 2812.815170

# These are the calculated dimensional displacements for all
# electronic states along all of the totally symmetric modes.
$sdnc
3 5

1 2 3 4 5
1 -0.326244 0.241082 -0.132239 0.559635 0.292190
2 -1.356209 0.529823 0.438703 0.416161 0.602301
3 -0.183845 0.418242 0.267520 0.278880 0.231340

After setting NAbsPoints variable and spectral ranges in this file to the desired values, we invoke orca_asa as:

orca_asa Test-ASA-H2CO.asa.inp

This produces the following output:

******************
* O R C A A S A *
******************

--- A program for analysis of electronic spectra ---

Reading file: Test-ASA-H2CO.asa.inp ... done

**************************************************************
* GENERAL CHARACTERISTICS OF ELECTRONIC SPECTRA *
**************************************************************

--------------------------------------------------------------------------------
State E0 EV fosc Stokes shift Effective Stokes shift

(cm**-1) (cm**-1) (cm**-1) (cm**-1)
--------------------------------------------------------------------------------

1: 30457.24 32200.79 0.000000 0.00 0.00
2: 58424.56 58960.05 0.031879 0.00 0.00
3: 66601.54 66884.30 0.039422 0.00 0.00
4: 66111.80 66602.64 0.055063 0.00 0.00
5: 71788.55 72245.42 0.000000 0.00 0.00

-----------------------------------------------------------------------------------------------
→˓---

BROADENING PARAMETETRS (cm**-1)
-----------------------------------------------------------------------------------------------
→˓---

Intrinsic Effective
State -------------------------- --------------------------------------------------------

Sigma FWHM
Gamma Sigma FWHM --------------------------- -------------------------

→˓--
0K 77K 298.15K 0K 77K 298.

→˓15K
-----------------------------------------------------------------------------------------------
→˓---

1: 100.00 0.00 200.00 0.00 0.00 0.00 200.00 200.00 200.
→˓00

2: 100.00 0.00 200.00 0.00 0.00 0.00 200.00 200.00 200.

(continues on next page)
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(continued from previous page)

→˓00
3: 100.00 0.00 200.00 0.00 0.00 0.00 200.00 200.00 200.

→˓00
4: 100.00 0.00 200.00 0.00 0.00 0.00 200.00 200.00 200.

→˓00
5: 100.00 0.00 200.00 0.00 0.00 0.00 200.00 200.00 200.

→˓00

Calculating absorption spectrum ...
The maximum number of grid points ... 5840
Time for absorption ... 9.569 sec (= 0.159 min)
Writing file: Test-ASA-H2CO.asa.abs.dat ... done
Writing file: Test-ASA-H2CO.asa.abs.as.dat ... done

Generating vibrational states up to the 1-th(st) order ... done
Total number of vibrational states ... 3

Calculating rR profiles for all vibrational states up to the 1-th order
State 1 ...
The maximum number of grid points ... 6820
Resonance Raman profile is done
State 2 ...
The maximum number of grid points ... 6820
Resonance Raman profile is done
State 3 ...
The maximum number of grid points ... 6820
Resonance Raman profile is done
Writing file: Test-ASA-H2CO.asa.o1.dat... done
Writing file: Test-ASA-H2CO.asa.o1.info... done

Calculating rR spectra involving vibrational states up to the 1-th(st) order
State 1 ... done
State 2 ... done
State 3 ... done

Writing file: Test-ASA-H2CO.asa.o1.rrs.58960.dat ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.58960.stk ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.66884.dat ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.66884.stk ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.66602.dat ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.66602.stk ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.as.58960.dat ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.as.58960.stk ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.as.66884.dat ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.as.66884.stk ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.as.66602.dat ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.as.66602.stk ... done
Writing file: Test-ASA-H2CO.asa.o1.rrs.all.xyz.dat ... done

TOTAL RUN TIME: 0 days 0 hours 1 minutes 17 seconds 850 msec

The computed vibrationally resolved absorption spectrum is plotted as shown in Figure Fig. 6.42.
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Fig. 6.42: The computed vibrationally resolved absorption spectrum of the H2CO molecule

The computed fluorescence spectrum of the lowest energy peak is plotted as shown in Figure Fig. 6.43. This peak
corresponds to S2. Although it is not realistic, it is sufficient for illustrative purposes.
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Fig. 6.43: The computed fluorescence spectrum of the lowest energy peak of the H2CO molecule

The computed Resonance Raman (rR) excitation profiles of the three totally symmetric vibrational modes are
plotted as shown in Figure Fig. 6.44.
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Fig. 6.44: The computed Resonance Raman excitation profiles of the three totally symmetric vibrational modes of
the H2CO molecule

As might be expected, the dominant enhancement occurs under the main peaks for the C=O stretching vibra-
tion. Higher energy excitations particularly enhance the C-H vibrations. The computed rR spectra at the vertical
excitation energies are provided in Figure Fig. 6.45.
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Fig. 6.45: The computed Resonance Raman spectra at the vertical excitation energies of the H2CO molecule

In this toy example, the dominant mode is the C=O stretching, and the spectra look similar for all excitation
wavelengths. However, electronically excited states are mostly of different natures, yielding drastically different rR
spectra. Thus, rR spectra serve as powerful fingerprints of the electronic excitation being studied. This is also true
even if the vibrational structure of the absorption band is not resolved, which is usually the case for large molecules.

The orca_asa program is much more powerful than described in this section. Please refer to section Simulation
and Fit of Vibronic Structure in Electronic Spectra, Resonance Raman Excitation Profiles and Spectra with the
orca_asa Program for a full description of its features. The orca_asa program can also be interfaced to other
electronic structure codes that deliver excited state gradients and can be used to fit experimental data. It is thus a
tool for experimentalists and theoreticians at the same time!

6.12.3 IR/Raman Spectra, Vibrational Modes and Isotope Shifts

IR Spectra

**There were significant changes in the IR printing after ORCA 4.2.1!**

IR spectral intensities are calculated automatically in frequency runs. Thus, there is nothing to control by the user.
Consider the following job:

! OPT FREQ BP86 def2-SVP

*xyz 0 1
O 0.000000 0.000000 0.611880
C 0.000000 0.000000 -0.596849

(continues on next page)
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(continued from previous page)

H 0.952616 0.000000 -1.209311
H -0.952616 0.000000 -1.209311
*

which gives the following output:

-----------
IR SPECTRUM
-----------

Mode freq eps Int T**2 TX TY TZ
cm**-1 L/(mol*cm) km/mol a.u.

----------------------------------------------------------------------------
6: 1146.68 0.000341 1.73 0.000093 (-0.000000 -0.009640 0.000000)
7: 1224.67 0.002004 10.13 0.000511 ( 0.022596 0.000000 0.000000)
8: 1485.77 0.001002 5.07 0.000211 ( 0.000000 -0.000000 0.014510)
9: 1806.49 0.020286 102.51 0.003504 ( 0.000000 -0.000000 0.059197)

10: 2769.13 0.014010 70.80 0.001579 ( 0.000000 0.000000 0.039734)
11: 2812.52 0.039321 198.71 0.004363 ( 0.066052 -0.000000 -0.000000)

The first column (‘Mode’) labels vibrational modes that increase in frequency from top to bottom.” The next column
provides vibrational frequencies. The molar absorption coefficient 𝜀 of each mode is listed in the “eps” column.
This quantity is directly proportional to the intensity of a given fundamental in an IR spectrum, and thus it is used
by the orca_mapspc utility program as the IR intensity.

The values under “Int” are the integrated absorption coefficient3, and the “T**2” column lists the norm of the
transition dipole derivatives, already including the vibrational part.

To obtain a plot of the spectrum, the orca_mapspc utility can be run calling the output file as:

orca_mapspc Test-Freq-H2CO.out ir -w25

or calling the Hessian file as:

orca_mapspc Test-Freq-H2CO.hess ir -w25

The basic options of orca_mapspc are listed below:

-w : a value for the linewidth (gaussian shape, fwhm)
-x0 : start value of the spectrum in cm**-1
-x1 : end value of the spectrum in cm**-1
-n : number of points to use

To see its options in detail, call orca_mapspc without any input. The above orca_mapspc runs of the H2CO
molecule provide Test-NumFreq-H2CO.out.ir.dat file that contains intensity and wavenumber columns.
Therefore, this file can serve as input for any graph plotting program. The plot of the computed IR spectrum
of the H2CO molecule obtained with the above ORCA run is as given in Figure Fig. 6.46.

3 Explained in more detail by Neugbauer [631]
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Fig. 6.46: The predicted IR spectrum of the H2CO molecule plotted using the file generated by the orca_mapspc
tool.

Overtones, Combination bands and Near IR spectra via NEARIR

Overtones and combination bands can also be incorporated to the computed IR or Near IR spectrum for complete-
ness. The intensities of these bands are strongly dependent on anharmonic effects. ORCA can include these effects
by means of the VPT2 approach [77]. The full cubic force field, anharmonic corrections to overtones and com-
bination bands, and a broad range of methods are available in the orca_vpt2 module (see section Anharmonic
Analysis and Vibrational Corrections using VPT2/GVPT2 and orca_vpt2).

In particular, the NEARIR keyword calls a simpler semidiagonal approach, including only two modes (𝑖 and 𝑗, also
refered as 2MR-QFF in [74, 896]) and force constants up to cubic order (𝑘𝑖𝑖𝑗 , 𝑘𝑖𝑗𝑖 and 𝑘𝑖𝑖𝑖). For now, only the
intensities are corrected for anharmonic effects - frequencies are not.

Overtones and Combination bands

Since the calculation of these terms scale with𝑁2
𝑚𝑜𝑑𝑒𝑠, it can quickly become too expensive, thus we use by default

the semiempirical GFN2-xTB [332] to compute the energies and dipole moments necessary to the higher order
derivatives (which can be changed later). To request this, simply add !NEARIR in the main input. An example
input for computing the fundamentals of toluene using B2PLYP double-hybrid functional and for computing the
anharmonics using XTB is as follows:

! TightOPT NumFREQ RI-B2PLYP def2-TZVP def2-TZVP/C RIJCOSX NEARIR

*xyzfile 0 1 toluene.xyz

ò Note
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These anharmonic corrections are very sensitive to the geometry. Therefore, perform a conservative geometry
optimization (at least TightOPT) whenever possible.

In the output, the characteristics of the regular IR spectrum are printed first. Then, the characteristics of overtones
and combination bands are provided similarly to the fundamentals, as follows:

-------------------------------
OVERTONES AND COMBINATION BANDS
-------------------------------

Mode freq eps Int T**2 TX TY TZ
cm**-1 L/(mol*cm) km/mol a.u.

------------------------------------------------------------------------------
6+6: 64.71 0.000994 5.02 0.004792 (-0.009428 -0.066232 0.017796)
6+7: 241.83 0.000022 0.11 0.000028 (-0.005268 0.000255 0.000638)
6+8: 375.36 0.000048 0.24 0.000040 (-0.000740 0.001917 0.006007)
6+9: 442.49 0.000000 0.00 0.000000 ( 0.000010 0.000001 0.000001)
6+10: 506.37 0.000003 0.01 0.000002 ( 0.001078 -0.000061 0.000799)
(...)

The “Mode” column shows the overtones, such as 6+6, and combination bands, such as 6+7 and 6+8. These new
quantities are automatically detected and incorporated in the IR spectrum when the output file is called with the
orca_mapspc utility as follows:

orca_mapspc toluene-nearir.out ir -w25

From the file orca_mapspc provided, the IR spectrum can be plotted as shown in Figure Fig. 6.47.
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Fig. 6.47: Calculated and experimental infrared spectrum of toluene in gas phase. While the red plot includes
only the fundamentals, the blue plot includes also overtones and combination bands. The grey dashed plot is
the experimental gas-phase spectrum obtained from the NIST database. The theoretical frequencies were scaled
following literature values [442]

“Benzene fingers”, i.e., overtones and combination bands of the ring, are recovered in the computed spectrum.
Note that the frequencies were scaled using literature values [442], and are not yet corrected using VPT2.

Near IR spectra

Let us simulate near IR spectrum of methanol in CCl4, as published by Bec and Huck [82], using B3LYP for
fundamentals, XTB for overtones, and CPCM for solvation. The input is as follows:

! TightOPT FREQ B3LYP def2-TZVP RIJCOSX NEARIR CPCM(CCl4)

*xyz 0 1
O 0.39517 4.38840 -0.00683
C -0.50818 3.29837 0.00221
H -0.11943 5.18771 0.19752
H 0.03977 2.38083 -0.22470
H -1.27919 3.45664 -0.75583
H -0.96616 3.21170 0.99058
*

Calling the output with orca_mapspc by setting final point to about 8000𝑐𝑚−1 in order to extend the spectrum to
the near IR region, i.e.,
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orca_mapspc toluene-nearir.out ir -w25 -x18000

one can simulate the spectrum from the generated “toluene-nearir.dat” file. As seen in Figure Fig. 6.48 the com-
puted spectrum plotted with scaled computational frequencies (not yet corrected using VPT2) according to [442]
agrees reasonably well with the experimental spectrum.

Fig. 6.48: Calculated and experimental near IR spectrum of methanol in CCl4. The blue plot is for overtones; the
red plot is for combination bands; and the grey dashed plot is the experimental spectrum. Theoretical frequencies
were scaled according to literature values [442].

Using other methods for the VPT2 correction

To compute overtones with the method chosen for the calculation of the fundamentals, one needs only to set
XTBVPT2 option in the %freq block to false, i.e.,

%freq XTBVPT2 False end

To set a different method for the calculation of overtones and combinations than used for the calculation of funda-
mentals, one needs first to perform a frequency calculation, then call the resulting Hessian file in %geom block, and
activate the PRINTTHERMOCHEM flag (see section Thermochemistry for details), i.e.,

! BP86 def2-TZVP NEARIR CPCM(CCl4) PRINTTHERMOCHEM

%geom INHESSNAME "methanol.hess" end
%freq XTBVPT2 False end

*xyzfile 0 1 methanol_opt.xyz
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In this example, the fundamental modes are read from the “methanol.hess” file, but the anharmonics and intensities
of the overtones and combinations are computed using BP86. Any combination of methods, such as B3LYP/BP86
and B2PLYP/AM1, is allowed. Note that this description is an approximation to full VPT2 or GVPT2. For a more
complete treatment, see the VPT2 module described in section Anharmonic Analysis and Vibrational Corrections
using VPT2/GVPT2 and orca_vpt2.

By default, a step size of 0.5 in dimensionless normal mode unit is used during the numerical calculations. This
can be changed by setting DELQ in the %freq block:

%freq
XTBVPT2 False
DELQ 0.1

end

The complete list of options related to VPT2 and in general frequency calculations can be found in Sec. Frequency
calculations - numerical and analytical.

Vibrational Circular Dichroism (VCD) Spectra

Vibrational circular dichroism spectrum calculations are implemented analytically at the SCF (HF or DFT) level
following the derivation of Weigend and coworkers. [716] The basic usage is shown in the following example:

# AnFreq + doVCD triggers the VCD calculation
! AnFreq B3LYP def2-SVP

%freq
doVCD true

end

*xyz 0 1
C 1.231429 -0.226472 -0.084960
C -0.061893 0.507641 0.134338
C -1.358912 -0.147897 0.084831
O -0.902881 0.641038 -0.969176
H 1.070541 -1.118875 -0.689778
H 1.672013 -0.522768 0.869009
H 1.946503 0.413187 -0.605194
H 0.017832 1.411161 0.734623
H -1.417896 -1.212878 -0.118068
H -2.196737 0.255864 0.644375

*

Note that in addition to the Hessian, the VCD calculation requires the magnetic field response using GIAOs and
the electric field response with the field origin placed at (0,0,0). The latter matches the hard-coded magnetic field
gauge origin in the GIAO case and is necessary to ensure gauge-invariance of the results. ORCA does all of this
automatically but it means that if VCD is requested together with electric and/or magnetic properties in the same
job, the field origins cannot be changed.

Other keywords that influence the VCD calculation include GIAO_1el and GIAO_2el in %eprnmr and CutOffFreq
in %freq. Note also that VCD cannot be computed with NumFreq.
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Raman Spectra

In order to predict Raman spectrum of a compound, derivatives of the polarizability with respect to the normal
modes must be computed. Thus, if a numerical frequency run (!NumFreq) is combined with a polarizability
calculation, the Raman characteristics will be automatically calculated.

Consider the following example:

! OPT NumFreq RHF STO-3G TightSCF SmallPrint

%elprop Polar 1 end

*xyz 0 1
C 0.000000 0.000000 -0.533905
O 0.000000 0.000000 0.682807
H 0.000000 0.926563 -1.129511
H 0.000000 -0.926563 -1.129511
*

The output provides the Raman scattering activity
(in Å4/AMU)[631] and the Raman depolarization ratio of each mode:

--------------
RAMAN SPECTRUM
--------------

Mode freq (cm**-1) Activity Depolarization
-------------------------------------------------------------------

6: 1277.66 0.010363 0.750000
7: 1397.45 3.059009 0.750000
8: 1767.01 16.386535 0.707349
9: 2099.21 6.701894 0.075708
10: 3499.49 38.643829 0.186526
11: 3645.45 24.496534 0.750000

The ORCA run generates also a .hess file that includes polarizability derivatives and Raman activities. The effect
of isotope substitution on the Raman activities can be computed using the .hess file.

As in the IR spectrum case, orca_mapspc provides a .dat file for plotting the computed Raman spectrum:

orca_mapspc Test-NumFreq-H2CO.out raman -w50

The Raman spectrum of H2CO plotted by using the corresponding .dat file is as given in Figure Fig. 6.49.
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Fig. 6.49: Calculated Raman spectrum of H2CO at the STO-3G level plotted using the .dat generated by the
orca_mapspc utility from numerical frequencies and Raman activities.

It is worth noting that Raman scattering activity 𝑆𝑖 of each mode 𝑖 is related to but not directly equal to the Raman
intensity 𝐼𝑖 of the corresponding mode, which is dependent on the excitation line 𝜈0 of the laser used in the Raman
measurement(for Nd:YAG laser: 𝜈0 = 1064 nm = 9398.5 cm−1). To obtain significantly better agreement between
experimental and simulated Raman spectra, 𝐼𝑖 of each mode needs to be computed with the following formula:

𝐼𝑖 =
𝑓(𝜈0 − 𝜈𝑖)4𝑆𝑖

𝜈𝑖[1− exp(−ℎ𝑐𝜈𝑖/𝑘𝑇 )]

where 𝑓 is a normalization constant common for all modes; ℎ, 𝑐, 𝑘, and 𝑇 are Planck’s constant, speed of light,
Boltzmann’s constant, and temperature, respectively.

ò Note

• The Raman module works only when the polarizabilities are calculated analytically. Hence, only the
methods, for which the analytical derivatives w.r.t. to external fields are implemeted, can be used.

• Raman calculations take significantly longer than IR calculations due to the extra effort of calculating
the polarizabilities at all displaced geometries. Since the latter step is computationally as expensive as
the solution of the SCF equations you have to accept an increase in computer time by a factor of ≈ 2.
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Resonance Raman Spectra

Resonance Raman spectra (NRVS) and excitation profiles can be predicted or fitted using the procedures described
in section Simulation and Fit of Vibronic Structure in Electronic Spectra, Resonance Raman Excitation Profiles
and Spectra with the orca_asa Program. An example for obtaining the necessary orca_asa input is described in
section Absorption and Fluorescence Bandshapes using ORCA_ASA.

NRVS Spectra

The details of the theory and implementation of NRVS spectrum are as described in ref. [677, 680]. The NRVS
spectrum of 𝑖𝑟𝑜𝑛− 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 can be simply calculated calling .hess file of a previous frequency
calculation with the orca_vib utility. The output file of this utility can then be called with orca_mapspc utility
to produce a .dat file for plotting the spectrum:

orca_vib MyJob.hess > MyJob.vib.out
orca_mapspc MyJob.vib.out NRVS

For a the ferric-azide complex [680], the computed and experimental NRVS spectra are provided in Figure Fig.
6.50.

Fig. 6.50: Experimental (a, black curve), fitted (a, red) and simulated (b) NRVS spectrum of the Fe(III)-azide
complex obtained at the BP86/TZVP level (T = 20 K). Bar graphs represent the corresponding intensities of the
individual vibrational transitions. The blue curve represents the fitted spectrum with a background line removed.

As for the calculation of resonance Raman spectra described in section Simulation and Fit of Vibronic Structure
in Electronic Spectra, Resonance Raman Excitation Profiles and Spectra with the orca_asa Program, the DFT
estimations are usually excellent starting points for least-square refinements.
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Below we describe the procedure for computing such NRVS spectra on the Fe(SH)1−4 complex with the BP86
functional, which typically provides good NRVS spectra. One needs first to optimize the geometry of the complex
and compute its vibrational structure:

! OPT FREQ BP86 def2-TZVP TightSCF SmallPrint

*xyz -1 6
Fe -0.115452 0.019090 -0.059506
S -0.115452 1.781846 1.465006
S -0.115452 -1.743665 1.462801
S -1.908178 -0.072782 -1.518702
S 1.560523 0.154286 -1.656664
H 0.410700 2.760449 0.687716
H -0.674147 -2.708278 0.690223
H -2.905212 0.345589 -0.699907
H 2.647892 -0.211681 -0.932926
*

Now run the orca_vib utility on the .hess file generated by this job to obtain an output file that can be used with
orca_mapspc utility:

orca_vib Test-FeIIISH4-NumFreq.hess > Test-FeIIISH4-NumFreq.out
orca_mapspc Test-FeIIISH4-NumFreq.out NRVS

This orca_mapspc run generates Test-FeIIISH4-NumFreq.nrvs.dat file in the xy-format. This file contains
phonon energy (x, in cm−1) and NRVS intensity (y, in atomic units) and thus can be directly used for visualizing
the spectrum.

The corresponding NRVS spectrum is given in Figure Fig. 6.51 together with the computational IR spectrum on the
same frequency scale. NRVS reports the Doppler broadening of the Moessbauer signal due to resonant scattering
of phonons (vibrations) dominated by the movements of Fe nuclei. This is a valuable addition to IR spectrum
where the modes have very small intensities.
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Fig. 6.51: (a) Theoretical IR spectrum of Fe(SH)1−4 and arrow-pictures of the highest intensity modes around the
peak maxima. (b) The corresponding NRVS scattering spectrum.
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Animation of Vibrational Modes

For describing how to animate vibrational modes and generate their “arrow-pictures”, let us perform a frequency
calculation on H2CO:

! OPT FREQ RHF STO-3G

*xyz 0 1
C 0.000000 0.000000 -0.533905
O 0.000000 0.000000 0.682807
H 0.000000 0.926563 -1.129511
H 0.000000 -0.926563 -1.129511
*

The output of this job provides vibrational characteristics:

Mode freq eps Int T**2 TX TY TZ
cm**-1 L/(mol*cm) km/mol a.u.

----------------------------------------------------------------------------
6: 1278.37 0.001222 6.18 0.000298 (-0.017272 0.000000 0.000000)
7: 1397.26 0.005844 29.53 0.001305 ( 0.000000 0.036128 0.000000)
8: 1767.02 0.000828 4.18 0.000146 (-0.000000 0.000000 -0.012089)
9: 2099.24 0.001668 8.43 0.000248 ( 0.000000 -0.000000 0.015749)
10: 3498.54 0.000356 1.80 0.000032 ( 0.000000 -0.000000 -0.005636)
11: 3645.47 0.003922 19.82 0.000336 (-0.000000 0.018322 0.000000)

This output can be directly opened with ChemCraft to visualize normal modes of H2CO and to extract their arrow-
pictures representing the direction of nuclear movements as shown in Figure Fig. 6.52. As an example, one can
infer from this figure that the 1397 cm−1 mode corresponds to a rocking vibration.

Fig. 6.52: Normal modes of H2CO with arrows indicating magnitude and direction of nuclear motions and the
associated vibrational frequencies in cm−1 obtained from ORCA output file through the use of ChemCraft
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In order to animate vibrational modes and to create their “arrow-pictures” by using free program packages like
gOpenMol, the small utility program orca_pltvib can be used. This utility program generates a series of files
from an ORCA output file of a frequency run, which can be openned with molecular visualization programs. The
usage of orca_pltvib is as follows:

orca_pltvib Test-FREQ-H2CO.out [list of vibrations or all]

For example, let us want to animate the 1397 cm−1 mode labeled as 7:

orca_pltvib Test-FREQ-H2CO.out 7

This call will generate the Test-FREQ-H2CO.out.v007.xyz file. Open gOpenMol and read this file
(Import->coords) in Xmol format. Then, go to the Trajectory->Main menu and import again the file in Xmol
format. Now you are able to animate the mode. In order to generate a printable picture, press Dismiss and then
type lulVectorDemo {4 0.1 black} into the gOpenMol command line window. The generated picture (see
Figure Fig. 6.53) demonstrates that this mode corresponds to a rocking vibration.

Fig. 6.53: The 1397 cm−1 mode of the H2CO molecule as obtained from the interface of ORCA to gOpenMol and
the orca_pltvib tool to create the animation file.

The appearence of the arrows can also be modified as described in the web tutorial of gOpenMol.
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Isotope Shifts

The calculated isotope shifts greatly aid in the identification of vibrations, the interpretation of experiments, and
the assessment of the reliability of the calculated vibrational normal modes. It would be a very bad practice to
recalculate the Hessian for investigating isotope shift since Hessian calculations are typically expensive, and the
Hessian itself is independent of the masses. Below we describe how to find the isotope effect without recomputing
the Hessian.

Let us suppose that you have calculated a Hessian as in the example discussed above, and you want to predict the
effect of 18O substitution. In this case you can use the small utility program orca_vib. First of all you need to
edit the masses given in the .hess file by hand. For the example given above, the .hess file is as follows:

$orca_hessian_file
......................
$hessian
12
... the cartesian Hessian in Eh/bohr**"

$vibrational_frequencies
12

...the vibrational frequencies (in cm-1) as in the output

$normal_modes
12 12
... the vibrational normal modes in Cartesian displacements
#
# The atoms: label mass x y z
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# Here we have changed 15.999 for oxygen into
# 18.0 in order to see the oxygen 18 effects
# !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
$atoms
4
C 12.0110 0.000000 0.000000 -1.149571
O 18.0000 -0.000000 -0.000000 1.149695
H 1.0080 -0.000000 1.750696 -2.275041
H 1.0080 -0.000000 -1.750696 -2.275041

$actual_temperature
0.000000

$dipole_derivatives
12

... the dipole derivatives (Cartesian displacements)
#
# The IR spectrum
# wavenumber T**2 TX TY TY
#
$ir_spectrum
12
... the IR intensities

After changing the mass of O from 15.999 to 18.0 as shown above, let us call:

orca_vib Test-FREQ-H2CO.hess

This will recompute vibrational frequencies in the presence of 18O. Let us compare vibrational frequencies in the
output of this run with the original frequencies in cm−1:
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Mode H2C16O H2CO18O Shift
-----------------------------------------

6: 1284.36 1282.82 -1.54
7: 1397.40 1391.74 -5.66
8: 1766.60 1751.62 -14.98
9: 2099.20 2061.49 -37.71
10: 3499.11 3499.02 -0.09
11: 3645.24 3645.24 0.00

Another way to analyze isotope shifts is to plot the two predicted spectra and then subtract one from the other. This
will produce derivative-shaped peaks with zero crossings at the positions of the isotope-sensitive modes.

ò Note

In the presence of point charges and/or an external electric field, the translational and rotational symmetries of
the system may be broken. In such cases, you may prefer NOT to project out the translational and rotational
degrees of freedom of the Hessian. This can be achieved as:

orca_vib Test-FREQ-H2CO.hess -noproj

6.12.4 Thermochemistry

The second thing that you get automatically as the result of a frequency calculation is a thermochemical analysis
based on ideal gas statistical mechanics. This can be used to study heats of formation, dissociation energies and
similar thermochemical properties. To correct for the breakdown of the harmonic oscillator approximation for low
frequencies, entropic contributions to the free energies are computed, by default, using the Quasi-RRHO approach
of Grimme.[322] To switch-off the Quasi-RRHO method and use the RRHO method, use:

%freq QuasiRRHO false
CutOffFreq 35 # in cm-1
end

Where the CutOffFreq parameter controls the cut-off for the low frequencies mode (excluded from the calculation
of the thermochemical properties). Note that the default CutOffFreq is 1 (cm−1) when Quasi-RRHO is on, since
Quasi-RRHO behaves much more reasonably for low frequencies than RRHO does. In particular, the entropy
contribution calculated by Quasi-RRHO approaches a constant value when the vibrational frequency approaches
zero, while the RRHO contribution diverges.

The Quasi-RRHO method smoothly interpolates between the entropy formulas of a harmonic oscillator and a
rigid rotor, such that high frequency vibrations behave like harmonic vibrations, and low frequency vibrations
behave like rotations with the same frequency. The frequency at which the entropy contribution is a half-half
mixture of rotation and vibration is called the “reference frequency” 𝜔0 of the Quasi-RRHO method, accessible
via the QRRHORefFreq keyword in %freq (see Frequency calculations - numerical and analytical). The default
value (100 cm−1) is consistent with the original Quasi-RRHO paper[322], but other papers may choose different
values, such as 50 cm−1. Meanwhile, ORCA’s Quasi-RRHO implementation deviates from the original paper in
the choice of “average molecular moment of inertia” 𝐵av; while in the original paper it is chosen as a fixed value
10−44kg ·m2, in ORCA it is given as the isotropically averaged moment of inertia of the actual molecule at hand.
This is theoretically more justified than using the same moment of inertia for molecules of different sizes, although
the resulting difference in the Gibbs free energies is rather small, usually within 0.1 kcal/mol.

Note that the rotational contribution to the entropy is calculated using the expressions given by Herzberg [388]
including the symmetry number obtained from the order of the point group.4 While this is a good approximation,

4 the corresponding equation for the partition function (assuming sufficiently high temperatures) of a linear molecule is 𝑄𝑖𝑛𝑡 =
𝑘𝑇

𝜎ℎ𝑐𝐵
and

for non-linear molecules 𝑄𝑖𝑛𝑡 = 1
𝜎

√︁
𝜋

𝐴𝐵𝐶
( 𝑘𝑇
ℎ𝑐

)3. A, B and C are the corresponding rotational constants, 𝜎 is the symmetry number. If
you want to choose a different symmetry number, ORCA also provides a table with the values for this entropy contribution for other symmetry
numbers. Herzberg reports the following symmetry numbers for the point groups C1,C𝑖,C𝑠: 1; C2,C2𝑣 , C2ℎ: 2; C3,C3𝑣 ,C3ℎ: 3; C4,C4𝑣 ,C4ℎ:
4;C6, C6𝑣 , C6ℎ: 6; D2, D2𝑑, D2ℎ =Vℎ: 4; D3, D3𝑑, D3ℎ: 6; D4, D4𝑑, D4ℎ: 8; D6, D6𝑑, D6ℎ: 12; S6: 3; C∞𝑣 : 1; D∞ℎ: 2;T,T𝑑: 12; Oℎ:
24.
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one might want to modify the symmetry number or use a different expression [302]. For this purpose, the rotational
constants (in cm−1) of the molecule are also given in the thermochemistry output.

For example let us calculate a number for the oxygen-oxygen dissociation energy in the H2O2 molecule. First run
the following jobs:

# Calculate a value for the O-O bond strength in H2O2
! B3LYP DEF2-TZVP OPT FREQ BOHRS
* xyz 0 1
O -1.396288 -0.075107 0.052125
O 1.396289 -0.016261 -0.089970
H -1.775703 1.309756 -1.111179
H 1.775687 0.140443 1.711854
*

# Now the OH radical job
! B3LYP DEF2-TZVP OPT FREQ BOHRS
* xyz 0 2
O -1.396288 -0.075107 0.052125
H -1.775703 1.309756 -1.111179
*

The first job gives you the following output following the frequency calculation:

--------------------------
THERMOCHEMISTRY AT 298.15K
--------------------------

Temperature ... 298.15 K
Pressure ... 1.00 atm
Total Mass ... 34.01 AMU

Throughout the following assumptions are being made:
(1) The electronic state is orbitally nondegenerate
(2) There are no thermally accessible electronically excited states
(3) Hindered rotations indicated by low frequency modes are not

treated as such but are treated as vibrations and this may
cause some error

(4) All equations used are the standard statistical mechanics
equations for an ideal gas

(5) All vibrations are strictly harmonic

freq. 370.67 E(vib) ... 0.21
freq. 947.27 E(vib) ... 0.03
freq. 1313.46 E(vib) ... 0.01
freq. 1440.24 E(vib) ... 0.00
freq. 3739.49 E(vib) ... 0.00
freq. 3739.86 E(vib) ... 0.00

------------
INNER ENERGY
------------

The inner energy is: U= E(el) + E(ZPE) + E(vib) + E(rot) + E(trans)
E(el) - is the total energy from the electronic structure calculation

= E(kin-el) + E(nuc-el) + E(el-el) + E(nuc-nuc)
E(ZPE) - the zero temperature vibrational energy from the frequency calculation
E(vib) - the finite temperature correction to E(ZPE) due to population

of excited vibrational states
E(rot) - is the rotational thermal energy
E(trans)- is the translational thermal energy

(continues on next page)
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Summary of contributions to the inner energy U:
Electronic energy ... -151.55083691 Eh
Zero point energy ... 0.02631509 Eh 16.51 kcal/mol
Thermal vibrational correction ... 0.00040105 Eh 0.25 kcal/mol
Thermal rotational correction ... 0.00141627 Eh 0.89 kcal/mol
Thermal translational correction ... 0.00141627 Eh 0.89 kcal/mol
-----------------------------------------------------------------------
Total thermal energy -151.52128823 Eh

Summary of corrections to the electronic energy:
(perhaps to be used in another calculation)
Total thermal correction 0.00323359 Eh 2.03 kcal/mol
Non-thermal (ZPE) correction 0.02631509 Eh 16.51 kcal/mol
-----------------------------------------------------------------------
Total correction 0.02954868 Eh 18.54 kcal/mol

--------
ENTHALPY
--------

The enthalpy is H = U + kB*T
kB is Boltzmann's constant

Total free energy ... -151.52129054 Eh
Thermal Enthalpy correction ... 0.00094421 Eh 0.59 kcal/mol
-----------------------------------------------------------------------
Total Enthalpy ... -151.52034633 Eh

Note: Rotational entropy computed according to Herzberg
Infrared and Raman Spectra, Chapter V,1, Van Nostrand Reinhold, 1945
Point Group: C2, Symmetry Number: 2
Rotational constants in cm-1: 10.087644 0.882994 0.851333

Vibrational entropy computed according to the QRRHO of S. Grimme
Chem.Eur.J. 2012 18 9955

-------
ENTROPY
-------

The entropy contributions are T*S = T*(S(el)+S(vib)+S(rot)+S(trans))
S(el) - electronic entropy
S(vib) - vibrational entropy
S(rot) - rotational entropy
S(trans)- translational entropy

The entropies will be listed as multiplied by the temperature to get
units of energy

Electronic entropy ... 0.00000000 Eh 0.00 kcal/mol
Vibrational entropy ... 0.00059250 Eh 0.37 kcal/mol
Rotational entropy ... 0.00789993 Eh 4.96 kcal/mol
Translational entropy ... 0.01734394 Eh 10.88 kcal/mol
-----------------------------------------------------------------------
Final entropy term ... 0.02583637 Eh 16.21 kcal/mol

In case the symmetry of your molecule has not been determined correctly
or in case you have a reason to use a different symmetry number we print
out the resulting rotational entropy values for sn=1,12 :

(continues on next page)

316 Chapter 6. Running Typical Calculations



ORCA Manual, Release 6.0

(continued from previous page)

--------------------------------------------------------
| sn= 1 | S(rot)= 0.00855439 Eh 5.37 kcal/mol|
| sn= 2 | S(rot)= 0.00789993 Eh 4.96 kcal/mol|
| sn= 3 | S(rot)= 0.00751710 Eh 4.72 kcal/mol|
| sn= 4 | S(rot)= 0.00724548 Eh 4.55 kcal/mol|
| sn= 5 | S(rot)= 0.00703479 Eh 4.41 kcal/mol|
| sn= 6 | S(rot)= 0.00686265 Eh 4.31 kcal/mol|
| sn= 7 | S(rot)= 0.00671710 Eh 4.22 kcal/mol|
| sn= 8 | S(rot)= 0.00659102 Eh 4.14 kcal/mol|
| sn= 9 | S(rot)= 0.00647981 Eh 4.07 kcal/mol|
| sn=10 | S(rot)= 0.00638033 Eh 4.00 kcal/mol|
| sn=11 | S(rot)= 0.00629034 Eh 3.95 kcal/mol|
| sn=12 | S(rot)= 0.00620819 Eh 3.90 kcal/mol|
--------------------------------------------------------

-------------------
GIBBS FREE ENERGY
-------------------

The Gibbs free energy is G = H - T*S

Total enthalpy ... -151.52034633 Eh
Total entropy correction ... -0.02583637 Eh -16.21 kcal/mol
-----------------------------------------------------------------------
Final Gibbs free energy ... -151.54618270 Eh

For completeness - the Gibbs free energy minus the electronic energy
G-E(el) ... 0.00465413 Eh 2.92 kcal/mol

And similarly for the OH-radical job.

------------
INNER ENERGY
------------

The inner energy is: U= E(el) + E(ZPE) + E(vib) + E(rot) + E(trans)
E(el) - is the total energy from the electronic structure calculation

= E(kin-el) + E(nuc-el) + E(el-el) + E(nuc-nuc)
E(ZPE) - the zero temperature vibrational energy from the frequency calculation
E(vib) - the finite temperature correction to E(ZPE) due to population

of excited vibrational states
E(rot) - is the rotational thermal energy
E(trans)- is the translational thermal energy

Summary of contributions to the inner energy U:
Electronic energy ... -75.73492538 Eh
Zero point energy ... 0.00837287 Eh 5.25 kcal/mol
Thermal vibrational correction ... 0.00000000 Eh 0.00 kcal/mol
Thermal rotational correction ... 0.00094418 Eh 0.59 kcal/mol
Thermal translational correction ... 0.00141627 Eh 0.89 kcal/mol
-----------------------------------------------------------------------
Total thermal energy -75.72419205 Eh

Summary of corrections to the electronic energy:
(perhaps to be used in another calculation)
Total thermal correction 0.00236045 Eh 1.48 kcal/mol
Non-thermal (ZPE) correction 0.00837287 Eh 5.25 kcal/mol
-----------------------------------------------------------------------
Total correction 0.01073332 Eh 6.74 kcal/mol

(continues on next page)
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--------
ENTHALPY
--------

The enthalpy is H = U + kB*T
kB is Boltzmann's constant

Total free energy ... -75.72419205 Eh
Thermal Enthalpy correction ... 0.00094421 Eh 0.59 kcal/mol
-----------------------------------------------------------------------
Total Enthalpy ... -75.72324785 Eh

Note: Rotational entropy computed according to Herzberg
Infrared and Raman Spectra, Chapter V,1, Van Nostrand Reinhold, 1945
Point Group: C2v, Symmetry Number: 1
Rotational constants in cm-1: 0.000000 18.628159 18.628159

Vibrational entropy computed according to the QRRHO of S. Grimme
Chem.Eur.J. 2012 18 9955

-------
ENTROPY
-------

The entropy contributions are T*S = T*(S(el)+S(vib)+S(rot)+S(trans))
S(el) - electronic entropy
S(vib) - vibrational entropy
S(rot) - rotational entropy
S(trans)- translational entropy

The entropies will be listed as multiplied by the temperature to get
units of energy

Note: Rotational entropy computed according to Herzberg
Infrared and Raman Spectra, Chapter V,1, Van Nostrand Reinhold, 1945
Point Group: C2v, Symmetry Number: 1
Rotational constants in cm-1: 0.000000 18.628159 18.628159

Vibrational entropy computed according to the QRRHO of S. Grimme
Chem.Eur.J. 2012 18 9955

-------
ENTROPY
-------

The entropy contributions are T*S = T*(S(el)+S(vib)+S(rot)+S(trans))
S(el) - electronic entropy
S(vib) - vibrational entropy
S(rot) - rotational entropy
S(trans)- translational entropy

The entropies will be listed as multiplied by the temperature to get
units of energy

Electronic entropy ... 0.00065446 Eh 0.41 kcal/mol
Vibrational entropy ... 0.00000000 Eh 0.00 kcal/mol
Rotational entropy ... 0.00321884 Eh 2.02 kcal/mol
Translational entropy ... 0.01636225 Eh 10.27 kcal/mol

(continues on next page)
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-----------------------------------------------------------------------
Final entropy term ... 0.02023555 Eh 12.70 kcal/mol

-------------------
GIBBS FREE ENERGY
-------------------

The Gibbs free energy is G = H - T*S

Total enthalpy ... -75.72324785 Eh
Total entropy correction ... -0.02023555 Eh -12.70 kcal/mol
-----------------------------------------------------------------------
Final Gibbs free energy ... -75.74348340 Eh

For completeness - the Gibbs free energy minus the electronic energy
G-E(el) ... -0.00855802 Eh -5.37 kcal/mol

Let us calculate the free energy change for the reaction: 𝐻2𝑂2 → 2𝑂𝐻

The individual energy terms are:

Electronic Energy: -151.46985 a.u. -(-151.55084) a.u. = 0.08099 a.u. (50.82 kcal/mol)

Zero-point Energy: 0.01675 a.u. - 0.02631 a.u. = -0.00956 a.u. (-6.00 kcal/mol)

Thermal Correction(translation/rotation): 0.00472 a.u. - 0.00283 a.u. = 0.00189 a.u. (1.19 kcal/mol)

Thermal Enthalpy Correction: 0.00189 a.u. - 0.00094 a.u. = 0.00095 a.u. (0.60 kcal/mol)

Entropy: -0.04047 a.u. -(-0.02584) a.u. = -0.01463 a.u. (-9.18 kcal/mol)

Final ∆G: 37.43 kcal/mol

Thus, both the zero-point energy and the entropy terms contribute significantly to the total free energy change of
the reaction. The entropy term is favoring the reaction due to the emergence of new translational and rotational
degrees of freedom. The zero-point correction is also favoring the reaction since the zero-point vibrational energy
of the O-O bond is lost. The thermal correction and the enthalpy correction are both small.

� Tip

• You can run the thermochemistry calculations at several user defined temperatures and pressure by pro-
viding the program with a list of temperatures / pressures:

%freq Temp 290, 295, 300 # in Kelvin
Pressure 1.0, 2.0, 3.0 # in atm

end

• Once a Hessian is available you can rerun the thermochemistry analysis at several user defined temper-
atures / pressures by providing the keyword PrintThermoChem and providing the name of the Hessian
file:

! PrintThermoChem
%geom

inhessname "FreqJob.hess" # default: job-basename.hess
end
%freq Temp 290, 295, 300 # in Kelvin

Pressure 1.0, 2.0, 3.0 # in atm
end
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6.12.5 Anharmonic Analysis and Vibrational Corrections using VPT2/GVPT2 and
orca_vpt2

Building upon (analytical) harmonic calculations of the Hessian, it is possible to calculate the cubic plus semi-
quartic force field as well as higher-order property derivatives. For this purpose, the VPT2 module will compute
the Hessian and then generate two displaced geometries for each degree of freedom and for each displacement
another Hessian (and another property in case of vibrational corrections) will be computed. These are required
for an anharmonic analysis according to second-order vibrational perturbation theory. So overall, using VPT2 is
costly due to the number of calculations required for the numerical derivatives and is very sensitive to numerical
noise due to convergence, approximations and other settings. The VPT2 calculation can be initiated either via the
simple input command !VPT2 or via the VPT2 keyword in the %vpt2 block. Finer control can be achieved through
the %VPT2 block, as exemplified in this analysis of water.

# VPT2 Analysis of H2O
!RHF def2-SVP ExtremeSCF VPT2

%vpt2
VPT2 On # do a VPT2 analysis, same as !VPT2 (see above)
AnharmDisp 0.05 # anharmonic displacement factor, default is 0.05
HessianCutoff 1e-12 # cut-off for Hessian elements, default is $10^{-10}$
PrintLevel 1 # VPT2 print level [1, 2, 3, 4]
MinimiseOrcaPrint True # Minimises the remaining orca output

end

%method
Z_Tol 1e-14

end

* xyz 0 1
O 0.00000000000000 0.06256176106279 0.06256176106280
H 0.00000000000000 -0.06185639479702 0.99929463373422
H 0.00000000000000 0.99929463373424 -0.06185639479703

*

After the analysis, a <basename>.vpt2 file should be present in the working directory. Within that file all the
force field and property derivatives are saved. It is used as an input for the orca_vpt2 programme which is called
automatically after the initial displacement calculations. The programme can also be called separately with the
command orca_vpt2 <basename>.vpt2.

ò Note

A few remarks about VPT2 calculations:

• A VPT2 starting geometry should always be tightly converged. For small molecules the !TightOPT
option is not good enough ! Depending on your structure, you might want to experiment with the TolE,
TolRMSG and TolMaxG keywords of the %geom block.

• Similarly, a well converged SCF is required. The use of the ExtremeSCF keyword or at least
VeryTightSCF is recommended.

• The CP-SCF equations should be converged to at least 10−12 (modified via the Z_Tol setting in the
%method block.

• For DFT calculations, tight grids like DEFGRID3 are strongly recommended.

• Linear molecules are not supported yet

• Currently, only methods for which analytical Hessians are available are supported. Furthermore, VPT2
calculations with DFT functionals which do not provide analytical Hessians cannot be carried out.

• By default, updated atomic masses are used to generate the semi-quartic force field (see Mass dependen-
cies). The masses are also printed in the <basename>.vpt2 file
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• A VPT2 analysis can be repeated on a previous calculation by running orca_vpt2 <basename>.vpt2.

• VPT2 does have limited restart capabilities. If the directory in which the VPT2 run is carried out already
contains <basename>.hess or <basename>_eprnmr.property.txt files, the program will skip these
points and use the information provided in the files.

VPT2 provides a vibrational analysis and thus access to :

• mean and mean square displacement expectation values

• centrifugal distortion constants

• Watson’s symmetrically and asymmetrically reduced Hamiltonian parameters

• anharmonic constants

• Fermi resonance analysis

• rotational and vibrational-rotational constants

• fundamental transition (anharmonic frequencies)

• zero-point ro-vibrational energies

• overtones and combination bands with intensities (in contrast to NEARIR with full VPT2/GVBT2 treatment)

• dedicated file interface for codes like SPCAT

If the computed data should be used for the simulation of spectra with codes like SPCAT, ORCA can provide a
dedicated file that can serve as a basis for an input. This is triggered in the %output block when a VPT2 calculation
is run:

%output
Pickettname "pickett.txt"
end

This way, ORCA will generate a file called pickett.txt that contains the computed data and templates for .var
which can be modified to serve as input for codes like SPCAT. Please note that this feature is still being refined and
extended.

Vibrational corrections of molecular properties using VPT2

Using VPT2 it is also possible to compute zero-point vibrational corrections to molecular properties. Currently, this
is available for NMR chemical shieldings, spin-spin coupling constants, g- and A-tensors and requires two succes-
sive calculations. The first calculation is a VPT2 calculation just as shown above (<basename>.inp) that contains
the VPT2 command and the level of theory at which the Hessians are computed. The second calculation (let’s call
it <basename>_Prop.inp will compute the property derivatives with a final call to VPT2. In order for this to
work, the property derivative calculation needs to read the <basename>.hess and <basename>.vpt2 file from
the forcefield calculation. This is done by specifying the %geom inhess read with the command inhessname
"<basename>.hess". This scheme is necessary as properties other than energies, geometries or frequencies often
require specialized methods and basis sets. For the numerical calculation of the force field and property deriva-
tives different stepsizes can be used by specifying AnharmDisp and PropDisp in the VPT2 input block. The
defaults are 0.05, and after the calculation, the displaced geometries are stored in files named myjob_DH001.xyz
and myjob_DP001.xyz etc.

A typical example for calculating the vibrational correction to the 13C NMR chemical shifts of methanol with a
B3LYP/def2-TZVP anharmonic forcefield and TPSS/pcSseg-2 shielding tensors would look like the following: the
standard input file, in our case vpt2_methanol_FF.inp with the level of theory for the Hessian and the VPT2
input block :

!B3LYP D3 def2-TZVP def2/J def2/JK DEFGRID3 ExtremeSCF VPT2

%method

(continues on next page)
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Z_Tol 1e-12
end

* xyz 0 1
C -1.09849212248373 0.14540972773089 -0.00000275092982
O 0.32138758531316 0.08706714755687 -0.00001212477411
H 0.66732439683790 0.98510769198508 0.00001819506998
H -1.45583606337199 -0.88374271593276 0.00000595999622
H -1.49206267729630 0.64725244577978 0.89143349761200
H -1.49208273899904 0.64724452288014 -0.89144277697426
*

and the next input file, say vpt2_methanol_NMR.inp with the same geometry and the level of theory for the
shielding tensor will look like this:

!TPSS pcSseg-2 Autoaux ExtremeSCF NMR

%geom inhess read
inhessname "vpt2_methanol_FF.hess"
end

%vpt2
VPT2 on
AvgProp NMR
HessianCutoff 1e-12

end

%method
Z_Tol 1e-12

end

* xyz 0 1
C -1.09849212248373 0.14540972773089 -0.00000275092982
O 0.32138758531316 0.08706714755687 -0.00001212477411
H 0.66732439683790 0.98510769198508 0.00001819506998
H -1.45583606337199 -0.88374271593276 0.00000595999622
H -1.49206267729630 0.64725244577978 0.89143349761200
H -1.49208273899904 0.64724452288014 -0.89144277697426
*

Running ORCA successively on both of these input files in the same directory will yield an output that contains
the zero-point vibrational corrections to the shielding tensors for each atom. For Atom 0, which is the carbon in
methanol, it looks like this:

-----
Vibrationally averaged isotropic shieldings
----

Atom 0 :

mode <q> <q2> dS/dQ d2S/dQ2
-----------------------------------------------

0 -0.000017 0.202578 -0.000089 -5.922644
1 -0.034052 0.057707 8.269988 -5.666515
2 -0.036827 0.055687 5.667278 -13.843941
3 0.000002 0.051446 0.000073 -7.353936
4 0.027471 0.043993 0.423409 -6.207061
5 -0.009357 0.040649 -12.736464 3.762324
6 -0.000001 0.040278 -0.001621 -2.224536
7 0.001277 0.039898 -1.266298 -3.916647
8 -0.031609 0.020149 51.647411 -21.635780

(continues on next page)
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9 -0.000021 0.019859 0.035760 -61.239749
10 -0.010397 0.019376 18.573156 -50.591165
11 -0.026641 0.015808 -8.871055 -6.654795

-----------------------------------------------

zpv correction to isotropic shift : -4.840215 ppm
-----------------------------------------------

So the absolute shielding constant of carbon in methanol needs to be corrected by -4.8 ppm due to zero-point
vibration. From the mean and mean square displacements and the first and second derivatives of the shieldings
with respect to the normal modes, one can also identify degrees of freedom which give rise to larger contributions
of the vibrational correction.

A similar input for the HH spin-spin coupling constants would look like this :

!TPSS pcJ-2 Autoaux ExtremeSCF NMR

%geom inhess read
inhessname "vpt2_methanol_FF.hess"
end

%maxcore 4096

%vpt2
VPT2 on
AvgProp JCOUPLING
AnharmDisp 0.05
HessianCutoff 1e-12

end

%method
Z_Tol 1e-12

end

%eprnmr
Tol 1e-10

end

* xyz 0 1
C -1.09849212248373 0.14540972773089 -0.00000275092982
O 0.32138758531316 0.08706714755687 -0.00001212477411
H 0.66732439683790 0.98510769198508 0.00001819506998
H -1.45583606337199 -0.88374271593276 0.00000595999622
H -1.49206267729630 0.64725244577978 0.89143349761200
H -1.49208273899904 0.64724452288014 -0.89144277697426
*

%eprnmr
Nuclei = all H {ssfc}
end

As mentioned above, the exact same procedure is also available for A-tensors. Here is an example for the NH2

radical with the VPT2 input file vpt2_NH2_FF.inp :

!UKS BP86 def2-svp def2/J ExtremeSCF defgrid3

%vpt2
VPT2 On

end

%method

(continues on next page)
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Z_Tol 1e-12
end

* xyz 0 2
N -0.01498947828047 -0.01894387811818 0.00000000000000
H 1.03197835263254 0.00908678452370 0.00000000000000
H -0.22855980523269 1.00639225931822 0.00000000000000
*

and the input file - something like vpt2_NH2_A.inp - for the level of theory that will be used in the A-tensor
computation:

!UKS BP86 def2-SVP TightSCF

%geom inhess read
inhessname "vpt2_NH2_FF.hess"
end

%vpt2
VPT2 On
AvgProp Atensor

end

*xyz 0 2
N -0.01498947828047 -0.01894387811818 0.00000000000000
H 1.03197835263254 0.00908678452370 0.00000000000000
H -0.22855980523269 1.00639225931822 0.00000000000000
*

%eprnmr
Nuclei = all N { aiso, adip }
Nuclei = all H { aiso, adip }
end

and similarly for the g-tensor if Atensor is replaced by Gtensor in the %vpt2 block (the %eprnmr block can be
omitted then).

Note that a convenient way to compute vibrational corrections is the usage of a compound script. With an input
file called NH2.inp :

* xyz 0 2
N 0.00312611577632 0.00395297373474 0.00000000000000
H 1.01930353842041 0.00049997276783 0.00000000000000
H -0.23400058507735 0.99208221922117 0.00000000000000
*

%Compound "NH2.cmp"

and the corresponding compound script NH2.cmp:

New_Step
!UHF def2-SVP VeryTightSCF

%vpt2
VPT2 On

end

%method
Z_Tol 1e-12

end
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* xyz 0 2
N 0.00312611577632 0.00395297373474 0.00000000000000
H 1.01930353842041 0.00049997276783 0.00000000000000
H -0.23400058507735 0.99208221922117 0.00000000000000
*
Step_End

New_Step
!UHF def2-SVP VeryTightSCF

%geom inhess read
inhessname "NH2_Compound_1.hess"
end

%vpt2
VPT2 On
AvgProp Atensor

end

*xyz 0 2
N 0.00312611577632 0.00395297373474 0.00000000000000
H 1.01930353842041 0.00049997276783 0.00000000000000
H -0.23400058507735 0.99208221922117 0.00000000000000
*

%eprnmr
Nuclei = all N { aiso, adip }
Nuclei = all H { aiso, adip }
end

Step_End

END

a similar result can be obtained in one calculation.

ò Note

Make sure the correct hessian file names are given and the input files MUST not contain a compound block. You
can also rerun the VPT2 analysis using orca_vpt2 directly. If you have an anharmonic force field calculation
named myjob_ff and a property derivative calculation named myjob_prop just call orca_vpt myjob_ff.
vpt2 myjob_prop.vpt2.

6.12.6 Electrical Properties

A few basic electric properties can be calculated in ORCA although this has never been a focal point of development.
The properties can be accessed straightforwardly through the %elprop block:

! B3LYP DEF2-SVP TightSCF

%elprop Dipole true # dipole moment
Quadrupole true # quadrupole moment

Polar true # dipole-dipole polarizability
1 # equivalent to true (for backward compatibility)
# Note: the flags "polar 2" and "polar 3" for seminumeric
# and fully numeric polarizabilities are not supported
# anymore! For numerical polarizability calculations

(continues on next page)
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# please use the respective compound scripts

PolarVelocity true # polarizability w.r.t. velocity perturbations
PolarDipQuad true # dipole-quadrupole polarizability
PolarQuadQuad true # quadrupole-quadrupole polarizability
end

* int 0 1
C 0 0 0 0 0 0
H 1 0 0 1.09 109.4712 0
H 1 2 0 1.09 109.4712 0
H 1 2 3 1.09 109.4712 120
H 1 2 3 1.09 109.4712 240

*

The polarizability (dipole-dipole, dipole-quadrupole, quadrupole-quadrupole) is calculated analytically through
solution of the coupled-perturbed (CP-)SCF equations for HF and DFT runs (see CP-SCF Options) and through
the CP-CASSCF equations for CASSCF runs (see CASSCF Linear Response). Analytic polarizabilities are also
available for CCSD (via AUTOCI-CCSD, see AUTOCI Response Properties via Analytic Derivatives), RI-MP2
and DLPNO-MP2, as well as double-hybrid DFT methods. For canonical MP2 one can use AUTOCI for ana-
lytic calculations (see AUTOCI Response Properties via Analytic Derivatives) or differentiate the analytical dipole
moment calculated with relaxed densities. For other correlation methods only a fully numeric approach is possible.

---------------------------------------------------
STATIC POLARIZABILITY TENSOR (Dipole/Dipole)
---------------------------------------------------

Method : SCF
Type of density : Electron Density
Type of derivative : Electric Field (Direction=X)
Multiplicity : 1
Irrep : 0
Relativity type :
Basis : AO

The raw cartesian tensor (atomic units):
12.852429555 -0.002199911 0.000000170
-0.002199911 12.860507003 -0.000000346
0.000000170 -0.000000346 12.868107945

diagonalized tensor:
12.851869269 12.861067290 12.868107945

Orientation:
0.969064588 -0.246807263 0.000017958
0.246807263 0.969064586 -0.000050696
-0.000004890 0.000053560 0.999999999

Isotropic polarizability : 12.86035

As expected the polarizability tensor is isotropic.

Dipole-quadrupole polarizability tensors are printed as a list of 18 different components, with the first index running
over x,y,z and the second index running over xx,yy,zz,xy,xz,yz. This is known as the “pure Cartesian” version of
the tensor, although other conventions may exist in the literature that differ from the ORCA values by a constant
factor.

---------------------------------------------------
STATIC POLARIZABILITY TENSOR (Dipole/Quadrupole)
---------------------------------------------------

Method : SCF
Type of density : Electron Density
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Type of derivative : Electric Field (Direction=X)
Multiplicity : 1
Irrep : 0
Relativity type :
Basis : AO

The raw cartesian tensor (atomic units):
X- X X : 11.577165985
X- Y Y : -5.795339382
X- Z Z : -5.797320742
X- X Y : 0.001285565
X- X Z : 0.000000155
X- Y Z : -0.000000077
Y- X X : 0.001386387
Y- Y Y : 8.200445841
Y- Z Z : -8.198375727
Y- X Y : -5.794687548
Y- X Z : 0.000000228
Y- Y Z : -0.000000121
Z- X X : -0.000000151
Z- Y Y : 0.000000627
Z- Z Z : -0.000000812
Z- X Y : -0.000000312
Z- X Z : -5.798359323
Z- Y Z : -8.205110537

After this, the “traceless” version of the tensor is printed, which is usually denoted by 𝐴𝑥,𝑥𝑥, 𝐴𝑥,𝑥𝑦 etc. in the
literature[164, 247, 574]. This is the preferred format for reporting dipole-quadrupole polarizability tensors. Cer-
tain references use the opposite sign convention than reported here, but generally the conventions of traceless
polarizability tensors are more unified than those of pure Cartesian polarizability tensors.

-------------------------------------------------------------
STATIC TRACELESS POLARIZABILITY TENSOR (Dipole/Quadrupole)
-------------------------------------------------------------

Method : SCF
Type of density : Electron Density
Type of derivative : Electric Field (Direction=X)
Multiplicity : 1
Irrep : 0
Relativity type :
Basis : AO

The raw cartesian tensor (atomic units):
X- X X : 17.373496046
X- Y Y : -8.685262003
X- Z Z : -8.688234043
X- X Y : 0.001928347
X- X Z : 0.000000232
X- Y Z : -0.000000116
Y- X X : 0.000351329
Y- Y Y : 12.298940512
Y- Z Z : -12.299291841
Y- X Y : -8.692031322
Y- X Z : 0.000000342
Y- Y Z : -0.000000181
Z- X X : -0.000000058
Z- Y Y : 0.000001109
Z- Z Z : -0.000001050
Z- X Y : -0.000000468
Z- X Z : -8.697538984
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Z- Y Z : -12.307665806

The quadrupole-quadrupole polarizability tensor is similarly printed in both the pure Cartesian and traceless forms.
Again, the traceless form (usually denoted as 𝐶𝑥𝑥,𝑥𝑥, 𝐶𝑥𝑥,𝑥𝑦 etc.[164, 247, 574]) is the preferred format for re-
porting.

---------------------------------------------------
STATIC POLARIZABILITY TENSOR (Quadrupole/Quadrupole)
---------------------------------------------------

The order in each direction is XX, YY, ZZ, XY, XZ, YZ

Method : SCF
Type of density : Electron Density
Type of derivative : Quadrupolar Field (Direction=X)
Multiplicity : 1
Irrep : 0
Relativity type :
Basis : AO

The raw cartesian tensor (atomic units):
60.656194448 8.024072323 8.017351959 -0.002591466 0.

→˓000000801 -0.000000184
8.024072323 55.906127614 12.837825709 -6.821368242 -0.

→˓000000954 -0.000000529
8.017351959 12.837825709 55.938851507 6.815300773 0.

→˓000000232 0.000000422
-0.002591466 -6.821368242 6.815300773 16.716647772 0.

→˓000000169 -0.000000030
0.000000801 -0.000000954 0.000000232 0.000000169 16.

→˓715850196 6.818791255
-0.000000184 -0.000000529 0.000000422 -0.000000030 6.

→˓818791255 21.534628724
diagonalized tensor:

11.893291534 13.566719080 26.357187387 46.234564137 52.
→˓663246003 76.753292120

Orientation:
-0.000000018 -0.000019986 -0.000000013 -0.001433194 0.

→˓817436692 0.576016666
0.000000006 0.219691224 0.000000038 0.673107563 -0.

→˓405967809 0.577799371
0.000000008 -0.219450737 -0.000000021 -0.671194117 -0.

→˓408640606 0.578232381
-0.000000035 0.950566746 -0.000000034 -0.310519906 -0.

→˓000497156 -0.000034103
0.816443231 0.000000038 0.577425709 -0.000000037 0.

→˓000000027 0.000000000
-0.577425709 -0.000000003 0.816443231 -0.000000036 0.

→˓000000002 -0.000000003

Isotropic polarizability : 37.91138

-------------------------------------------------------------
STATIC TRACELESS POLARIZABILITY TENSOR (Quadrupole/Quadrupole)
-------------------------------------------------------------

The order in each direction is XX, YY, ZZ, XY, XZ, YZ
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Method : SCF
Type of density : Electron Density
Type of derivative : Quadrupolar Field (Direction=X)
Multiplicity : 1
Irrep : 0
Relativity type :
Basis : AO

The raw cartesian tensor (atomic units):
26.331642600 -13.160050722 -13.171591878 0.000221134 0.

→˓000000581 -0.000000065
-13.160050722 22.733889017 -9.573838294 -5.113861448 -0.

→˓000000735 -0.000000324
-13.171591878 -9.573838294 22.745430172 5.113640314 0.

→˓000000154 0.000000389
0.000221134 -5.113861448 5.113640314 12.537485829 0.

→˓000000127 -0.000000022
0.000000581 -0.000000735 0.000000154 0.000000127 12.

→˓536887647 5.114093442
-0.000000065 -0.000000324 0.000000389 -0.000000022 5.

→˓114093442 16.150971543

ò Note

• Like the quadrupole moments themselves, the dipole-quadrupole and quadrupole-quadrupole po-
larizabilities depend on the gauge origin of the %elprop module. The latter can be changed using
the Origin keyword in %elprop; see section Electric Properties.

At the SCF level, dynamic (frequency-dependent) dipole polarizabilities can be computed using either purely real
or purely imaginary frequencies.

%elprop
polar 1
freq_r 0.08 # purely real frequencies
#freq_i 0.08 # purely imaginary frequencies
end

In the example above, the dynamic dipole polarizability tensor for a single real frequency of 0.8 a.u. is computed.
For every frequency, linear response equations must be solved for all component of the perturbation operator (3
Cartesian components of the electric dipole). Note that imaginary-frequency polarizabilities are computed with
the same costs as real-frequency polarizabilities. By a simple contour integration they can be used to compute
dispersion coefficients.

For methods that do not support analytic polarizabilities, one can calculate numeric dipole-dipole and quadrupole-
quadrupole polarizabilities, either by finite differentiation of dipole/quadrupole moments with respect to a finite
dipole/quadrupole electric field, or by double finite differentiation of the total energy with respect to a finite
dipole/quadrupole electric field. The latter can be done using compound scripts (see Compound Methods, Com-
pound Examples).

At the MP2 level, polarizabilities can currently be calculated analytically using the RI (RI-MP2 and Double-Hybrid
DFT Response Properties) or DLPNO (Local MP2 Response Properties) approximations or in all-electron canon-
ical calculations, but for canonical MP2 with frozen core orbitals the dipole moment has to be differentiated nu-
merically in order to obtain the polarizability tensor. In general in such cases, you should keep in mind that tight
SCF convergence is necessary in order to not get too much numerical noise in the second derivative. Also, you
should experiment with the finite field increment in the numerical differentiation process.

As an example, the following Compound job can be used to calculate the seminumeric polarizability at the MP2
level (replacing the now deprecated usage of Polar 2):
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*xyz 0 1
O 0.00000000000000 0.05591162058341 0.05591162058342
H 0.00000000000000 -0.06629333722358 1.01038171664016
H 0.00000000000000 1.01038171664017 -0.06629333722358

*

%Compound "semiNumericalPolarizability.cmp"
with
method = "MP2";
basis = "aug-cc-pVDZ cc-pVDZ/C";
restOfInput = "VeryTightSCF PModel NoFrozenCore";

end

with the file semiNumericalPolarizability.cmp containing:

# ---------------------------------------------------------------------
# Authors: Dimitrios G. Liakos and Frank Neese
# Date : March-May of 2024
#
# This is a compound script that calculates the
# raw porarizability tensor semi-numerically
# using the dipole moments.
#
# The idea is the following:
#
# 1. Calculate dipole moment in the field free case
#
# 2. Loop over directions I=X,Y,Z
# - put a small E-field in direction I+Delta
# - Solve equations to get the dipole moment D+
# - put s small E-field in direction I-Delta
# - Solve equations to get the dipole moment D-
# - Polarizability alpha(I,J). (D+(I)-D-(I))/(2Delta)
# - Diagonalize to get eigenValues, eigenVectors, a_iso
#
# 3. Print polarisability
#
# NOTE: We use the last dipole_moment found in the file. If a specific
# one is needed the 'myProperty' option should be accordingly
# adjusted and remove the 'property_Base = true' option.
#
# NOTE: This is not the most general version. It is adjusted for testsuite
# with 'method' and 'mp2' blocks.
# ----------------------------------------------------------------------
# ----------------------------------------------------------------------
# ---------------------- Variables ------------------------------
#
# --- Variables to be adjusted (e.g. using 'with' ---------------------
Variable molecule = "h2o.xyz"; # xyz file with coordinates
Variable charge = 0;
Variable mult = 1;
Variable method = "HF";
Variable basis = " " ;
Variable restOfInput = "NoFrozenCore VeryTightSCF";
Variable E_Field = 0.0001; # Size of Electric field
Variable myProperty = "Dipole_Moment_Total";
Variable removeFiles = true; # Remove files in the end of the calculation
# ---------------------------------------------------------------------
# -------------- Rest of the variables --------------------------------
Variable D_Free, D_Minus, D_Plus, a[3][3]; #dipole moment and polarizability
Variable aEigenValues[3], aEigenVectors[3][3], a_iso;
Variable FFieldStringPlus, FFieldStringMinus;
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Variable res = -1;

# ----------------------------------------------------------------------
# Field Free
# ----------------------------------------------------------------------
New_Step

!&{method} &{basis} &{restOfInput}
%Method
z_tol 1e-8

End
%MP2
Density Relaxed

End
#*xyzFile &{charge} &{mult} &{molecule}

Step_End
res = D_Free.readProperty(propertyName=myProperty, property_Base=true);

# ------------------------------------------------------------------
# Loop over the x, y, z directions and create the appropriate string
# ------------------------------------------------------------------
for direction from 0 to 2 Do

#Create the appropriate direction oriented field string
if (direction = 0) then #( X direction)
write2String(FFieldStringPlus, " %lf, 0.0, 0.0", E_Field);
write2String(FFieldStringMinus, "-%lf, 0.0, 0.0", E_Field);

else if (direction = 1) then #( Y direction)
write2String(FFieldStringPlus, " 0.0, %lf, 0.0", E_Field);
write2String(FFieldStringMinus, " 0.0, -%lf, 0.0", E_Field);

else #( Z direction)
write2String(FFieldStringPlus, " 0.0, 0.0, %lf", E_Field);
write2String(FFieldStringMinus, " 0.0, 0.0, -%lf", E_Field);

EndIf
# ----------------------------------------
# Perform the calculations.
# First the plus (+) one
# ----------------------------------------
ReadMOs(1);
New_Step
!&{method} &{basis} &{restOfInput}
%SCF

EField = &{FFieldStringPlus}
End
%Method

z_tol 1e-8
End
%MP2

Density Relaxed
End

Step_End
res = D_Plus.readProperty(propertyName=myProperty, property_Base=true);

# ----------------------------------------
# And the minus (-) one
# ----------------------------------------
ReadMOs(1);
New_Step
!&{method} &{basis} &{restOfInput}
%SCF

EField = &{FFieldStringMinus}
End
%Method
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z_tol 1e-8
End
%MP2

Density Relaxed
End

Step_End
res = D_Minus.readProperty(propertyName=myProperty, property_Base=true);

# ------------------------------------------
# Construct and store SCF polarizability
# ------------------------------------------
a[direction][0] = (D_Plus[0]-D_Minus[0])/(2*E_Field);
a[direction][1] = (D_Plus[1]-D_Minus[1])/(2*E_Field);
a[direction][2] = (D_Plus[2]-D_Minus[2])/(2*E_Field);

EndFor
# -----------------------------------------
# Diagonalize
# -----------------------------------------
a.Diagonalize(aEigenValues, aEigenVectors);

# -----------------------------------------
# Do some printing
# -----------------------------------------
print( "\n\n");
print( " -------------------------------------------------------\n");
print( " COMPOUND \n");
print( " Semi analytical calculation of polarizability\n");
print( " -------------------------------------------------------\n");
print( " Method: %s\n", method);
print( " Basis : %s\n", basis);
print( " The electric field perturbation used was: %.5lf a.u.\n", E_Field);
print( " \n\n");

print( " -------------------------------------------------------\n");
print( " Raw electric semi-analytical polarizability tensor\n");
print( " -------------------------------------------------------\n");
For i from 0 to 2 Do

print("%13.8lf %13.8lf %13.8lf\n", a[i][0], a[i][1], a[i][2]);
EndFor
print( " -------------------------------------------------------\n");
print("\n");

print( " -------------------------------------------------------\n");
print( " Raw electric semi-analytical polarizability Eigenvalues\n");
print( " -------------------------------------------------------\n");
print("%13.8lf %13.8lf %13.8lf\n", aEigenValues[0], aEigenValues[1], aEigenValues[2]);
print( " -------------------------------------------------------\n");
print("\n");

print( " -------------------------------------------------------\n");
print( " Raw electric semi-analytical polarizability Eigenvectors\n");
print( " -------------------------------------------------------\n");
For i from 0 to 2 Do

print("%13.8lf %13.8lf %13.8lf\n", aEigenVectors[i][0], aEigenVectors[i][1],␣
→˓aEigenVectors[i][2]);
EndFor

print( "\n a isotropic value : %.5lf\n", (aEigenValues[0]+aEigenValues[1]+aEigenValues[2])/3.
→˓0);
#
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#
# ---------------------------------------------------
# Maybe remove unneccesary files
# ---------------------------------------------------
if (removeFiles) then

sys_cmd("rm *_Compound_* *.bas* ");
EndIf

End

For more details on Compound jobs in general, see Compound Methods.

For other correlation methods, where not even relaxed densities are available, only a fully numeric approach (using
compounds scripts) is possible and requires obnoxiously tight convergence.

Note that polarizability calculations have higher demands on basis sets. A rather nice basis set for this property
is the Sadlej one (see Built-in Basis Sets). In relation to electric properties, it might be interesting to know that it
is possible to carry out finite electric field calculations in ORCA. See section Adding finite electric field for more
information on such calculations.

6.12.7 NMR Chemical Shifts

NMR chemical shifts at the HF, DFT (standard GGA and hybrid functionals), CASSCF, as well as the RI- and
DLPNO-MP2 and double-hybrid DFT levels (see section MP2 level magnetic properties and references therein)
can be obtained from the EPR/NMR module of ORCA. For the calculation of the NMR shielding tensor the program
utilizes Gauge Including Atomic Orbitals (GIAOs - sometimes also referred to as London orbitals). [211, 375, 532]
In this approach, field dependent basis functions are introduced, which minimizes the gauge origin dependence and
ensures rapid convergence of the results with the one electron basis set. [289] Note that GIAOs are NOT currently
available with CASSCF linear response and a gauge origin must be provided in the %eprnmr block (see CASSCF
Linear Response). GIAOs for CASSCF response are coming soon to ORCA!

The use of the chemical shift module is simple:

# Ethanol - Calculation of the NMR chemical shieldings at the HF/SVP level of theory
! RHF SVP Bohrs NMR

* xyz 0 1
C -1.22692181 0.24709455 -0.00000000
C -0.01354839 -0.54677253 0.00000000
H -2.09280406 -0.41333631 0.00000000
H -1.24962478 0.87541936 -0.88916500
H -1.24962478 0.87541936 0.88916500
O 1.09961824 0.30226226 -0.00000000
H 0.00915178 -1.17509696 0.88916500
H 0.00915178 -1.17509696 -0.88916500
H 1.89207683 -0.21621566 0.00000000
*

The output for the shieldings contains detailed information about the para- and diamagnetic contribution, the ori-
entation of the tensor, the eigenvalues, its isotropic part etc. For each atom, an output block with this information
is given :

--------------
Nucleus 0C :
--------------

Diamagnetic contribution to the shielding tensor (ppm) :
209.647 -10.519 0.000
-26.601 215.858 0.000
-0.000 0.000 200.382
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Paramagnetic contribution to the shielding tensor (ppm):
59.273 18.302 -0.000
13.380 6.063 -0.000
0.000 -0.000 -2.770

Total shielding tensor (ppm):
268.920 7.783 -0.000
-13.220 221.921 -0.000
0.000 0.000 197.611

Diagonalized sT*s matrix:

sDSO 200.382 214.507 210.998 iso= 208.629
sPSO -2.770 7.279 58.057 iso= 20.855

--------------- --------------- ---------------
Total 197.611 221.786 269.055 iso= 229.484

Note that all units are given in ppm and the chemical shieldings given are absolute shieldings (see below). At the
end of the atom blocks, a summary is given with the isotropic shieldings and the anisotropy [565] for each nucleus:

Nucleus Element Isotropic Anisotropy
------- ------- ------------ ------------

0 C 229.484 59.356
1 C 227.642 62.878
2 H 56.015 12.469
3 H 55.460 15.284
4 H 55.460 15.284
5 O 334.125 110.616
6 H 47.337 27.101
7 H 47.337 27.101
8 H 64.252 32.114

Thus, the absolute, isotropic shielding for the 13C nuclei are predicted to be 229.5 and 227.6 ppm and for 17O it
is 334.1 ppm. While basis set convergence using GIAOs is rapid and smooth, it is still recommended to do NMR
calculations with basis sets including tight exponents, such as the purpose-built pcSseg-𝑛. However, TZVPP or
QZVP should be sufficient in most cases. [59, 265]

An important thing to note is that in order to compare to experiment, a standard molecule for the type of nucleus
of interest has to be chosen. In experiment, NMR chemical shifts are usually determined relative to a standard,
for example either CH4 or TMS for proton shifts. Hence, the shieldings for the molecule of interest and a given
standard molecule are calculated, and the relative shieldigs are obtained by subtraction of the reference value from
the computed value. It is of course important that the reference and target calculations have been done with the same
basis set and functional. This also helps to benefit from error cancellation if the standard is chosen appropriately
(one option is even to consider an “internal standard” - that is to use for example the 13C shielding of a methyl
group inside the compound of interest as reference).

Let us consider an example - propionic acid (CH3-CH2COOH). In databases like the AIST (http://sdbs.db.aist.go.
jp) the 13C spectrum in CDCl3 can be found. The chemical shifts are given as 𝛿1 = 8.9 ppm, 𝛿2 = 27.6 ppm, 𝛿3
= 181.5 ppm. While intuition already tells us that the carbon of the carboxylic acid group should be shielded the
least and hence shifted to lower fields (larger 𝛿 values), let’s look at what calculations at the HF, BP86 and B3LYP
level of theory using the SVP and the TZVPP basis sets yield:
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method 𝜎1 𝜎2 𝜎3

HF/SVP 191.7 176.6 23.7
HF/TZVPP 183.5 167.1 9.7
B86/SVP 181.9 165.8 26.5
B86/TZVPP 174.7 155.5 7.6
B3LYP/SVP 181.8 165.8 22.9
B3LYP/TZVPP 173.9 155.0 2.9

Looking at these results, we can observe several things - first of all, the dramatic effect of using too small basis
sets, which yields differences of more than 10 ppm. Second, the results obviously change a lot upon inclusion of
electron correlation by DFT and are functional dependent. Last but not least, these values have nothing in common
with the experimental ones (they change in the wrong order), as the calculation yields absolute shieldings like in
the table above, but the experimental ones are relative shifts, in this case relative to TMS.

In order to obtain the relative shifts, we calculate the shieldings 𝜎𝑇𝑀𝑆 of the standard molecule (TMS HF/TZVPP:
194.1 ppm, BP86/TZVPP: 184.8 ppm, B3LYP/TZVPP: 184.3 ppm) and by using 𝛿𝑚𝑜𝑙 = 𝜎𝑟𝑒𝑓 − 𝜎𝑚𝑜𝑙 we can
evaluate the chemical shifts (in ppm) and directly compare to experiment:

method 𝛿1 𝛿2 𝛿3

HF/TZVPP 10.6 27.0 184.4
B86/TZVPP 10.1 29.3 177.2
B3LYP/TZVPP 10.4 29.3 181.4
Exp. 8.9 27.6 181.5

A few notes on the GIAO implementation in ORCA are in order. The use of GIAOs lead to some fairly complex
molecular one- and two-electron integrals and a number of extra terms on the right hand side of the coupled-
perturbed SCF equations. The two-electron contributions in particular can be time consuming to calculate. Thus,
the RIJK, RIJDX, and RIJCOSX approximations were implemented and tested.[826] By default, the approximation
used for the SCF is also applied to the GIAO integrals, but the latter can be changed using the GIAO_2el keyword
in the eprnmr input block (see section EPR and NMR properties). Note that, while the default COSX grids are
typically sufficiently accurate for chemical shifts, the use of defgrid3 is recommended for special cases or post-HF
calculations.

The user can finely control for which nuclei the shifts are calculated (although this will not reduce the computational
cost very much, which is dominated by the CP-SCF equations for the magnetic field). This works in exactly the
same way as for the hyperfine and quadrupole couplings described in the next section. For example:

! B3LYP def2-TZVP TightSCF

* int 0 1
C 0 0 0 0 0 0
C 1 0 0 1.35 0 0
H 1 2 0 1.1 120 0
H 1 2 3 1.1 120 180
H 2 1 3 1.1 120 0
H 2 1 3 1.1 120 180
*

%eprnmr
Ori = GIAO
Nuclei = all C { shift }
Nuclei = all H { shift }
end

NMR chemical shifts are also implemented in combination with implicit solvent models, hence the NMR keyword
can be combined with the CPCM input block. Note that for calculations including implicit solvent, it is highly rec-
ommended to also optimize the geometries using the same model. Regardless, explicit solvent–solute interactions
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observable in NMR (e.g. H-bonds), cannot be modelled with such a model: solvent molecules must be included
explicitly in the calculation.

6.12.8 NMR Spin-Spin Coupling Constants

The indirect spin-spin coupling constants observed in NMR spectra of molecules in solution consist of four con-
tributions: The diamagnetic spin orbit term:

�̂�𝐷𝑆𝑂 =
1

2

∑︁
𝑖𝑘𝑙

(�⃗�𝑘 × �⃗�𝑖𝑘)(�⃗�𝑙 × �⃗�𝑖𝑙)
𝑟3𝑖𝑘 𝑟

3
𝑖𝑙

(6.9)

The paramagnetic spin orbit term:
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The Fermi contact term:

�̂�𝐹𝐶 =
8 𝜋
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And the spin dipole term:
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While the Fermi contact term is usually the most significant, all contributions can be computed at the HF and DFT
level of theory using ORCA. For this purpose, the keyword ssall has to be invoked in the eprnmr input block,
while each of the four terms can be requested using ssdso, sspso, ssfc, and sssd, respectively. For example:

! PBE0 pcJ-1

*xyz 0 1
O 0.00000 0.00000 0.11779
H 0.00000 0.75545 -0.47116
H 0.00000 -0.75545 -0.47116
*

%eprnmr
Nuclei = all O { ssall }
Nuclei = all H { ssfc, sssd }
end

Results will be given in Hz. Note that the default isotopes used might not be the ones desired for the calculation
of NMR properties, so it is recommended to define the corresponding isotopes using the ist flag. It is possible
to also print the reduced coupling constants 𝐾 (in units of 1019 · T · J−2), which are independent of the nuclear
isotopes, using the flag PrintReducedCoupling=True.

The CP-SCF equations must be solved for one of the nuclei in each pair and are the bottleneck of the computation.
Therefore, spin-spin coupling constants are calculated only between nuclei within a certain distance of eachother
(5 Ångstrom by default). The latter can be changed using the SpinSpinRThresh keyword.

If mulitple nuclides are requested, it is also possible to select only certain element pairs (e.g. only C–H and H–H,
without C–C) using the SpinSpinElemPairs keyword. Analogously, the SpinSpinAtomPairs keyword selects
the actual pairs of nuclei to consider. The union of the latter two options is used to reduce the selection made using
the Nuclei input, after which SpinSpinRThresh is applied.

Here is another example illustrating these additional options:
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! B3LYP EPR-II

* xyz 0 1
C -1.226922 0.247095 -0.000000
C -0.013548 -0.546773 0.000000
H -2.092804 -0.413336 0.000000
H -1.249625 0.875419 -0.889165
H -1.249625 0.875419 0.889165
O 1.099618 0.302262 -0.000000
H 0.009152 -1.175097 0.889165
H 0.009152 -1.175097 -0.889165
H 1.892077 -0.216216 0.000000
*

%eprnmr
nuclei = all C { ssall, ist = 13 };
nuclei = all H { ssall, ist = 1 };
nuclei = all O { ssall, ist = 17 };
PrintReducedCoupling true
SpinSpinRThresh 3.0 # Angstrom
SpinSpinElemPairs {C C} {O *} # "*" means any element
SpinSpinAtomPairs {8 *} # indices start from 0

# Final selection:
# C 0 - C 1
# C 0 - O 5
# C 1 - O 5
# C 1 - H 8
# H 3 - O 5
# H 4 - O 5
# O 5 - H 6
# O 5 - H 7
# O 5 - H 8
# H 6 - H 8
# H 7 - H 8

end

NMR Spectra

From the computed NMR shieldings and spin-spin coupling constants, the coupled NMR spectra can be simulated.
The most typical NMR experiments are decoupled 13𝐶 and coupled 1𝐻 spectra, so we will focus on these here.
For simulating a full NMR spectrum, we will use ethyl crotonate as an example, and three steps are required: 1)
computation of the spin-spin coupling constants, 2) computation of the chemcial shieldings and 3) simulation of the
spectrum using a spin-Hamiltonian formalism. Note that these steps can be carried out independently and different
levels of theory can be used for shieldings and couplings and the order of steps 1 and 2 doesn’t matter.

Furthermore, if the spectra are to be simulated with TMS as reference, the shieldings for TMS are required (the hy-
drogen and carbon values in this case are 31.77 and 188.10 ppm, respectively). Here is the input for the calculation
for the coupling constants, which is named ethylcrotonate_sscc.inp:

! PBE pcJ-3 autoaux tightscf

*xyzfile 0 1 ethylcrotonate.xyz

%eprnmr
Nuclei = all H {ssall}
end

The spin-spin coupling constants will be stored in the file ethylcrotonate_sscc.property.txt, which the
simulation of the NMR spectrum will need to read. The NMR shieldings and will be computed in the next step,
for which the input ethylcrotonate_nmr.inp looks like this:
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!TPSS pcSseg-3 autoaux tightscf NMR

*xyzfile 0 1 ethylcrotonate.xyz

The final NMR spectrum simulation is carried out using orca_nmrspectrum, which requires a separate input file
ethylcrotonate.nmrspec which looks like this (note the required final END statement):

NMRShieldingFile = "ethylcrotonate_nmr" #property file for shieldings
NMRCouplingFile = "ethylcrotonate_sscc" #property file for couplings
NMRSpecFreq = 80.00 #spectrometer freq [MHz] (default 400)
PrintLevel = 0 #PrintLevel for debugging info
NMRCoal = 1.0 #threshold for merged lines [Hz] (default 1)
NMRREF[1] 31.77 #shielding for 1H reference [ppm]
NMRREF[6] 188.10 #shielding for 13C reference [ppm]
NMREquiv #lists of NMR-equivalent nuclei
1 {13 14 15} end #H 13,14,15 are equivalent (methyl)
2 {16 17} end #H 16 and 17 equivalent (ethyl)
3 {8 10 11} end #H 8,10,11 again equivalent methyl
end #end equiv nucl block
END #essential end of input

and contains the following keywords:
NMRShieldingFile and NMRCouplingFile denote the .property.txt files from which the shielding tensors
and coupling constants will be read by the NMR spectrum module. If this line is not given, the program will
exepect the shieldings or couplings in the property file of the current calculation.

NMRSpecFreq The NMR spectrometer frequency in MHz is decisive for the looks of the spectrum as shieldings
are given in ppm and couplings are given in Hz. Default is 400 MHz.

NMRCoal If two lines are closer than this threshold (given in Hz) then the module will coalesce the lines to one line
with double intensity. Default it 1 Hz.

NMRREF[X] Reference value for the absolute shielding of element X used in the relative shifts of the simulated
spectrum. Typically, these are the absolute shielding values from a separate calculation of TMS, for example, and
will be zero ppm in the simulated spectrum.

NMREquiv The user has to specify groups of NMR equivalent nuclei. These are typically atoms which interchange
on the NMR timescale, like methyl group protons. The shieldings and couplings will be averaged for each group
specified by the user.

with this input, orca_nmrspectrum is called with two arguments, the first one is a gbw file which contains all
informations about the molecule, typically this is the gbw file of the nmr or the sscc calculation, and the name of
the input file given above:

orca_nmrspectrum ethylcrotonate_nmr.gbw ethylcrotonate.nmrspec > output

If this calculation is carried out, the NMR spectrum module will read the files
ethylcrotonate_sscc.property.txt and ethylcrotonate_nmr.property.txt, extract the shieldings and
couplings, average the equivalent nuclei and set up an effective NMR spin Hamiltonian for each nucleus:

𝐻𝑁𝑀𝑅(𝑝, 𝑞) = 𝜎𝑝𝛿𝑝𝑞 + 𝐽𝑝𝑞𝐼𝑝𝐼𝑞. (6.13)

³ Caution

This includes all nuclei this nuclear spin couples to and should not contain too many spins (see
SpinSpinRThres), as the spin Hamiltonian for each atom and the nuclei it couples to is diagonalized brute
force. Afterwards, all spin excitations are accumulated and merged into the final spectrum for each element.
For ethyl crotonate the NMR spectrum output looks like this:
-----------------------------------------------------
NMR Peaks for atom type 1, ref value 31.7700 ppm :
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-----------------------------------------------------
Atom shift[ppm] rel.intensity

8 2.34 9.00
8 2.36 9.00
8 2.25 9.00
8 2.27 9.00
9 6.34 1.00
9 6.36 3.00
9 6.38 3.00
9 6.41 1.00
9 6.14 1.00
9 6.16 3.00
9 6.19 3.00
9 6.21 1.00
12 7.95 1.00
12 7.85 3.00
12 7.75 4.00
12 7.65 4.00
12 7.56 3.00
12 7.47 1.00
13 1.71 9.00
13 1.61 18.00
13 1.52 9.00
16 4.56 4.00
16 4.46 12.00
16 4.37 12.00
16 4.27 4.00

-----------------------------------------------------
NMR Peaks for atom type 6, ref value 188.1000 ppm :
-----------------------------------------------------
Atom shift[ppm] rel.intensity

2 25.70 1.00
3 155.15 1.00
4 19.96 1.00
5 68.91 1.00
6 174.39 1.00
7 130.29 1.00

-----------------------------------------------------
NMR Peaks for atom type 8, ref value 104.8826 ppm :
-----------------------------------------------------
Atom shift[ppm] rel.intensity

0 0.00 5.00
1 149.74 5.00

The first column denotes the atom number of the nucleus the signal arises from, the second column denotes the
line position in ppm and the third line denotes the relative intensity of the signal. For oxygen, no reference value
was given, so the program will autmatically set the lowest value obtained in the calculation as reference value.

Using gnuplot, for example, to plot the spectrum, the following plots for 13𝐶 and 1𝐻 are obtained5 :
5 The basic plot options for using gnuplot are plot "mydata" using 2:3 w i, "mydata" using 2:3:1 with labels
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Fig. 6.54: Simulated 13𝐶 (top) and 1H (bottom) NMR spectra. Note that as only HH couplings have been com-
puted, the spectra do not include any CH couplings and the carbon spectrum is also uncoupled.

This makes comparison to experiment and assessment of the computed parameters much easier, however, it is not as
advanced as other codes and does not, for example, take conformational degrees of freedom etc. into account. Note
that the corresponding property files can also be modified to tinker with the computed shieldings and couplings.

Visualizing shielding tensors using orca_plot

For the visualization it is recommended to perform an ORCA NMR calculation such that the corresponding gbw
and density files required by orca_plot are generted by using the !keepdens keyword along with !NMR.
If orca_plot is called in the interactive mode by specifying orca_plot myjob.gbw -i (note that myjob.
gbw, myjob.densities and myjob.property.txt have to be in this directory), then following 1 - type of
plot and choosing 17 - shielding tensor, confirming the name of the property file and then choosing 11 -
Generate the plot will generate a .cube file with shielding tensors depicted as ellipsoids at the corrsponding
nuclei. These can be plotted for example using Avogadro, isosurface values of around 1.0 and somewhat denser
grids for the cube file (like 100x100x100) are recommended. A typical plot for CF3SCH3 generated with Avogadro
looks like this6:

6 the same scheme can be applied to visualize polarisability tensors in the molecular framework using orca_plot.
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Fig. 6.55: The shielding tensors of each atom in CF3SCH3 have been plotted as ellipsoids (a,b and c axis equivalent
to the normalized principle axes of the shielding tensors) at the given nuclei.

6.12.9 Hyperfine and Quadrupole Couplings

Hyperfine and quadrupole couplings can be obtained from the EPR/NMR module of ORCA. Since there may be
several nuclei that you might be interested in the input is relatively sophisticated.

An example how to calculate the hyperfine and field gradient tensors for the CN radical is given below:

! PBE0 def2-MSVP TightSCF
* int 0 2

C 0 0 0 0 0 0
N 1 0 0 1.170 0 0

*
%eprnmr Nuclei = all C { aiso, adip }

(continues on next page)
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Nuclei = 2 { aiso, adip, fgrad }
end

In this example the hyperfine tensor is calculated for all carbon atoms and atom 2, which is nitrogen in this case.

ò Note

• counting of atom numbers starts from 1

• All nuclei mentioned in one line will be assigned the same isotopic mass, i.e. if several nuclei are
calculated, there has to be a new line for each of them.

• You have to specify the Nuclei statement after the definition of the atomic coordinates or the program
will not figure out what is meant by “all”.

The output looks like the following. It contains detailed information about the individual contributions to the hy-
perfine couplings, its orientation, its eigenvalues, the isotropic part and (if requested) also the quadrupole coupling
tensor.

-----------------------------------------
ELECTRIC AND MAGNETIC HYPERFINE STRUCTURE
-----------------------------------------

-----------------------------------------------------------
Nucleus 0C : A:ISTP= 13 I= 0.5 P=134.1903 MHz/au**3

Q:ISTP= 13 I= 0.5 Q= 0.0000 barn
-----------------------------------------------------------
Raw HFC matrix (all values in MHz):
-----------------------------------

695.8952 0.0000 -0.0000
0.0000 543.0617 -0.0000

-0.0000 -0.0000 543.0617

A(FC) 594.0062 594.0062 594.0062
A(SD) -50.9445 -50.9445 101.8890

---------- ---------- ----------
A(Tot) 543.0617 543.0617 695.8952 A(iso)= 594.0062
Orientation:
X 0.0000000 0.0000000 -1.0000000
Y -0.8111216 -0.5848776 -0.0000000
Z -0.5848776 0.8111216 0.0000000

Notes: (1) The A matrix conforms to the "SAI" spin Hamiltonian convention.
(2) Tensor is right-handed.

-----------------------------------------------------------
Nucleus 1N : A:ISTP= 14 I= 1.0 P= 38.5677 MHz/au**3

Q:ISTP= 14 I= 1.0 Q= 0.0204 barn
-----------------------------------------------------------
Raw HFC matrix (all values in MHz):
-----------------------------------

13.2095 -0.0000 0.0000
-0.0000 -45.6036 -0.0000
0.0000 -0.0000 -45.6036

A(FC) -25.9993 -25.9993 -25.9993
A(SD) 39.2088 -19.6044 -19.6044

---------- ---------- ----------
A(Tot) 13.2095 -45.6036 -45.6036 A(iso)= -25.9993
Orientation:

(continues on next page)
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X 1.0000000 0.0000000 -0.0000000
Y -0.0000000 0.9996462 0.0265986
Z 0.0000000 -0.0265986 0.9996462

Notes: (1) The A matrix conforms to the "SAI" spin Hamiltonian convention.
(2) Tensor is right-handed.

Raw EFG matrix (all values in a.u.**-3):
-----------------------------------

-0.1832 -0.0000 0.0000
-0.0000 0.0916 0.0000
0.0000 0.0000 0.0916

V(El) 0.6468 0.6468 -1.2935
V(Nuc) -0.5551 -0.5551 1.1103

---------- ---------- ----------
V(Tot) 0.0916 0.0916 -0.1832
Orientation:
X -0.0000003 0.0000002 1.0000000
Y 0.9878165 0.1556229 0.0000003
Z -0.1556229 0.9878165 -0.0000002

Note: Tensor is right-handed

Quadrupole tensor eigenvalues (in MHz;Q= 0.0204 I= 1.0)
e**2qQ = -0.880 MHz
e**2qQ/(4I*(2I-1))= -0.220 MHz
eta = 0.000
NOTE: the diagonal representation of the SH term I*Q*I = e**2qQ/(4I(2I-1))*[-(1-eta),-

→˓(1+eta),2]

Another important point to consider for hyperfine calculations concerns the choice of basis sets. You should
normally use basis sets that have more flexibility in the core region. In the present example a double-zeta basis
set was used. For accurate calculations this is not sufficient. There are several dedicated basis set for hyperfine
calculations:

• EPR-II basis of Barone and co-workers: It is only available for a few light atoms (H, B, C, N, O, F) and is
essentially of double-zeta plus polarization quality with added flexibility in the core region, which should
give reasonable results.

• IGLO-II and IGLO-III bases of Kutzelnigg and co-workers: They are fairly accurate but also only available
for some first and second row elements.

• CP basis: They are accurate for first row transition metals as well.

• uncontracted Partridge basis: They are general purpose HF-limit basis sets and will probably be too expensive
for routine use, but are very useful for calibration purposes.

For other elements ORCA does not yet have dedicated default basis sets for this situation it is very likely that you
have to tailor the basis set to your needs. If you use the statement Print[p_basis] 2 in the %output block
(or PrintBasis in the simple input line) the program will print the actual basis set in input format (for the basis
block). You can then add or remove primitives, uncontract core bases etc. For example, here is a printout of the
carbon basis DZP in input format:

# Basis set for element : C
NewGTO 6
s 5
1 3623.8613000000 0.0022633312
2 544.0462100000 0.0173452633
3 123.7433800000 0.0860412011
4 34.7632090000 0.3022227208

(continues on next page)
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5 10.9333330000 0.6898436475
s 1
1 3.5744765000 1.0000000000
s 1
1 0.5748324500 1.0000000000

s 1
1 0.1730364000 1.0000000000

p 3
1 9.4432819000 0.0570590790
2 2.0017986000 0.3134587330
3 0.5462971800 0.7599881644

p 1
1 0.1520268400 1.0000000000

d 1
1 0.8000000000 1.0000000000

end;

The “s 5”, for example, stands for the angular momentum and the number of primitives in the first basis function.
Then there follow five lines that have the number of the primitive, the exponent and the contraction coefficient
(unnormalized) in it. Remember also that when you add very steep functions you must increase the size of
the integration grid if you do DFT calculations! If you do not do that your results will be inaccurate. You can
increase the radial grid size by using IntAcc in the Method block or for individual atoms (section Other details
and options explains how to do this in detail). In the present example the changes caused by larger basis sets in
the core region and more accurate integration are relatively modest – on the order of 3%, which is, however, still
significant if you are a little puristic.

The program can also calculate the spin-orbit coupling contribution to the hyperfine coupling tensor as described in
section EPR and NMR properties.To extract the A tensor from a oligonuclear transition metal complex, the A(iso)
value in the output is to be processed according to the method described in ref. [645].

For the calculation of HFCCs using DLPNO-CCSD it is recommended to use the tailored truncation settings !
DLPNO-HFC1 or !DLPNO-HFC2 in the simple keyword line which correspond to the “Default1” and “Default2”
setting in Ref. [743].

If also EPR g-tensor or D-tensor calculations (see next section) are carried out in the same job, ORCA automatically
prints the orientation between the hyperfine/quadrupole couplings and the molecular g- or D-tensor. For more
information on this see section orca_euler.

6.12.10 The EPR g-Tensor and the Zero-Field Splitting Tensor

The EPR g-tensor is a property that can be well calculated at the SCF level with ORCA through solution of the
coupled-perturbed (CP-)SCF equations (see CP-SCF Options) and at the CASSCF level via the CP-CASSCF equa-
tions (see CASSCF Linear Response). As an example, consider the following simple g-tensor job:

! BP86 Def2-SVP TightSCF g-tensor SOMF(1X)
* int 1 2

O 0 0 0 0 0 0
H 1 0 0 1.1056 0 0
H 1 2 0 1.1056 109.62 0

*

The simplest way is to call the g-tensor property in the simple input line as shown above, but it can also be specified
in the %eprnmr block with gtensor true. Starting from ORCA 5.0 the default treatment of the gauge is the
GIAO approach, but this can be modified by the keyword ori. Other options are defined in section EPR and NMR
properties. SOMF(1X) defines the chosen spin-orbit coupling (SOC) operator. The details of the SOC operator
are defined in section The Spin-Orbit Coupling Operator. Other choices and additional variables exist and can be
set as explained in detail in section The Spin-Orbit Coupling Operator.

The output looks like the following. It contains information on the contributions to the g-tensor (relativistic
mass correction, diamagnetic spin-orbit term (= gauge-correction), paramagnetic spin-orbit term (= OZ/SOC)),
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the isotropic g-value and the orientation of the total tensor.

-------------------
ELECTRONIC G-MATRIX
-------------------

The g-matrix:
2.0104321 -0.0031354 -0.0000000

-0.0031354 2.0081968 -0.0000000
-0.0000000 -0.0000000 2.0021275

Breakdown of the contributions
gel 2.0023193 2.0023193 2.0023193
gRMC -0.0003174 -0.0003174 -0.0003174
gDSO(tot) 0.0000808 0.0001539 0.0001515
gPSO(tot) 0.0000449 0.0038301 0.0104898

---------- ---------- ----------
g(tot) 2.0021275 2.0059858 2.0126431 iso= 2.0069188
Delta-g -0.0001917 0.0036665 0.0103238 iso= 0.0045995

Orientation:
X 0.0000000 0.5762906 -0.8172448
Y 0.0000000 0.8172448 0.5762906
Z 1.0000000 -0.0000000 0.0000000

G-tensor calculations using GIAOs are now available at SCF and the RI-MP2 level. Note that GIAOs are NOT
currently available with CASSCF linear response and a gauge origin must be provided in the %eprnmr block (see
CASSCF Linear Response). GIAOs for CASSCF response are coming soon to ORCA!

The GIAO one-electron integrals are done analytically by default whereas the treatment of the GIAO two-electron
integrals is chosen to be same as for the SCF. The available options which can be set with giao_1el / giao_2el
in the %eprnmr block can be found in section EPR and NMR properties.

Concerning the computational time, for small systems, e.g. phenyl radical (41 electrons), the rijk-approximation
is good to use for the SCF-procedures as well as the GIAO two-electron integrals. Going to larger systems,
e.g. chlorophyll radical (473 electrons), the rijcosx-approximation reduces the computational time enormously.
While the new default grid settings in ORCA 5.0 (defgrid2) should be sufficient in most cases, certain cases
might need the use of defgrid3. The output looks just the same as for the case without GIAOs, but with addi-
tional information on the GIAO-parts.

If the total spin of the system is 𝑆 >1/2 then the zero-field-splitting tensor can also be calculated and printed. For
example consider the following job on a hypothetical Mn(III)-complex.

! BP86 def2-SVP SOMF(1X)

%eprnmr DTensor ssandso
DSOC cp # qro, pk, cvw
DSS uno # direct
end

* int 1 5
Mn 0 0 0 0 0 0
O 1 0 0 2.05 0 0
O 1 2 0 2.05 90 0
O 1 2 3 2.05 90 180
O 1 2 3 2.05 180 0
F 1 2 3 1.90 90 90
F 1 2 3 1.90 90 270
H 2 1 6 1.00 127 0
H 2 1 6 1.00 127 180
H 3 1 6 1.00 127 0
H 3 1 6 1.00 127 180
H 4 1 6 1.00 127 0

(continues on next page)
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H 4 1 6 1.00 127 180
H 5 1 6 1.00 127 0
H 5 1 6 1.00 127 180
*

The output documents the individual contributions to the D-tensor which also contains (unlike the g-tensor) con-
tributions from spin-flip terms.

Some explanation must be provided:

• The present implementation in ORCA is valid for HF, DFT and hybrid DFT.

• There are four different variants of the SOC-contribution, which shows that this is a difficult property. We
will briefly discuss the various choices.

• The QRO method is fully documented[612] and is based on a theory developed earlier.[622] The QRO
method is reasonable but somewhat simplistic and is superseded by the CP method described below.

• The Pederson-Khanna model was brought forward in 1999 from qualitative reasoning.[657] It also contains
incorrect prefactors for the spin-flip terms. We have nevertheless implemented the method for comparison.
In the original form it is only valid for local functionals. In ORCA it is extended to hybrid functionals and
HF.

• The coupled-perturbed method is a generalization of the DFT method for ZFSs; it uses revised prefactors
for the spin-flip terms and solves a set of coupled-perturbed equations for the SOC perturbation. Therefore
it is valid for hybrid functionals. It has been described in detail.[614]

• The DSS part is an expectation value that involves the spin density of the system. In detailed calibration
work[800] it was found that the spin-unrestricted DFT methods behave somewhat erratically and that much
more accurate values were obtained from open-shell spin-restricted DFT. Therefore the “UNO” option allows
the calculation of the SS term with a restricted spin density obtained from the singly occupied unrestricted
natural orbitals.

• The DSS part contains an erratic self-interaction term for UKS/UHF wavefunction and canonical orbitals.
Thus, UNO is recommended for these types of calculations.[724] If the option DIRECT is used nevertheless,
ORCA will print a warning in the respective part of the output.

• In case that D-tensor is calculated using the correlated wave function methods such as (DLPNO-/LPNO-
)CCSD, one should not use DSS=UNO option.

More information about the D-tensor can be found in section Zero-Field-Splitting.
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6.12.11 Mössbauer Parameters

57Fe Mössbauer spectroscopy probes the transitions of the nucleus between the 𝐼 = 1
2 ground state and the 𝐼 = 3

2
excited state at 14.4 keV above the ground state. The important features of the Mössbauer spectrum are the isomer
shift (𝛿) and the quadrupole splitting (∆𝐸Q). An idealized spectrum is shown in Fig. 6.56.

Fig. 6.56: An idealized Mössbauer spectrum showing both the isomer shift, 𝛿, and the quadrupole splitting, ∆𝐸Q.

The isomer shift measures the shift in the energy of the 𝛾-ray absorption relative to a standard, usually Fe foil. The
isomer shift is sensitive to the electron density at the nucleus, and indirectly probes changes in the bonding of the
valence orbitals due to variations in covalency and 3d shielding. Thus, it can be used to probe oxidation and spin
states, and the coordination environment of the iron.

The quadrupole splitting arises from the interaction of the nuclear quadrupole moment of the excited state with the
electric field gradient at the nucleus. The former is related to the non-spherical charge distribution in the excited
state. As such it is extremely sensitive to the coordination environment and the geometry of the complex.

Both the isomer shift and quadrupole splitting can be successfully predicted using DFT methods. The isomer shift
is directly related to the s electron density at the nucleus and can be calculated using the formula

𝛿 = 𝛼(𝜌0 − 𝐶) + 𝛽 (6.14)

where 𝛼 is a constant that depends on the change in the distribution of the nuclear charge upon absorption, and 𝜌0
is the electron density at the nucleus [609]. The constants 𝛼 and 𝛽 are usually determined via linear regression
analysis of the experimental isomer shifts versus the theoretically calculated electron density for a series of iron
compounds with various oxidation and spin states. Since the electron density depends on the functional and basis
set employed, fitting must be carried out for each combination used. A compilation of calibration constants (𝛼, 𝛽
and 𝐶) for various methods was assembled.[708] Usually an accuracy of better than 0.10 mm s−1 can be achieved
for DFT with reasonably sized basis sets.
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The quadrupole splitting is proportional to the largest component of the electric field gradient (EFG) tensor at the
iron nucleus and can be calculated using the formula:

∆𝐸Q =
1

2
𝑒𝑄𝑉𝑧𝑧

(︂
1 +

𝜂2

3

)︂ 1
2

(6.15)

where 𝑒 is the electrical charge of an electron and 𝑄 is the nuclear quadrupole moment of Fe (approximately 0.16
barns). 𝑉𝑥𝑥, 𝑉𝑦𝑦 and 𝑉𝑧𝑧 are the electric field gradient tensors and 𝜂, defined as

𝜂 =

⃒⃒⃒⃒
𝑉𝑥𝑥 − 𝑉𝑦𝑦

𝑉𝑧𝑧

⃒⃒⃒⃒
(6.16)

is the asymmetry parameter in a coordinate system chosen such that |𝑉𝑧𝑧| ≥ |𝑉𝑦𝑦| ≥ |𝑉𝑥𝑥|.

An example of how to calculate the electron density and quadrupole splitting of an iron center is as follows:

%eprnmr
nuclei = all Fe {fgrad, rho}

end

If the core properties basis set CP(PPP) is employed, one might have to increase the radial integration accuracy
for the iron atom. From ORCA 5.0 this is considered during grid construction and the defaults should work very
well. However for very problematic cases it can be increased by controlling the SPECIALGRIDINTACC flag under
%METHOD (see Sec. Other details and options for details).

The output file should contain the following lines, where you obtain the calculated quadrupole splitting directly
and the RHO(0) value (the electron density at the iron nucleus). To obtain the isomer shift one has to insert the
RHO(0) value into the appropriate linear equation (Eq. (6.14)).

Moessbauer quadrupole splitting parameter (proper coordinate system)
e**2qQ = -0.406 MHz = -0.035 mm/s
eta = 0.871
Delta-EQ=(1/2{e**2qQ}*sqrt(1+1/3*eta**2) = -0.227 MHz = -0.020 mm/s
RHO(0)= 11581.352209571 a.u.**-3 # the electron density at the Fe nucleus.

ò Note

• Following the same procedure, Mössbauer parameters can be computed with the CASSCF wavefunc-
tion. In case of a state-averaged CASSCF calculation, the averaged density is used in the subsequent
Mössbauer calculation.

6.12.12 Broken-Symmetry Wavefunctions and Exchange Couplings

A popular way to estimate the phenomenological parameter 𝐽AB that enters the Heisenberg–Dirac–van Vleck
Hamiltonian which parameterizes the interaction between two spin systems is the “broken-symmetry” formalism.
The phenomenological Hamiltonian is:

𝐻HDvV = −2𝐽AB�⃗�A�⃗�B (6.17)

It is easy to show that such a Hamiltonian leads to a “ladder” of spin states from 𝑆 = 𝑆A + 𝑆B down to
𝑆 = |𝑆A − 𝑆B|. If the parameter 𝐽AB is positive the systems “A” and “B” are said to be ferromagnetically coupled
because the highest spin-state is lowest in energy while in the case that 𝐽AB is negative the coupling is antiferro-
magnetic and the lowest spin state is lowest in energy.

In the broken symmetry formalism one tries to obtain a wavefunction that breaks spatial (and spin) symmetry. It
may be thought of as a “poor man’s MC-SCF” that simulates a multideterminantal character within a single deter-
minant framework. Much could be said about the theoretical advantages, disadvantages, problems and assumptions
that underly this approach. Here, we only want to show how this formalism is applied within ORCA.

For𝑁A unpaired electrons localized on “site A” and𝑁B unpaired electrons localized on a “site B” one can calculate
the parameter 𝐽AB from two separate spin-unrestricted SCF calculations: (a) the calculation for the high-spin state
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with 𝑆 = (𝑁A+𝑁B)
2 and (b) the “broken symmetry” calculation with 𝑀𝑆 = (𝑁A−𝑁B)

2 that features 𝑁A spin-up
electrons that are quasi-localized on “site A” and 𝑁B spin-down electrons that are quasi-localized on “site B”.
Several formalisms exist to extract 𝐽AB: [91, 303, 637, 638, 809, 898].

𝐽AB = − (𝐸HS − 𝐸BS)

(𝑆A + 𝑆B)
2 (6.18)

𝐽AB = − (𝐸HS − 𝐸BS)

(𝑆A + 𝑆B) (𝑆A + 𝑆B + 1)
(6.19)

𝐽AB = − (𝐸HS − 𝐸BS)

⟨𝑆2⟩HS − ⟨𝑆2⟩BS

(6.20)

We prefer the last definition (Eq. (6.20)) because it is approximately valid over the whole coupling strength regime
while the first equation implies the weak coupling limit and the second the strong coupling limit.

In order to apply the broken symmetry formalism use:

%scf BrokenSym NA,NB
end

The program will then go through a number of steps. Essentially it computes an energy and wavefunction for the
high-spin state, localizes the orbitals and reconverges to the broken symmetry state.

³ Caution

Make sure that in your input coordinates “site A” is the site that contains the larger number of unpaired electrons!

Most often the formalism is applied to spin coupling in transition metal complexes or metal-radical coupling or to
the calculation of the potential energy surfaces in the case of homolytic bond cleavage. In general, hybrid DFT
methods appear to give reasonable semiquantitative results for the experimentally observed splittings.

As an example consider the following simple calculation of the singlet–triplet splitting in a stretched Li2 molecule:

#
# Example of a broken symmetry calculation
#
! B3LYP DEF2-SVP TightSCF
%scf BrokenSym 1,1

end
* xyz 0 3

Li 0 0 0
Li 0 0 4

*

There is a second mechanism for generating broken-symmetry solutions in ORCA. This mechanism uses the indi-
vidual spin densities and is invoked with the keywords FlipSpin and FinalMs. The strategy is to exchange the 𝛼
and 𝛽 spin blocks of the density on certain user-defined centers after converging the high-spin wavefunction. With
this method arbitrary spin topologies should be accessible. The use is simple:

#
# Example of a broken symmetry calculation using the "FlipSpin" feature
#
! B3LYP DEF2-SVP TightSCF
%scf

FlipSpin 1
# Flip spin is a vector and you can give a list of atoms
# on which you want to have the spin flipped. For example
# FlipSpin 17,38,56
# REMEMBER: counting starts at atom 0!

FinalMs 0

(continues on next page)
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# The desired Ms value of the broken symmetry determinant.
# This value MUST be given since the program cannot determine it by itself.

end
* xyz 0 3

Li 0 0 0
Li 0 0 4

*

Finally, you may attempt to break the symmetry by using the SCF stability analysis feature (see Section SCF
Stability Analysis). The ground spin state can be obtained by diagonalizing the above spin Hamiltonian through
ORCA-ECA utility (see orca_eca).

Approximate Spin Projection Method

The approximate spin projection (AP) method, proposed by Yamaguchi and co-workers, is a technique to remove
the spin contamination from exchange coupling constants.[738, 897, 898] In this scheme, the energy of a system
is given by

𝐸AP = 𝛼𝐸BS − (𝛼− 1)𝐸HS (6.21)

The parameter 𝛼 is calculated as

𝛼 =
𝑆HS

(︀
𝑆HS + 1

)︀
− 𝑆BS

𝑍

(︀
𝑆BS
𝑍 + 1

)︀
⟨Ŝ2⟩HS − ⟨Ŝ2⟩BS

(6.22)

Here, 𝑆BS
𝑍 is the 𝑧-component of the total spin for the BS state (𝑆BS

𝑍 = (𝑁𝛼 − 𝑁𝛽)/2). Alternatively, one can
adopt Noodleman’s scheme,[638] where 𝛼 is calculated as follows

𝛼 =
𝑆HS

(︀
𝑆HS + 1

)︀
− 𝑆BS

𝑍

(︀
𝑆BS
𝑍 + 1

)︀
(𝑆HS)

2 (6.23)

or Ruiz’s scheme,[734] with 𝛼 equal to

𝛼 =
𝑆HS

(︀
𝑆HS + 1

)︀
− 𝑆BS

𝑍

(︀
𝑆BS
𝑍 + 1

)︀
𝑆HS (𝑆HS + 1)

(6.24)

The AP method is requested via the tag APMethod in the %scf block:

%scf BrokenSym NA,NB
APMethod 3 # 1 = Noodleman

# 2 = Ruiz
# 3 = Yamaguchi

end

The default is APMethod 0, which corresponds to a normal BS calculation. Yamaguchi’s AP method is available
for single point energy calculations and geometry optimizations. If we run a geometry optimization in the context
of Yamaguchi’s AP method, then, the gradient of equation (6.21) w.r.t a nuclear displacement 𝑋 reads as

𝜕𝐸AP

𝜕𝑋
= 𝛼

𝜕𝐸BS

𝜕𝑋
− (𝛼− 1)

𝜕𝐸HS

𝜕𝑋
+
𝜕𝛼

𝜕𝑋
(𝐸BS − 𝐸HS) (6.25)

The last term contains the derivative 𝜕𝛼
𝜕𝑋 . ORCA uses the formalism proposed by Saito and Thiel, which involves

solving the CP-SCF equations in each geometry optimization cycle.[739] The cost of such a calculation is higher
than using Noodleman’s or Ruiz’s schemes, where 𝜕𝛼

𝜕𝑋 = 0.
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6.13 Local Energy Decomposition

“Local Energy Decomposition” (LED) analysis[33, 105, 768] is a tool for obtaining insights into the nature of in-
termolecular interactions by decomposing the DLPNO-CCSD(T) energy into physically meaningful contributions.
For instance, this approach can be used to decompose the DLPNO-CCSD(T) interaction energy between a pair of
interacting fragments, as detailed in Section Local Energy Decomposition. A useful comparison of this scheme
with alternative ways of decomposing interaction energies is reported in Ref. [27, 28, 29].

6.13.1 Closed shell LED

All that is required to obtain this decomposition in ORCA is to define the fragments and specify the !LED keyword
in the simple input line.

LED decomposes separately the reference (Hartree-Fock) and correlation parts of the DLPNO-CCSD(T) energy.
By default, the decomposition of the reference energy makes use of the RI-JK approximation. An RIJCOSX
variant, which is much more efficient and has a much more favorable scaling for large
systems, is also available, as detailed in section Additional Features, Defaults and List of
Keywords, and in [27].

Note that, for weakly interacting systems, TightPNO settings are typically recommended. As an example, the
interaction of H2O with the carbene CH2 at the PBE0-D3/def2-TZVP-optimized geometry can be analyzed within
the LED framework using the following input file:

! dlpno-ccsd(t) cc-pvdz cc-pvdz/c cc-pvtz/jk rijk verytightscf TightPNO LED

*xyz 0 1
C(1) 0.16044643459993 0.10093183177121 0.22603351276210
H(1) 1.04516129053973 -0.06834886965353 -0.41865951747519
H(1) -0.12579332868173 1.14737893892114 0.00305818518771
O(2) -1.48285705560792 -1.31933824653169 2.29891474420047
H(2) -0.91417368674145 -0.93085192992263 1.60917234463506
H(2) -1.15648922489703 -2.21246650333085 2.42094328175662

*

The corresponding output file is reported below. The DLPNO-CCSD(T) energy components are printed out in
different parts of the output as follows:

E(0) ... -114.913309038
E(CORR)(corrected) ... -0.350582526
Triples Correction (T) ... -0.006098691
E(CCSD(T)) ... -115.269990255

At the beginning of the LED part of the output, information on the fragments and the assignment of localized MOs
to fragments are provided.

===========================================================
LOCAL ENERGY DECOMPOSITION FOR DLPNO-CC METHODS

===========================================================

Maximum Iterations for the Localization .. 600
Tolerance for the Localization .. 1.00e-06
Number of fragments = 2
Fragment 1: 0 1 2
Fragment 2: 3 4 5

Populations of internal orbitals onto Fragments:
0: 1.000 0.000 assigned to fragment 1
1: 0.000 1.000 assigned to fragment 2
2: 1.022 0.008 assigned to fragment 1
3: 0.001 0.999 assigned to fragment 2

(continues on next page)
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4: 0.001 0.999 assigned to fragment 2
5: 1.018 0.000 assigned to fragment 1
6: 1.019 0.000 assigned to fragment 1
7: 0.006 1.013 assigned to fragment 2
8: 0.000 1.016 assigned to fragment 2

The decomposition of the Hatree-Fock energy into intra- and inter-fragment contributions follows. It is based on
the localization of the occupied orbitals.

----------------------------------------
REFERENCE ENERGY E(0) DECOMPOSITION (Eh)
----------------------------------------

Nuclear repulsion = 28.952049689006
One electron energy = -214.430545074583 (T= 114.825132245389, V= -329.
→˓255677319972)
Two electron energy = 70.565186347093 (J= 71.658914661909, K= -1.
→˓093728314816)

----------------------
Total energy = -114.913309038483
Consistency check = -114.913309038483 (sum of intra- and inter-fragment energies)

Kinetic energy = 114.825132245389
Potential energy = -229.738441283873

----------------------
Virial ratio = 2.000767922417

-------------------------------------------
INTRA-FRAGMENT REF. ENERGY FOR FRAGMENT 1
-------------------------------------------

Nuclear repulsion = 6.037208782874
One electron energy = -63.553431032444 (T= 38.870491681225, V= -102.
→˓423922713669)
Two electron energy = 18.675214766985 (J= 18.935443192480, K= -0.
→˓260228425495)

----------------------
Total energy = -38.841007482585

Kinetic energy = 38.870491681225
Potential energy = -77.711499163811

----------------------
Virial ratio = 1.999241476056

-------------------------------------------
INTRA-FRAGMENT REF. ENERGY FOR FRAGMENT 2
-------------------------------------------

Nuclear repulsion = 9.103529882464
One electron energy = -123.025684625357 (T= 75.954640564164, V= -198.
→˓980325189521)
Two electron energy = 37.916781954190 (J= 38.739989208810, K= -0.
→˓823207254620)

----------------------
Total energy = -76.005372788703

Kinetic energy = 75.954640564164
Potential energy = -151.960013352867

----------------------
Virial ratio = 2.000667927913

(continues on next page)
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----------------------------------------------------
INTER-FRAGMENT REF. ENERGY FOR FRAGMENTs 2 AND 1
----------------------------------------------------

Nuclear repulsion = 13.811311023669
Nuclear attraction = -27.851429416782
Coulomb repulsion = 13.983482260618

----------------------
Sum of electrostatics = -0.056636132494 ( -35.540 kcal/mol)

Two electron exchange = -0.010292634701 ( -6.459 kcal/mol)
----------------------

Total REF. interaction = -0.066928767195 ( -41.998 kcal/mol)

Sum of INTRA-fragment REF. energies = -114.846380271288
Sum of INTER-fragment REF. energies = -0.066928767195

---------------------
Total REF. energy = -114.913309038483

Afterwards, a first decomposition of the correlation energy is carried out. The different energy contributions to the
correlation energy (strong pairs, weak pairs and triples correction) are decomposed into intra- and inter-fragment
contributions. This decomposition is carried out based on the localization of the occupied orbitals.

--------------------------------
CORRELATION ENERGY DECOMPOSITION
--------------------------------

--------------------------------------------------
INTER- vs INTRA-FRAGMENT CORRELATION ENERGIES (Eh)
--------------------------------------------------

Fragment 1 Fragment 2
---------------------- ----------------------

Intra strong pairs -0.136594658271 -0.209970193798 sum= -0.
→˓346564852069
Intra triples -0.002692277706 -0.002842791265 sum= -0.
→˓005535068971
Intra weak pairs -0.000001573694 -0.000002311734 sum= -0.
→˓000003885429
Singles contribution 0.000000000611 0.000000001058 sum= 0.
→˓000000001669

---------------------- ----------------------
-0.139288509061 -0.212815295738 sum= -0.

→˓352103804799

Interaction correlation for Fragments 2 and 1:
--------------------------------------------------
Inter strong pairs -0.003998018810 ( -2.509 kcal/mol)
Inter triples -0.000563621667 ( -0.354 kcal/mol)
Inter weak pairs -0.000015771468 ( -0.010 kcal/mol)

----------------------
Total interaction -0.004577411945 ( -2.872 kcal/mol)

(continues on next page)
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Sum of INTRA-fragment correlation energies = -0.352103804799
Sum of INTER-fragment correlation energies = -0.004577411945

---------------------
Total correlation energy = -0.356681216744

Afterwards, a summary with the decomposition of the total energy (reference energy + correlation) into intra- and
inter-fragment contributions is printed.

--------------------------------------------
INTER- vs INTRA-FRAGMENT TOTAL ENERGIES (Eh)
--------------------------------------------

Fragment 1 Fragment 2
---------------------- ----------------------

Intra REF. energy -38.841007482585 -76.005372788703 sum= -114.
→˓846380271288
Intra Correlation energy -0.139288509061 -0.212815295738 sum= -0.
→˓352103804799

---------------------- ----------------------
-38.980295991646 -76.218188084441 sum= -115.

→˓198484076087

Interaction of Fragments 2 and 1:
-------------------------------------
Interfragment reference -0.066928767195 ( -41.998 kcal/mol)
Interfragment correlation -0.004577411945 ( -2.872 kcal/mol)

----------------------
Total interaction -0.071506179140 ( -44.871 kcal/mol)

Sum of INTRA-fragment total energies = -115.198484076087
Sum of INTER-fragment total energies = -0.071506179140

---------------------
Total energy = -115.269990255228

Hence, the decomposition reported above allows one to decompose all the components of the DLPNO-CCSD(T)
energy into intrafragment and interfragment contributions simply based on the localization of the occupied orbitals.
In order to convert the intra-fragment energy components into contributions to the binding energy, single point
energy calculations must be carried out on the isolated monomers, frozen in the geometry they have in the adduct,
and the corresponding terms must be subtracted. Note that one can also include the geometrical deformation energy
(also called “strain”) by simply computing the energy of the geometrically relaxed fragments (see Section Local
Energy Decomposition for further information).

For the DLPNO-CCSD strong pairs, which typically dominate the correlation energy, a more sophisticated decom-
position, based on the localization of both occupied orbitals and PNOs, is also carried out and printed. Accordingly,
the correlation energy from the strong pairs is divided into intra-fragment, dispersion and charge transfer compo-
nents. Note that, due to the charge transfer excitations, the resulting intra-fragment contributions (shown below)
differ from the ones obtained above.

---------------------------------------------
DECOMPOSITION OF CCSD STRONG PAIRS INTO

DOUBLE EXCITATION TYPES (Eh)
---------------------------------------------

Foster-Boys localization is used for localizing PNOs

Intra fragment contributions:
INTRA Fragment 1 -0.132849855
INTRA Fragment 2 -0.209493798

(continues on next page)
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Charge transfer contributions:
Charge Transfer 1 to 2 -0.005725404
Charge Transfer 2 to 1 -0.000899609

Dispersion contributions:
Dispersion 2,1 -0.001594204

Singles contributions:
Singles energy 0.000000002

More detailed information into the terms reported above can be found in Section Local Energy Decomposition
and in Ref.[768] All the individual double excitations contributions constituting the terms reported above can be
printed by specifying “printlevel 3” in the %mdci block. Finally, a summary with the most important terms of the
DLPNO-CCSD energy, which are typically discussed in standard applications, is printed.

-------------------------------------------------
FINAL SUMMARY DLPNO-CCSD ENERGY DECOMPOSITION (Eh)
-------------------------------------------------

Intrafragment REF. energy:
Intra fragment 1 (REF.) -38.841007483
Intra fragment 2 (REF.) -76.005372789

Interaction of fragments 2 and 1:
Electrostatics (REF.) -0.056636132
Exchange (REF.) -0.010292635
Dispersion (strong pairs) -0.001594204
Dispersion (weak pairs) -0.000015771

Sum of non dispersive correlation terms:
Non dispersion (strong pairs) -0.348968665
Non dispersion (weak pairs) -0.000003885

Note that the “Non dispersion” terms include all the components of the correlation energy except London disper-
sion.[28, 106]. For the strong pairs, “Non dispersion” includes charge transfer, intrafragment double excitations
and singles contributions. For the weak pairs, it corresponds to the intrafragment correlation contribution. In order
to convert the non dispersion correlation components into contributions to the binding energy, single point energy
calculations must be carried out on the isolated monomers.

6.13.2 Example: LED analysis of intermolecular interactions

The water-carbene example from the previous section will be used to demonstrate how to analyze intermolecular
interactions between two fragments using the LED decomposition (note that all energies are given in a.u. if not
denoted otherwise). As often done in practical applications, we will be using geometries optimized at the DFT
(PBE0-D3/def2-TZVP) level of theory on which DLPNO-CCSD(T) (cc-pVDZ,TightPNO) single point energies
are computed. Note that in practice, basis sets of triple-zeta quality or larger are recommended. In the first step,
the geometries of the dimer, H2O and CH2 are optimized and DLPNO-CCSD(T) energies are computed to yield
𝐸𝑜𝑝𝑡𝑑𝑖𝑚𝑒𝑟 and 𝐸𝑜𝑝𝑡𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠. The input examples for the single-point DLPNO-CCSD(T) energies of the monomers at
their optimized geometries and the necessary energies from the output files of these runs are as follows:

! dlpno-ccsd(t) cc-pvdz cc-pvdz/c cc-pvtz/jk rijk verytightscf TightPNO

# H2O optimized at the PBE0-D3/def2-TZVP level

*xyz 0 1
O -1.47291471015599 -1.29006364761118 2.29452038079177
H -0.88264582939506 -0.99404999457575 1.59835337186103
H -1.22136730983407 -2.20010680974562 2.46533021449572

*
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E(0) ... -76.026656692
E(CORR)(corrected) ... -0.211428886
Triples Correction (T) ... -0.002932804
E(CCSD(T)) ... -76.241018382

! dlpno-ccsd(t) cc-pvdz cc-pvdz/c cc-pvtz/jk rijk verytightscf TightPNO

# CH2 optimized at the PBE0-D3/def2-TZVP level

*xyz 0 1
C 0.16044643459993 0.10093183177121 0.22603351276210
H 1.04516129053973 -0.06834886965353 -0.41865951747519
H -0.12579332868173 1.14737893892114 0.00305818518771

*

E(0) ... -38.881042677
E(CORR)(corrected) ... -0.138447953
Triples Correction (T) ... -0.002873032
E(CCSD(T)) ... -39.022363662

Single-point DLPNO-CCSD(T) energies of the monomers at their in-adduct geometries are also necessary. The
corresponding inputs and the necessary output parts for these calculations are as follows:

! dlpno-ccsd(t) cc-pvdz cc-pvdz/c cc-pvtz/jk rijk verytightscf TightPNO

# H2O at the CH2-H2O geometry optimized at the PBE0-D3/def2-TZVP level

*xyz 0 1
O -1.48285705560792 -1.31933824653169 2.29891474420047
H -0.91417368674145 -0.93085192992263 1.60917234463506
H -1.15648922489703 -2.21246650333085 2.42094328175662

E(0) ... -76.026011663
E(CORR)(corrected) ... -0.211931843
Triples Correction (T) ... -0.002963338
E(CCSD(T)) ... -76.240906844

! dlpno-ccsd(t) cc-pvdz cc-pvdz/c cc-pvtz/jk rijk verytightscf TightPNO

# CH2 at the CH2-H2O geometry optimized at the PBE0-D3/def2-TZVP level

*xyz 0 1
C 0.16044643459993 0.10093183177121 0.22603351276210
H 1.04516129053973 -0.06834886965353 -0.41865951747519
H -0.12579332868173 1.14737893892114 0.00305818518771

*

E(0) ... -38.881085139
E(CORR)(corrected) ... -0.138097323
Triples Correction (T) ... -0.002869022
E(CCSD(T)) ... -39.022051484

These energies are summarized in Table Table 6.9).

Table 6.9: Energies of the H2O-CH2 example for illustrating how the different LED contributions are valuated.
The superscript 𝑜𝑝𝑡 denotes energies of optimized structures, 𝑓𝑖𝑥𝑒𝑑 denotes energies of isolated fragments in the
dimer structure. In the last column the energy of the dimer is reported.
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Energy [a.u.] H2𝑂
𝑜𝑝𝑡 H2𝑂

𝑓𝑖𝑥𝑒𝑑 CH𝑜𝑝𝑡2 CH𝑓𝑖𝑥𝑒𝑑2 H2O - CH2

E𝐻𝐹 -76.026656692 -76.026011663 -38.881042677 -38.881085139 -114.913309038
E𝑐 CCSD -0.211428886 -0.211931843 -0.138447953 -0.138097323 -0.350582526
E𝑐 (T) -0.002932804 -0.002963338 -0.002873032 -0.002869022 -0.006098691
E𝑡𝑜𝑡 -76.241018382 -76.240906844 -39.022363662 -39.022051484 -115.269990255

Note that for this example, we do not include any BSSE correction. For this system we obtain a binding energy of

𝐸𝑖𝑛𝑡 = 𝐸𝑜𝑝𝑡𝑑𝑖𝑚𝑒𝑟 − 𝐸
𝑜𝑝𝑡
𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠 = −115.269990255 − (−76.241018382− 39.022363662) = −0.006608211

which is -4.147 kcal/mol.

The basic principles and the details of the LED are discussed in section Local Energy Decomposition. The first
contribution to the binding energy is the energy penalty for the monomers to distort into the geometry of the dimer

∆𝐸𝑔𝑒𝑜−𝑝𝑟𝑒𝑝 = 𝐸𝑓𝑖𝑥𝑒𝑑𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠 − 𝐸𝑜𝑝𝑡𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠

(see in equation (7.406)). This contribution is computed as the difference of the DLPNO-CCSD(T) energy of the
monomers in the structure of the dimer (𝐸𝑓𝑖𝑥𝑒𝑑𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠) and of the relaxed monomers (𝐸𝑜𝑝𝑡𝑚𝑜𝑛𝑜𝑚𝑒𝑟𝑠). The following
energies are obtained:

∆𝐸𝑔𝑒𝑜−𝑝𝑟𝑒𝑝 = (−76.240906844 + 76.241018382) + (−39.022051484 + 39.022363662) = 0.000423716

which amounts to 0.266 kcal/mol. Typically, the triples correction is evaluated separately:

∆𝐸
𝐶−(𝑇 )
𝑖𝑛𝑡 = −0.006098691− (−0.002963338− 0.002869022) = −0.000266331

This contributes -0.167 kcal/mol. The next terms in equation (7.406) concern the reference energy contributions.
The first one is the electronic preparation in the reference, which is evaluated as the difference of the Intra REF.
energy of the fragments (see previous section) and the reference energy of the separate molecules at the dimer
geometry:

∆𝐸𝑟𝑒𝑓.𝑒𝑙−𝑝𝑟𝑒𝑝(𝐻2𝑂) = −76.005372788703 + 76.026011663 = 0.020638874297

∆𝐸𝑟𝑒𝑓.𝑒𝑙−𝑝𝑟𝑒𝑝(𝐶𝐻2) = −38.841007482585 + 38.881085139 = 0.040077656415

which amounts to 0.060716530712 a.u. or 38.100 kcal/mol. The next two contributions stem from the de-
composition of the reference inter-fragment contributions 𝐸𝑟𝑒𝑓.𝑒𝑙𝑠𝑡𝑎𝑡 = −0.056636132 (-35.540 kcal/mol) and
𝐸𝑟𝑒𝑓.𝑒𝑥𝑐ℎ = −0.010292635 (-6.459 kcal/mol) and can be found in directly in the LED output (Electrostatics
(REF.) and Exchange (REF.) ). The correlation energy also contains an electronic preparation contribution,
but it is typically included in the correlation contribution ∆𝐸𝐶−𝐶𝐶𝑆𝐷𝑛𝑜𝑛−𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛. Adding the non-dispersive strong
and weak pairs contributions from the LED output (Non dispersion (strong pairs) and Non dispersion
(weak pairs) ) one obtains :

−0.348968665− 0.000003885 = −0.34897255

from which we have to subtract the sum of the correlation contributions of the monomers at the dimer geometry

∆𝐸𝐶−𝐶𝐶𝑆𝐷𝑛𝑜𝑛−𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 = −0.34897255− (−0.211931843− 0.138097323) = 0.001056616

which is 0.663 kcal/mol. The dispersive contribution can be directly found in the LED output (Dispersion
(strong pairs) and Dispersion (weak pairs) ) and amounts to 𝐸𝐶−𝐶𝐶𝑆𝐷𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 = −0.001609975 which
is -1.010 kcal/mol. So all terms that we have evaluated so far are:

∆𝐸 = ∆𝐸𝑔𝑒𝑜−𝑝𝑟𝑒𝑝 +∆𝐸𝑟𝑒𝑓.𝑒𝑙−𝑝𝑟𝑒𝑝 + 𝐸𝑟𝑒𝑓.𝑒𝑙𝑠𝑡𝑎𝑡 + 𝐸𝑟𝑒𝑓.𝑒𝑥𝑐ℎ +∆𝐸𝐶−𝐶𝐶𝑆𝐷𝑛𝑜𝑛−𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 + 𝐸𝐶−𝐶𝐶𝑆𝐷𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 +∆𝐸
𝐶−(𝑇 )
𝑖𝑛𝑡

∆𝐸 ∆𝐸𝑔𝑒𝑜−𝑝𝑟𝑒𝑝 ∆𝐸𝑟𝑒𝑓.𝑒𝑙−𝑝𝑟𝑒𝑝 𝐸𝑟𝑒𝑓.𝑒𝑙𝑠𝑡𝑎𝑡 𝐸𝑟𝑒𝑓.𝑒𝑥𝑐ℎ ∆𝐸𝐶−𝐶𝐶𝑆𝐷𝑛𝑜𝑛−𝑑𝑖𝑠𝑝. 𝐸
𝐶−𝐶𝐶𝑆𝐷
𝑑𝑖𝑠𝑝. ∆𝐸

𝐶−(𝑇 )
𝑖𝑛𝑡

a.u. 0.000423716 0.060716530712-
0.056636132

-
0.010292635

0.001056616 -
0.001609975

-
0.000266331

kcal/mol 0.266 38.100 -35.540 -6.459 0.663 -1.010 -0.167

which sum to the total binding energies of -0.006608211 a.u. or -4.147 kcal/mol that we have evaluated at the
beginning of this section. A detailed discussion of the underlying physics and chemistry can be found in [33].
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6.13.3 Open shell LED

The decomposition of the DLPNO-CCSD(T) energy in the open shell case is carried out similarly to the closed
shell case. [33] An example of input file is shown below.

! dlpno-ccsd(t) cc-pvdz cc-pvdz/c cc-pvtz/jk rijk verytightscf TightPNO LED

*xyz 0 3
C(1) 0.32786304018834 0.25137292674595 0.32985672433579
H(1) 0.78308855251826 -0.37244139824620 -0.42204823336026
H(1) -0.19639272865450 1.19309490346756 0.33713773666060
O(2) -1.47005964014997 -1.60804001777555 1.84974416203666
H(2) -0.89305417808014 -1.00736849071095 1.35216686141176
H(2) -1.02515061661047 -1.73931270222718 2.69260529998224
*

The corresponding output is entirely equivalent to the one just discussed for the closed shell case. However, the open
shell variant of the LED scheme relies on a different implementation than the closed shell one. A few important
differences exist between the two implementations, which are listed below.

• In the closed shell LED the reference energy is typically the HF energy. Hence, the total energy equals the
sum of HF and correlation energies. In the open shell variant, the reference energy is the energy of the QRO
determinant. Hence, the total energy in this case equals the sum of the energy of the QRO determinant and
the correlation energy.

• The singles contribution is typically negligible in the closed shell case due to the Brillouin’s theorem. In the
open shell variant, this is not necessarily the case. In both cases, the singles contribution is included in the
“Non dispersion” part of the strong pairs.

• In the UHF DLPNO-CCSD(T) framework we have 𝛼𝛼, 𝛽𝛽 and 𝛼𝛽 pairs. Hence, in the open shell LED, all
correlation terms (e.g. London dispersion) have 𝛼𝛼, 𝛽𝛽 and 𝛼𝛽 contributions. By adding “printlevel 3” in
the %mdci block one can obtain information on the relative importance of the different spin terms.

• The open shell DLPNO-CCSD(T) algorithm can also be used for computing the energy of closed shell
systems by adding the “UHF” keyword in the simple input line of a DLPNO-CCSD(T) calculation.

6.13.4 Dispersion Interaction Density plot

The Dispersion Interaction Density (DID) plot provides a simple yet powerful tool for the spatial analysis of the Lon-
don dispersion interaction between a pair of fragments extracted from the LED analysis in the DLPNO-CCSD(T)
framework. [29] A similar scheme was developed for the closed shell local MP2 method. [894] The “dispersion
energy density”, which is necessary for generating the DID plot, can be obtained from a simple LED calculation
by adding “DoDIDplot true” in the %mdci block.

!DLPNO-CCSD(T) ... LED
%mdci DoDIDplot true end

These can be converted to a format readable by standard visualization programs, e.g. a cube file, through
orca_plot. To do that, call orca_plot with the command:

orca_plot gbwfilename -i

and follow the instructions that will appear on your screen, i.e.:

1 - Enter type of plot
2 - Enter no of orbital to plot
3 - Enter operator of orbital (0=alpha,1=beta)
4 - Enter number of grid intervals
5 - Select output file format
6 - Plot CIS/TD-DFT difference densities
7 - Plot CIS/TD-DFT transition densities

(continues on next page)
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(continued from previous page)

8 - Set AO(=1) vs MO(=0) to plot
9 - List all available densities

10 - Generate the plot
11 - exit this program

Type “1” for selecting the plot type. A few options are possible:

1 - molecular orbitals
2 - (scf) electron density ...... (scfp ) - available
3 - (scf) spin density ...... (scfr ) - available
4 - natural orbitals
5 - corresponding orbitals
6 - atomic orbitals
7 - mdci electron density ...... (mdcip ) - NOT available
8 - mdci spin density ...... (mdcir ) - NOT available
9 - OO-RI-MP2 density ...... (pmp2re) - NOT available
10 - OO-RI-MP2 spin density ...... (pmp2ur) - NOT available
11 - MP2 relaxed density ...... (pmp2re) - NOT available
12 - MP2 unrelaxed density ...... (pmp2ur) - NOT available
13 - MP2 relaxed spin density ...... (rmp2re) - NOT available
14 - MP2 unrelaxed spin density ...... (rmp2ur) - NOT available
15 - LED dispersion interaction density (ded21 ) - available
16 - Atom pair density
17 - Shielding Tensors
18 - Polarisability Tensor

Select “LED dispersion interaction density” from the list by typing “15”. Afterwards, choose your favorite format
and generate the file.

6.13.5 Automatic Fragmentation

Starting from ORCA 4.2 it is possible to let the program define the fragments to be used in the LED analysis. In
this case, the program will try to identify all monomers in the system that are not connected through a covalent
bond and assign a fragment to each of them. The XYZ coordinates of the fragments are reported in the beginning
of the output file. For instance, given the input:

! dlpno-ccsd(t) cc-pvdz cc-pvdz/c cc-pvtz/jk rijk verytightscf TightPNO LED

*xyz 0 1
C 0.18726407287156 0.08210467619149 0.19811955853244
H 1.07120465088431 -0.00229078749404 -0.46002874025040
H -0.15524644515923 1.12171178448874 0.04316776563623
O -1.47509614629583 -1.29358571885374 2.29818864036820
H -0.87783948760158 -0.98540169212890 1.58987042714267
H -1.22399221548771 -2.20523304094991 2.47014489963764
*

The program will automatically identify the H2O and the CH2 fragments. Note that this procedure works for an
arbitrary number of interacting molecules. It is also possible to assign only certain atoms to a fragment and let the
program define the other ones:

! dlpno-ccsd(t) cc-pvdz cc-pvdz/c cc-pvtz/jk rijk verytightscf TightPNO LED

*xyz 0 1
C(1) 0.18726407287156 0.08210467619149 0.19811955853244
H(1) 1.07120465088431 -0.00229078749404 -0.46002874025040
H(1) -0.15524644515923 1.12171178448874 0.04316776563623
O -1.47509614629583 -1.29358571885374 2.29818864036820

(continues on next page)
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H -0.87783948760158 -0.98540169212890 1.58987042714267
H -1.22399221548771 -2.20523304094991 2.47014489963764
*

6.13.6 Additional Features, Defaults and List of Keywords

ò Note

Starting from ORCA 4.2 the default localization scheme for the PNOs has changed from PM (Pipek Mezey) to
FB (Foster Boys). This might cause slight numerical differences in the LED terms with respect to that obtained
from previous ORCA versions. To obtain results that are fully consistent with previous ORCA versions, PM
must be specified (see below).

The following options can be used in accordance with LED.

! DLPNO-CCSD(T) cc-pVDZ cc-pVDZ/C cc-pVTZ/JK RIJK TightPNO LED TightSCF

%mdci
LED 1 # localization method for the PNOs. Choices:

# 1 = PipekMezey
# 2 = FosterBoys (default starting from ORCA 4.2)

PrintLevel 3 # Selects large output for LED and prints the
# detailed contribution
# of each DLPNO-CCSD strong pair

LocMaxIterLed 600 # Maximum number of localization iterations for PNOs
LocTolLed 1e-6 # Absolute threshold for the localization procedure for PNOs
Maxiter 0 # Skips the CCSD iterations and

# the decomposition of the correlation energy
DoLEDHF true # Decomposes the reference energy in the LED part.

# By default, it is set to true.
end

ò Note

Starting from ORCA 4.2 an RIJCOSX implementation of the LED scheme for the decomposition of the refer-
ence energy is also available. This is extremely efficent for large systems. For consistency, the RIJCOSX variant
of the LED is used only if the underlying SCF treatment is performed using the RIJCOSX approximation, i.e.,
if RIJCOSX is specified in the simple input line. An example of input follows.

! dlpno-ccsd(t) def2-TZVP def2-TZVP/C def2/j rijcosx verytightscf TightPNO LED

*xyz 0 1
C(1) 0.18726407287156 0.08210467619149 0.19811955853244
H(1) 1.07120465088431 -0.00229078749404 -0.46002874025040
H(1) -0.15524644515923 1.12171178448874 0.04316776563623
O(2) -1.47509614629583 -1.29358571885374 2.29818864036820
H(2) -0.87783948760158 -0.98540169212890 1.58987042714267
H(2) -1.22399221548771 -2.20523304094991 2.47014489963764
*

Fianlly, here are some tips for advanced users.

• The LED scheme can be used in conjuction with an arbitrary number of fragments.

• The LED scheme can be used to decompose DLPNO-CCSD and DLPNO-CCSD(T) energies. At the mo-
ment, it is not possible to use this scheme to decompose DLPNO-MP2 energies directly. However, for closed
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shell systems, one can obtain DLPNO-MP2 energies from a DLPNO-CCSD calculation by adding a series
of keywords in the %mdci block: (i) TScalePairsMP2PreScr 0 ; (ii) UseFullLMP2Guess true; (iii)
TCutPairs 10 (or any large value). The LED can be used as usual to decompose the resulting energy.

• For a closed shell system of two fragments (say A and B), the LED scheme can be used to further decompose
the LED components of the reference HF energy (intrafragment, electrostatics and exchange) into a sum of
frozen state and orbital relaxation correction contributions. More information can be found in Ref. [29].

• To obtain the frozen state terms one has to: (i) generate a .gbw file containing the orbitals of both fragments
(AB.gbw) using orca_mergefrag A.gbw B.gbw AB.gbw, where A.gbw and B.gbw are the orbital files of
isolated fragments at the aduct geometry; (ii) run the LED as usual by using MORead to read the orbitals in
the AB.gbw file in conjunction with Maxiter 0 in both the %scf block (to skip the SCF iterations) and the
%mdci block (to skip the unnecessary CCSD iterations).

6.14 The Hartree-Fock plus London Dispersion (HFLD) method for
the study of Noncovalent Interactions

Starting from ORCA 4.2, the efficient and accurate HFLD method[30] can be used for the quantification and analysis
of noncovalent interactions between a pair of user-defined fragments. Starting from ORCA 5.0, an open shell
variant of the HFLD method is also available.[24]

The leading idea here is to solve the DLPNO coupled cluster equations while neglecting intramonomer correlation.
The LED scheme is then used to extract the London dispersion (LD) energy from the intermolecular part of the
correlation. Finally, the resulting LD energy is used to correct interaction energies computed at the HF level.
Hence, HFLD can be considered as a dispersion-corrected HF approach in which the dispersion interaction between
the fragments is added at the DLPNO-CC level. As such, it is particulartly accurate for the quantification of
noncovalent interactions such as those found in H-bonded systems, pre-reactive intermediates (e.g., Frustrated
Lewis Pairs), dispersion and electrostatically bound systems. Larger errors are in principle expected for transition
metal complexes, as it is the case for any dispersion corrected Hartree-Fock scheme.

The efficency of the approach allows the study of noncovalent interactions in systems with several hundreds of
atoms. An input example is reported below.

! HFLD aug-cc-pvdz aug-cc-pvdz/C verytightscf

*xyz 0 1
C(1) 0.18726407287156 0.08210467619149 0.19811955853244
H(1) 1.07120465088431 -0.00229078749404 -0.46002874025040
H(1) -0.15524644515923 1.12171178448874 0.04316776563623
O(2) -1.47509614629583 -1.29358571885374 2.29818864036820
H(2) -0.87783948760158 -0.98540169212890 1.58987042714267
H(2) -1.22399221548771 -2.20523304094991 2.47014489963764
*

In the corresponding output, after the DLPNO-CC iterations and the LED output, the following information is
printed:

---------------------------- ----------------
Inter-fragment dispersion -0.001871763
---------------------------- ----------------

------------------------- --------------------
FINAL SINGLE POINT ENERGY -114.932878050741
------------------------- --------------------

The total HFLD energy of the adduct is thus -114.932878050741 a.u.. To compute interaction energies, we have to
substract from this value the Hartree-Fock energies of the monomers in the geometry they have in the complex, i.e.,
-38.884413525377 and -76.040412827089 a.u. for CH2 and H2O, respectively. The total interaction energy is thus
-0.00805 a.u. or -5.1 kcal/mol (the corresponding DLPNO-CCSD(T)/TightPNO/CBS value is -5.3 kcal/mol. [33]).

6.14. The Hartree-Fock plus London Dispersion (HFLD) method for the study of Noncovalent
Interactions

361



ORCA Manual, Release 6.0

Note that, to obtain binding energies, the geometric preparation should be added to this value. This can be computed
using a standard computational method, e.g, DFT or DLPNO-CCSD(T).

Some of the most important aspects of the method are summarized below:

• Accuracy and Recommended Settings. For noncovalent interactions, HFLD typically provides an ac-
curacy comparable to that of the DLPNO-CCSD(T) method if default PNO settings are used. For the HFLD
scheme, these are defined as TCutPNO = 3.3e-7 and TCutPairs 1e-5. If used in conjuction with a def2-
TZVP(-f) basis set, these settings are typically denoted as “HFLD*” and are recommeded for standard appli-
cations on large systems.[24] For example, HFLD* settings were used in Ref.[25] to elucidate the complex
pattern of interactions responsible for the stability of the DNA duplex. If great accuracy is required, it is
recommened to use TightPNO settings in conjuction with TCutPNO 1e-8 and two-point basis set extrapo-
lation (aug-cc-pVTZ/aug-cc-pVQZ) to approach the CBS limit. These settings are typically denoted as the
“gold” HFLD settings.[24]

• Reference determinant in the Open shell HFLD scheme. In the open shell case, HFLD relies on
a restricted reference determinant for the calculation of the LD energy. If the QRO determinant is used as
reference, the reference interaction energy can in principle be computed at the UHF or QRO levels. This leads
to two different schemes, namely the QRO/HFLD and UHF/HFLD. Alternatively, the restricted open-shell
HF (ROHF) determinant can be used as reference in HFLD calculations, which leads to the ROHF/HFLD
approach. The energy value reported as “FINAL SINGLE POINT ENERGY” in the output corresponds to
the UHF/HFLD scheme by default, which is typically slightly more accurate. See Ref. [24] for details.

• Efficency. The calculation of the dispersion correction typically requires the same time as an HF calcu-
lation. This is true for small as well as for large systems.

• Analysis of Intermolecular Interactions. The HFLD method can be combined with the Local
Energy Decomposition (LED) to study intermolecular interactions in great detail. The LED dispersion en-
ergy obtained with HFLD is often very close to that obtained from a full DLPNO-CCSD(T) calculation.
Hence, HFLD can be used as a cost-effective alternative to DLPNO-CCSD(T) to study, among other things,
the importance of London dispersion in molecular chemistry.

• Additional considerations. (i) One can specify “NormalPNO” or “TightPNO” settings in the simple
input line. The corresponding DLPNO tresholds would be in this case fully consistent with those used in
the DLPNO-CCSD(T) method. (ii) The dispersion energy in the HFLD approach slightly depends by the
choice of the localization scheme used for occupied orbitals and PNOs. Default settings are recommended
for all intent and purposes. However, it is important to note that the localization iterations for occupied
and virtual orbitals must be fully converged in order to obtain consistent results. To achieve this goal, it
might be necessary to increase “LocMaxIter” or “LocMaxIterLed” (see below). However, this is typically
necessary only if very large basis sets (e.g. aug-cc-pV5Z) are used. (iii) Importantly, the method benefits
from the use of tightly converged SCF solutions. For closed-shell systems, a useful diagnostic in this context
is the “Singles energy” term that is printed in the LED part of the output. This term must be smaller than 1e-6
for closed shell species. If this is not the case, one should change the settings used for the SCF iterations.
Note also that all the features of the LED scheme (e.g. automatic fragmentation) are also available for the
HFLD method.

Note that, as HFLD relies on both the DLPNO-CCSD(T) and LED methods, the options of both schemes can be
used in principle in conjuction with HFLD. Some examples are shown below:

! HFLD aug-cc-pVDZ aug-cc-pVDZ/C aug-cc-pVTZ/JK RIJK TightSCF

%mdci
LED 1 # localization method for the PNOs. Choices:

# 1 = PipekMezey
# 2 = FosterBoys (default, recommeded for the HFLD method)

PrintLevel 3 # Selects large output for LED and prints the
# detailed contribution
# of each DLPNO-CCSD strong pair

LocMaxIterLed 600 # Maximum number of localization iterations for PNOs
LocMaxIter 300 # Maximum number of localization iterations for

# occupied orbitals
LocTolLed 1e-6 # Absolute threshold for the localization procedure for PNOs

(continues on next page)
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DoLEDHF true # Decomposes the reference energy in the LED part.
# By default, it is set to false in HFLD for efficency reasons.

TCutPNO 3.33e-7 # cutoff for PNO occupation numbers.
TCutPairs 1e-5 # cutoff for estimated pair correlation energies

# to be included in the CC treatment
end

6.15 ORCA MM Module

Since version 4.2 ORCA features its own independent MM implementation.

The minimum input necessary for a MM treatment looks as follows.

!MM
%mm
ORCAFFFilename "UBQ.ORCAFF.prms"
end

In this section we discuss the basic keywords and options, i.e.

• the basic structure of the ORCA Forcefield File,

• how to generate the ORCA Forcefield File,

• how to manipulate the ORCA Forcefield File,

• how to speed up MM calculations,

• further MM options and keywords.

Further options important for QM/MM calculations will be discussed in section ORCA Multiscale Implementation.

6.15.1 ORCA Forcefield File

For the MM part of the QM/MM calculation force-field parameters are necessary. ORCA has its own parameter
file format (ORCA forcefield file - ORCAFF.prms), which includes the atom specific parameters for nonbonded
interactions:

• partial charge

• LJ coefficients

and parameters for bonded interactions:

• bonds

• angles

• Urey-Bradley terms

• dihedrals

• impropers

• CMAP terms (cross-terms for backbone, currently not used)

Individual parameters, like e.g. atomic charge, equilibrium bond length and force constant, . . . , can be conveniently
modified directly within the ORCA Forcefield File.
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How to generate the ORCA Forcefield File

The easiest way to generate a ORCAFF.prms file is currently to convert from psf (protein structure file) files. Psf
files are specific to the CHARMM forcefield and its application via NAMD. Psf files for a specific protein system
can easily be generated by the popular molecular visualization program VMD and its extension QwikMD, but also
with other extensions in the VMD program (e.g. psfgen or fftk). The psf file contains information on the atom
types and on the bonded interactions of all atoms. It does, however, not contain the parameters that belong to
these interactions. These parameteres are stored in specific files, often ending with prm, but also par or str. The
CHARMM parameter files come with VMD installation, can be directly downloaded, or can be generated with the
VMD extension fftk (forcefield toolkit).

Once a ORCAFF.prms file is available, it can be manipulated, i.e. split up into several parts for individual
molecules, new ORCAFF.prms files can be generated for non-standard molecules, and individual ORCAFF.prms
files can be merged, as described in the following:

Conversion from psf or prmtop files to ORCAFF.prms: convff

The orca_mm module can convert psf and prm files (CHARMM), prmtop files (AMBER) or xml files (open force
field from the openff toolkit, compatible to AMBER) to the ORCAFF file with the -convff flag. Input options are:

orca_mm -convff <optional:-verbose> <FFInput> <PSFFILE> <PRMFILE(S)>

Keywords:
<FFInput> = -CHARMM
<FFInput> = -AMBER
<FFInput> = -OPENMM

For CHARMM topologies, when a psf file is available for a system with standard residues, prepared by e.g.
QwikMD, psfgen or other vmd tools, the conversion needs the psf plus the prm files as input:

CHARMM example:
orca_mm -convff -CHARMM 1C1E.psf par_all36_prot.prm toppar_water_ions_namd.str

ORCA can also convert Amber topologies to the ORCAFF file. Here, only the prmtop file is required:

AMBER example:
orca_mm -convff -AMBER complex.prmtop

ORCA can also convert xml files from the openff toolkit (AMBER compatible) to the ORCAFF file. Here, only
the xml file is required:

OPENFF example:
orca_mm -convff -OPENMM complex.xml

Divide a forcefield file: splitff

If a ORCAFF.prms file should be subdivided into several files, e.g. if the psf file stems from QWikMD with non-
standard molecules included, e.g. a ligand. In that case first the parameters of the ligand are split from the remaining
system, next the ligand needs to be protonated, then a simple ORCAFF.prms file is generated via orca_mm’s makeff
option, and finally the ligand’s new ORCAFF.prms file is added to the main systems file via the above described
mergeff option. Note that the file can only be split into files for nonbonded fragments.

Input options:

orca_mm -splitff <optional:-verbose> <ORCAFFFILE> <A1> <optional:A2> ...

Keywords:

(continues on next page)
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<ORCAFFFILE> = ORCA forcefield file.
<A1> = Atom number of first atom of fragment that should belong

to a new ORCA forcefield file
<A2> = Atom number of first atom of fragment that should belong

to a new ORCA forcefield file
... = More split atoms possible
Note that atoms start counting at 1.

Example:
orca_mm -splitff 1C1E_substrate_noH.ORCAFF.prms 7208

Merge forcefield files: mergeff

If several ORCAFF.prms files are available and should be merged for an ORCA calculation, e.g. for a standard plus
a non-standard molecule.

Input options:

orca_mm -mergeff <optional:-verbose> <ORCAFFFILE1> <ORCAFFFILE2> ...

Keywords:

<ORCAFFFILE1> = First ORCA forcefield file
<ORCAFFFILE2> = Second ORCA forcefield file
... = More ORCA forcefield files possible

Example:
orca_mm -mergeff 1C1E.ORCAFF.prms substrate_withH.ORCAFF.prms

Repeat forcefield files: repeatff

In case the same ORCAFF.prms file needs to be repeated multiple times, the repeatff functionality is available.

Input options:

orca_mm -repeatff <optional:-verbose> <ORCAFFFILE> <A>
<ORCAFFFILE> = ORCA forcefield file.
<A> = Factor (integer) defining how often this forcefield file should␣

→˓be repeated.

Example:
orca_mm -mergeff methanol.ORCAFF.prms 580

This feature can be useful e.g. in the case of solvating a molecule, i.e. adding multiple copies of a solvent to a
solute. First the solvent can be repeated N times, and subsequently the solute’s prms file can be merged together
with the solvent prms file.

6.15. ORCA MM Module 365



ORCA Manual, Release 6.0

Divide a forcefield file: splitpdb

When splitting a ORCAFF.prms file, also splitting of the pdb file is required. The file can be split into an arbitrary
number of individual files.

This can be useful together with the splitff command.

Input options:

orca_mm -splitpdb <optional:-verbose> <PDBFILE> <A1> <optional:A2> ...

Keywords:

<PDBFILE> = PDB file.
<A1> = Atom number of first atom of fragment that should belong

to a new ORCA forcefield file
<A2> = Atom number of first atom of fragment that should belong

to a new ORCA forcefield file
... = More split atoms possible
Note that atoms start counting at 1.

Example:
orca_mm -splitpdb 1C1E_substrate_noH.pdb 7208

Merge PDB files: mergepdb

If several PDB files are available and need to be merged for an ORCA calculation, e.g. a protein and a ligand or
multiple ligands, or a ligand that was first removed from a complex, then modified, and finally should get back into
the complex PDB file.

This can be useful together with the mergeff command.

Input options:

orca_mm -mergepdb <optional:-verbose> <1PDBFILE> <2PDBFILE> ...

Keywords:

<1PDBFILE> = First PDB file
<2PDBFILE> = Second PDB file
... = More PDB files possible

Example:
orca_mm -mergepdb 1C1E.pdb substrate_withH.pdb

Create simple force field: makeff

The orca_mm tool can generate an approximate forcefield for a molecule, storing it in ORCAFF.prms format.
Here, the LJ coefficients are based on UFF parameters and the partial charges are based on a simple PBE or XTB
calculation. The resulting topology is certainly not as accurate as an original CHARMM topology, but can still be
used for an approximate handling of the molecule. Herewith, the molecule can be part of the QM region (having
at least the necessary LJ coefficients), or part of the MM region as a non-active spectator - being not too close to
the region of interest. In the latter case it is important that the molecule is not active, since bonded parameters
are not available. However, it can still be optimized as a rigid body, see sections Geometry Optimizations using
the L-BFGS optimizer and the usage in QM/MM calculations in section Optimization with the Cartesian L-BFGS
Minimizer, on MM level, optimizing its position and orientation with respect to the specific environment.

Input options:

366 Chapter 6. Running Typical Calculations



ORCA Manual, Release 6.0

orca_mm -makeff <optional:-verbose> <XYZ/PDBFILE> <optional:-C CHARGE>
<optional:-M MULT> <optional:-nproc N> <optional:-CHARGE_OPTIONS>

Keywords:

<CHARGE> = charge of system
<MULT> = multiplicity of system
<-nproc N> = number of processors (Default 1)
<-CHARGE_OPTIONS> = Structure Charge calculation

<-PBE> input PBE
<-PBEOpt> PBE opt. PBE
<-PBEOptH> PBE H-opt. PBE
<-XTB> input XTB
<-XTBOpt> XTB opt. XTB
<-XTBOptH> XTB H-opt. XTB
<-XTBOptPBE> XTB opt. PBE
<-noChargeCalc> distribute net charge evenly

PBE Opt and SP level: RI-PBE/def2-SVP CPCM(Water), CHELPG charges
XTB Opt and SP level: GFN2-XTB GBSA(Water), Mulliken partial charges

Example:
orca_mm -makeff substrate_withH.xyz -M 2 -XTBOptPBE

Note that ORCA generates bonds based on simple distance rules, which enables ORCA to detect where to add link
atoms between QM and MM atoms, see also section QM-MM, QM-QM2 and QM2-MM Boundary. But the user is
advised to treat a molecule, for which the ORCAFF.prms file was generated with the makeff option, either fully in
the QM, or fully in the MM region, unless the charge distribution has been properly taken care of (due to the need
of integer charges in QM and MM system).

Get standard hydrogen bond lengths: getHDist

For the definition of the link atoms standard bond lengths between C, N and O and hydrogen are directly set by
ORCA but can be modified by the user, see section QM-MM, QM-QM2 and QM2-MM Boundary. If other atom
types are on the QM side of the QM-MM boundary, their distance to the link atom has to be defined. In this case
a file can be provided to ORCA which defines the standard bond length to hydrogen for all possible atoms. Such a
file can be generated via the following command:

Input options:

orca_mm -getHDist <optional:-verbose> <XYZ/PDBFILE>

Example:
orca_mm -getHDist 1C1E.xyz

This file can then be modified, the required values can be added, and the resulting file can be defined as input for
the QMMM calculation.

Create ORCAFF.prms file for IONIC-CRYSTAL-QMMM

For IONIC-CRYSTAL-QMMM calculations, section IONIC-CRYSTAL-QMMM, an ORCAFF.prms file with initial
charges and connectivities is required. If you are not using the orca_crystalprep tool for setting up such calculations,
see section orca_crystalprep, you can directly prepare the ORCAFF.prms file with the command:

orca_mm -makeff <XYZ/PDBFILE> -CEL <ELEMENT1> <OXIDATION_STATE1>
-CEL <ELEMENT2> <OXIDATION_STATE2>

Keywords:

(continues on next page)
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<ELEMENT1> = element name
<OXIDATION_STATE1> = formal oxidation state of element 1
... = More elements possible

Example:
orca_mm -makeff na4cl4.xyz -CEL Na 1.0 -CEL Cl -1.0

Here, na4cl4.xyz is the supercell structure file (it can contain tens of thousands of atoms).

ò Note

• For supercells with more complex oxidation states’, e.g. Co3O4, the ORCAFF.prms file can be generated
conveniently via the orca_crystalprep tool, orca_crystalprep.

6.15.2 Speeding Up Nonbonded Interaction Calculation

For MM calculations of very large systems with hundreds of thousands of atoms, and for QMMM calculations with
fast QM methods (e.g. XTB, AM1) and / or very small QM systems, the computation of the nonbonded interactions
can become a bottleneck. Different schemes for speeding up the calculation of nonbonded interactions are available
within the ORCA MM implementation. Two schemes truncate long-range interaction, another scheme can be used
for calculations with active regions, i.e. calculations where only a part of the system is active or optimized. For more
information on active regions see section Active and Non-Active Atoms - Optimization, Frequency Calculation,
Molecular Dynamics and Rigid MM Water.

Force Switching for LJ Interaction

With force switching for the LJ interaction (described in reference [819]) a smooth switching function is used to
truncate the LJ potential energy smoothly at the outer cutoff distance LJCutOffOuter. If switching is set to false, the
LJ interaction is not truncated at LJCutOffOuter. The parameter LJCutOffInner specifies the distance at which the
switching function starts taking an effect to bring the van der Waals potential to 0 smoothly at the LJCutOffOuter
distance, ensuring that the force goes down to zero at LJCutOffOuter, without introducing discontinuities. Note
that LJCutOffInner must always be smaller than LJCutOffOuter.

%mm
SwitchForceLJ true # Use the switch force scheme for the LJ interaction.

# Default: true.
LJCutOffInner 10. # Distance (in Ang). Default: 10 Ang.
LJCutOffOuter 12. # Distance (in Ang). Default: 12 Ang.
end

Force Shifting for Electrostatic Interaction

With force shifting for the electrostatic interaction (described in reference [819]) the electrostatic potential is shifted
to zero at the cutoff distance CoulombCutOff. If shifting is set to false, the electrostatic interaction is not truncated
at CoulombCutOff.

%mm
ShiftForceCoulomb true # Use the shift force scheme for the Coulomb interaction.

# Default: true.
CoulombCutOff 12. # Distance (in Ang). Default: 12 Ang.
end
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Neglecting Nonbonded Interactions Within Non-Active Region

When using active regions (see section Active and Non-Active Atoms - Optimization, Frequency Calculation,
Molecular Dynamics and Rigid MM Water) for optimizations and MD runs, the nonbonded interactions at the
MM level can be neglected for those atom pairs, which are both non-active, without loss of accuracy for the re-
sults. Even relative energies between two structures are correct, if the atom positions of the non-active atoms are
identical. For all other cases, i.e. if the positions of atoms in the non-active region differ, the full nonbonded
interaction should be computed in the final single-point energy calculation. By default this option is switched off.

%mm
Do_NB_For_Fixed_Fixed true # Compute MM-MM nonbonded interaction also for

# non-active atom pairs. Default true.
end

6.15.3 Rigid Water

As TIP3P water might have to be treated as rigid bodies due to its parametrization - please check out the specifics
of the applied force field parametrization - we offer a keyword for the automated rigid treatment of all active MM
waters. The following keyword applies bond and angle constraints to active MM waters in optimization as well as
MD runs:

%mm
Rigid_MM_Water false # Default: false.
end

6.15.4 Available Keywords for the MM module

Here we list all keywords that are accessible from within the mm block and that are relevant to MM, but also
QM/MM calculations. Some of the MM keywords can also be accessed via the qmmm block, see section Additional
Keywords.

!MM # or QMMM, as the MM keywords will also affect the MM part of the QMMM calculation
%mm
# Schemes for the truncation of long-range
# Coulomb and LJ interaction:
# The Shift Force scheme for the Coulomb interaction shifts the Coulomb potential
# such that it becomes zero at the cutoff distance.
ShiftForceCoulomb true # Use the shift force scheme for the Coulomb interaction.

# Default: true.
CoulombCutOff 12. # Distance (in Ang). Default: 12 Ang.
# With the Switch Force scheme for the LJ interaction is unchanged up to
# LJCutOffInner. Between LJCutOffInner and LJCutOffOuter a smooth switching function
# is applied onto the LJ potential so that the force goes down to zero at
# LJCutOffOuter, without introducing discontinuities.
SwitchForceLJ true # Use the switch force scheme for the LJ interaction.

# Default: true.
LJCutOffInner 10. # Distance (in Ang). Default: 10 Ang.
LJCutOffOuter 12. # Distance (in Ang). Default: 12 Ang.

DielecConst 1. # dielectric constant used in calc. of electrostatic
# interaction. Default: 1.

Coulomb14Scaling 1. # Scaling factor for electrostatic interaction between
# 1,4-bonded atoms. Default: 1.

PrintLevel 1 # Printing options: Can be 0 to 4, 0=nothing, 1=normal, ...

(continues on next page)
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# Keywords that can be accessed from the mm as well as the qmmm block.
# For a description see qmmm block.

# Information about topology and force field
ORCAFFFilename "UBQ.ORCAFF.prms"# If available, e.g. from a previous run, or after

# modification, the ORCA Forcefield can be provided.

# Computing MM nonbonded interactions within non-active region.
Do_NB_For_Fixed_Fixed true # Compute MM-MM nonbonded interaction also for

# non-active atom pairs. Default true.

# Optimization and MD of active MM waters
RIGID_MM_WATER false # Default: false.

# Extended active region
ExtendActiveRegion distance # rule to choose the atoms belonging to activeRegionExt.

# no - do not use activeRegionExt atoms
# cov_bonds - add only atoms bonded covalently to
# active atoms
# distance (default) - use a distance criterion (VDW
# distance plus Dist_AtomsAroundOpt)

Dist_AtomsAroundOpt 1. # in Angstrom. Default 1 Ang.
OptRegion_FixedAtoms { 2 9} end # Default: empty list.

# The following keywords will affect the behavior of MM (without QMMM) calculations,
# but have to be provided via the qmmm block
PrintOptRegion true # Additionally print xyz and trj for opt region
PrintOptRegionExt true # Additionally print xyz and trj for extended opt region
PrintQMRegion true # Additionally print xyz and trj for QM region
PrintPDB true # Additionally print pdb file for entire system, is

# updated every iteration for optimization

end

*pdbfile 0 1 ubq.pdb # structure input via pdb file, but also possible via xyz file

6.16 ORCA Multiscale Implementation

With ORCA 5.0 ORCA ‘s multiscale functionality has been extensively expanded. ORCA 5 features five different
multiscale methods for

• proteins, DNA, large molecules, explicit solvation:

– additive QMMM (Additive QMMM)

– subtractive QM1/QM2 methods (2-layered ONIOM) (Subtractive QM/QM2 Method)

– QM1/QM2/MM methods (3-layered ONIOM) (QM/QM2/MM Method)

• CRYSTAL-QMMM for crystals:

– MOL-CRYSTAL-QMMM for molecular crystals (MOL-CRYSTAL-QMMM)

– IONIC-CRYSTAL-QMMM for semiconductors and insulators (IONIC-CRYSTAL-QMMM)

The multiscale features are optimally connected to all other modules and tools available in ORCA allowing the
user to handle multiscale calculations from a QM-centric perspective in a simple and efficient way, with a focus on
simplifying the process to prepare, set up and run multiscale calculations.

From the input side all methods share a common set of concepts and keywords, which will be outlined in the first
part of this chapter. In the subsequent parts of this chapter, the different methods are described and further input
options are discussed.
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6.16.1 General Settings and Input Structure

Some of the keywords in this section are common to all five multiscale features, and some are not. If keywords are
not available for one of the multiscale features, this will be mentioned.

Overview on Combining Multiscale Features with other ORCA Features

The multiscale features can be used together with all other possible ORCA methods:

Single Point Calculations
Use all kinds of available electronic structure methods as QM method.

Optimization
Use all kinds of geometry optimizations with all kinds of constraints, TS optimization, relaxed surface scans,
and the ScanTS feature. Use the L-Opt and L-OptH features including the combination of all kinds of
fragment optimizations (fix fragments, relax fragments, relax only specific elements in fragments, treat a
fragment as a rigid body).

Transition States and Minimum Energy Paths
Use all kinds of Nudged-Elastic Band calculations (Fast-NEB-TS, NEB, NEB-CI, NEB-TS, including their
ZOOM variants) and Intrinsic Reaction Coordinate calculations. (not implemented for MOL-CRYSTAL-
QMMM and IONIC-CRYSTAL-QMMM)

Frequency Calculations
Use regular frequency calculations. If required, ORCA automatically switches on the Partial Hessian Vibra-
tional Analysis (PHVA) calculation. (not tested for IONIC-CRYSTAL-QMMM)

Molecular Dynamics
Use the Molecular Dynamics (MD) module for Born-Oppenheimer MD (BOMD) with QM/MM in combi-
nation with all kinds of electronic structure methods. (not implemented for MOL-CRYSTAL-QMMM and
IONIC-CRYSTAL-QMMM)

Property Calculation
All kinds of regular property calculations are available. For electrostatic embedding the electron density is
automatically perturbed by the surrounding point charges.

Excited State Calculations
Use all kinds of excited state calculations (TD-DFT, EOM, single point calculations, optimizations, frequen-
cies). (For the ONIOM calculations the low-level calculations are carried out in the ground state)

Overview on Basic Aspects of the Multiscale Feature

In the following, the basic concepts are introduced.

QM atoms
The user can define the QM region either directly, or via flags in a pdb file. See QM Atoms.

QM2 atoms
Only applicable for QM/QM2/MM. For the QM/QM2/MM method the low level QM region (QM2) is defined
via the input or via flags in a pdb file. See QM2 Atoms. For QM/QM2 the low level region consists of all
atoms but the QM atoms.

Active atoms
The user can choose an active region, e.g. for geometry optimizations the atoms that are optimized, for a
frequency calculation the atoms that are allowed to vibrate for the PHVA, or for an MD run the atoms that are
propagated. See Active and Non-Active Atoms - Optimization, Frequency Calculation, Molecular Dynamics
and Rigid MM Water and Fig. 6.57.

Forcefield
ORCA has its own forcefield file format (stored in files called basename.ORCAFF.prms). For a convenient
setup the orca_mm module offers the option to convert from other forcefield formats. Currently, the following
formats can be converted to the ORCA forcefield file format:
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CHARMM psf files
protein structure file from the CHARMM forcefield. The psf files can be easily prepared with the
popular molecular visualizer VMD, together with its extensions (psfgen, QwikMD, fftk, which works
together with ORCA ).

AMBER prmtop files
topology files from the AMBER force field. Tutorials on how to generate AMBER prmtop files (for
standard and non-standard molecules) can be found here.

Open Force Field
xml files from the openforcefield initiative. With the openff-toolkit xml topology files (compatible with
the AMBER force field) can be easily generated for small and medium-sized non-standard molecules.
For a tutorial see here.

Simple forcefield for small to medium-sized molecules
Alternatively, the orca_mm module can generate a simple approximate ORCAFF.prms file. For more
options, see ORCA Forcefield File.

This concept has the following advantages:

Modification of forcefield parameters
Atom and bond specific parameters can be easily modified within the ORCA forcefield file, allowing the
user maximum flexibility in modifying the forcefield, which might be particularly useful for chemical
systems like transition metal complexes. See ORCA Forcefield File.

Standard and Non-Standard Ligands
Ligands can be easily and flexibly exchanged or added to the system, see ORCA Forcefield File.

Boundary Treatment
ORCA automatically detects QM-MM boundaries, i.e. bonds that have to be cut between QM and MM
region. ORCA automatically generates the link atoms and keeps them at their relative position throughout
the run, even allowing to optimize the bond along the boundary. See QM-MM, QM-QM2 and QM2-MM
Boundary. Not applicable for CRYSTAL-QMMM.

Treatment of overpolarization
ORCA automatically adapts the charges at the QM-MM boundary. See QM-MM, QM-QM2 and QM2-MM
Boundary. Not applicable for both CRYSTAL-QMMM.

Embedding types
The electrostatic and mechanical embedding schemes are available. See Embedding Types.

Detailed information on the different available input and runtime options and additionally available keywords (see
Additional Keywords) are given below.

QM Atoms

QM atoms can be defined either directly

!QMMM
%qmmm
QMAtoms {0 1 2 27 28} end
end

or via the occupancy column of a pdb file.

%qmmm # use either
QMAtoms {0:4} end # 1. list of atoms (counting starts from 0) or
Use_QM_InfoFromPDB true # 2. get the definition from the pdb file. Default false.
end # If (2) is set to true, (1) is ignored
*pdbfile 0 1 ubq.pdb

If Use_QM_InfoFromPDB is set to true, a pdb file should be used for the structural input. QM atoms are defined via
1 in the occupancy column, MM atoms via 0. QM2 atoms (for QM/QM2/MM calculations, see QM2 Atoms) can
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be defined via 2 in the occupancy column. In this case Use_QM2_InfoFromPDB must be set to true. The IONIC-
CRYSTAL-QMMM method can have even further entries in the PDB file, see Different QM and MM regions Stored
in the PDB file. Note that the Use_QM_InfoFromPDB keyword needs to be written before the coordinate section.

ubq.pdb:
...
ATOM 327 N ASP A 21 29.599 18.599 9.828 0.00 0.00 P1 N
ATOM 328 HN ASP A 21 29.168 19.310 9.279 0.00 0.00 P1 H
ATOM 329 CA ASP A 21 30.796 19.083 10.566 0.00 0.00 P1 C
ATOM 330 HA ASP A 21 31.577 18.340 10.448 0.00 0.00 P1 H
ATOM 331 CB ASP A 21 31.155 20.515 10.048 2.00 0.00 P1 C
ATOM 332 HB1 ASP A 21 30.220 21.082 9.865 2.00 0.00 P1 H
ATOM 333 HB2 ASP A 21 31.754 21.064 10.801 2.00 0.00 P1 H
ATOM 334 CG ASP A 21 31.923 20.436 8.755 1.00 0.00 P1 C
ATOM 335 OD1 ASP A 21 32.493 19.374 8.456 1.00 0.00 P1 O
ATOM 336 OD2 ASP A 21 31.838 21.402 7.968 1.00 0.00 P1 O
ATOM 337 C ASP A 21 30.491 19.162 12.040 0.00 0.00 P1 C
ATOM 338 O ASP A 21 29.367 19.523 12.441 0.00 0.00 P1 O
...

Note that contrary to the hybrid36 standard of PDB files, ORCA writes non-standard pdb files as:

• atoms 1-99,999 in decimal numbers

• atoms 100,000 and beyond in hexadecimal numbers, with atom 100,000 corresponding to index 186a0.

This ensures a unique mapping of indices. If you want to select an atom with an idex in hexadecimal space (index
larger than 100,000), convert the hexadecimal number into decimals when choosing this index in the ORCA input
file. Note also, that in the pdb file, counting starts from 1, while in ORCA counting starts from zero.

Active and Non-Active Atoms - Optimization, Frequency Calculation, Molecular Dynamics and
Rigid MM Water

The systems of multiscale calculations can become quite large with tens and hundreds of thousands of atoms. In
multiscale calculations the region of interest is often only a particular part of the system, and it is common practice
to restrict the optimization to a small part of the system, which we call the active part of the system. Usually this
active part consists of hundreds of atoms, and is defined as the QM region plus a layer around the QM region. The
same definition holds for frequency calculations, in particular since after optimization non-active atoms are not
at stationary points, and a frequency calculation would lead to artifacts in such a scenario. MD calculations on
systems with hundreds of thousands of atoms are not problematic, but there are applications where a separation in
active and non-active parts can be important (e.g. a solute in a solvent droplet, with the outer shell of the solvent
frozen).

ò Note

• If no active atoms are defined, the entire system is treated as active.

• The active region definitions also apply to MM calculations, but have to be provided via the qmmm
block.
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Input Format

Active atoms can be defined either directly or via the B-factor column of a pdb file.

%qmmm # use either
ActiveAtoms {0:5 16 21:30} end # 1. list of atoms (counting starts from 0) or
Use_Active_InfoFromPDB true # 2. get the definition from the pdb file.

# Default false.
end # If (2) is set to true, (1) is ignored
*pdbfile 0 1 ubq.pdb

If Use_Active_InfoFromPDB is set to true, a pdb file should be used for the structural input. Active atoms are
defined via 1 in the B-factor column, non-active atoms via 0. Note that the Use_Active_InfoFromPDB keyword
needs to be written before the coordinate section.

ubq.pdb:
...
ATOM 327 N ASP A 21 29.599 18.599 9.828 0.00 0.00 P1 N
ATOM 328 HN ASP A 21 29.168 19.310 9.279 0.00 0.00 P1 H
ATOM 329 CA ASP A 21 30.796 19.083 10.566 0.00 1.00 P1 C
ATOM 330 HA ASP A 21 31.577 18.340 10.448 0.00 1.00 P1 H
ATOM 331 CB ASP A 21 31.155 20.515 10.048 1.00 1.00 P1 C
ATOM 332 HB1 ASP A 21 30.220 21.082 9.865 1.00 1.00 P1 H
ATOM 333 HB2 ASP A 21 31.754 21.064 10.801 1.00 1.00 P1 H
ATOM 334 CG ASP A 21 31.923 20.436 8.755 1.00 1.00 P1 C
ATOM 335 OD1 ASP A 21 32.493 19.374 8.456 1.00 1.00 P1 O
ATOM 336 OD2 ASP A 21 31.838 21.402 7.968 1.00 1.00 P1 O
ATOM 337 C ASP A 21 30.491 19.162 12.040 0.00 0.00 P1 C
ATOM 338 O ASP A 21 29.367 19.523 12.441 0.00 0.00 P1 O
...

Note that in the above example also the QM atoms are defined along with the active atoms.

Optimization in redundant internal coordinates

In ORCA’s QM/MM geometry optimization only the positions of the active atoms are optimized. The forces on
these active atoms are nevertheless influenced by the interactions with the non-active surrounding atoms. In order
to get a smooth optimization convergence for quasi-Newton optimization algorithms in internal coordinates, it
is necessary that the Hessian values between the active atoms and the directly surrounding non-active atoms are
available. For that reason the active atoms are extended by a shell of surrounding non-active atoms which are also
included in the geometry optimization, but whose positions are constrained, see Fig. 6.57. This shell of atoms can
be automatically chosen by ORCA. There are three options available:

Distance
(Default) The parameter Dist_AtomsAroundOpt controls which non-active atoms are included in the ex-
tension shell, i.e. non-active atoms that have a distance of less than the sum of their VDW radii plus
Dist_AtomsAroundOpt are included.

Covalent bonds
All (non-active) atoms that are covalently bonded to active atoms are included.

No
No non-active atoms are included.

The user can also provide the atoms for the extension shell manually. This will be discussed in section Frequency
Calculation.
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Fig. 6.57: Active and non-active atoms. Additionally shown is the extension shell, which consists of non-active
atoms close in distance to the active atoms. The extension shell is used for optimization in internal coordinates and
PHVA.

The set of active atoms is called the ‘activeRegion’, and the set of active atoms plus the surrounding non-active
atoms is called ‘activeRegionExt’. During geometry optimization the following trajectories are stored (which can
be switched off):

basename_trj.xyz
Entire QM/MM system

basename.QMonly_trj.xyz
Only QM region

basename.activeRegion_trj.xyz
Only active atoms

basename.activeRegionExt_trj.xyz
Active atoms plus extension

The following files are stored containing the optimized structures - if requested:

basename.pdb
Optimized QM/MM system in pdb file format

basename.xyz
Optimized QM/MM system

basename.QMonly.xyz
Only QM region

basename.activeRegion.xyz
Only active atoms

basename.activeRegionExt.xyz
Active atoms plus extension

Optimization with the Cartesian L-BFGS Minimizer

For very large active regions the quasi-Newton optimization in internal coordinates can become costly and it can be
advantageous to use the L-Opt or L-OptH feature, see section Geometry Optimizations using the L-BFGS optimizer.
For the L-Opt(H) feature there exist two ways to define the active region:

• via the ActiveAtoms keyword (or the Use_Active_InfoFromPDB flag) or

• via fragment definition and the different keywords for fragment optimization. Available options are:

FixFrags
Freeze the coordinates of all atoms of the specified fragments.

RelaxHFrags
Relax the hydrogen atoms of the specified fragments. Default for all atoms if !L-OptH is defined.
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RelaxFrags
Relax all atoms of the specified fragments. Default for all atoms if !L-Opt is defined.

RigidFrags
Treat each specified fragment as a rigid body, but relax the position and orientation of these rigid bodies.

ò Note

• The L-Opt(H) option together with the fragment optimization can be used in order to quickly preopti-
mize your system at MM level. E.g. you can optimize the hydrogen positions of the protein and water
molecules, and at the same time relax non-standard molecules, for which no exact bonded parameters
are available, as rigid bodies.

!MM L-OptH
%mm
ORCAFFFilename "DNA_hexamer.ORCAFF.prms"
end
*pdbfile 0 1 protein_ligand.pdb
%geom
Frags # all other atoms belong to fragment 1 by default
2 {22307:22396} end # cofactor
3 {22397:22423} end # ligand

end
RigidFrags {2 3} end # treat cofactor and ligand as individual rigid bodies
end

Frequency Calculation

If all atoms are active, a regular frequency calculation is carried out when requesting !NumFreq. If there are also
non-active atoms in the QM/MM system, the Partial Hessian Vibrational Analysis (PHVA, see section Partial
Hessian Vibrational Analysis) is automatically selected. Here, the PHVA is carried out for the above defined
activeRegionExt, where the extension shell atoms are automatically used as ‘frozen’ atoms. Note that the analytic
Hessian is not available due to the missing analytic second derivatives for the MM calculation. Note that in a new
calculation after an optimization it might happen that the new automatically generated extended active region is
different compared to the previous region before optimization. This means that when using a previously computed
Hessian (e.g. at the end of an optimization or a NEB-TS run) the Hessian does not fit to the new extended active
region. ORCA tries to solve this problem by fetching the information on the extended region from the hess file. If
that does not work (e.g. if you distort the geometry after the Hessian calculation) you should manually provide the
list of atoms of the extended active region. This is done via the following keyword:

%qmmm
OptRegion_FixedAtoms {27 1288:1290 4400} end # manually define the

# activeRegionExt atoms.
end

Note that ORCA did print the necessary information in the output of the calculation in which the Hessian was
computed:

Fixed atoms used in optimizer ... 27 1288 1289 1290 4400
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Nudged Elastic Band Calculations

NEB calculations (section Nudged Elastic Band Method) can be carried out in combination with the multiscale
features in order to e.g. study enzyme catalysis. When automatically building the extension shell at the start of a
Multiscale-NEB calculation, not only the coordinates of the main input structure (‘reactant’), but also the atomic
coordinates of the ‘product’ and, if available, of the ‘transition state guess’ are used to determine the union of
the extension shell of the active region. For large systems it is advised to use the active region feature for the
NEB calculation. Note that the atomic positions of the non-active atoms of reactant and product and, if available,
transition state guess, should be identical.

Molecular Dynamics

If there are active and non-active atoms in the multiscale system, only the active atoms are allowed to propagate in
the MD run. If all atoms are active, all atoms are propagated. For more information on the output and trajectory
options, see section Regions.

Rigid MM Water

As TIP3P water might have to be treated as rigid bodies due to its parametrization - please check out the specifics
of the applied force field parametrization - we offer a keyword for the automated rigid treatment of all active MM
water molecules. The following keyword applies bond and angle constraints to active MM water molecules in
optimizations as well as MD runs:

Rigid_MM_Water false # Default: false.

Forcefield Input

For the MM part of the QM/MM calculation forcefield parameters are necessary. Internally, ORCA uses the
ORCA forcefield. For a description on the format, how to obtain and manipulate the forcefield parameters, see
section ORCA Forcefield File.

ò Note

• ORCAFF.prms files only need to be provided for QM/MM, QM/QM2/MM and IONIC-CRYSTAL-
QMMM calculations.

• For QM/QM2 and MOL-CRYSTAL-QMMM calculations there is no need to provide a ORCAFF.prms
file.

• The ORCAFF.prms file for the IONIC-CRYSTAL-QMMM calculation can be conveniently set up with
the orca_crystalprep tool, see section orca_crystalprep.

• For IONIC-CRYSTAL-QMMM and MOL-CRYSTAL-QMMM calculations the self-consistently opti-
mized MM point charges of the entire supercell are stored in an ORCAFF.prms file, see section Charge
Convergence between QM and MM region. This ORCAFF.prms file can then be used in subsequent
calculations with larger QM regions, different methods and basis sets, excited state calculations, etc.

The force field filename is provided via the keyword ORCAFFFilename:

%qmmm
ORCAFFFilename "UBQ.ORCAFF.prms"
end
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QM-MM, QM-QM2 and QM2-MM Boundary

This section is important for the QM/MM, QM/QM2 and QM/QM2/MM methods. For the latter method two
boundary regions are present (between QM and QM2 as well as between QM2 and MM region), and both can go
through covalent bonds. In the following we will only discuss the concept for the boundary between QM and MM,
but the same holds true for the other two boundaries.

Link Atoms

ORCA automatically generates link atoms based on the information of the QM region and on the topology of the
system (based on the ORCAFF.prms file). ORCA places link atoms on the bond between QM and MM atoms.

s Important

• When defining the QM, QM2 and MM regions, make sure that you only cut through single bonds (not
aromatic, double, triple bonds, etc.).

Bond Length Scaling factor

The distance between QM atom and link atom is determined via a scaling factor (in relation to the QM-MM bond
length) that is computed as the ratio of the equilibrium bond length between QM and hydrogen atom (d0_QM-H)
and the equilibrium bond length between QM and MM atom (d0_QM-MM).

Standard QM-H Bond Length

For the equilibrium bond lengths to hydrogen, ORCA uses tabulated standard values for the most common atoms
involved in boundary regions (C, N, O), which can be modified via keywords as defined further below. ORCA
stores these values on-the-fly in a simple file (basename.H_DIST.prms). If necessary, the user can modify these
values atom-specific or add others to the file and provide this file as input to ORCA (see also paragraph Get standard
hydrogen bond lengths: getHDist). For QM/QM2 and QM/QM2/MM methods the equilibrium bond lengths to
hydrogen are explicitly calculated.

%qmmm
# standard equilibrium bond lengths with hydrogen can be modified
Dist_C_HLA 1.09 # d0_C-H
Dist_O_HLA 0.98 # d0_O-H
Dist_N_HLA 0.99 # d0_N-H
# file can be provided which provides the used d0_X-H values specific to all atoms
H_Dist_FileName "QM_H_dist.txt"
end

Bonded Interactions at the QM-MM Boundary

The MM bonded interactions within the QM region are neglected in the additive coupling scheme. However, at
the boundary, it is advisable to use some specific bonded interactions which include QM atoms. By default ORCA
neglects only those bonded interactions at the boundary, where only one MM atom is involved, i.e. all bonds of
the type QM1-MM1, bends of the type QM2-QM1-MM1, and torsions of the type QM3-QM2-QM1-MM1. Other
QM-MM mixed bonded interactions (with more than two MM atoms involved) are included. The user is allowed
to include the described interactions, which is controlled via the following keywords:

%qmmm
DeleteLADoubleCounting true # Neglect bends (QM2-QM1-MM1) and torsions

# (QM3-QM2-QM1-MM1). Default true.

(continues on next page)
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(continued from previous page)

DeleteLABondDoubleCounting true # Neglect bonds (QM1-MM1)
end

Charge Alteration

If QM and MM atoms are connected via a bond (defined in the topology file), the charge of the close-by MM atom
(and its neighboring atoms) has to be modified in order to prevent overpolarization of the electron density of LA
and QM region. This charge alteration is automatically taken care of by ORCA. ORCA provides the most popular
schemes that can be used to prevent overpolarization:

CS
Charge Shift - Shift the charge of the MM atom away to the MM2 atoms so that the overall charge is conserved

RCD
Redistributed Charge and Dipole - Shift the charge of the MM atom so that the overall charge and dipole is
conserved

Z0
Keep charges as they are. This MM atom will probably lead to overpolarization

Z1
Delete the charge on the MM1 atom (no overall charge conservation)

Z2
Delete the charges on the MM1 atom and on its first (MM2) neighbors (no overall charge conservation)

Z3
Delete the charges on the MM1 atom and on its first (MM2) and second (MM3) neighbors (no overall charge
conservation)

Embedding Types

The following embeding schemes are available:

Electrostatic
The electrostatic interaction between QM and MM system is computed at the QM level. Thus, the charge
distribution of the MM atoms can polarize the electron density of the QM region. The LJ interaction between
QM and MM system is computed at the MM level.

%qmmm
Embedding Electrostatic # Electrostatic (Default)

# Mechanical
end

In the scheme of electrostatic embedding, the evaluation of the electrostatic potential generated by the MM part
can be accelerated by using the FMM algorithm (described in reference [317]). This will speed up the building of
the Fock Matrix. The default recommended setup can be called using the FMM-QMMM keyword directly in the
keywords line. However, more details about the algorithm parameters and all input options can be found in (see
also paragraph Fast Multipole Method)

! FMM-QMMM

It is recommended to use that option whenever the MM part is composed of more than 10,000 atoms (or point
charges for ECM methods).

6.16. ORCA Multiscale Implementation 379



ORCA Manual, Release 6.0

6.16.2 Additive QMMM

The minimum input necessary for an additive QM/MM calculation looks as follows.

!QMMM
%qmmm
QMAtoms {0 1 2 27 28} end
ORCAFFFilename "UBQ.ORCAFF.prms"
end

6.16.3 ONIOM Methods

For the simulation of large systems with up to 10000 atoms, or for large QM regions in biomolecules, ORCA
provides the QM/QM2 and QM/QM2/MM methods. The specifics of the two different methods are discussed
further below. Here we are presenting the common concepts and keywords of both methods. For subtractive
methods, we use a high level (QM) and a low level (QM2) of accuracy for different parts of the system. The
advantages of this - in contrary to QM-MM methods - are as follows:

• QM2 methods are polarizable, the interaction with the high level region is more accurate.

• No MM parameters are needed for the atoms that are described at the QM2 level.

Available QM2 Methods

ORCA has several built in QM2 methods:

• Semiempirical methods (AM1, PM3)

• Tight-binding DFT (XTB0, XTB1, XTB (or XTB2))

• Composite methods (HF-3c, PBEh-3c, r2SCAN-3c)

• User-defined QM2 methods

The individual keywords for these methods are:

!QM/XTB or !QM/XTB/MM
!QM/XTB1 or !QM/XTB1/MM
!QM/XTB0 or !QM/XTB0/MM
!QM/HF-3C or !QM/HF-3C/MM
!QM/PBEH-3C or !QM/PBEH-3C/MM
!QM/R2SCAN-3C or !QM/R2SCAN-3C/MM
!QM/PM3 or !QM/PM3/MM
!QM/AM1 or !QM/AM1/MM

Users can define their own low-level methods in the following way

!QM/QM2 or !QM/QM2/MM
%qmmm

QM2CUSTOMMETHOD "B3LYP"
QM2CUSTOMBASIS "def2-SVP def2/J"

end

Alternatively, a custom QM2 method / basis set file can be provided:

!QM/QM2 or !QM/QM2/MM
%qmmm

QM2CustomFile "myQM2Method.txt" # File should be available in working directory.
end

The custom QM2 method file can contain any desired input, as e.g. the file myQM2Method.txt:
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!cc-pVDZ HF TightSCF NOSOSCF KDIIS
%basis

NewAuxJKGTO Mg "AutoAux" end
end

ò Note

• Only add methods (including convergence settings) and basis sets for the QM2Custom options. Every-
thing else (parallelization, memory, solvation, etc.) is taken care of by ORCA itself.

Electrostatic Interaction between high and low level

By default we are using electrostatic embedding, i.e. the high level system sees the atomic point charges of the
low level (QM2) system. These point charges are derived from the full system low level (QM2) calculation. The
following methods for determining these charges are available:

Charge_Method Hirshfeld # Hirshfeld (default)
# MBIS
# CHELPG
# Mulliken
# Loewdin, default for QM2 = AM1 or PM3

The QM2 point charges can be scaled with the following keyword.

%qmmm
Scale_QM2Charges_MMAtom 1. # default is 1.

end

Boundary Region

The boundary between high and low level part of the system can contain covalent bonds. For the detection and
realistic treatment of these covalent bonds, a topology of the large QM2 system is generated using the following
keyword.

AutoFF_QM2_Method XTB # XTB (default)
# XTB1
# XTB0
# GFNFF
# HF3C
# PBEH3C
# R2SCAN3C
# PM3
# AM1

ò Note

• By default ORCA uses the XTB method for the preparation of the QM2 topology. In order to use the
default you need to make sure to have the otool_xtb binary in your ORCA PATH, see Semi-empirical
tight-binding methods: Grimme’s GFN0-xTB, GFN-xTB and GFN2-xTB.
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Subtractive QM/QM2 Method

The QM/QM2 method is a very convenient way of running multiscale calculations without the need to prepare any
parameters. This method is a subtractive QM-QM method, in which we treat a part of interest on a higher level of
accuracy, and the remainder of the system on lower level of accuracy. The implementation follows similar works
as e.g. described in reference [572].

The method can be used in a similar way as a regular QM calculation. Let us have a look at the proton transfer in
propionic acid, which can be modeled as follows:

!QM/XTB BP86 def2-TZVP def2/J
!Fast-NEB-TS NumFreq
!pal8
%qmmm

QMAtoms {0:3} end
end
%neb
product "propionicAcid_prod.xyz"
preopt true
end
*xyz 0 1
H -0.738352472 0.000000000 -5.836214279
O -0.738352472 -0.587240971 -5.061536853
O -0.738352472 1.434717404 -4.069730302
C -0.738352472 0.227304724 -3.975502162
C -0.738352472 -0.566448428 -2.687358498
H 0.133951528 -1.231202352 -2.710760176
H -1.610656472 -1.231202352 -2.710760176
C -0.738352472 0.318369069 -1.443687014
H -0.738352472 -0.294739868 -0.538164669
H 0.142397528 0.965221387 -1.423275731
H -1.619102472 0.965221387 -1.423275731
*

with the product structure file (propionicAcid_prod.xyz):

11
C3H6O2
H -0.738352472 1.628728096 -5.020130139
O -0.738352472 -0.587240971 -5.061536853
O -0.738352472 1.434717404 -4.069730302
C -0.738352472 0.227304724 -3.975502162
C -0.738352472 -0.566448428 -2.687358498
H 0.133951528 -1.231202352 -2.710760176
H -1.610656472 -1.231202352 -2.710760176
C -0.738352472 0.318369069 -1.443687014
H -0.738352472 -0.294739868 -0.538164669
H 0.142397528 0.965221387 -1.423275731
H -1.619102472 0.965221387 -1.423275731

As can be seen from the input, the only difference to a regular calculation is the necessity to define the high level
region via the QMAtoms keyword.
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System charges and multiplicities

The two subsystems can have different (integer) charges and multiplicities. Defining the correct charges and mul-
tiplicities is important. The charge and multiplicity defined via the coordinate section defines the charge and
multiplicity of the high level region (QMAtoms). The user still needs to define the charge and multiplicity of the
total system (corresponding to the sum of the charge of the high level and low level parts, and corresponding to the
overall multiplicity).

%qmmm
QMAtoms {0:3} end # high level region
Charge_Total 0 # charge of the full system. Default 0.
Mult_Total 1 # multiplicity of the full system. Default 1.

end
*xyz 0 1 # charge and mult. of the high level region, i.e. atoms 0 to 3

Available low level methods

The following QM2 (low level) methods are available:

!QM/XTB
!QM/XTB1
!QM/XTB0
!QM/HF-3C
!QM/PBEH-3C
!QM/R2SCAN-3C
!QM/PM3
!QM/AM1
!QM/QM2

For information on how to specify the custom QM/QM2 method please see Available QM2 Methods.

Solvation

Implicit Solvation effects can be included in QM/QM2 calculations. On the one hand, for QM/XTB calculations,
one can adopt the analytical linearized Poisson-Boltzmann (ALPB) solvation model, the domain decomposition
COSMO (ddCOSMO), or the extended conductor-like polarizable continuum model (CPCM-X), and on the other
hand, if no XTB is requested, ORCA uses the C-PCM. The user just needs to add the following tags in the ORCA
input file,

XTB for the QM2 region:

!QM/XTB ALPB(Water)

or

!QM/XTB DDCOSMO(Water)

or

!QM/XTB CPCMX(Water)

No XTB for the QM2 region:

!QM/HF-3c CPCM(Water)

If the ddCOSMO (XTB) or the C-PCM (non-XTB) are requested, there are two possible ONIOM/implicit-solvation
methods:[875]
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• C-PCM/B: The effect of the solvent is, in the first place, included in the calculation for the large QM2 system.
Once this calculation finishes, the solvation charges located on the surface of the cavity for the large system
are used as point charges for the subsequent low-level and high-level calculations for the small system.

• C-PCM/C: The effect of the solvent is only included in the calculation for the large QM2 system.

The user can choose one scheme or the other via the tag “solv_scheme” in the “qmmm” block:

%qmmm
solv_scheme CPCM_B # CPCM_B (default)

# CPCM_C
end

If the ALPB model or the CPCM-X are requested (within QM/XTB methods), the solvation effect is just included
in the calculation for the large QM2 system (as one does for the C-PCM/C scheme).

QM/QM2/MM Method

The QM/QM2/MM method uses a combination of the subtractive scheme for the QM-QM2 part, and the addi-
tive scheme for the (QM-QM2) - (MM) interaction. It can be used if very large QM regions are required for
biomolecules and explicitly solvated systems. The system is divided into a high level (QM), low level (QM2), and
MM region (MM).

QM2 Atoms

QM2 atoms need to be defined for QM/QM2/MM calculations. They can be defined either directly

%qmmm
QMAtoms {0:4} end # list of QM atoms (counting starts from 0) or
QM2Atoms {5:22} end # list of QM2 atoms
end # an atom should not occur in both lists
*pdbfile 0 1 ubq.pdb

or via the occupancy column of a pdb file (see QM Atoms).

System charges and multiplicities

The high and low level subsystems can have different (integer) charges and multiplicities. Defining the correct
charges and multiplicities is important. The charge and multiplicity defined via the coordinate section defines
the charge and multiplicity of the high level region (QMAtoms). The user still needs to define the charge and
multiplicity of the medium system (corresponding to the sum of the charge of the high level and low level regions,
and corresponding to the overall multiplicity of the combined high and low level region). The charge of the MM
region is determined based on the MM parameters provided by the forcefield.

%qmmm
QMAtoms {0:3} end # high level region
Charge_Medium 0 # charge of the medium system. Default 0.
Mult_Medium 1 # multiplicity of the medium system. Default 0.

end
*xyz 0 1 # charge and mult. of the high level region, i.e. atoms 0 to 3
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Available low level methods

The following QM2 (low level) methods are available:

!QM/XTB/MM
!QM/XTB1/MM
!QM/XTB0/MM
!QM/HF-3C/MM
!QM/PBEH-3C/MM
!QM/R2SCAN-3C/MM
!QM/PM3/MM
!QM/AM1/MM
!QM/QM2/MM

For information on how to specify the custom QM/QM2/MM method please see Available QM2 Methods.

Example Input

An example for a QM/QM2/MM calculation looks as follows:

!QM/HF-3c/MM Opt B3LYP def2-TZVP def2/J NumFreq
%qmmm
ORCAFFFilename "peptideChain.ORCAFF.prms"
QMAtoms {16:33 68:82} end
QM2Atoms {0:12 83:104} end
ActiveAtoms { 0:38 65:120} end
Charge_Medium 0
end
*pdbfile -1 1 peptideChain.pdb

6.16.4 CRYSTAL-QMMM

For the simulation of extended systems ORCA provides the CRYSTAL-QMMM features:

MOL-CRYSTAL-QMMM
for molecular crystals.

IONIC-CRYSTAL-QMMM
for semiconductors and insulators.

In this section we present the concepts and keywords that are common to both methods. ORCA is a molecular code
and cannot carry out periodic calculations, but ORCA has been used for modeling selected properties for ionic
solids using embedded cluster models already in the past (see e.g reference [213]). With ORCA 5 we provide the
CRYSTAL-QMMM method, which simplifies setting up and running these types of embedded cluster calculations.
The user needs to provide the structure with a (large enough) supercell representative for the crystal, and provide
a list of QM atoms. The QM region should be located in the central part of the supercell. The QM atoms are
embedded in the remainder of the supercell, the surrounding MM atoms, which are represented by atom-centered
point charges and influence the QM calculations. How these charges are obtained, is outlined in the next paragraph.
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Charge Convergence between QM and MM region

The core idea of the CRYSTAL-QMMM method is to reach charge convergence between the QM and the MM
atoms. For this purpose, the MM charges are updated self-consistently with the atomic (CHELPG) charges of the
QM atoms. This idea follows the work of reference [213] for the IONIC-CRYSTAL-QMMM and of reference
[109] for the MOL-CRYSTAL-QMMM.

!IONIC-CRYSTAL-QMMM or MOL-CRYSTAL-QMMM
%qmmm

Conv_Charges true # default true for both CRYSTAL-QMMM variants
Conv_Charges_MaxNCycles 10 # default 30 for MOL-CRYSTAL-QMMM

# default 10 for IONIC-CRYSTAL-QMMM
Conv_Charges_ConvThresh 0.01 # threshold (default 0.01) for maximum charge change

#for atom type between two subsequent charge convergence
# cycles

Scale_FormalCharge_MMAtom 1. # default is 1. MM atomic charges used in QM part of
# the CRYSTAL-QMMM calculation are scaled by this factor

end

During optimizations, the charge convergence scheme can be used (i) only at the very beginning, (ii) every N
geometry steps, or (iii) for each geometry step, using the following keyword:

%geom
ReConvCharge 1 # default is 1. Redo charge convergence scheme every N steps.

end

After charge convergence, the converged charges are stored in the file basename.convCharges.ORCAFF.prms. It
can be used for a later calculation (with the same or different electronic structure settings) with the following
keyword combination:

!IONIC-CRYSTAL-QMMM or !MOL-CRYSTAL-QMMM
%qmmm

Conv_Charges false
ORCAFFFilename "firstjob.convCharges.ORCAFF.prms"

end

MM-MM Interaction

Unlike with the other multiscale methods (QMMM, QM/QM2, QM/QM2/MM) the MM region is only treated as a
perturbation to the QM region. The (bonded and nonbonded) MM-MM interaction is not computed - since it would
not affect the QM-MM interaction - and thus the active region (optimizations, frequencies, . . . ) in CRYSTAL-
QMMM calculations should be restricted to atoms of the QM region.
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Preparing CRYSTAL-QMMM Calculations

The input structures and input files for the CRYSTAL-QMMM calculations can be prepared with the
orca_crystalprep module (see section orca_crystalprep).

MOL-CRYSTAL-QMMM

Conceptually we use an additive QM/MM calculation, in which the QM region interacts with the MM region only
via nonbonded interactions. Lennard-Jones interaction between QM and MM region is computed using van der
Waals parameters from the UFF force field. The charge convergence treatment between QM and MM region starts
with zero charges on the MM atoms, and is iterated until convergence of the QM atomic (CHELPG) and MM point
charges is achieved.

The MOL-CRYSTAL-QMMM method expects as structural input a supercell that consists of repeating, identical
molecular subunits, i.e. the atom ordering of the molecules should always be the same, and one molecular subunit
should follow the next one. The minimum input necessary for a MOL-CRYSTAL-QMMM run looks as follows.

%qmmm
NUnitCellAtoms 16 # provide the number of atoms per molecular subunit
QMAtoms {160:175} end # QM atoms, should be in central part of the supercell.

# Must be at least one complete molecular subunit.
end

ò Note

• For molecular crystals it is assumed that the entire supercell consists of repeating units which each have
zero charge. QM regions should consist of one or multiple of such charge-neutral units.

Extending the QM Region

ORCA can extend the QM region (which we call QM core region, defined by the original QMAtoms input) by
one or multiple layers of molecular subunits using the HFLayers keyword. If the HFLayers keyword is used, the
molecular subunits of the defined number of layers around the QM core region is added to the QM region. The
layers of molecular subunits around the QM core region are detected via distance criteria.

%qmmm
HFLayers 0 # default 0
HFLayerGTO "LANL2DZ" # default. Use this basis set for the HFLayer atoms
HFLayerECP "HayWadt" # default. Use these ECPs for the HFLayer atoms.
Conv_Charge_UseQMCoreOnly true # only use the QM core region for the charge

# convergence scheme
end

The HFLayer can be seen as a buffer region between the molecular subunit of interest (original QM atoms) and the
surrounding subunits. The different possible reasons for HFLayers are as follows:

• For DLPNO calculations with HFLayers, the DLPNO multilevel feature is automatically switched on. The
molecules of the HFlayer form an own fragment which is treated on HF level only, i.e. these molecules are
not included in the Post-HF treatment.

• The HFLayers can also be used for non-DLPNO calculations. In such cases, the HFLayer molecules are in
the same way included in the QM calculation as the other QM molecules. But their definition is a convenient
way to choose a different basis set (and ECPs) for those molecules.

• It can be assumed that the QM charges computed for the QM core region are more realistic than the charges
of the HFLayer atoms near the MM atomic charges. Thus, using only the QM atomic charges of the QM
core region represent more realistic charges for the charge convergence scheme.

6.16. ORCA Multiscale Implementation 387



ORCA Manual, Release 6.0

ò Note

• The term HFLayers might be misleading. Strictly speaking, only for MOL-CRYSTAL-QMMM calcu-
lations with DLPNO methods (e.g. DLPNO-CCSD(T), DLPNO-MP2, DLPNO-B2PLYP) the HF layer
atoms are treated on HF level. For other methods (e.g. DFT) the HF layer atoms are treated with the
same electronic structure method as the QM core region atoms.

• If necessary, the atoms of the HFLayer can be defined by the user. Make sure that complete molecular
subunits are used here.

%qmmm
HFLayerAtoms {0:15} end

end

Example Input

An example for a MOL-CRYSTAL-QMMM calculation looks as follows:

! MOL-CRYSTAL-QMMM
! PBE def2-SVP Opt NumFreq
%qmmm
NUnitCellAtoms 13
QMAtoms {221:233} end
ActiveAtoms {221:233} end
end
*xyzfile 0 1 Ala_SC.xyz

IONIC-CRYSTAL-QMMM

Conceptually we use an embedded cluster calculation, in which the QM region interacts only with the MM atomic
point charges of the surrounding. Unlike with MOL-CRYSTAL-QMMM, the Lennard-Jones interaction between
QM and MM region is not computed. The charge convergence treatment between QM and MM region starts with
the initial MM charges (the charges initially read from the ORCAFF.prms file) and is iterated until convergence of
the QM atomic (CHELPG) and MM point charges is achieved.

Boundary Region

For ionic crystals a boundary region needs to be introduced between the QM region and the atomic point charges
of the MM atoms in order to avoid spurious electron leakage from the clusters and to treat dangling bonds on
the surface of the QM region. This boundary region consists of capped effective core potentials (cECPs). These
cECPs are placed on the position of the MM atoms that are directly adjacent to the QM region. ORCA analyzes
the connectivity of the atoms of the supercell and can thus detect the layers of atoms around the QM region, where
the first layer consists of the atoms directly bonded to the QM atoms, the second layer consists of the atoms directly
bonded to the atoms of the first layer and so on. The charges of these cECPs are determined in the same way as the
MM atomic charges during the charge convergence scheme.

%qmmm
ECPLayerECP "SDD" # cECPs used for the boundary region
ECPLayers 3 # Number of cECP layers around the QM region.

# Default is 3.
Scale_FormalCharge_ECPAtom 1. # default is 1. Charges on cECPs are scaled by

# this factor
end
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Extending the QM Region

ORCA can extend the QM region (which we call QM core region, defined by the original QMAtoms input) by
one or multiple layers of atoms using the HFLayers keyword. If the HFLayers keyword is used, the atoms of the
defined number of layers around the QM core region is added to the QM region. The layers of atoms around the
QM core region are detected in the same way as defined above for the ECPLayers.

%qmmm
HFLayers 0 # default 0
HFLayerGTO "LANL2DZ" # default. Use this basis set for the HFLayer atoms
HFLayerECP "HayWadt" # default. Use these ECPs for the HFLayer atoms.
Conv_Charge_UseQMCoreOnly true # only use the QM core region for the charge

# convergence scheme
end

The HFLayer can be seen as a buffer region between the actual atoms of interest (original QM atoms) and the
surrounding cECP and MM point charge environment.The different possible reasons for HFLayers are as follows:

• For DLPNO calculations with HFLayers, the DLPNO multilevel feature is automatically switched on. The
atoms of the HFLayer form an own fragment which is treated at HF level only, i.e. these atoms are not
included in the Post-HF treatment.

• It can be assumed that the QM charges computed for the QM core region are more realistic than the charges
of the HFLayer atoms near the cECPs and MM atomic charges, in particular for highly charged systems.
Thus, using only the QM atomic charges of the QM core region represent more realistic charges for the
charge convergence scheme.

ò Note

• The term HFLayers might be misleading. Strictly speaking, only for IONIC-CRYSTAL-QMMM calcu-
lations with DLPNO methods (e.g. DLPNO-CCSD(T), DLPNO-MP2, DLPNO-B2PLYP) the HF layer
atoms are treated on HF level. For other methods (e.g. DFT) the HF layer atoms are treated with the
same electronic structure method as the QM core region atoms.

• If necessary, the atoms of the HFLayer can be defined by the user:

%qmmm
HFLayerAtoms {29:35} end

end

• The charge of the HFLayer is automatically computed based on the formal charges of its atoms. If
necessary, the HFLayer charge can be provided by the user.

%qmmm
Charge_HFLayer 10 # by default it is computed automatically based on the formal

# charges from the ORCAFF.prms file
end

Net Charge of the Entire Supercell

For ionic crystals, the QM region (as well as the entire supercell) can consist of an unequal number of atoms of
each atom type. As a result of that, the QM region may have non-zero net charge. Consequently, when assigning
the atomic point charges to the MM atoms during the charge convergence scheme, the sum of the charge of the
QM region, of the ECP layer, and of the atomic charges of the MM atoms, can deviate from the ideal charge of the
supercell. In order to enforce the ideal charge of the supercell, the total charge of the entire system is enforced by
equally shifting the charges of all MM (including boundary) atoms.

%qmmm
Charge_Total 0 # default 0. Total charge of the supercell

(continues on next page)
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(continued from previous page)

EnforceTotalCharge true # enforce the total charge by shifting MM charges
end

The charge shifting procedure can be restricted to the MM atoms on the outer parts of the supercell by defin-
ing the number of OuterPCLayers. If OuterPCLayers is set to 1, only the atoms of the most outer layer of the
supercell (recognized based on the connectivity of the atoms) are included in the charge shifting procedure. If
OuterPCLayers is larger than 2, the atoms connected to the most outer layer are additionally included in the
charge shifting procedure, etc.

%qmmm
OuterPCLayers 0 # default 0, i.e. charge shifting for all MM atoms

end

ò Note

• The charge of the QM core region can be chosen to be assigned automatically. This overwrites the charge
provided in the xyz or pdb section.

%qmmm
AutoDetectQCCharge false # default is false

end

Example Input

A minimal example for an IONIC-CRYSTAL-QMMM calculation looks as follows:

! IONIC-CRYSTAL-QMMM
! NMR
! PBE pcSseg-2 def2/JK def2-svp/C
%qmmm

QMAtoms {0:6} end
ORCAFFFilename "nacl6.ORCAFF.prms"
CHARGE_TOTAL 0

end
*xyzfile -5 1 nacl6.xyz

Different QM and MM regions Stored in the PDB file

The stored PDB file contains the following entries in its occupancy column.

0
MM atoms mimicked by surrounding point charges.

1
QM core region atoms

2
HFLayer atoms

3
cECPs

4
OuterPCLayer atoms (subset of MM atoms) if defined, are the only atoms that are used in the charge shift
procedure for enforcing the total charge.
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6.16.5 Additional Keywords

Here we list additional keywords and options that are accessible from within the %qmmm block and that are relevant
to QM/MM calculations. Some of these keywords can also be accessed via the %mm block, see section Available
Keywords for the MM module.

!QMMM
%qmmm
# Charge alteration scheme preventing overpolarization.
ChargeAlteration CS # CS (Default)

# RCD
# Z0
# Z1
# Z2
# Z3

# Parameters for placing the shifted and redistributed charges for RCD and CS schemes.
Scale_RCD 0.5 # Defines where on the bond between MM1 and MM2 the

# shifted charge is positioned. Default: midpoint.
Scale_CS 0.06 # Defines where on the bond between MM2 and MM1/MM3 the

# shifted charge is positioned. Default: 0.06 x bond.

# The extended active region, activeRegionExt, contains the atoms surrounding the
# active atoms.
ExtendActiveRegion distance # rule to choose the atoms belonging to activeRegionExt.

# no - do not use activeRegionExt atoms
# cov_bonds - add only atoms bonded covalently to
# active atoms
# distance (default) - use a distance criterion (VDW
# distance plus Dist_AtomsAroundOpt)

Dist_AtomsAroundOpt 0.0 # in Angstrom (Default 0). Meaning only freeze atoms
# which touch the active atoms by their VDW spheres.
# only needed for ExtendActiveRegion distance

OptRegion_FixedAtoms {27 1288:1290 4400} end # manually define the activeRegionExt
# atoms. Default: empty list.

# Printing options. All are true by default.
PrintLevel 1 # Can be 0 to 4, 0=nothing, 1=normal, ...
PrintOptRegion true # Additionally print xyz and trj for opt region
PrintOptRegionExt false # Additionally print xyz and trj for extended opt region
PrintQMRegion true # Additionally print xyz and trj for QM region
PrintFullTRJ true # Print trajectory of full system. Default true.
PrintPDB true # Additionally print pdb file for entire system, is

# updated every iteration for optimization

# Computing MM nonbonded interactions within non-active region.
Do_NB_For_Fixed_Fixed true # Compute MM-MM nonbonded interaction also for

# non-active atom pairs. Default true.
# Treats all active water molecules that are treated on MM level as rigid bodies
# in optimization and MD simulation, see section "Rigid Water".
Rigid_MM_Water false # Default false.

end

*pdbfile 0 1 ubq.pdb # structure input via pdb file, but also possible via xyz file
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6.17 QM/MM via Interfaces to ORCA

ORCA is easy to interface as a QM engine in pretty much any QM/MM environment, as it will accept a set of point
charges from an external file (see section Inclusion of Point Charges) and it will return, in a transparent format,
all the required information for computing energies and gradients to the driving program. In our research group
we have experience with four different QM/MM environments: ChemShell, Gromacs, pDynamo and NAMD. In
the following each of the interfaces are described. Is beyond the scope of the manual to be exhaustive, and only
minimal working examples are going to be presented. These will cover mainly the technical aspects with respect
to the QM part of the QM/MM calculation. For the initial preparation of the system the user is referred to the
documentation of the driving program.

6.17.1 ORCA and Gromacs

In cooperation with the developers of Gromacs software package we developed an interface to ORCA. The interface
is available starting with Gromacs version 4.0.4 up to version 4.5.5.

As mentioned above, the initial setup has to be done with the Gromacs. In the QM/MM calculation Gromacs will
call ORCA to get the energy and the gradients of the QM atoms. The interface can be used to perform all job types
allowed by the Gromacs software package, e.g. optimizations, molecular dynamics, free energy. In addition, for
geometry optimizations we have implemented a microiterative scheme that can be requested by setting the keyword
bOpt = yes in the Gromacs .mdp file. This will cause ORCA to perform a QM geometry optimization every time
it is called by Gromacs. During this optimization ORCA will also compute the Lennard-Jones interaction between
the QM and MM atoms, and freeze the boundary atoms. This microiterative scheme can also be used to perform a
transition state optimization. If you are looking for a transition state and have a good initial guess for the structure,
you can carry out an optimization of the MM system and at the same time perform a transition state optimization
of the QM system with ORCA via the microiterative scheme. Since it is expensive to calculate the Hessian for each
microiterative microiterative step, the user can tell ORCA to use the (updated) Hessian matrix of the previous step
via read_temp_Hess in the ORCA input.

In order to allow full flexibility to the user, the information for the QM run are provided in a separate plain text
file, called GromacsBasename.ORCAINFO. When Gromacs writes the input for the ORCAcalculation, it will merge
this file with the information on the coordinates, point charges, Lennard-Jones coefficients and type of calculation
(EnGrad, Opt, TSOpt).

Below is a typical example of an input file created by Gromacs, where for each Gromacs optimization step, a full
optimization of the QM-part will be performed by ORCA, instead of just doing the energy and gradient calculation.

# Optimization step in the Lennard-Jones and point charges field of the MM atoms
! QMMMOpt

# file containing the Lennard Jones coefficients for the Lennard-Jones interaction
%LJCoefficients "temp.LJ"
# file containing the point charges for the electrostatic interaction
%pointcharges "temp.pc"

%geom
# calculate the exact Hessian before the first optimization step
Calc_Hess true
# in case of a TS optimization the updated Hessian of the previous
# TS optimization run is read instead of calculating a new one
read_temp_Hess true

end

ò Note

• If you are using bOpt or bTS you have to take care of additional terms over the boundary. Either you can
zero out the dihedral terms of the Q2-Q1-M1-M2 configurations, or you can fix the respective Q2 atoms.

• If you want to use the ORCA constraints, you have to also put them in the Gromacs part of the calculation.
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• If there are no bonds between the QM and MM systems, the bOpt optimization of the QM system might
have convergence problems. This is the case if the step size is too large and thus QM atoms come too
close to MM atoms. The convergence problems can be circumvented by adding extra coordinates and
Hessian diagonal values for Cartesian coordinates of selected QM atoms to the set of internal coordinates.
This should be done for only few atoms that are in the boundary region.

%geom
# add the Cartesian position of atoms 2 and 4 to the
# set of internal coordinates with a diagonal Hessian value of 0.1
Hess_Internal
{C 2 D 0.1}
{C 4 D 0.1}
end

end

6.17.2 ORCA and pDynamo

The interface with the pDynamo library is briefly documented here. It uses the same plain text files to exchange
information between the pDynamo library and ORCA. In order to have simiar functionality as presented above, we
have extended the interface to generate more complex ORCA input files by accepting verbatim blocks of text. We
have also implemented in pDynamo the capability of writing files containing Lennard-Jones parameters.

A simple example which calculates the QM/MM energy for a small designed peptide in which the side chain of
one amino acid is treated QM is ilustrated below. For this example, a complete geometry optimization is going to
be performed during the ORCA call.

import os
import pCore
import pBabel
import pMolecule
import pMoleculeScripts

# Read the initial coordinates from the .pdb file.
system = pMoleculeScripts.PDBFile_ToSystem(

"1UAO.pdb", modelNumber=1, useComponentLibrary=True)

# Instantiate the required models.
mmmodel = pMolecule.MMModelOPLS("protein")
nbmodel = pMolecule.NBModelORCA()
qcmodel = pMolecule.QCModelORCA(

command=os.getenv("ORCA_COMMAND"),
deleteJobFiles=False, header="bp86 def2-svp qmmmopt/pdynamo",
job="chignolin", run=True)

# Assign the models to the system.
system.DefineMMModel(mmmodel)
system.DefineQCModel(

qcmodel, qcSelection=pCore.Selection([35, 36, 37, 34, 40, 41]))
system.DefineNBModel(nbmodel)
system.electronicState = pMolecule.ElectronicState(

charge=-1, multiplicity=1)

# Print a summary and calculate the energy.
system.Summary()
system.Energy()

After the execution of the above Python program, a series of files are going to be created chignolin.inp,
chignolin.pc, chignolin.lj and ORCA is going to be called. The generated ORCAinput file is listed below.
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! bp86 def2-svp qmmmopt/pdynamo
% geom

constraints
{C 0 C}
{C 1 C}
end

end

% pointcharges "chignolin.pc"
% ljcoefficients "chignolin.lj"
* xyz -1 1
H -1.0637532468 1.1350324675 2.4244220779
C -0.5230000000 0.6870000000 3.2490000000
C 0.4180000000 1.7240000000 3.8660000000
O -0.0690000000 2.7620000000 4.2830000000
O 1.6090000000 1.4630000000 3.9110000000
H -1.2240000000 0.3460000000 3.9970000000
H 0.0550000000 -0.1510000000 2.8890000000
*

There are few points that have to be raised here. Because the keyword qmmm/pdynamo was specified in the header
variable, the pDynamo library will automatically add the constraint block in the ORCA input, which will freeze
the link atoms and the QM atoms to which they are bound. It will also generate the chignolin.lj file contain-
ing all the Lennard-Jones parameters. The important parts of this file, which is somewhat different than the one
generated by Gromacs, are listed next.

# number of atoms combination rule
138 0
# x y z sigma epsilon id

-6.778000 -1.424000 4.200000 3.250000 0.711280 -1
-6.878000 -0.708000 2.896000 3.500000 0.276144 -1
-5.557000 -0.840000 2.138000 3.750000 0.439320 -1

...
0.433000 0.826000 0.502000 2.960000 0.878640 -1
-0.523000 0.687000 3.249000 3.500000 0.276144 1
0.418000 1.724000 3.866000 3.750000 0.439320 2
-0.069000 2.762000 4.283000 2.960000 0.878640 3
1.609000 1.463000 3.911000 2.960000 0.878640 4
-2.259000 -0.588000 1.846000 0.000000 0.000000 -1
-1.795000 2.207000 2.427000 2.500000 0.125520 -1
-1.224000 0.346000 3.997000 2.500000 0.125520 5
0.055000 -0.151000 2.889000 2.500000 0.125520 6
-0.311000 2.922000 0.557000 3.250000 0.711280 -1

...
-1.387000 -2.946000 5.106000 2.500000 0.125520 -1

# number of special pairs
22
# atom1 atom2 factor

34 32 0.000000
35 39 0.500000
40 31 0.000000
41 30 0.500000
41 32 0.500000
36 31 0.500000
40 32 0.500000
40 39 0.500000
34 31 0.000000
35 30 0.500000
34 11 0.500000
34 38 0.500000
41 31 0.000000
37 31 0.500000

(continues on next page)
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34 33 0.500000
34 39 0.000000
40 30 0.500000
41 39 0.500000
34 30 0.000000
35 31 0.000000
34 42 0.500000
35 32 0.500000

The second number on the first line refers to the type of combination rule used to calculate the Lennard-Jones
interaction. It is 0 if a geometric average is used (OPLS force field), or 1 for the Lorentz-Berthelot rules (AMBER
force field). The id on the last column is -1 for MM atoms and is equal to the atom number for the QM atoms. In
this case the hydrogen link atom is atom 0. The last block of the file is composed of atom pairs and a special factor
by which their Lennard-Jones interaction is scaled. In general this factor is equal to 1, but for atoms one or two
bonds apart is zero, while for atoms three bonds apart depends on the type of force field, and in this case is 0.5.

After successful completion of the ORCA optimization run, the information will be relayed back the pDynamo
library, which will report the total QM/MM energy of the system. At this point the type QM/MM of calculation is
limited only by the capabilities of the pDynamo library, which are quite extensive.

6.17.3 ORCA and NAMD

Since version 2.12, NAMD is able to perform hybrid QM/MM calculations. A more detailed explanation of all
available key words, setting up the calculation and information on tutorials and on the upcoming graphic interface
to VMD are available on the NAMD website.

Similar to other calculations with NAMD, the QM/MM is using a pdb file to control the active regions. An example
is shown below, where the sidechain of a histidine protonated at N𝜖 is chosen to be the QM region. Either the
occupancy column or the b-factor column of the file are used to indicate which atom are included in a QM area
and which are treated by the forcefield. In the other column, atoms which are connecting the QM area and the
MM part are indicated similarly. To clarify which column is used for which purpose, the keywords qmColumn and
qmBondColumn have to be defined in the NAMD input.

...
ATOM 1737 CA HSE P 117 14.762 47.946 31.597 1.00 0.00 PROT C
ATOM 1738 HA HSE P 117 14.751 47.579 32.616 0.00 0.00 PROT H
ATOM 1739 CB HSE P 117 14.129 49.300 31.501 1.00 1.00 PROT C
ATOM 1740 HB1 HSE P 117 14.407 49.738 30.518 0.00 1.00 PROT H
ATOM 1741 HB2 HSE P 117 13.024 49.194 31.509 0.00 1.00 PROT H
ATOM 1742 ND1 HSE P 117 13.899 51.381 32.779 0.00 1.00 PROT N
ATOM 1743 CG HSE P 117 14.572 50.261 32.582 0.00 1.00 PROT C
ATOM 1744 CE1 HSE P 117 14.615 52.043 33.669 0.00 1.00 PROT C
ATOM 1745 HE1 HSE P 117 14.356 53.029 34.064 0.00 1.00 PROT H
ATOM 1746 NE2 HSE P 117 15.678 51.318 33.982 0.00 1.00 PROT N
ATOM 1747 HE2 HSE P 117 16.369 51.641 34.627 0.00 1.00 PROT H
ATOM 1748 CD2 HSE P 117 15.706 50.183 33.335 0.00 1.00 PROT C
ATOM 1749 HD2 HSE P 117 16.451 49.401 33.388 0.00 1.00 PROT H
ATOM 1750 C HSE P 117 13.916 47.000 30.775 0.00 0.00 PROT C
ATOM 1751 O HSE P 117 12.965 46.452 31.334 0.00 0.00 PROT O
...

NOTES:

• If one wants to include more than one QM region, integers bigger than 1 can be used to define the different
regions.

• Charge groups cannot be split when selecting QM and MM region. The reason is that non-integer partial
charges may occur if a charge group is split. Since the QM partial charges are updated in every QM iteration,
this may lead to a change in the total charge of the system over the course of the MD simulation.
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• The occupancy and b-factor columns are used for several declarations in NAMD. If two of these come
together in one simulation, the keyword qmParamPDB is used to define which pdb file contains the information
about QM atoms and bonds.

• To simplify the selection of QM atoms and writing the pdb file a set of scripts is planned to be included in
future releases of NAMD.

To run the calculation, the keyword qmForces on must be set. To select ORCA qmSoftware "orca" must be
specified and the path to the executables must be given to qmExecPath, as well as a directory where the calculation
is carried out (qmBaseDir). To pass the method and specifications from NAMD to ORCA qmConfigLine is used.
These lines will be copied to the beginning of the input file and can contain both simple input as well as block
input. To ensure the calculation of the gradient, the engrad keyword should be used.

The geometry of the QM region including the selected links as well as the MM point charges are copied to the
ORCA inputfile automatically. Multiplicity and charge can be defined using qmMult and qmCharge, although the
latter can be determined automatically by NAMD using the MM parameters. It should be noted at this point that
NAMD is capable to handle more than one QM region per QM/MM calculation. Therefore for each region, charge
and multiplicity are expected. In the case of only one QM region, the input looks like the following:

qmMult "1 1"
qmCharge "1 0"

Currently, two charge modes are available: Mulliken and CHELPG. They have to be specified in the NAMD
input using QMChargeMode and in the qmConfigLine, respectively. Different embedding schemes, point charge
schemes and switching functions are available, which will be not further discussed here. Another useful tool worth
mentioning is the possibility to call secondary executables before the first or after each QM software execution
using QMPrepProc or QMSecProc, respectively. Both are called with the complete path and name to the QM input
file, allowing e.g. storage of values during an QM/MM-MD.

It is strongly enphasized that at this points both programs are constantly developed further. For the latest informa-
tion, either the ORCA forum or the NAMD website should be consulted.

6.18 Excited State Dynamics

ORCA can now also be used to compute dynamic properties involving excited states such as absorption spectra,
fluorescence and phosphorescence rates and spectra, as well as resonant Raman spectra using the new ORCA_ESD
module. We do this by analytically solving the Fermi’s Golden Rule-like equation from Quantum Electrodynamics
(see the section More on the Excited State Dynamics module), using a path integral approach to the dynamics, as
described in our recent papers [198, 199]. The computation of these rates relies on the harmonic approximation
for the nuclear normal modes. Provided this approximation holds, the results closely match experimental data.

The theory can do most of what ORCA_ASA can and more, such as including vibronic coupling in forbidden tran-
sitions (the so-called Herzberg-Teller effect, HT), considering Duschinsky rotations between modes of different
states, solving the equations using different coordinate systems, etc. There are also seven new approaches to obtain
the excited state geometry and Hessian without necessarily optimizing its geometry. Many keywords and options
are available, but most of the defaults already give good results. Let’s get into specific examples, starting with the
absorption spectrum. Please refer to section More on the Excited State Dynamics module for a complete keyword
list and details.
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6.18.1 Absorption Spectrum

The ideal model, Adiabatic Hessian (AH)

To predict absorption or emission rates, including all vibronic transitions, ideally, one requires both the ground
state (GS) and excited state (ES) geometries and Hessians. For instance, when predicting the absorption spectrum
for benzene, which exhibits one band above 220 nm corresponding to a symmetry-forbidden excitation to the S1
state, the process is straightforward. Ground state information can be obtained from (Sec. Geometry Optimizations,
Surface Scans, Transition States, MECPs, Conical Intersections, IRC, NEB):

!B3LYP DEF2-SVP OPT FREQ
* XYZFILE 0 1 BEN.xyz

and the S1 ES from (Sec. Excited State Geometry Optimization):

!B3LYP DEF2-SVP OPT FREQ
%TDDFT

NROOTS 5
IROOT 1

END
* XYZFILE 0 1 BEN_S1.xyz

Assuming DFT/TD-DFT here, but other methods can also be used (see Tips, Tricks and Troubleshooting). With
both Hessians available, the ESD module can be accessed from:

!B3LYP DEF2-SVP TIGHTSCF ESD(ABS)
%TDDFT

NROOTS 5
IROOT 1

END
%ESD

GSHESSIAN "BEN.hess"
ESHESSIAN "BEN_S1.hess"
DOHT TRUE

END
* XYZFILE 0 1 BEN.xyz

s Important

The geometry must match that in the GS Hessian when calling the ESD module. You can obtain it from the
.xyz file after geometry optimization or directly copy it from the .hess file (remember to use BOHRS on the
input to correct the units, if obtained from the .hess).

You must provide both names for the Hessians and set DOHT to TRUE here because the first transition of benzene
is symmetry forbidden, with an oscillator strength of 2e-6. Therefore, all intensity arises from vibronic coupling
(HT effect) [199]. In molecules with strongly allowed transitions, this parameter can typically remain FALSE (the
default). Some calculation details are printed, including the computation of transition dipole derivatives for the
HT component, and the spectrum is saved as BASENAME.spectrum.

Energy TotalSpectrum IntensityFC IntensityHT
10807.078728 2.545915e-02 2.067393e-07 2.545894e-02
10828.022679 2.550974e-02 2.071508e-07 2.550954e-02
10848.966630 2.556034e-02 2.075624e-07 2.556013e-02
...

The first column has the total spectrum, but the contributions from the Franck-Condon part and the Herzberg-Teller
part are also discriminated. As you can see, the FC intensity is less than 1% of the HT intensity here, highlighting
the importance of including the HT effect. It is important to note that, in theory, the absorbance intensity values
correspond to the experimental 𝜀 (in L mol cm−1), and they depend on the spectral lineshape. The TotalSpectrum
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column can be plotted using any software to obtain the spectrum named Full AH spectrum (shown in blue), in Fig.
6.58 below.

Fig. 6.58: Here is the experimental absorption spectrum for benzene (shown in black on the left), alongside pre-
dictions made using ORCA_ESD at various PES approximations.

The spectrum obtained is very close to the experimental results at 298K, even when simply using all the defaults,
and it could be further improved by adjusting parameters such as lineshape, as discussed in detail in Sec. General
Aspects and Sec. More on the Excited State Dynamics module.

ò Note

• The path integral approach in ORCA_ESD is much faster than the more traditional approach of calcu-
lating all vibronic transitions with non-negligible intensities, one by one [748]. This is especially true
for large systems, where the number of bright vibronic transitions may potentially scale exponentially,
but our approach’s scaling remains polynomial (in fact near linear scaling in favorable cases [199]). The
price to pay is that one can no longer read off the compositions of the vibronic states from the spectrum,
in other words, one cannot assign the peaks without doing further calculations. However, one can know
whether a given vibrational mode contributes to a given peak, by repeating the ESD calculation with a
few modes removed, and see if the peak is still present. This can be conveniently done using the MOD-
ELIST or SINGLEMODE keywords. More information can be found in Sec. More on the Excited State
Dynamics module.

• The Huang-Rhys factors are important tools for qualitative and quantitative analysis of the contributions
of each vibrational mode to the vibrationally resolved spectrum (and also to the transition rate constants,
as will be discussed later). They can be requested by setting PRINTLEVEL in the %ESD module to 3
or above.

Of course, it is not always possible to obtain the excited state (ES) geometry due to root flipping, or it might be
too costly for larger systems. Therefore, some approximations to the ES Potential Energy Surface (PES) have been
developed.
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The simplest model, Vertical Gradient (VG)

The minimal approximation, known as Vertical Gradient (VG), assumes that the excited state (ES) Hessian equals
the ground state (GS) Hessian and extrapolates the ES geometry from the ES gradient and that Hessian using some
step (Quasi-Newton or Augmented Hessian, which is the default here). Additionally, in this scenario, the simplest
Displaced Oscillator (DO) model is employed, ensuring fast computation [199]. To use this level of approximation,
simply provide an input like:

!B3LYP DEF2-SVP TIGHTSCF ESD(ABS)
%TDDFT

NROOTS 5
IROOT 1

END
%ESD

GSHESSIAN "BEN.hess"
DOHT TRUE
HESSFLAG VG #DEFAULT

END
* XYZFILE 0 1 BEN.xyz

OBS: If no GSHESSIAN is given, it will automatically look for an BASENAME.hess file.

Choosing one of the methods in ORCA to compute excited state information is essential. Here, we utilize TD(A)-
DFT with IROOT 1 to compute properties for the first excited state. TD(A)-DFT is currently the sole method
offering analytic gradients for excited states; selecting any other method will automatically enforce NUMGRAD.

s Important

Please note that certain methods, such as STEOM-DLPNO-CCSD, require significant time to compute numer-
ical gradients. In such cases, we recommend using DFT/TD-DFT Hessians and employing the higher-level
method solely for single points.

If everything is set correctly, after the regular single point calculation, the ESD module in ORCA will initiate. It
proceeds to obtain the excited state (ES) geometry, compute derivatives, and predict the spectrum. The resulting
normalized spectrum can be observed in Fig. 6.58, depicted in red. Due to such simple model, the spectrum is also
simplified. While this simplicity is less critical for larger molecules, it highlight the potential benefit of employing
an intermediate model.

A better model, Adiabatic Hessian After a Step (AHAS)

A reasonable compromise between a full geometry optimization and a simple step with the same Hessian is to
perform a step and then recalculate the ES Hessian at that geometry. This approach is referred to here as Adiabatic
Hessian After Step (AHAS). In our tests, it can be invoked with the following input:

!B3LYP DEF2-SVP TIGHTSCF ESD(ABS)
%TDDFT

NROOTS 5
IROOT 1

END
%ESD

GSHESSIAN "BEN.hess"
DOHT TRUE
HESSFLAG AHAS

END
* XYZFILE 0 1 BEN.xyz

The spectrum obtained corresponds to the green line in Fig. 6.58. As shown, it closely resembles the spectrum
obtained using AH, where a full geometry optimization was performed. Although not set as the default, this
method comes highly recommended based on our experience [199]. Another advantage of this approach is that the
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derivatives of the transition dipole are computed simultaneously over Cartesian displacements on the ES structure
using the numerical Hessian. Subsequently, these modes are straightforwardly converted.

OBS: The transition dipoles used in our formulation are always those of the FINAL state geometry. For absorption,
this corresponds to the ES, so in AHAS, the derivatives are computed over this geometry. For fluorescence, the
default behavior is to recompute the derivatives over the GS geometry. Alternatively, you can choose to save time
and convert directly from ES to GS by setting CONVDER TRUE (though this is an approximation). For more
details, refer to Sec. More on the Excited State Dynamics module.

Other PES options

There are also a few other options that can be set using HESSFLAG. For example, you can calculate the vertical
ES Hessian over the GS geometry and perform a step, known as the Vertical Hessian (HESSFLAG VH) method.
This method has the advantage that the geometry step is expected to be better because it does not assume the
initial ES Hessian is equal to the GS Hessian. However, it is likely to encounter negative frequencies on that VH,
since you are not at the ES minimum. By default, ORCA will turn negative frequencies into positive ones, issuing a
warning if any were lower than -300 cm−1. You can also choose to completely remove them (and the corresponding
frequencies from the GS) by setting IFREQFLAG to REMOVE or leave them as negative with IFREQFLAG set
to LEAVE under %ESD. Just be aware that an odd number of negative frequencies might disrupt the calculation
of the correlation function, so be sure to check.

If your excited state is localized and you prefer not to recalculate the entire Hessian, you can opt for a Hybrid Hes-
sian (HH) approach. This involves recomputing the ES Hessian only for specific atoms listed in HYBRID_HESS
under %FREQ (Frequency calculations - numerical and analytical). The HH method uses the GS Hessian as a
base but adjusts it at the specified atoms. This computation can be performed either before or after the step, offering
two variations: Hybrid Hessian Before Step (HESSFLAG HHBS) or Hybrid Hessian After Step (HESSFLAG
HHAS). When using either of these options, derivatives are recalculated across the modes as needed.

Another approach involves comparing the ES Hessian with the GS Hessian and selectively recomputing frequencies
that differs. This method works by applying a displacement based on the GS Hessian and evaluating the resulting
energy change. If the predicted mode matches the actual mode, the prediction should be accurate. However, if
the difference exceeds a specified threshold, the gradient is computed, and the frequency for that mode is recalcu-
lated accordingly. The final ES Hessian is then derived from the Updated Frequencies (UF) and the original GS
Hessian.

This approach offers the advantage of minimizing the computation of ES gradients typical in standard ES Hessians,
thereby speeding up the process. By default, the system checks for frequency errors of approximately 20%. You
can adjust this threshold using the UPDATEFREQERR flag; for instance, setting UPDATEFREQERR to 0.5 under
%ESD allows for a larger error tolerance of 50%. Additionally, you can implement either the Updated Frequencies
Before Step (HESSFLAG UFBS) or the Updated Frequencies After Step (UFAS) methods. Transition dipole
derivatives are computed concurrently with the update process.

OBS: All these options apply to Fluorescence and resonant Raman as well.

Duschinsky rotations

The ES modes can sometimes be expressed as linear combinations of the GS modes (see Sec. General Aspects
of the Theory), a phenomenon known in the literature as Duschinsky rotation [228]. In our formulation within
ORCA_ESD, it is possible to account for this effect, which reflects a closer approximation to real-world scenarios,
albeit at a higher computational cost.

You can enable this feature by setting USEJ TRUE; otherwise, the rotation matrix J defaults to unity. For instance,
in the case of benzene, while the effect may not be pronounced, there is noticeable improvement in matching peak
ratios with experimental data when incorporating rotations. Exploring this option may reveal more significant
impacts in other cases.

400 Chapter 6. Running Typical Calculations



ORCA Manual, Release 6.0

Fig. 6.59: Experimental absorption spectrum for benzene (black on the left) and the effect of Duschinsky rotation
on the spectrum.

Temperature effects

In our model, the effects of the Boltzmann distribution due to temperature are exactly accounted for [199]. The
default temperature is set to 298.15 K, but you can specify any other temperature by adjusting the TEMP parameter
under %ESD. However, it is important to note that when approaching temperatures close to 0 K, numerical issues
may arise. For instance, if you encounter difficulties modeling a spectrum at 5 K or wish to predict a jet-cooled
spectrum, setting TEMP to 0 will activate a set of equations specifically tailored for T=0 K conditions.

As can be seen in Fig. 6.60, at 0 K there are no hot bands and fewer peaks, while at 600 K there are many more
possible transitions due to the population distribution over the GS.

Fig. 6.60: Predicted absorption spectrum for benzene at different temperatures.
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Multistate Spectrum

If you want to predict a spectrum that includes many different states, you should ignore the IROOT flag in all
modules and instead use the STATES flag under %ESD. For example, to predict the absorption spectra of pyrene
in the gas phase and consider the first twenty states, you would specify:

!B3LYP DEF2-TZVP(-F) TIGHTSCF ESD(ABS)
%TDDFT

NROOTS 20
END
%ESD

GSHESSIAN "PYR.hess"
ESHESSIAN "PYR_S1.hess"
DOHT TRUE
STATES 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
UNIT NM

END
* XYZFILE 0 1 PYR.xyz

This input would result in the spectra shown in Fig. 6.61. In this case, each individual spectrum for every state
will be saved as BASENAME.spectrum.root1, BASENAME.spectrum.root2, etc., while the combined spectrum,
which is the sum of all individual spectra, will be saved as BASENAME.spectrum.

Fig. 6.61: Predicted absorption spectrum for pyrene in gas phase (solid blue) in comparison to the experiment
(dashed grey) at 298 K.

OBS: The flag UNIT can be used to control the output unit of the X axis. Its values can be CM-1, NM or EV and
it only affects the OUTPUT, the INPUT should always be in cm−1
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6.18.2 Fluorescence Rates and Spectrum

General Aspects

The prediction of fluorescence rates and spectra can be performed in a manner analogous to absorption, as described
above, by using ESD(FLUOR) on the main input line. You can select any of the methods described earlier to
obtain the Potential Energy Surface (PES) by setting the appropriate HESSFLAG. The primary distinction is that
the transition dipoles must correspond to the geometry of the ground state (GS), while all other aspects remain
largely unchanged.

Fig. 6.62: Predicted absorption (right) and emission (left) spectrum for benzene in hexane at 298.15 K.

As depicted in Fig. 6.62, the fluorescence spectrum also closely matches the experimental data [199]. The differ-
ence observed in the absorption spectrum in Fig. 6.62, compared to previous spectra, arises because the experiment
was conducted in a solvent environment. Therefore, we adjusted the linewidth to align with the experimental data.

OBS: It is common for the experimental lineshape to vary depending on the setup, and this can be adjusted using
the LINEW flag (in cm−1). There are four options for the lineshape function controlled by the LINES flag: DELTA
(for a Dirac delta function), LORENTZ (default), GAUSS (for a Gaussian function), and VOIGT (a Voigt profile,
which is a product of Gaussian and Lorentzian functions).

OBS2: The DELE and TDIP keywords can be used to input adiabatic (not vertical!) excitation energy and transi-
tion dipole moment computed at a higher level of theory. This enables calculating the computationally intensive
Hessians (especially the excited state Hessian) at a low level of theory without compromising the accuracy. For
more details, see Sec. Mixing methods.

If you need to control the lineshapes separately for Gaussian (GAUSS) and Lorentzian (LORENTZ), you can set
LINEW for Lorentzian and INLINEW for Gaussian (where “I” stands for Inhomogeneous Line Width).
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!B3LYP DEF2-SVP TIGHTSCF ESD(FLUOR)
%TDDFT

NROOTS 5
IROOT 1

END
%ESD

GSHESSIAN "BEN.hess"
ESHESSIAN "BEN_S1.hess"
DOHT TRUE
LINES VOIGT
LINEW 75
INLINEW 200

END
* XYZFILE 0 1 BEN.xyz

OBS: The LINEW and INLINEW are NOT the full width half maximum (𝐹𝑊𝐻𝑀 ) of these curves. However,
they are related to them by: 𝐹𝑊𝐻𝑀𝑙𝑜𝑟𝑒𝑛𝑡𝑧 = 2× 𝐿𝐼𝑁𝐸𝑊 ; 𝐹𝑊𝐻𝑀𝑔𝑎𝑢𝑠𝑠 = 2.355× 𝐼𝑁𝐿𝐼𝑁𝐸𝑊 .

For the VOIGT curve, it is a little more complicated but in terms of the other FWHMs, it can be approximated as:
𝐹𝑊𝐻𝑀𝑣𝑜𝑖𝑔𝑡 = 0.5346× 𝐹𝑊𝐻𝑀𝑙𝑜𝑟𝑒𝑛𝑡𝑧 +

√︁
(0.2166× 𝐹𝑊𝐻𝑀2

𝑙𝑜𝑟𝑒𝑛𝑡𝑧 + 𝐹𝑊𝐻𝑀2
𝑔𝑎𝑢𝑠𝑠).

Rates and Examples

When you select ESD(FLUOR) on the main input, the fluorescence rate will be printed at the end of the output,
with contributions from Franck-Condon (FC) and Herzberg-Teller (HT) mechanisms discriminated. If you use
CPCM, the rate will be multiplied by the square of the refractive index, following Strickler and Berg [831].

If you calculate a rate without CPCM but still want to account for the solvent effect, remember to multiply the final
rate by this factor. Below is an excerpt from the output of a calculation with CPCM (hexane):

. Warning

Whenever using ESD with CIS/TD-DFT and solvation, CPCMEQ will be set to TRUE by default, since the
excited state should be under equilibrium conditions! More info in Including solvation effects via LR-CPCM
theory.

...
***Everything is set, now computing the correlation function***

Homogeneous linewidht is: 50.00 cm-1
Number of points: 131072
Maximum time: 1592.65 fs
Spectral resolution: 3.33 cm-1
Temperature used: 298.15 K
Z value: 5.099843e-42
Energy difference: 41049.37 cm-1
Reference transition dipole (x,y,z): (0.00004 0.00000),

(0.00002 0.00000),
(-0.00058 0.00000)

Calculating correlation function: ...done
Last element of the correlation function: 0.000000,-0.000000
Computing the Fourier Transform: ...done

The calculated fluorescence rate constant is 1.688355e+06 s-1*
with 0.00% from FC and 100.00% from HT

*The rate is multiplied by the square of the refractive index

The fluorescence spectrum was saved in BASENAME.spectrum
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In one of our theory papers, we investigated the calculation of fluorescence rates for the set of molecules presented
in Fig. 6.63. The results are summarized in Fig. 6.64 for some of the methods used to obtain the Potential Energy
Surface (PES) mentioned.

Fig. 6.63: The set of molecules studied, with rates on Fig. 6.64.
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Fig. 6.64: Predicted emission rates for various molecules in hexane at 298.15 K. The numbers below the labels are
the HT contribution to the rates.

6.18.3 Phosphorescence Rates and Spectrum

General Aspects

As with fluorescence, phosphorescence rates and spectra can be calculated if spin-orbit coupling is included in
the excited state module (please refer to the relevant publication [198]). To enable this, ESD(PHOSP) must be
selected in the main input, and both a GSHESSIAN and a TSHESSIAN must be provided. The triplet Hessian can
be computed analytically from the spin-adapted triplets.

!B3LYP DEF2-TZVP(-F) CPCM(ETHANOL) OPT FREQ
%TDDFT

NROOTS 5
IROOTMULT TRIPLET

END
* XYZ 0 1
C -0.82240 -0.05739 0.00515
C 0.42295 0.77803 0.02146
H -0.85252 -0.69527 0.89195
H -0.85090 -0.66429 -0.90325
H -1.69889 0.59680 0.01431
C 1.74379 0.02561 -0.01818
C 2.98907 0.86121 -0.00686
H 3.01366 1.50199 -0.89176
H 3.86561 0.20724 -0.02398
H 3.02300 1.46514 0.90332
O 0.42398 2.00161 0.06749
O 1.74282 -1.19814 -0.05965
*

or, in this case, by computing the ground state triplet by simply setting the multiplicity to three:

!B3LYP DEF2-TZVP(-F) CPCM(ETHANOL) OPT FREQ
* XYZFILE 0 3 BIA.xyz

Alternatively, one can use methods like VG, AHAS, etc., to approximate the triplet geometry and Hessian. How-
ever, this approach requires preparing the Hessian in a separate ESD run (Sec. Approximations to the excited state
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PES).

Additionally, you must input the adiabatic energy difference between the ground singlet and ground triplet states at
their respective geometries (without any zero-point energy correction) using the DELE flag under %ESD. In this
case, the spin-adapted triplet computed previously serves as our reference triplet state. An example input for the
rate calculation using TDDFT is as follows:

!B3LYP DEF2-TZVP(-F) TIGHTSCF CPCM(ETHANOL) ESD(PHOSP) RI-SOMF(1X)
%TDDFT

NROOTS 20
DOSOC TRUE
TDA FALSE
IROOT 1

END
%ESD GSHESSIAN "BIA.hess"

TSHESSIAN "BIA_T1.hess"
DOHT TRUE
DELE 17260

END
* XYZFILE 0 1 BIA.xyz

$NEW_JOB

!B3LYP DEF2-TZVP(-F) TIGHTSCF CPCM(ETHANOL) ESD(PHOSP) RI-SOMF(1X)
%TDDFT

NROOTS 20
DOSOC TRUE
TDA FALSE
IROOT 2

END
%ESD GSHESSIAN "BIA.hess"

TSHESSIAN "BIA_T1.hess"
DOHT TRUE
DELE 17260

END
* XYZFILE 0 1 BIA.xyz

$NEW_JOB

!B3LYP DEF2-TZVP(-F) TIGHTSCF CPCM(ETHANOL) ESD(PHOSP) RI-SOMF(1X)
%TDDFT

NROOTS 20
DOSOC TRUE
TDA FALSE
IROOT 3

END
%ESD GSHESSIAN "BIA.hess"

TSHESSIAN "BIA_T1.hess"
DOHT TRUE
DELE 17260

END
* XYZFILE 0 1 BIA.xyz

Phosphorescence rate calculation are always accompanied by the generation of the vibrationally resolved phospho-
rescence spectrum, which can be visualized in the same way as fluorescence spectra.

OBS.: When computing phosphorescence rates, each rate from individual spin sub-levels must be requested sepa-
rately. You may use the $NEW_JOB option, just changing the IROOT, to write everything in a single input. After
SOC, the three triplet states (𝑇1 with𝑀𝑆 = -1, 0 and +1) will split into IROOTs 1, 2 and 3, and all of them must be
included when computing the final phosphorescence rate. In this case, it is reasonable to assume that the geometries
and Hessians of these spin sub-levels are the same, and we will use the same .hess file for all three.

OBS2.: The ground state geometry should be used in the input file, similar to the case of fluorescence (vide supra).
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OBS3.: Apart from DELE, one can also use the TDIP keyword to input a high-level transition dipole moment,
similar to the fluorescence case. This enables e.g. the calculation of phosphorescence rates/spectra using e.g.
NEVPT2 or DLPNO-STEOM-CCSD transition dipole moments, with (TD)DFT geometries and Hessians. Note
however that the transition dipole moment in phosphorescence processes is complex, so 6 instead of 3 components
are required.

Here, we are computing the rate and spectrum for biacetyl in ethanol at 298 K. The geometries and Hessians
were obtained as previously described, with the ground triplet computed from a simple open-shell calculation.
To compute the rate, the flag DOSOC must be set to TRUE under %TDDFT (Sec Spin-orbit coupling), or the
respective module, and it is advisable to set a large number of roots to ensure a good mixing of states.

Please note that we have chosen the RI-SOMF(1X) option for the spin-orbit coupling integrals, but any of the
available methods can be used (Sec. The Spin-Orbit Coupling Operator).

Calculation of rates

As you can see, the predicted spectra for biacetyl (Fig. 6.65) are quite close to the experimental results [198, 784].
The calculation of the phosphorescence rate is more complex because there are three triplet states that contribute.
Therefore, the observed rate must be taken as an average of these three states.

𝑘𝑝ℎ𝑜𝑠𝑝𝑎𝑣 =
𝑘1 + 𝑘2 + 𝑘3

3

To be even more strict and account for the Boltzmann population distribution at a given temperature 𝑇 caused by
the Zero Field Splitting (ZFS), one should use [593]:

𝑘𝑝ℎ𝑜𝑠𝑝𝑎𝑣 =
𝑘1 + 𝑘2𝑒

−(Δ𝐸1,2/𝑘𝐵𝑇 ) + 𝑘3𝑒
−(Δ𝐸1,3/𝑘𝐵𝑇 )

1 + 𝑒−(Δ𝐸1,2/𝑘𝐵𝑇 ) + 𝑒−(Δ𝐸1,3/𝑘𝐵𝑇 )
(6.26)

where ∆𝐸1,2 is the energy difference between the first and second states, and so on.

After completion of each calculation, the rates for the three triplets were 8.91 s−1, 0.55 s−1, and 284 s−1. Using
(6.26), the final calculated rate is about 98 s−1, while the best experimental value is 102 s−1 (at 77K) [592], with
about 40% deriving from the HT effect.
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Fig. 6.65: The experimental (dashed red) and theoretical (solid black, displaced by about 2800 cm−1) phosphores-
cence spectra for biacetyl, in ethanol at 298 K.

OBS: A subtlety arises when the final state is not a singlet state, for example in radical phosphorescence (doublet
ground state) or singlet oxygen phosphorescence (triplet ground state). In this case the most rigorous treatment
would be to sum over the final states but average over the initial states. For example, with quartet-to-doublet
phosphorescence one gets

𝑘𝑝ℎ𝑜𝑠𝑝𝑎𝑣 =
𝑘1→1 + 𝑘2→1𝑒

−(Δ𝐸1,2/𝑘𝐵𝑇 ) + 𝑘3→1𝑒
−(Δ𝐸1,3/𝑘𝐵𝑇 ) + 𝑘4→1𝑒

−(Δ𝐸1,4/𝑘𝐵𝑇 )

1 + 𝑒−(Δ𝐸1,2/𝑘𝐵𝑇 ) + 𝑒−(Δ𝐸1,3/𝑘𝐵𝑇 ) + 𝑒−(Δ𝐸1,4/𝑘𝐵𝑇 )

+
𝑘1→2 + 𝑘2→2𝑒

−(Δ𝐸1,2/𝑘𝐵𝑇 ) + 𝑘3→2𝑒
−(Δ𝐸1,3/𝑘𝐵𝑇 ) + 𝑘4→2𝑒

−(Δ𝐸1,4/𝑘𝐵𝑇 )

1 + 𝑒−(Δ𝐸1,2/𝑘𝐵𝑇 ) + 𝑒−(Δ𝐸1,3/𝑘𝐵𝑇 ) + 𝑒−(Δ𝐸1,4/𝑘𝐵𝑇 )

where 𝑘2→1 is the phosphorescence rate constant from the second sublevel of the initial quartet to the first sublevel
of the final doublet, etc. Note that the Boltzmann factors of the final state do not enter the expression. Unfortunately,
since U-TDDFT is spin contaminated and unsuitable for calculating SOC-corrected transition dipole moments, the
transition dipoles in this case have to be calculated by more advanced methods, such as DFT/ROCIS or multiref-
erence methods. The transition dipole should then be given in the input file using the TDIP keyword.

6.18.4 Intersystem Crossing Rates (unpublished)

General Aspects

Yet another application of the path integral approach is to compute intersystem crossing rates, or non-radiative
transition rates between states of different multiplicities. This can be calculated if one has two geometries, two
Hessians, and the relevant spin-orbit coupling matrix elements.

The input is similar to those discussed above. Here ESD(ISC) should be used on the main input to indicate an
InterSystem Crossing calculation, and the Hessians should be provided by ISCISHESSIAN and ISCFSHESSIAN
for the initial and final states, respectively. Please note that the geometry used in the input file should correspond to
that of the FINAL state, specified through the ISCFSHESSIAN flag. The relevant matrix elements can be computed
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using any method available in ORCA and inputted as SOCME Re,Im under %ESD where Re and Im represent its
real and imaginary parts (in atomic units!).

As a simple example, one could compute the excited singlet and ground triplet geometries and Hessians for an-
thracene using TD-DFT. Then, compute the spin-orbit coupling (SOC) matrix elements for a specific triplet spin-
sublevel using the same method (see the details below), potentially employing methods like CASSCF, MRCI,
STEOM-CCSD, or another theoretical level. Finally, obtain the intersystem crossing (ISC) rates using an input
such as:

!ESD(ISC) NOITER
%ESD

ISCISHESSIAN "ANT_S1.hess"
ISCFSHESSIAN "ANT_T1.hess"
DELE 11548
SOCME 0.0, 2.33e-5

END
* XYZFILE 0 1 ANT_T1.xyz

The SOCMEs between a singlet state and a triplet state consist of three complex numbers, not just one, because
the triplet state has three sublevels. If the user uses the SOCME of one of the sublevels as input to the ISC rate
calculation, this gives the ISC rate associated with that particular sublevel. However, experimentally one usually
does not distinguish the three sublevels of a triplet state, and experimentally ISC rates are reported as if the three
sublevels of a triplet state are the same species. Therefore, the rate of singlet-to-triplet ISC is the sum of the
ISC rates from the singlet state to the three triplet sublevels. Fortunately, in case the Herzberg-Teller effect (vide
infra) can be neglected, it is not necessary to perform three rate calculations and add up the rates, since the rate is
proportional to the squared modulus of the SOCME. Thus, one can run a single ESD calculation where the SOCME
is the square root of the summed squared moduli of the three SOCME components.

As an illustration, consider the 𝑆1 to 𝑇1 ISC rate of acetophenone. First, we optimize the 𝑆0 geometry, and (after
manually tweaking the geometry to break mirror symmetry) use it as an initial guess for the geometry optimization
and frequency calculations of the 𝑆1 and 𝑇1 states. Then, we calculate the 𝑆1-𝑇1 SOCMEs at the 𝑇1 geometry (note
that, as usual, final state geometries should be used for ESD calculations; this may differ from some programs other
than ORCA). These calculations are conveniently done using a compound script, although the individual steps can
of course also be done using separate input files.

%pal nprocs 16 end

* xyz 0 1
C 1.512698 7.783764 -0.013405
C 2.900029 7.735359 -0.016012
C 3.664170 8.950745 0.000408
C 2.952045 10.199539 0.007630
C 1.564497 10.214795 0.009890
C 0.827311 9.015246 0.000726
H 0.946857 6.847253 -0.027731
H 3.394565 6.763402 -0.041976
H 3.505090 11.140193 0.017889
H 1.039592 11.175094 0.019479
H -0.265468 9.038211 0.000969
C 5.059695 8.958412 0.000442
O 5.733735 10.161120 -0.048672
C 5.927824 7.713913 0.020029
H 5.442615 6.938582 0.639989
H 6.073177 7.326421 -1.014490
H 6.923426 7.950459 0.447785

*

%compound

new_step # Compound 1: S1 opt
! B3LYP def2-SV(P) opt tightopt freq

(continues on next page)
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%tddft
tda false
nroots 2
iroot 1
end

step_end

new_step # Compound 2: T1 opt
! B3LYP def2-SV(P) opt tightopt freq

* xyz 0 3
C 1.512698 7.783764 -0.013405
C 2.900029 7.735359 -0.016012
C 3.664170 8.950745 0.000408
C 2.952045 10.199539 0.007630
C 1.564497 10.214795 0.009890
C 0.827311 9.015246 0.000726
H 0.946857 6.847253 -0.027731
H 3.394565 6.763402 -0.041976
H 3.505090 11.140193 0.017889
H 1.039592 11.175094 0.019479
H -0.265468 9.038211 0.000969
C 5.059695 8.958412 0.000442
O 5.733735 10.161120 -0.048672
C 5.927824 7.713913 0.020029
H 5.442615 6.938582 0.639989
H 6.073177 7.326421 -1.014490
H 6.923426 7.950459 0.447785

*

step_end

new_step # Compound 3: SOC at T1 geometry
! B3LYP def2-SV(P)

%tddft
tda false
nroots 3
triplets true
dosoc true
end

# Here it is assumed that the input file is named "a.inp"
* xyzfile 0 1 a_Compound_2.xyz

step_end
end

After verifying that neither of the Hessians have imaginary frequencies (which is very important!), we can read the
computed SOCMEs:

--------------------------------------------------------------------------------
CALCULATED SOCME BETWEEN TRIPLETS AND SINGLETS

--------------------------------------------------------------------------------
Root <T|HSO|S> (Re, Im) cm-1

T S Z X Y
--------------------------------------------------------------------------------

1 0 ( 0.00 , -2.00 ) ( 0.00 , 29.24 ) ( -0.00 , -41.11 )
1 1 ( 0.00 , -0.59 ) ( 0.00 , 1.79 ) ( -0.00 , -2.57 )
1 2 ( 0.00 , 0.52 ) ( 0.00 , -3.19 ) ( -0.00 , 3.21 )

(continues on next page)
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1 3 ( 0.00 , -2.39 ) ( 0.00 , 14.57 ) ( -0.00 , -19.53 )
2 0 ( 0.00 , -0.11 ) ( 0.00 , 2.78 ) ( -0.00 , -2.72 )
2 1 ( 0.00 , 2.25 ) ( 0.00 , -20.07 ) ( -0.00 , 28.07 )
2 2 ( 0.00 , 0.02 ) ( 0.00 , -0.13 ) ( -0.00 , 0.29 )
2 3 ( 0.00 , -0.17 ) ( 0.00 , 0.59 ) ( -0.00 , -1.27 )
3 0 ( 0.00 , -0.01 ) ( 0.00 , 0.05 ) ( -0.00 , -0.06 )
3 1 ( 0.00 , -0.01 ) ( 0.00 , 0.19 ) ( -0.00 , -1.36 )
3 2 ( 0.00 , -0.01 ) ( 0.00 , -0.05 ) ( -0.00 , -0.14 )
3 3 ( 0.00 , -0.00 ) ( 0.00 , 0.14 ) ( -0.00 , -0.16 )

The “total” SOCME between 𝑆1 and 𝑇1 is then calculated, from the line that begins with “1 1”, as√︀
0.002 + (−0.59)2 + 0.002 + 1.792 + 0.002 + 2.572𝑐𝑚−1 = 3.19𝑐𝑚−1 = 1.45× 10−5𝑎𝑢

One should therefore write socme 1.45e-5 in the %esd block in the subsequent ISC rate calculation.

Importantly, the above approach is only applicable to singlet-to-triplet ISC, but not to triplet-to-singlet ISC (includ-
ing, but not limited to, 𝑇1 → 𝑆0 and 𝑇1 → 𝑆1 processes). In the latter case, assuming that the triplet sublevels are
degenerate and in rapid equilibrium, we obtain that the observed rate constant is the average, not the sum, of the
rate constants of the three triplet sublevels, because each triplet sublevel has a Boltzmann weight of 1/3. Therefore,
the “effective” SOCME that should be plugged into the ESD module to get the observed rate constant is (here the
squared modulus |𝑆𝑂𝐶𝑀𝐸𝑥|2 should be calculated as 𝑅𝑒(𝑆𝑂𝐶𝑀𝐸𝑥)

2 + 𝐼𝑚(𝑆𝑂𝐶𝑀𝐸𝑥)
2, etc.)

𝑆𝑂𝐶𝑀𝐸𝑎𝑣 =

√︂
|𝑆𝑂𝐶𝑀𝐸𝑥|2 + |𝑆𝑂𝐶𝑀𝐸𝑦|2 + |𝑆𝑂𝐶𝑀𝐸𝑧|2

3
(6.27)

i.e. a factor of
√
3 smaller than the singlet-to-triplet case. However, both of the two assumptions (degenerate triplet

sublevels, and rapid equilibrium between sublevels) may fail under certain circumstances, which may contribute to
the error of the predicted rate. Nevertheless, in many cases the present, simple approach still provides a rate with
at least the correct order of magnitude.

OBS.: The adiabatic energy difference is NOT computed automatically for ESD(ISC), so you must provide it in
the input. This is the energy of the initial state minus the energy of the final state, each evaluated at its respective
geometry.

OBS2.: All the other options concerning changes of coordinate system, Duschinsky rotation, etc., are also available
here.

OBS3.: For many molecules, the 𝑆1 → 𝑇1 ISC process is not the dominant ISC pathway. This is because the
excited state compositions of 𝑆1 and 𝑇1 are often similar, and therefore ISC transitions between them frequently
do not satisfy the El-Sayed rule. Even if the only experimentally observed excited states are 𝑆1 and 𝑇1, it may still
be that the initial ISC is dominated by 𝑆1 → 𝑇𝑛(𝑛 > 1), followed by ultrafast 𝑇𝑛 → 𝑇1 internal conversion.

OBS4.: Similarly, if the molecule starts at a high singlet state 𝑆𝑛(𝑛 > 1), the dominant ISC pathway is not
necessarily the direct ISC from 𝑆𝑛 to one of the triplet states. Rather, it is possible (but not necessarily true) that
𝑆𝑛 first decays to a lower singlet excited state before the ISC occurs.

OBS5.: If you calculate the DELE or SOCMEs at a higher level of theory and use it as an input for the ESD
calculation, please make sure that you have chosen the same excited state (in terms of state composition, not
energy ordering) in the Hessian and DELE/SOCME calculations. For example, suppose that you have obtained
the geometry and Hessian of the 𝑇2 state, but the 𝑇2 state of the higher level of theory has a very different state
composition than the 𝑇2 state at the level of theory used in the Hessian calculation; rather, it is 𝑇3 at the high level
of theory that shares the same composition as the 𝑇2 state at the lower level of theory. In this case, you should use
the SOCME related to 𝑇3 in the SOCME output file.

OBS6.: The ESD module does not require that the final state of the ISC process is energetically lower than the initial
state. Therefore, reverse ISC (RISC) rates can be calculated in exactly the same way as ISC rates. Note however
that (1) if you want to supply the adiabatic energy difference using the DELE keyword, the energy difference should
be negative; and (2) whether one should sum or average the three components of the SOCMEs depend on whether
the final state is a triplet state, not whether the lower state is a triplet state.
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OBS7.: ISC transitions between states other than singlets and triplets (for example between a doublet state an a
quartet state) can also be calculated, provided that the SOCMEs are calculated by a properly spin-adapted or mul-
tireference method, such as DFT/ROCIS or NEVPT2. The squared moduli of the sublevels’ SOCMEs should be
summed over all final state spin sublevels but averaged over all initial state spin sublevels, similar to the phospho-
rescence case (Calculation of rates).

ISC, TD-DFT and the HT effect

In the anthracene example above, the result is an ISC rate (𝑘𝐼𝑆𝐶) smaller than 1𝑠−1, which is quite different from
the experimental value of 108𝑠−1 at 77𝐾 [592]. The reason for this discrepancy, in this particular case, is because
the ISC occurs primarily due to the Herzberg-Teller effect, which must also be included. To achieve this, one needs
to compute the derivatives of the SOCMEs over the normal modes, currently feasible only using CIS/TD-DFT.

When using the %CIS/TDDFT option, you can control the SROOT and TROOT flags to select the singlet and
triplet states for which SOCMEs are computed, and the TROOTSSL flag to specify the triplet spin-sublevel (1, 0,
or -1).

In practice, to obtain an ISC rate (𝑘𝐼𝑆𝐶) close enough to experimental values, one would need to consider all
possible transitions between the initial singlet and all available final states. For anthracene, these are predicted to
be the ground triplet (𝑇1) and the first excited triplet (𝑇2), consistent with experimental observations [402], while
the next triplet (𝑇3) is energetically too high to be significant (Fig. 6.66 below). An example input used to calculate
the 𝑘𝐼𝑆𝐶 from 𝑆1 to 𝑇1 at 77𝐾 is:

!B3LYP DEF2-TZVP(-F) TIGHTSCF ESD(ISC)
%TDDFT NROOTS 5

SROOT 1
TROOT 1
TROOTSSL 0
DOSOC TRUE

END
%ESD ISCISHESS "ANT_S1.hess"

ISCFSHESS "ANT_T1.hess"
USEJ TRUE
DOHT TRUE
TEMP 77
DELE 11548

END
* XYZFILE 0 1 ANT_T1.xyz

$NEW_JOB

!B3LYP DEF2-TZVP(-F) TIGHTSCF ESD(ISC)
%TDDFT NROOTS 5

SROOT 1
TROOT 1
TROOTSSL -1
DOSOC TRUE

END
%ESD ISCISHESS "ANT_S1.hess"

ISCFSHESS "ANT_T1.hess"
USEJ TRUE
DOHT TRUE
TEMP 77
DELE 11548

END
* XYZFILE 0 1 ANT_T1.xyz

...
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Fig. 6.66: Scheme for the calculation of the intersystem crossing in anthracene. The 𝑘𝐼𝑆𝐶(𝑖) between 𝑆1 and
each triplet is a sum of all transitions to the spin-sublevels and the actual observed 𝑘𝑜𝑏𝑠𝐼𝑆𝐶 , which consolidates these
transitions. On the right, there is a diagram illustrating the distribution of excited states with 𝐸(𝑆1) − 𝐸(𝑇𝑛)
depicted on the side. Since 𝑇3 is energetically too high, intersystem crossing involving 𝑇3 can be safely neglected.

Then, the derivatives of the SOCME are computed and the rates are printed at the end. By performing the same
calculations for the 𝑇2 states and summing up these values, a predicted 𝑘𝑜𝑏𝑠𝐼𝑆𝐶 = 1.17 × 108𝑠−1 can be obtained,
much closer to the experimental value, which is associated with a large error anyway.

OBS.: In cases where the SOCME are relatively large, e.g., SOCME > 5𝑐𝑚−1, the Herzberg-Teller effect might
be negligible, and a simple Franck-Condon calculation should yield good results. This is typically applicable to
molecules with heavy atoms, where vibronic coupling is less significant.

OBS2.: Always consider that there are actually THREE triplet spin-sublevels, and transitions from the singlet to
all of them should be included.

OBS3.: ISC rates are extremely sensitive to energy differences. Exercise caution when calculating them. If a more
accurate excited state method is available, it should be considered for prediction.

OBS4.: The Herzberg-Teller effect is not yet implemented for ISC transitions between states that are not singlets
and triplets.

6.18.5 Internal Conversion Rates (unpublished)

The ESD module can also calculate internal conversion (IC) rates from an excited state to the ground state at the
TDDFT and TDA levels. Apart from the ground state and excited state Hessians, the only additional quantity that
needs to be calculated is the nonadiabatic coupling matrix elements (NACMEs).

The input file is simple:

# S1-S0 IC rate of azulene
! B3LYP D3 def2-SVP ESD(IC) CPCM(methanol)

%tddft
tda false # Full TDDFT is recommended over TDA
nroots 3
iroot 1 # Change to 2 for S2-S0 IC rate, etc.
nacme true # Calculate the NACME between the iroot-th root with the ground state
etf true # Use electron translation factor (recommended)
end

%esd
gshessian "azulene_S0.hess" # Ground state Hessian (B3LYP-D3/def2-SVP)
eshessian "azulene_S1.hess" # Excited state Hessian (TD-B3LYP-D3/def2-SVP)

(continues on next page)
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usej true # Use Duschinsky rotation (recommended)
end

# Ground state geometry (B3LYP-D3/def2-SVP)
* xyzfile 0 1 azulene_S0.xyz

Here the 𝑆0 geometry, as well as the 𝑆0 and 𝑆1 Hessian files, were obtained at the B3LYP-D3/def2-SVP level of
theory. Note that the NACME calculation uses full TDDFT and also includes the electron-translation factor (ETF),
which are the recommended practices in general. The “iroot 1” specifies that the initial state is 𝑆1; the final state
is always 𝑆0 and this cannot be changed.

The computed IC rate constant is given near the end of the output file:

***Everything is set, now computing the correlation function***

Homogeneous linewidth is: 50.00 cm-1
Inhomogeneous linewidth is: 250.00 cm-1
Number of points: 32768
Maximum time: 157.86 fs
Temperature used: 298.15 K
Z value: 4.924300e-66
Cutoff for the correlation function: 1.00e-12
Adiabatic energy difference: 16699.89 cm-1
0-0 energy difference: 16382.09 cm-1
Calculating correlation function: ...done
Last element of the correlation function: -0.000000,-0.000000

The calculated internal conversion rate constant is 3.823146e+08 s-1

Total run time: 0 hours 2 minutes 50 seconds

****ORCA ESD FINISHED WITHOUT ERROR****

For more accurate results, one may add explicit solvation shells, since implicit solvation models only describe the
electrostatic and dispersive effects of the solvent on the solute, but cannot provide the extra vibrational degrees of
freedom that can help dissipating the excitation energy. Conversely, by using an implicit solvent one also misses
the effect of the solvent viscosity on inhibiting the internal conversion, which is particularly important when one
wants to compare against experiments conducted at low temperatures.

6.18.6 Resonant Raman Spectrum

General Aspects

Using a theoretical framework similar to what was published for Absorption and Fluorescence, we have also devel-
oped a method to compute resonant Raman spectra for molecules [197]. In this implementation, one can employ
all the methods to obtain the excited state potential energy surfaces (PES) mentioned earlier using HESSFLAG,
and include Duschinsky rotations and even consider the Herzberg-Teller effect on top of it. This calculation can
be initiated by using ESD(RR) or ESD(RRAMAN) on the first input line. It is important to note that by default,
we calculate the “Scattering Factor” or “Raman Activity,” as described by D. A. Long [533] (see Sec. General
Aspects of the Theory for more information).

When using this module, the laser energy can be controlled by the LASERE flag. If no laser energy is specified, the
0-0 energy difference is used by default. You can select multiple energies by using LASERE 10000, 15000, 20000,
etc., and if multiple energies are specified, a series of files named BASENAME.spectrum.LASERE will be saved.
Additionally, it is possible to specify several states of interest using the STATES flag, but not both simultaneously.

As an example, let’s predict the resonant Raman spectrum of the phenoxyl radical. You need at least a ground state
geometry and Hessian, and then you can initiate the ESD calculation using:
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!PBE0 DEF2-SVP TIGHTSCF ESD(RR)
%TDDFT

NROOTS 5
IROOT 3

END
%ESD

GSHESSIAN "PHE.hess"
LASERE 28468

END
* XYZFILE 0 2 PHE.xyz

s Important

The LASERE used in the input is NOT necessarily the same as the experimental one. It should be proportional
to the theoretical transition energy. For example, if the experimental 0-0 ∆E is 30000 cm−1 and the laser
energy used is 28000 cm−1, then for a theoretical ∆E of 33000 cm−1, you should use a laser energy of 31000
cm−1 to obtain the corresponding theoretical result. At the end of the ESD output, the theoretical 0-0 ∆E is
printed for your information.

Fig. 6.67: The theoretical (solid black - vacuum and solid blue - water) and experimental (dashed red - water)
resonant Raman spectrum for the phenoxyl radical.

OBS.: The actual Raman Intensity collected with any polarization at 90 degrees, the I(𝜋/2; ‖𝑠 + ⊥𝑠,⊥𝑖) [533],
can be obtained by setting RRINTES to TRUE under %ESD.

And the result is shown in Fig. 6.67. In this case, the default method VG was used. If one wants to include solvent
effects, then CPCM(WATER) should be added. As can be seen, there is a noticeable difference in the main peak
when calculated in water.
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It is important to clarify some differences from the ORCA_ASA usage here. Using the ESD module, you do not
need to select which modes you will account for in the spectra; we include all of them. Additionally, we can only
operate at 0 K, and the maximum “Raman Order” is 2. This means we account for all fundamental transitions, first
overtones, and combination bands, without including hot bands. This level of approximation is generally sufficient
for most applications.

If you are working with a very large system and want to reduce calculation time, you can request RORDER 1 under
the %ESD options. This setting includes only the fundamental transitions, omitting higher-order bands. This
approach may be relevant, especially when including both Duschinsky rotations and the Herzberg-Teller effect,
which can significantly increase computation time.

The rRaman spectra are printed with the contributions from “Raman Order” 1 and 2 separated as follows:

Energy TotalSpectrum IntensityO1 IntensityO2
0.000000 2.722264e-08 2.722264e-08 8.436299e-30
0.305176 2.824807e-08 2.824807e-08 9.043525e-30
0.610352 2.931074e-08 2.931074e-08 9.693968e-30
...

Isotopic Labeling

If you want to simulate the effect of isotopic labeling on the rRaman spectrum, there is no need to recalculate the
Hessian again. Instead, you can directly modify the masses of the respective atoms in the Hessian files. This can
be done by editing the $𝑎𝑡𝑜𝑚𝑠 section of the input file or directly in the Hessian file itself (see also Sec. Isotope
Shifts). After making these adjustments, you can rerun ESD using the modified Hessian files, for example:

!PBE0 DEF2-SVP TIGHTSCF ESD(RR) CPCM(WATER)
%TDDFT

NROOTS 5
IROOT 3

END
%ESD

GSHESSIAN "PHE_WATER_ISO.hess"
ESHESSIAN "PHE_WATER_ISO.ES.hess"

END
* XYZFILE 0 2 PHE_WATER.xyz

As depicted in Fig. 6.68, the distinction between phenoxyl and its deuterated counterpart is evident. The peak
around 1000 cm−1 corresponds to a C-H bond, which shifts to lower energy after deuteration. This difference of
approximately 150 cm−1 aligns closely with experimental findings [852].
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Fig. 6.68: The theoretical (solid black - C6H5O and solid blue - C6D5O) and experimental (dashed red) resonant
Raman spectrum for the phenoxyl radical.

OBS: Whenever an ES Hessian is calculated using the HESSFLAG methods, it is saved in a file named BASE-
NAME.ES.hess. If you want to repeat a calculation, you can simply use this file as an input without the need to
recalculate everything.

RRaman and Linewidths

The keywords LINEW and INLINEW control the LINES function used in the calculation of the correlation function
and are related to the lifetime of intermediate states and energy disordering. However, they do not determine the
spectral linewidth itself, but rather the lineshape. The spectral linewidth is set independently using the RRSLINEW
keyword, which defaults to 10 𝑐𝑚−1.

It’s important to note that LINEW and INLINEW significantly influence the final shape of the spectrum and should
be chosen appropriately based on your specific needs. While the defaults are generally suitable, you may need to
adjust them according to your requirements.

6.18.7 ESD and STEOM-CCSD or other higher level methods - the APPROXADEN
option

If you plan to use the ESD module together with STEOM-CCSD, or other higher level methods such as EOM-
CCSD, CASSCF/NEVPT2, some special advice must be given.

Since these methods currently do not have analytic gradients, numerical ones will be requested by default to com-
pute the excited state geometries. This, of course, can take a significant amount of time, as they require approxi-
mately 3×𝑁atoms single-point calculations. We strongly recommend that, in these cases, you should use DFT/TD-
DFT to obtain the ground/excited/triplet state geometry and Hessians, and only use the higher-level method for the
final ESD step.

Also, we recommend using APPROXADEN under the %ESD options.

%ESD
APPROXADEN TRUE

END
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In this case, only one single point at the geometry of the ground state needs to be done, and the adiabatic energy
difference will be automatically obtained from the ES Hessian information, without the need of a second single
point at the extrapolated ES geometry, which could be unstable.

6.18.8 Circularly Polarized Spectroscopies

General Aspects

When circularly polarized (CP) light interacts with a chiral chemical structure (optically active), it differentially
absorbs left and right CP lights (𝐼𝐿𝐶𝑃 ̸= 𝐼𝑅𝐶𝑃 ) resulting in the electronic circular dichroism (ECD). Similarly, it
can differentially emit left and right CP lights leading to CP luminescence (CPL), which includes CP fluorescence
(CPF) and phosphorescence (CPP) spectra.

Vibration effects on ECD spectra

Vertically excited (VE) computed ECD spectra are known to often be unable to describe the experiment. This is
for example the case in (R) methyl oxirane. The unshifted or shifted VE ECD BP86 computed spectra do not much
the experiment in terms of shape and intensity. It has been shown that these spectra need to be computed by taking
into account vibronic interactions[396].

Hence following structure optimization and frequencies calculations according to the input:

!BP86 DEF2-SVP TIGHTSCF OPT FREQ

* xyz 0 1
C 0.02461655377138 0.08670067686058 -5.20436273663217
C -0.23485307714882 -0.31738971302751 -3.80610272711970
O -0.15359212444282 1.06795113221760 -4.17749263689755
H 1.05055243293426 -0.00333310016875 -5.61325012342071
H -0.78323750369168 0.02252140387747 -5.95969728166753
H -1.26417590138099 -0.65347889194363 -3.56065466091728
C 0.84884023150886 -0.84537627906508 -2.89604274193698
H 0.68194744925825 -0.50794125098111 -1.85197471265376
H 0.85716491819315 -1.95559179229870 -2.89420656551675
H 1.84600617099845 -0.48435690147087 -3.21751813823758
*

we can compute ESD spectrum within in VE approximation and within the ESD modules according to the following
input:

!BP86 DEF2-SVP TIGHTSCF PAL4

%TDDFT
NROOTS 10
END

%ESD
ESDFlag ECD
GSHESSIAN "c3h6o_opt_freq.hess "
PRINTLEVEL 2
DOHT TRUE
LINEW 500
SPECRANGE 40000, 70000
STATES 1,2,3,4,5,6,7,8,9,10
END

* xyzfile 0 1 c3h6o_opt_freq.xyz

The result is provided in Figure Fig. 6.69 where one can see that according to the expectations the computed
spectrum agrees with the experiment only when FC and HT vibronic coupling schemes are taken into account
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Fig. 6.69: Experimental (black) versus BP86/TDDFT (VE, blue and FC+HT red) ECD spectra for C3H6O molecule

Computation of CP-FLUOR vs CP-PHOS spectra. The case of 𝐶3𝐻6𝑂.

Following the strategy described for the computation of PL (Fluorescence (PF) of Phosphorescence (PP)) spectra
in the case of 𝐶3𝐻6𝑂 one can also access the respective CPL and CPP spectra.

For this one needs to compute the hessian of the 1st excited singlet (ES1) and triplet states respectively (ET0)
according to the following inputs

!BP86 DEF2-SVP TIGHTSCF OPT FREQ

%TDDFT
NROOTS 10
IROOT 1

(continues on next page)
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IMULT 1
END

* xyzfile 0 1 c3h6o_opt_freq.xyz

and

!BP86 DEF2-SVP TIGHTSCF OPT FREQ

%TDDFT
NROOTS 10
IROOT 1
IMULT 3
SOCGRAD TRUE
TRIPLETS TRUE
END

* xyzfile 0 3 c3h6o_opt_freq.xyz

Then one can setup the respective PL and CPL inputs as:

PF:

!BP86 DEF2-SVP TIGHTSCF

%TDDFT
NROOTS 10
IROOT 1
IMULT 1
END

%ESD
ESDFlag FLUOR
GSHESSIAN "C3H6O_opt.hess"
PRINTLEVEL 2
DOHT TRUE
LINEW 500
SPECRANGE 40000, 70000
END

* xyzfile 0 1 c3h6o_opt_freq.xyz

CPF:

!BP86 DEF2-SVP TIGHTSCF

%TDDFT
NROOTS 10
IROOT 1
IMULT 1
END

%ESD
ESDFlag CPF
GSHESSIAN "C3H6O_opt.hess"
PRINTLEVEL 2
DOHT TRUE
LINEW 500
SPECRANGE 40000, 70000
END

* xyzfile 0 1 c3h6o_opt_freq.xyz
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PP:

!BP86 DEF2-SVP TIGHTSCF

%TDDFT
NROOTS 10
IROOT 1
IMULT 3
DoSOC true
TRIPLETS TRUE
SOCGRAD TRUE
END

%ESD
ESDFlag PHOSP
GSHESSIAN "C3H6O_opt_freq.hess"
TSHESSIAN "C3H6O_et0.hess"
PRINTLEVEL 2
DELE 62313
DOHT TRUE
LINEW 500
TEMP 295
SPECRANGE 40000, 70000
END

* xyzfile 0 1 C3H6O_opt.xyz

CPP:

!BP86 DEF2-SVP TIGHTSCF

%TDDFT
NROOTS 10
IROOT 1
IMULT 3
DoSOC true
TRIPLETS TRUE
SOCGRAD TRUE
END

%ESD
ESDFlag CPP
GSHESSIAN "C3H6O_opt_freq.hess"
TSHESSIAN "C3H6O_et0.hess"
PRINTLEVEL 2
DELE 62313
DOHT TRUE
LINEW 500
TEMP 295
SPECRANGE 40000, 70000
END

* xyzfile 0 1 C3H6O_opt.xyz

The results are summarized in Figure Fig. 6.70
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Fig. 6.70: a) Computed ABS and ECD (in blue) and Florescence and CPF (in red) under FC+HT vibronic cou-
pling schemes b) Computed Phosphorescence and CPP under FC (in blue ) and FC+HT (in red) vibronic coupling
schemes

Use of ABS, ECD PL and CPL as a routine analysis computational tools

Having at hand the possibility to compute the above spectroscopic properties quartet. Consisting of Absorption,
ECD, Luminescent/Emission and CPL spectroscopies creates an arsenal of useful analysis computational tools.
Let us consider a practical example from the
the N- bridged triarylamine heterohelicenoid chiral family of molecules, which are known to be very good CPL
emitters in the CPL community. [186] Namely the R-, L- isomers of oxygen-bridged diphenylnaphthylamine for
which both ABS ECD, PL and CPL experimental spectra are available [635]

In a first step one needs to compute to calculate the ECD and CPL spectra, this implies that one needs to optimize
the ground state (GS) geometry and at least the GS hessian of both isomers, (see examples in Fluorescence Rates
and Spectrum and Vibration effects on ECD spectra). Lets suppose that we have generated the GSHessian file
R_OptFreq.hess file for the R-isomer Then one can employ the ESD to calculate the Absorption, ECD, Fluorescence
and CPL (CPluorescecne) as follows.

For Absorption or ECD spectra a representative input is given by:

! PBE0 def2-TZVP def2/J def2-TZVP VeryTightSCF PAL8
%MaxCore 5120

%TDDFT NROOTS 5
End

%ESD ESDFlag ABS or ECD
GSHessian "R_diphenylnaphthylamine_OptFreq.hess"
DoHT True
Lines Gauss
InLineW 500
STATES 1,2,3,4,5
End

*xyz 0 1
C 0.51103659781880 -1.54799809918165 -0.46957711710367

(continues on next page)
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C -0.67682083480241 -2.19898547218227 -0.76456508506476
C 1.59698089595014 -2.23913762447750 0.04536520831045
C 1.49004594789848 -3.60107534512753 0.24696861333386
C -0.75027591609003 -3.56343872947031 -0.57021086417552
C 0.33765559244610 -4.27346122451739 -0.10341675327345
N 0.21984508391204 -5.66346290617628 0.07289766826829
O 2.52716581975956 -4.28847037580032 0.82258958688483
C 2.54101738078760 -5.65282427633174 0.65190453446035
C 1.43184892145219 -6.36105379222857 0.25831057061542
C 3.77147940706722 -6.27965254373750 0.89001683729049
C 3.89719111077242 -7.62085864051752 0.70851807608572
C 1.58029288205151 -7.74060974139699 -0.06585842329724
C 2.81811727341129 -8.37881977445777 0.20527726022176
O -1.91500963727701 -4.25152600059560 -0.80702339426568
C -2.13250715287481 -5.31470429649343 0.04909464399864
C -1.05242665026610 -6.06056594251354 0.52598562255970
C -3.42444532048472 -5.61905191519688 0.41037068048411
C -3.66399173496155 -6.68754268865431 1.26210310826770
C -1.29901325564529 -7.09753540866930 1.41085143603056
C -2.60176522746573 -7.41491597190339 1.76502960065907
H -4.22973438581776 -5.01558835826860 0.01489276124005
H -4.67873778203345 -6.93777656190575 1.53843511994436
H -0.47290745868829 -7.66765085401275 1.80929822862278
H -2.77926863803574 -8.23774715258380 2.44386581691750
H 0.58624233693590 -0.48095844424254 -0.62562692246504
H 2.51652973024519 -1.73662559987765 0.30924801794967
H -1.54272285055189 -1.66670869597130 -1.13102495882678
H 4.59563142014220 -5.66684912938550 1.22771972849030
H 4.83828110533620 -8.11484947410606 0.91089239524435
C 0.56233992156145 -8.49575213625774 -0.69451663429121
C 2.96252715039542 -9.75415434575818 -0.08347675768224
C 0.74593486971180 -9.81550692161063 -0.98488391710801
C 1.95147468552282 -10.46257812809982 -0.65848843248314
H -0.36538542100730 -8.01665224889233 -0.96504181763392
H -0.04242675451776 -10.36879326589460 -1.47770458618347
H 2.07785937833070 -11.51320955617077 -0.88255640316097
H 3.90687057621082 -10.23141194413179 0.14665882143507
*

For Fluorescence or CP Fluorescence spectra a representative input is given by:

! PBE0 def2-TZVP def2/J def2-TZVP VeryTightSCF PAL8
%MaxCore 5120

%TDDFT NROOTS 5
End

%ESD ESDFlag FLUOR or CPF
GSHessian "R_diphenylnaphthylamine_OptFreq.hess"
DoHT True
Lines Gauss
InLineW 500
STATES 1,2,3,4,5
End

*xyz 0 1
C 0.51103659781880 -1.54799809918165 -0.46957711710367
C -0.67682083480241 -2.19898547218227 -0.76456508506476
C 1.59698089595014 -2.23913762447750 0.04536520831045
C 1.49004594789848 -3.60107534512753 0.24696861333386
C -0.75027591609003 -3.56343872947031 -0.57021086417552

(continues on next page)
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C 0.33765559244610 -4.27346122451739 -0.10341675327345
N 0.21984508391204 -5.66346290617628 0.07289766826829
O 2.52716581975956 -4.28847037580032 0.82258958688483
C 2.54101738078760 -5.65282427633174 0.65190453446035
C 1.43184892145219 -6.36105379222857 0.25831057061542
C 3.77147940706722 -6.27965254373750 0.89001683729049
C 3.89719111077242 -7.62085864051752 0.70851807608572
C 1.58029288205151 -7.74060974139699 -0.06585842329724
C 2.81811727341129 -8.37881977445777 0.20527726022176
O -1.91500963727701 -4.25152600059560 -0.80702339426568
C -2.13250715287481 -5.31470429649343 0.04909464399864
C -1.05242665026610 -6.06056594251354 0.52598562255970
C -3.42444532048472 -5.61905191519688 0.41037068048411
C -3.66399173496155 -6.68754268865431 1.26210310826770
C -1.29901325564529 -7.09753540866930 1.41085143603056
C -2.60176522746573 -7.41491597190339 1.76502960065907
H -4.22973438581776 -5.01558835826860 0.01489276124005
H -4.67873778203345 -6.93777656190575 1.53843511994436
H -0.47290745868829 -7.66765085401275 1.80929822862278
H -2.77926863803574 -8.23774715258380 2.44386581691750
H 0.58624233693590 -0.48095844424254 -0.62562692246504
H 2.51652973024519 -1.73662559987765 0.30924801794967
H -1.54272285055189 -1.66670869597130 -1.13102495882678
H 4.59563142014220 -5.66684912938550 1.22771972849030
H 4.83828110533620 -8.11484947410606 0.91089239524435
C 0.56233992156145 -8.49575213625774 -0.69451663429121
C 2.96252715039542 -9.75415434575818 -0.08347675768224
C 0.74593486971180 -9.81550692161063 -0.98488391710801
C 1.95147468552282 -10.46257812809982 -0.65848843248314
H -0.36538542100730 -8.01665224889233 -0.96504181763392
H -0.04242675451776 -10.36879326589460 -1.47770458618347
H 2.07785937833070 -11.51320955617077 -0.88255640316097
H 3.90687057621082 -10.23141194413179 0.14665882143507
*

The results are summarized in Figure Fig. 6.71
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Fig. 6.71: Black Experimental vs Calculated ABS, ECD, Fluorescence and CPF spectra for R- (in blue) and L- (in
red) isomers of diphenylnaphthylamine under FC+HT vibronic coupling schemes of the 𝜋 → 𝜋* transition located
at 25000 𝑐𝑚−1.

6.18.9 Magnetic Circular Dichroism (unpublished)

General Aspects

By applying a quasi-degenerate perturbative theory, similar to the inclusion of spin-orbit coupling effects in the
phosphorescence calculations, the effect of an external magnetic field may be included in the representation of the
quantum states [268]. As a result, the differential absorption of left and right circularly polarized light may be
computed to obtain the vibrationally-corrected magnetic circularly dichroism spectrum. The input for the calcula-
tion is similar to the absorption case described above; nevertheless, ESD(MCD) should be used. Additionally, the
intensity of the external magnetic field “B” (in Gauss) should be included, and a Lebedev grid for a semi-numerical
molecular orientational average should be selected.

The method is only available with an electronic structure generated by TDDFT. The calculation supports the inclu-
sion of Herzberg-Teller effects by setting DOHT TRUE, the ground state Hessian needs to be provided similarly
to the absorption case, while the excited state Hessian can be provided or computed under a no external magnetic
field approximation. An input example is:

!B3LYP DEF2-TZVP TIGHTSCF ESD(MCD)

%TDDFT NROOTS 40
TDA FALSE

END

%ESD GSHESSIAN "pbq.hess"
Hessflag AHAS
DOHT TRUE
STATES 1
B 50000.0

END

* xyzfile 0 1 pbq.xyz

Similarly, to the ESB(ABS) calculation the MCD spectrum is saved in a BASENAME.MCD file as:
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Energy TotalSpectrum IntensityFC IntensityHT
4817.11 -6.324671e-05 -4.528264e-06 -5.871844e-05
5026.55 -6.717718e-05 -4.809014e-06 -6.236816e-05
5235.99 -7.126386e-05 -5.100843e-06 -6.616302e-05
5445.43 -7.551756e-05 -5.404513e-06 -7.011304e-05
5654.87 -7.994996e-05 -5.720850e-06 -7.422911e-05
5864.31 -8.457379e-05 -6.050750e-06 -7.852304e-05
...

6.18.10 Tips, Tricks and Troubleshooting

• Currently, the ESD module works optimally with TD-DFT (Sec. Excited States Calculations), but also
with ROCIS (Sec. Excited States with RPA, CIS, CIS(D), ROCIS and TD-DFT ), EOM/STEOM (Sec. Ex-
cited States with EOM-CCSD and Sec. Excited States with STEOM-CCSD) and CASSCF/NEVPT2 (Sec.
Complete Active Space Self-Consistent Field Method and Sec N-Electron Valence State Perturbation Theory
(NEVPT2)). Of course you can use any two Hessian files and input a custom DELE and TDIP obtained from
any method (see Sec. More on the Excited State Dynamics module), if your interested only in the FC part.

• If you request for the HT effect, calculating absorption or emission, you might encounter phase changes
during the displacements during the numerical derivatives of the transition dipole moment. There is a phase
correction for TD-DFT and CASSCF, but not for the other methods. Please be aware that phase changes
might lead to errors.

• Please check the K*K value if you have trouble. When it is too large (in general larger than 7), a warning
message is printed and it means that the geometries might be too displaced and the harmonic approximation
might fail. You can try removing some modes using TCUTFREQ or use a different method for the ES PES.

• If using DFT, the choice of functional can make a big difference on the excited state geometry, even if it is
small on the ground state. Hybrid functionals are much better choices than pure ones.

• In CASSCF/NEVPT2, the IROOT flag has a different meaning from all other modules. In this case, the
ground state is the IROOT 1, the first excited state is IROOT 2 and so on. If your are using a state-averaged
calculation with more than one multiplicity, you need also to set an IMULT to define the right block, IMULT
1 being the first block, IMULT 2 the second and etc.

• If using NEVPT2 the IROOT should be related to the respective CASSCF root, don’t consider the energy
ordering after the perturbation.

• After choosing any of the HESSFLAG options, a BASENAME.ES.hess file is saved with the geometry and
Hessian for the ES. If derivatives with respect to the GS are calculated, a BASENAME.GS.hess is also saved.
Use those to avoid recalculating everything over and over. If you just want to get an ES PES, you can set
WRITEHESS TRUE under

• Although in principle more complete, the AH is not NECESSARILY better, for we rely on the harmonic
approximation and large displacements between geometries might lead to errors. In some cases the VG,
AHAS and so one might be better options.

• If you use these .hess files with derivatives over normal modes in one coordinate system, DO NOT MIX IT
with a different set of coordinates later! They will not be converted.

• Sometimes, low frequencies have displacements that are just too large, or the experimental modes are too
anharmonic and you might want to remove them. It is possible to do that setting the TCUTFREQ flag (in
cm−1), and all frequencies below the given threshold will be removed.

• If you want to change the parameters related to the frequency calculations, you can do that under %FREQ
(Sec. Vibrational Frequencies). The numerical gradient settings are under %NUMGRAD (Sec. Numerical
Gradients).

• When computing rates, the use of any LINES besides DELTA is an approximation. It is recommended to
compute the rate at much smaller lineshape (such as 10 cm−1) to get a better value, even if the spectrum
needs a larger lineshape than that.
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• When in doubt, try setting a higher PRINTLEVEL. some extra printing might help with your particular
problem.

6.19 The ORCA DOCKER: An Automated Docking Algorithm

The most important aspects of chemistry/physics do not occur with single molecules, but when they interact with
each other. Now, given any two molecules, how to put them together in the best interacting “pose”? That is what
we try to answer when using the ORCA DOCKER. Docking here refers to the process of taking two systems and
putting them together in their best possible interaction.

6.19.1 Example 1: A Simple Water Dimer

Let us start with a very simple example. Given two water molecules, how to find the optimal dimer? With the
DOCKER that is simple and can be done with:

!XTB
%DOCKER GUEST "water.xyz" END
* xyz 0 1
O -2.13487 2.63905 -0.01809
H -1.16698 2.61938 0.02397
H -2.41372 2.24598 0.82256
*

where the file water.xyz is a .xyz file which contains the same water structure, optionally with charge and
multiplicity (in that order) on the comment line (the second line by default):

3
0 1
O -2.13487 2.63905 -0.01809
H -1.16698 2.61938 0.02397
H -2.41372 2.24598 0.82256

The molecule given on the regular ORCA input will be the HOST, and the GUEST is always given through an external
file.

The output will start with:

***************
* ORCA Docker *
***************

Reading guests from file water.xyz
Number of structures read from file 1
Charge and multiplicity of guest from file
Docking approach independent
Docking level normal
Optimizing host .... -5.070544 Eh
Optimizing guest .... -5.070544 Eh

where it writes the name of the file with the GUEST structure, the number of structures read, some extra info and
will optimize both host and guest (in this case they are the same), here by default using GFN2-XTB.

ò Note

If no multiplicity or charge are given, the GUEST is assumed to be neutral and closed-shell.
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ò Note

The DOCKER right now is only working with the GFN-XTB and GFN-FF methods and the ALPB solvation
model. It will be expanded later to others.

That is followed by some extra info that is explained in more details on its own detailed section (see More details
on the ORCA DOCKER):

Starting Docker
---------------
Guest structure .... structure number 1
Guest charge and multiplicity .... (0 , 1)
Final charge and multiplicity .... (0 , 1)
PES used during evolution .... GFN2-XTB
Setting random seed .... done
Creating spatial grid

Grid Max Dimension 5.50 Angs
Angular Grid Step 32.73 degrees
Cartesian Grid Step 0.50 Angs
Points per Dimension 11 points

Initializing workers
Population Density 0.50 worker/Ang^2
Population Size 57

Evolving structures
Minimization Algorithm mutant particle swarm
Min, Max Iterations (3 , 10)

That is followed by the docking itself, which will stop after a few iterations:

Iter Emin avDE stdDE Time
(Eh) (kcal/mol) (kcal/mol) (min)

-------------------------------------------------------

1 -10.147462 2.756033 1.821981 0.03
2 -10.147462 2.121389 1.610208 0.03
3 -10.148583 2.313606 1.365227 0.03
4 -10.148583 1.846998 1.188680 0.02
5 -10.148583 1.587332 1.168207 0.02

No new minimum found after 3 (MinIter) steps.

The idea here is to collect as many local minima as possible, that is, collect a first guess for all possible modes of
interaction between the different structures. We do this by allowing both structures to partially optimize, but it is
important to say we will not look for multiple conformers of the host and guest here.

With all solutions collected, we will take a fraction of them and do a final full optimization:

Running final optimization
Maximum number of structures 7
Minimum energy difference 0.10 kcal/mol
Maximum RMSD 0.25 Angs
Optimization strategy regular
Coordinate system redundant 2022
Fixed host false

Struc Eopt Interaction Energy Time
(Eh) (kcal/mol) (min)

------------------------------------------------

1 -10.149006 -4.968378 0.01
2 -10.149005 -4.967965 0.01
3 -10.149007 -4.968825 0.01

(continues on next page)
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4 -10.149007 -4.968641 0.01
5 -10.149007 -4.968743 0.01
6 -10.149006 -4.968116 0.01
7 -10.149007 -4.968678 0.01

And as you can see, we also automatically print the Interaction Energy, which is simple an energy difference
between the final complex, host and guest. The final best structure with lowest interaction energy is then saved
on the Basename.docker.xyz file. If needed, all other structures are saved on the Basename.docker.struc1.
allopt.xyz, as written on the output:

All optimized structures saved to : Basename.docker.struc1.allopt.xyz

-------------------------------------
LOWEST INTERACTION ENERGY: -4.968825 kcal/mol (structure 3)
-------------------------------------

(...)

The lowest energy structure was 1, with energy -10.149007.
Docked structures saved to Basename.docker.xyz

ò Note

The name Basename.docker.struc1.allopt.xyz refers to struc1 because that is the first docked guest.
Later that can be done with multiple guest and that is only a way to organize the outputs.

We are all set, the output can be visualized and it is, as expected:

Fig. 6.72: The final water dimer found using the GFN2-XTB PES.

6.19.2 Example 2: A Uracil Dimer

Now for a slightly more complex example, a uracil dimer:

! XTB PAL16
%DOCKER GUEST "uracil.xyz" END
*xyz 0 1
N -0.2707028 0.7632994 1.0276159
H -0.5957915 1.3097757 1.8163465
C -0.3386212 1.3810817 -0.2276640
O -0.7270425 2.5346295 -0.3329857

(continues on next page)
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N 0.3638189 -1.2896563 0.1949192
H 0.0796815 0.9143946 -2.3190044
C 0.3781329 -0.7736192 -1.0714063
H 0.6499130 -1.4675080 -1.8526542
C 0.0669084 0.5154897 -1.3194961
H 0.4818502 -2.2779688 0.3498201
C -0.0016589 -0.5616540 1.3117092
O -0.0864879 -1.0482643 2.4227999
*

where the uracil.xyz is a simple repetition of the structure, as with the water before.

In this case the output is more diverse, and in fact many different poses appear as candidates for the final optimiza-
tion:

Struc Eopt Interaction Energy Time
(Eh) (kcal/mol) (min)

------------------------------------------------

1 -49.248577 -11.723457 0.08
2 -49.250442 -12.893758 0.08
3 -49.245624 -9.870339 0.03
4 -49.252991 -14.493130 0.06
5 -49.248470 -11.656256 0.05
6 -49.259335 -18.474228 0.05
7 -49.259269 -18.432902 0.08
8 -49.254913 -15.699019 0.03
9 -49.254927 -15.708244 0.03
10 -49.241672 -7.390198 0.02
11 -49.246534 -10.441269 0.03

and structure number 6 is found to be the one with lowest interaction energy:

-------------------------------------
LOWEST INTERACTION ENERGY: -18.474228 kcal/mol (structure 6)
-------------------------------------

Here is a scheme with the structures found and their relative energies:

Fig. 6.73: Uracil dimer structures generated by DOCKER (duplicates removed) with relative energies in kcal/mol.
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ò Note

There might be duplicated results after the final optimization, these are currently not automatically removed.
Here they were manually removed.

s Important

The PAL16 flag means XTB will run in parallel, but the ORCA DOCKER could be parallelized in a much more
efficient way by paralleizing over the workers. That will be done for the next versions and it will be significantly
more efficient.

6.19.3 Example 3: Adding Multiple Copies of a Guest

Suppose you want to add multiple copies of the same guest, for example three water molecules on top of the uracil
one after the other. That can be simply done with:

! XTB PAL16
%DOCKER

GUEST "water.xyz"
NREPEATGUEST 3

END
*xyz 0 1
N -0.2707028 0.7632994 1.0276159
H -0.5957915 1.3097757 1.8163465
C -0.3386212 1.3810817 -0.2276640
O -0.7270425 2.5346295 -0.3329857
N 0.3638189 -1.2896563 0.1949192
H 0.0796815 0.9143946 -2.3190044
C 0.3781329 -0.7736192 -1.0714063
H 0.6499130 -1.4675080 -1.8526542
C 0.0669084 0.5154897 -1.3194961
H 0.4818502 -2.2779688 0.3498201
C -0.0016589 -0.5616540 1.3117092
O -0.0864879 -1.0482643 2.4227999
*

and the guests on water.xyz will be added on top of the previous best complex three times. Now, there will
be files with names Basename.docker.struc1.allopt.xyz, Basename.docker.struc2.allopt.xyz and
Basename.docker.struc3.allopt.xyz, one for each step. Still, the same final Basename.docker.xyz file
and now a Basename.docker.build.xyz is also printed, with the best result after each iteration.

That’s how the results look like, from the Basename.docker.xyz:

Fig. 6.74: Cumulative docking of three guests
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ò Note

By default the HOST is always optimized. It can be changed with %DOCKER FIXHOST TRUE END.

6.19.4 Example 4: Find the Best Guest

Another common case would be: given a list of guests - or conformers of the same guest (see GOAT: global
geometry optimization and ensemble generator) - one might want to know what is the “best guest”, that is the one
with the lowest interaction energy.

In order to do that, simply pass a multixyz file and the DOCKER will try to dock all structures from that file, one
by one:

! XTB
%DOCKER GUEST "uracil_water.xyz" END
*xyz 0 1
N -0.2707028 0.7632994 1.0276159
H -0.5957915 1.3097757 1.8163465
C -0.3386212 1.3810817 -0.2276640
O -0.7270425 2.5346295 -0.3329857
N 0.3638189 -1.2896563 0.1949192
H 0.0796815 0.9143946 -2.3190044
C 0.3781329 -0.7736192 -1.0714063
H 0.6499130 -1.4675080 -1.8526542
C 0.0669084 0.5154897 -1.3194961
H 0.4818502 -2.2779688 0.3498201
C -0.0016589 -0.5616540 1.3117092
O -0.0864879 -1.0482643 2.4227999
*

Here the file uracil_water.xyz looks like:

3
0 1
O -2.13487 2.63905 -0.01809
H -1.16698 2.61938 0.02397
H -2.41372 2.24598 0.82256
12
0 1
N -0.2707028 0.7632994 1.0276159
H -0.5957915 1.3097757 1.8163465
C -0.3386212 1.3810817 -0.2276640
O -0.7270425 2.5346295 -0.3329857
N 0.3638189 -1.2896563 0.1949192
H 0.0796815 0.9143946 -2.3190044
C 0.3781329 -0.7736192 -1.0714063
H 0.6499130 -1.4675080 -1.8526542
C 0.0669084 0.5154897 -1.3194961
H 0.4818502 -2.2779688 0.3498201
C -0.0016589 -0.5616540 1.3117092
O -0.0864879 -1.0482643 2.4227999

with a water followed by an uracil molecule. First, the water will be added, then the uracil, but both separately.
The initial output is a bit different:

***************
* ORCA Docker *
***************

Reading guests from file uracil_water.xyz

(continues on next page)
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Number of structures read from file 2
Charge and multiplicity of guests from file
Docking approach independent
Docking level normal

with now two structures being read from file, and the Docking approach is labeled as independent, meaning
each structure will be docked independently of each other.

After everything, the output is:

-------------------------------------
LOWEST INTERACTION ENERGY: -18.482854 kcal/mol (structure 6)
-------------------------------------

Total time for docking: 4.84 minutes

The lowest energy structure was 2, with energy -49.259349.
Docked structures saved to Basename.docker.xyz

and one can see that the lowest interaction energy was that of structure 2 (the uracil), meaning it interacts strongly
with the HOST than the water molecule given. Now the file Basename.docker.xyzwill contain all final structures,
ordered by interaction energy.

Fig. 6.75: Independent docking of water and uracil on top of an uracil molecule

ò Note

By default, the docking approach uses a fixed random seed and should always give the same result on the same
machine. To make it always completely random add %DOCKER RANDOMSEED TRUE END.

ò Note

In order to use the faster GFN-FF instead of GFN2-XTB, use !DOCK(GFNFF). For a quicker (and less accurate)
docking, use !QUICKDOCK.

ò Note

To try multiple conformers of the GUEST, the ensemble file printed by GOAT Basename.finalensemble.xyz
can be directly given here and the whole ensemble will be tested against a give HOST.

A detailed description of the other options can be found on More details on the ORCA DOCKER
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6.19.5 Reduced Keyword List

!QUICKDOCK # simple keyord to set DOCKLEVEL QUICK
!NORMALDOCK # simple keyord to set DOCKLEVEL NORMAL
!COMPLETEDOCK # simple keyord to set DOCKLEVEL COMPLETE

!DOCK(GFN-FF) # simple keyord to set EVPES GFNFF
!DOCK(GFN0-XTB) # simple keyord to set EVPES GFN0XTB
!DOCK(GFN1-XTB) # simple keyord to set EVPES GFN1XTB
!DOCK(GFN2-XTB) # simple keyord to set EVPES GFN2XTB

%DOCKER

#
# general options
#

GUEST "filename.xyz" # an .xyz file (can be multistructure), from where
# the guest(s) will be read. can contain different
# charges and multiplicities for each guests on the
# comment line. will only be read if exactly two
# integer numbers are given, otherwise ignored.

DOCKLEVEL SCREENING # defines a general strategy for docking.
# will alter things like that population density

NORMAL # and final number of optimized structrures.
COMPLETE # default is NORMAL.

NREPEATGUEST 1 # number of times to repeat the content of the "GUEST" file
CUMULATIVE TRUE # add the contents of the "GUEST" file one on

# top of each other?
# default is FALSE, meaning each will be done independently.

FIXHOST TRUE # freeze coordinatef for the HOST during all steps?
# (default FALSE)

#
# evolution step
#

EVPES GFNFF # which PES to use **only** during the evolution step.
GFN0XTB # can be different from the final optimization.
GFN1XTB
GFN2XTB

#
# final optimization
#

NOPT 10 # a fixed number of structures to be optimized
NOOPT FALSE # do not optimize any structure at all? (default FALSE)
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6.20 Compound Methods

Compound Methods is a form of sophisticated scripting language that can be used directly in the input of ORCA.
Using ‘Compound’ the user can combine various parts of a normal ORCA calculation to evaluate custom functions
of his own. In order to explain its usage, we will use an example. For a more detailed description of this module
the user is referred to section Compound Methods.

6.20.1 example

As a typical example we will use the constrained optimization describing the “umbrella effect” of𝑁𝐻3. The script
will perform a series of calculations and in the end it will print the potential of the movement plus it will identify
the minima and the maximum. The corresponding compound script is the one shown below.

# ----------------------------------------------
# Umbrella coordinate mapping for NH3
# Author: Frank Neese
# ----------------------------------------------
variable JobName = "NH3-umbrella";
variable amin = 50.0;
variable amax = 130.0;
variable nsteps = 21;
Variable energies[21];

Variable angle;
Variable JobStep;
Variable JobStep_m;
variable step;

Variable method = "BP86";
Variable basis = "def2-SVP def2/J";

step = 1.0*(amax-amin)/(nsteps-1);

# Loop over the number of steps
# ----------------------------
for iang from 0 to nsteps-1 do

angle = amin + iang*step;
JobStep = iang+1;
JobStep_m= JobStep-1;
if (iang>0) then
Read_Geom(JobStep_m);
New_step

! &{method} &{basis} TightSCF Opt
%base "&{JobName}.step&{JobStep}"
%geom constraints

{A 1 0 2 &{angle} C}
{A 1 0 3 &{angle} C}
{A 1 0 4 &{angle} C}
end

end

Step_End
else
New_step

! &{method} &{basis} TightSCF Opt
%base "&{JobName}.step&{JobStep}"
%geom constraints

{A 1 0 2 &{angle} C}
{A 1 0 3 &{angle} C}
{A 1 0 4 &{angle} C}

(continues on next page)
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end
end

* int 0 1
N 0 0 0 0.0 0.0 0.0
DA 1 0 0 2.0 0.0 0.0
H 1 2 0 1.06 &{angle} 0.0
H 1 2 3 1.06 &{angle} 120.0
H 1 2 3 1.06 &{angle} 240.0
*

Step_End
endif
Read energies[iang] = SCF_ENERGY[jobStep];
print(" index: %3d Angle %6.2lf Energy: %16.12lf Eh\n", iang, angle, energies[iang]);

EndFor

# Print a summary at the end of the calculation
# ---------------------------------------------
print("////////////////////////////////////////////////////////\n");
print("// POTENTIAL ENERGY RESULT\n");
print("////////////////////////////////////////////////////////\n");
variable minimum,maximum;
variable Em,E0,Ep;
variable i0,im,ip;
for iang from 0 to nsteps-1 do

angle = amin + 1.0*iang*step;
JobStep = iang+1;
minimum = 0;
maximum = 0;
i0 = iang;
im = iang-1;
ip = iang+1;
E0 = energies[i0];
Em = E0;
Ep = E0;
if (iang>0 and iang<nsteps-1) then
Em = energies[im];
Ep = energies[ip];

endif
if (E0<Em and E0<Ep) then minimum=1; endif
if (E0>Em and E0>Ep) then maximum=1; endif
if (minimum = 1 ) then
print(" %3d %6.2lf %16.12lf (-)\n",JobStep,angle, E0 );

endif
if (maximum = 1 ) then
print(" %3d %6.2lf %16.12lf (+)\n",JobStep,angle, E0 );

endif
if (minimum=0 and maximum=0) then
print(" %3d %6.2lf %16.12lf \n",JobStep,angle, E0 );

endif
endfor
print("////////////////////////////////////////////////////////\n");

End # end of compound block

Let’s start with how somebody can execute this input. In order to run it, the easiest way is to save it in a normal
text file, using the name “umbrella.cmp” and then use the following ORCA input file:

%Compound "umbrella.cmp"

nothing more is needed. ORCA will read the compound file and act appropriately.
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A few notes about this ORCA input. First, there is no simple input line, (starting with “!”). A simple input is not
required when one uses the Compound feature, but In case the user adds a simple input, all the information from
the simple input will be passed to the actual compound jobs.

In addition, if one does not want to create a separate compound text file, it is perfecly possible in ORCA to use the
compound feature as any other ORCA block. This means that after the %Compound directive, instead of giving
the filename one can append the contents of the Compound file.

As we will see, inside the compound script file each compound job can contain all information of a normal ORCA
input file. There are two very important exceptions here: The number of processors and the MaxCore. These
information should be set in the initial ORCA input file and not in the actual compound files.

The Compound block has the same structure like all ORCA blocks. It starts with a “%” and ends with “End”, if
the input is not read from a file. In case the compound directives are in a file, as in the example above, then simply
the filename inside brackets is needed and no final END.

6.20.2 Defining variables

As we pointed out already, it is possible to either give all the information for the calculations and the manipulation
of the data inside the Compound block or create a normal text file with all the details and let ORCA read it. The
latter option has the advantage that one can use the same file with more than one geometries. In the previous
example we refer ORCA to an external file. The file “umbrella.cmp”, that contains all necessary information.

Let’s try to analyse now the Compound “umbrella.cmp” file.

# ----------------------------------------------
# Umbrella coordinate mapping for NH3
# Author: Frank Neese
# ----------------------------------------------
variable JobName = "NH3-umbrella";
variable amin = 50.0;
variable amax = 130.0;
variable nsteps = 21;
Variable energies[21];

Variable angle;
Variable JobStep;
Variable JobStep_m;
variable step;

Variable method = "BP86";
Variable basis = "def2-SVP def2/J";

step = 1.0*(amax-amin)/(nsteps-1);

The first part contains some general comments and variable definitions. For the comments we use the same syntax
as in the normal ORCA input, through the “#” symbol. Plase not that more than one “#” symbols in the same line
cause an error.

After the initial comments we see some declarations and definitions. There are many different ways to declare
variables described in detail in section Variables - General.

All variable declarations begin with the directive Variable which is a sign for the program to expect the declaration
of one or more new variables. Then there are many options, including defining more than one variable, assigning
also a value to the variable or using a list of values. Nevertheless all declarations MUST finish with the ; symbol.
This symbol is a message to the program that this is the end of the current command. The need of the ; symbol in
the end of each command is a general requirement in Compound and there are only very few exceptions to it.
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6.20.3 Running calculations

# Loop over the number of steps
# ----------------------------
for iang from 0 to nsteps-1 do

angle = amin + iang*step;
JobStep = iang+1;
JobStep_m= JobStep-1;
if (iang>0) then
Read_Geom(JobStep_m);
New_step

! &{method} &{basis} TightSCF Opt
%base "&{JobName}.step&{JobStep}"
%geom

constraints
{A 1 0 2 &{angle} C}
{A 1 0 3 &{angle} C}
{A 1 0 4 &{angle} C}

end
end

Step_End
else
New_step

! &{method} &{basis} TightSCF Opt
%base "&{JobName}.step&{JobStep}"
%geom

constraints
{A 1 0 2 &{angle} C}
{A 1 0 3 &{angle} C}
{A 1 0 4 &{angle} C}

end
end
* int 0 1

N 0 0 0 0.0 0.0 0.0
DA 1 0 0 2.0 0.0 0.0
H 1 2 0 1.06 &{angle} 0.0
H 1 2 3 1.06 &{angle} 120.0
H 1 2 3 1.06 &{angle} 240.0

*
Step_End

endif
Read energies[iang] = SCF_ENERGY[jobStep];
print(" index: %3d Angle %6.2lf Energy: %16.12lf Eh\textbackslash{}n", iang, angle,␣

→˓energies[iang]);
EndFor

Then we have the most information dense part. We start with the definition of a for loop. The syntax in compound
for for loops is:

For variable From startValue To endValue Do
directives
EndFor

As we can see in the example above, the startValue and endValue can be constant numbers or previously defined
variables, or even functions of these variables. Keep in mind that they have to be integers. The signal that the loop
has reached it’s end is the EndFor directive. For more details with regard to the for loops please refer to section
For.

Then we proceed to assign some variables.

angle = amin + iang*step;
JobStep = iang+1;
JobStep_m = JobStep-1;
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The syntax of the variable assignement is like in every programming language with a variable, followed with the
= symbol and then the value or an equation. Please keep in mind, that the assignement must always finish with
the ; symbol.

The next step is another significant part of every programming language, namely the if block. The syntax of the if
block is the following:

if (expression to evaluate ) Then
directives
else if ( expression to evaluate ) Then
directives
else
directives
EndIf

The else if and else parts of the block are optional but the final EndIf must always signal the end of the if block.
For more details concerning the usage of the if block please refer to section If of the manual.

Next we have a command which is specific for compound and not a part of a normal programming language. This
is the ReadGeom command. It’s syntax is:

Read_Geom(integer value);

Before explaining this command we will proceed with the next one in the compound script and return for this one.

The next command is the basis of all compound scripts. This is the New_Step Command. This command signals
compound that a normal ORCA calculation follows. It’s syntax is:

New_Command Normal ORCA input Step_End

Some comments about the New_Step command. Firstly, inside the New_Step - Step_End commands one can add all
possilbe commands that a normal ORCA input accepts. We should remember here that the commands that define
the number of processors and the MaxCore command will be ignored.

A second point to keep in mind is the idea of the step. Every New_Step - Step_End structure corresponds to a step,
starting counting from 1 (The first ORCA calculation). This helps us define the property file that this calculation
will create, so that we can use it to retrieve information from it.

A singificant feature in the New_Step - Step_End block. is the usage of the structure &{variable} . This structure
allows the user to use variables that are defined outside the New_Step - Step_End block inside it, making the ORCA
input more generic. For example, in the script given above, we build the basename of the calculations

%base "&{JobName}.step&{JobStep}"

using the defined variables JobName and JobStep. For more details regarding the usage of the &{} structure please
refer to section & while for the New_Step - Step_End structure please refer to the section New_Step.

Finally, a few comments about the geometries of the calculation. There are 3 ways to provide a geometry to
a New_Step - Step_End calculation. The first one is the traditional ORCA input way, where we can give the
coordinates or the name of a file with coordinates, like we do in all ORCA inputs. In Compound though, if we do
not pass any information concerning the geometry of the calculation, then Compound will automatically try to read
the geometry of the previous calculation. This is the second (implicit) way to give a geometry to a compound Step.
Then there is a third way and this is the one we used in the example above. This is the Read_Geom command.
The syntat of this command is:
Read_Geom (Step number);
We can use this command when we want to pass a specific geometry to a calculation that is not explicitly given
inside the New_Step - Step_End structure and it is also not the one from the previous step. Then we just pass the
number of the step of the calculation we are interesting in just before we run our new calculation. For more details
regarding the Read_Geom command please refer to section Read_Geom.
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6.20.4 Data manipulation

One of the most powerfull features of Compound is it’s direct access to properties of the calculation. In order to
use these properties we defined the Read command. In the previous example we use it to read the SCF energy of
the calculation:

Read energies[iang] = SCF\_ENERGY[jobStep];

The syntax of the command is:

Read variable name = property

where variable name is the name of a variable that is already defined, property is the property from the known
properties found in table List of known Properties and step is the step of the calculation we are interested in. For
more details in the Read command please refer to section Read.

# Print a summary at the end of the calculation
# ---------------------------------------------
print("////////////////////////////////////////////////////////\\n");
print("// POTENTIAL ENERGY RESULT\\n");
print("////////////////////////////////////////////////////////\\n");
variable minimum,maximum;
variable Em,E0,Ep;
variable i0,im,ip;
for iang from 0 to nsteps-1 do
angle = amin + 1.0*iang*step;
JobStep = iang+1;
minimum = 0;
maximum = 0;
i0 = iang;
im = iang-1;
ip = iang+1;
E0 = energies[i0];
Em = E0;
Ep = E0;
if (iang>0 and iang<nsteps-1) then

Em = energies[im];
Ep = energies[ip];

endif
if (E0<Em and E0<Ep) then minimum=1; endif
if (E0>Em and E0>Ep) then maximum=1; endif
if (minimum = 1 ) then

print(" %3d %6.2lf %16.12lf (-)\textbackslash{}n",JobStep,angle, E0 );
endif
if (maximum = 1 ) then

print(" %3d %6.2lf %16.12lf (+)\textbackslash{}n",JobStep,angle, E0 );
endif
if (minimum=0 and maximum=0) then

print(" %3d %6.2lf %16.12lf \textbackslash{}n",JobStep,angle, E0 );
endif

endfor
print("////////////////////////////////////////////////////////\\n");

Once all data are available we can use them in equations like in any programming language.

The syntax of the print statement is:

print( format string, [variables]);

For example in the previous script we use it like:

print(" %3d %6.2lf %16.12lf \n",JobStep,angle, E0 );

where %3d, %6.2lf and %16.2lf are format identifiers and JobStep, angle and E0 are previously defined variables.
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The syntax follows closely the widely accepted syntax of the printf command in the programming language C. For
more details regarding the print statememnt please refer to section: Print.

Similar to the print command are the write2file and write2string commands that are used to write instead of the
output file, either to a file we choose or to produce a new string.

Finally it is really importnat not to forget that every compound file should finish with a final End.

Once we run the previous example we get the following output:

////////////////////////////////////////////////////////
// POTENTIAL ENERGY RESULT
////////////////////////////////////////////////////////
1 50.00 -56.486626696200
2 54.00 -56.498074637200
3 58.00 -56.505200120800
4 62.00 -56.508823168800
5 66.00 -56.509732863600 (-)
6 70.00 -56.508724734300
7 74.00 -56.506590613800
8 78.00 -56.504070086000
9 82.00 -56.501791816800
10 86.00 -56.500229017900
11 90.00 -56.499674856600 (+)
12 94.00 -56.500229018100
13 98.00 -56.501791817200
14 102.00 -56.504070082800
15 106.00 -56.506590613300
16 110.00 -56.508724733100
17 114.00 -56.509732863700 (-)
18 118.00 -56.508823172900
19 122.00 -56.505200132200
20 126.00 -56.498074642900
21 130.00 -56.486626729200
////////////////////////////////////////////////////////

with the step, the angle for the corresponding step, the energy of the constrained optimized energy plus the symbols
for the two minima and the maximum in the potential.

442 Chapter 6. Running Typical Calculations



CHAPTER

SEVEN

DETAILED DOCUMENTATION

7.1 The SHARK Integral Package and Task Driver

7.1.1 Preface

Starting with ORCA 5.0 very large changes have taken place in the way that the program handles integrals and
integral related tasks like building Fock matrices. SHARK is a powerful and efficient infrastructure that greatly
facilitates the handling of these tasks. This allows developers to write highly streamlined code with optimal per-
formance and a high degree of reliability. Compared to the way ORCA handled integrals before ORCA 5.0, tens of
thousands of lines of codes, often duplicated or nearly duplicated from closely related parts of the program could be
eliminated. From the perspective of the user, the visible changes to the input and output of the program compared
to ORCA 4.2.1 and earlier are relatively limited. However, under the hood, the changes are vast and massive and
will ensure that ORCA’s infrastructure is modern and very well suited for the future of scientific computing.

The benefits of SHARK for the users of ORCA are:

1. Improved code efficiency that is consistent through all program tasks. In particular, complicated two-electron
integrals, for example in the context of GIAOs, two-electron spin-orbit coupling and two-electron spin-spin
coupling integrals are handled with vastly improved efficiency. Also, integral digestion has been vastly
improved with very large benefits for calculations that build many Fock matrices at a time, for example in
CIS/TD-DFT, analytic Hessians or response property calculations.

2. Improved code reliability, since all integrals now run through a well debugged, common interface

3. Shorter development times. The new infrastructure is so user friendly to programmers that writing new code
that makes use of SHARK is much faster than in the past.

4. SHARK handles basis sets much better than the old infrastructure. Whether the basis sets used follow a
segmented contraction, general contraction or partial general contraction is immaterial since the algorithms
have been optimized carefully for each kind of basis throughout.

7.1.2 The SHARK integral algorithm

One cornerstone of SHARK is a new integral algorithm that allows for highly efficient evaluation of molecular
integrals. The algorithm is based on the beautiful McMurchie-Davidson algorithm which leads to the following
equation for a given two-electron integral:

(𝜇𝐴𝜈𝐵 |𝜅𝐶𝜏𝐷) = 𝐶
∑︁
𝑡𝑢𝑣

𝐸𝜇𝜈;𝑥𝑡 𝐸𝜇𝜈;𝑦𝑢 𝐸𝜇𝜈;𝑧𝑣

∑︁
𝑡′𝑢′𝑣′

𝐸𝜅𝜏 ;𝑥𝑡′ 𝐸𝜅𝜏 ;𝑦𝑢′ 𝐸𝜅𝜏 ;𝑧𝑣′ (−1)𝑡
′+𝑢′+𝑣′

𝑅𝑡+𝑡′,𝑢+𝑢′,𝑣+𝑣′

Here

𝐶 = 8𝜋
5/2 = 139.947346620998902770103

and the primitive Cartesian Gaussian basis functions {𝜇𝐴} where𝐴 is the atomic center, where basis function 𝜇 is
centered at position R𝐴. In order to catch a glimpse of what the McMurchie-Davidson algorithm is about, consider
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two unnormalized, primitive Gaussians centered at atoms 𝐴 and 𝐵, respectively:

𝐺𝐴 = 𝑥𝑖𝐴𝑦
𝑗
𝐴𝑧

𝑘
𝐴 exp(−𝛼𝑅2

𝐴)

𝐺𝐵 = 𝑥𝑖
′

𝐵𝑦
𝑗′

𝐵𝑧
𝑘′

𝐵 exp(−𝛽𝑅2
𝐵)

By means of the Gaussian product theorem, the two exponentials are straightforwardly rewritten as:

exp(−𝛼𝑅2
𝐴) exp(−𝛽𝑅2

𝐵) = 𝐾𝐴𝐵 exp
(︁
−(𝛼+ 𝛽)𝑟2𝑃

)︁
With

𝐾𝐴𝐵 = exp
(︁
− 𝛼𝛽
𝛼+𝛽 |R𝐴 −R𝐵 |2

)︁
𝑟2𝑃 = |r−R𝑃 |2 is the electronic position relative to the point

R𝑃 = 𝛼
𝛼+𝛽R𝐴 + 𝛽

𝛼+𝛽R𝐵

at which the new Gaussian is centered. The ingenious invention of McMurchie and Davidson was to realize that the
complicated polynomial that arises from multiplying the two primitive Cartesian Gaussians can be nicely written
in terms of Hermite polynomials {Λ}. In one dimension:

𝑥𝑖𝐴𝑥
𝑖′

𝐵 =

𝑖+𝑖′∑︁
𝑡=0

𝐸𝑡

And hence:

𝐺𝐴𝐺𝐵 = 𝐾𝐴𝐵

𝑖+𝑖′∑︁
𝑡=0

𝐸𝐴𝐵𝑡

𝑗+𝑗′∑︁
𝑢=0

𝐸𝐴𝐵𝑢

𝑘+𝑘′∑︁
𝑣=0

𝐸𝐴𝐵𝑣 Λ𝐴𝐵𝑡𝑢𝑣

With

Λ𝐴𝐵𝑡𝑢𝑣 =

(︂
𝜕

𝜕𝑋𝑃

)︂𝑡(︂
𝜕

𝜕𝑌𝑃

)︂𝑢(︂
𝜕

𝜕𝑍𝑃

)︂𝑣
exp
(︁
−(𝛼+ 𝛽)𝑅2

𝑃

)︁
This means that the original four center integral is reduced to a sum of two-center integrals over Hermite Gaussian
functions. These integrals are denoted as

𝑅𝑡+𝑡′,𝑢+𝑢′,𝑣+𝑣′ =

∫︁ ∫︁
Λ𝐴𝐵𝑡𝑢𝑣(r1;R𝑃 )Λ

𝐶𝐷
𝑡′𝑢′𝑣′(r2;R𝑄)𝑟

−1
12 𝑑r1𝑑r2

With these definitions one understands the McMurchie Davidson algorithm as consisting of three steps:

1. Transformation of the Bra function product into the Hermite Gaussian Basis

2. Transformation of the Ket function product into the Hermite Gaussian Basis

3. Calculation of the Hermite Gaussian electron repulsion integral

SHARK is the realization that these three steps can be efficiently executed by a triple matrix product:

(𝜇𝐴𝜈𝐵 |𝜅𝐶𝜏𝐷) =
(︀
EbraREket)︀

𝜇𝜈,𝜅𝜏

Here Ebra and Eket collect the 𝐸 coefficients for all members of the shell product on the bra and ket side (𝐸bra
𝜇𝜈,𝑡𝑢𝑣

and 𝐸ket
𝜅𝜏,𝑡𝑢𝑣), respectively, and R collects the integrals over Hermite Gaussian functions (𝑅𝑡𝑢𝑣,𝑡′𝑢′𝑣′ ).

There are many benefits to this formulation:

1. The integral is factorized allowing steps to be performed independent of each other. For example, the E
matrices can be calculated at the beginning of the calculation and reused whenever needed. Their storage is
unproblematic

2. Matrix multiplications lead to extremely efficient formation of the target integrals and drive the hardware at
peak performance
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3. Steps like contraction of primitive integrals and transformation from the Cartesian to the spherical Harmonics
basis can be folded into the definition of the E matrices thus leading to extremely efficient code with next to
no overhead creates by short loops.

4. Programming integrals becomes very easy and efficient. Other types of integrals as well as derivative inte-
grals are readily approached in the same way. Also, two- and three-index repulsion integrals, as needed for
the RI approximation are also readily formulated in this way.

5. One-electron integrals are equally readily done with this approach.

There is a very large number of technicalities that we will not describe in this manual which is only intended to
provide the gist of the algorithm.

7.1.3 SHARK and libint

Up to ORCA 4.2.1, ORCA has almost entirely relied on the libint2 integral library which is known to be very
efficient and powerful. Starting from ORCA 5.0, both SHARK and libint are used for integral evaluations and
libint is fully integrated into the SHARK programming environment. Integrals that are only available in one of
the packages are done with this package (e. g. GIAO, SOC and Spin-Spin integrals in SHARK; F12 or second
derivative integrals in libint). For the integrals available in both packages, the program makes a judicious choice
about the most efficient route. The reason for this hybrid approach is the following:

The SHARK integral algorithm is at its best for higher angular momentum functions (𝑙 > 2; 𝑑-functions) which
is where the efficiency of the matrix multiplications leads to very large computational benefits. Integrals over,
say, four 𝑓 - or 𝑔-functions perform much faster (up to a factor of five) than with traditional integral algorithms.
However, for low angular momenta, there is overhead created by the matrix multiplications and also by the fact that
the McMurchie Davidson algorithm is known to not be the most FLOP count efficient algorithm. To some extent,
this is take care of by using highly streamlined routines for low angular momenta that perform extremely well.
However, there are penalties for intermediate angular momenta, where the efficiency of the matrix multiplications
has not set in and the integrals are too complicated for hand coding. These integrals perform best with libint and
consequently, the program will, by default, select libint to perform such integral batches.

7.1.4 Basis set types

One significant aspect of molecular integral evaluation is the type of contraction that is present in a Gaussian basis
set. The most general type of basis set is met in the “general contraction” scheme. Here all primitive Gaussian basis
functions of a given angular momentum are collected in a vector {𝜑}. In general, all primitives will contribute to
all basis functions {𝜙} of this same angular momentum. Hence, we can write:⎛⎜⎜⎜⎝

𝜙1

𝜙2

...
𝜙𝑁𝑙

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝑑11 𝑑11 · · · 𝑑1𝑀𝑙

𝑑21 𝑑21 · · · 𝑑2𝑀𝑙

...
...

. . .
...

𝑑𝑁𝑙1 𝑑𝑁𝑙2 · · · 𝑑𝑁𝑙𝑀𝑙

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

𝜑1
𝜑2
...
𝜑𝑀𝑙

⎞⎟⎟⎟⎠
Where 𝑁𝑙 and 𝑀𝑙 are the number of actual basis functions and primitives respectively. Typically, the number of
primitives is much larger than the number of basis functions. The matrix d collects the contraction coefficients for
each angular momentum. Typical basis sets that follow this contraction pattern are atomic natural orbital (ANO)
basis sets. They are typically based on large primitive sets of Gaussians. Such basis sets put very demands on the
integral package since there are many integrals over primitive Gaussian basis functions that need to be generated. If
the integral package does not take advantage of the general contraction, then this integral evaluation will be highly
redundant since identical integrals will be calculated 𝑁𝑙 times (and hence, integrals over four generally contracted
shells will be redundantly generated 𝑁4

𝑙 times). SHARK takes full advantage of general contraction for all one-
and two-electron integrals that it can generate. Here, the unique advantages of the integral factorization come to
full benefit since all integral quadruples of a given atom quadruple/angular momentum quadruple can be efficiently
generated by just two large matrix multiplications.

The opposite of general contraction is met with segmented contraction. Here each basis function involves a number
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of primitives:

𝜙𝜇 =
∑︁
𝑘

𝑑𝑘𝜇𝜑𝑘

Quite typically, none of the 𝜑𝑘 that occur in the contraction of one basis functions occurs in any other basis function.
Typical basis sets of this form are the “def2” basis sets of the Karlsruhe group. They are readily handled by most
integral packages and both SHARK and libint are efficient in this case.

The third class of basis sets is met, when general contraction is combined with segmented contraction. Basis sets
of this type are, for example, the correlation consistent (cc) basis sets. We call such basis sets “partially generally
contracted”. In such basis sets, part of the basis functions are generally contracted (for example, the s- and p-
functions in main group elements), while other basis functions (e. g. polarization functions, diffuse functions, core
correlation functions) are not generally contracted. It is difficult to take full advantage of such basis sets given their
complicated structure. In ORCA 5, special code has been provided that transforms the basis set into an intermediate
basis set that does not contain any redundancies and hence drives SHARK or libint at peak performance.

In assessing the efficiency vs the accuracy of different integral algorithms, it is clear that segmented basis sets lead
to the highest possible efficiency if they are well constructed. For such basis set the pre-screening that is an essential
step of any integral direct algorithm performs best. The highest possible accuracy (per basis functions) is met with
generally contracted basis sets. However, here the pre-screening becomes rather inefficient since it can only be
performed at the level of atom/angular momentum combinations rather than individual shell quadruples. Thus, as
soon as a given atom/angular momentum combination leads to any non-negligible integral, all integrals for this
combination need to be calculated. This created a sizeable overhead. Consequently, SCF calculations can never be
as efficient as with segmented basis sets. If this is immaterial, for example, because a subsequent coupled cluster
or MRCI calculation is dominating the calculation time, general contraction is very worthwhile to be explored.
For partial general contraction, our algorithm performs very nearly as efficiently as for segmented contraction in
SCF calculations. However, since the intermediate basis set is larger than the original orbital basis, certain limited
performance penalties can arise in some job types.

7.1.5 Task drivers

In traditional algorithms, quantum chemical programs frequently contain many instances of nested loops over basis
function shells, the integral package is called and the integrals are “digested” for a given task. While these steps
are inevitable, programming them repeatedly is laborious and error prone. In addition, improvements, say in the
handling of contractions or symmetry, need to implemented in many different places. In the SHARK infrastructure
all of this is unnecessary since it is programmed in an object-oriented fashion, where the programmer does not need
to take care of any detail. Hence, developers only need to write short code sections that distribute the generated
integrals into whatever data structure they need, while the SHARK interface takes care of all technical aspects and
triggers the sophisticated and efficient machinery that underlies it.

Given this situation, the future of ORCA will involve SHARK taking care of nearly of the compute intensive,
laborious tasks, while ORCA will organize and trigger all of these tasks. ORCA and SHARK communicate via a
lean and well-defined interface to exchange the necessary data. In this way, a modern, efficient, easy to use and
readily maintainable development environment is created.

7.1.6 SHARK User Interface

While SHARK is a large and complicated machinery, we have deliberately kept the interface as straightforward
and simple as possible. There are only a few flags that can be set that are explained below:

In the simple input line there is:

! UseShark
! NoUseShark

This turns SHARK on (default) or off. Note that the option to turn SHARK off, will be unique to ORCA 5.0. Future
versions of ORCA will always make use of SHARK and the legacy code will disappear from the program for good.
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%shark
UseGeneralContraction false # turns general contraction algorithm on or

# off. There normally is no need to set this
# flag since the program will find the
# contraction case automatically

Printlevel 1 # Amount of output generated. Choose 0 to
# suppress output and 2 for more output.
# Everything else is debug level printing and
# will fill your harddrive very quickly with
# unusable information

PartialGCFlag -1 # Let the program decide whether to use PGC
0 # do not use it
1 # Enforce PGC (even for ANO bases)

FockFlag SHARK_libint_hybrid # default: best of both worlds
force_shark # Force Shark where possible
force_libint # Force libint where possible

RIJFlag RIJ_Auto # default: program decides the best way
Split_rij # new SHARK Split-RI-J algorithm
Split_rij_2003 # Highly efficient re-implementation of the

# Original 2003 algorithm. Mostly used!
rij_regular # Use traditional 3 center integrals

# (not recommended)
end

7.2 More on Coordinate Input

We will now enter the detailed discussion of the features of ORCA. Note that some examples are still written in
the “old syntax” but there is no need for the user to adopt that old syntax. The new syntax works as well.

7.2.1 Fragment Specification

The atoms in the molecule can be assigned to certain fragments. This helps to organize the output in the population
analysis section, is used for the fragment optimization feature, for the local energy decomposition and for multi-
level calculations. There are two options to assign atoms to fragments. The first option is to assign a given atom to
a given fragment by putting a (n) directly after the atomic symbol. Fragment enumeration starts with fragment
1!

%coords
CTyp xyz # the type of coordinates xyz or internal
Charge -2 # the total charge of the molecule
Mult 2 # the multiplicity = 2S+1
coords

Cu(1) 0 0 0
Cl(2) 2.25 0 0
Cl(2) -2.25 0 0
Cl(2) 0 2.25 0
Cl(2) 0 -2.25 0

end
end

In this example the fragment feature is used to divide the molecule into a “metal” and a “ligand” fragment and
consequently the program will print the metal and ligand characters contained in each MO in the population analysis
section.

Alternatively you can assign atoms to fragments in the geom block:

*xyz -2 2
Cu 0 0 0

(continues on next page)
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(continued from previous page)

Cl 2.25 0 0
Cl -2.25 0 0
Cl 0 2.25 0
Cl 0 -2.25 0

*
%geom
Fragments
1 {0} end # atom 0 for fragment 1
2 {1:4} end # atoms 1 to 4 for fragment 2

end
end

ò Note

• With the second option (geom-fragments) the %geom block has to be written after the coordinate section.

• geom-fragments also works with coordinates that are defined via an external file.

• For the geom-fragments option the atoms are assigned to fragment 1 if no assignment is given.

7.2.2 Defining Geometry Parameters and Scanning Potential Energy Surfaces

ORCA lets you define the coordinates of all atoms as functions of user defined geometry parameters. By giving not
only a value but a range of values (or a list of values) to this parameters potential energy surfaces can be scanned.
In this case the variable RunTyp is automatically changed to Scan. The format for the parameter specification is
straightforward:

%coords
CTyp internal
Charge 0
Mult 1
pardef
rCH = 1.09; # a C-H distance
ACOH = 120.0; # a C-O-H angle
rCO = 1.35, 1.10, 26; # a C-O distance that will be scanned

end
coords

C 0 0 0 0 0 0
O 1 0 0 {rCO} 0 0
H 1 2 0 {rCH} {ACOH} 0
H 1 2 3 {rCH} {ACOH} 180

end
end

In the example above the geometry of formaldehyde is defined in internal coordinates (the geometry functions work
exactly the same way with Cartesian coordinates). Each geometric parameter can be assigned as a function of by en-
closing an expression within function braces, “{} “. For example, a function may look like *cos(Theta)*rML+R.
Note that all trigonometric functions expect their arguments to be in degrees and not radians. The geometry pa-
rameters are expected to be defined such that the lengths come out in Ångströms and the angles in degrees. After
evaluating the functions, the coordinates will be converted to atomic units. In the example above, the variable rCO
was defined as a “Scan parameter”. Its value will be changed in 26 steps from 1.3 Å down to 1.1 Å and at each
point a single point calculation will be done. At the end of the run the program will summarize the total energy
at each point. This information can then be copied into the spreadsheet of a graphics program and the potential
energy surface can be plotted. Up to three parameters can be scan parameters. In this way grids or cubes of energy
(or property) values as a function of geometry can be constructed.

If you want to define a parameter at a series of values rather than evenly spaced intervals, the following syntax is
to be used:
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%coords
CTyp internal
Charge 0
Mult 1
pardef
rCH = 1.09; # a C-H distance
ACOH= 120.0; # a C-O-H angle
rCO [1.3 1.25 1.22 1.20 1.18 1.15 1.10]; # a C-O distance that will be scanned

end
coords

C 0 0 0 0 0 0
O 1 0 0 {rCO} 0 0
H 1 2 0 {rCH} {ACOH} 0
H 1 2 3 {rCH} {ACOH} 180

end
end

In this example the C-O distance is changed in seven non-equidistant steps. This can be used in order to provide
more points close to a minimum or maximum and fewer points at less interesting parts of the surface.

A special feature has also been implemented into ORCA - the parameters themselves can be made functions of the
other parameters as in the following (nonsense) example:

%coords
CTyp internal
Charge 0
Mult 1
pardef
rCOHalf= 0.6;
rCO = { 2.0*rCOHalf };

end
coords

C 0 0 0 0 0 0
O 1 0 0 {rCO} 0 0
O 1 0 0 {rCO} 180 0

end
end

In this example the parameter rCO is computed from the parameter rCOHalf. In general the geometry is computed
(assuming a Scan calculation) by: (a) incrementing the value of the parameter to be scanned (b) evaluating the
functions that assign values to parameters, and (c) evaluating functions that assign values to geometrical variables.

Although it is not mandatory, it is good practice to first define the static or scan-parameters and then define the
parameters that are functions of these parameters.

Finally, ORCA has some special features that may help to reduce the computational effort for surface scans:

%method
SwitchToSOSCF true # switches the converger to SOSCF

# after the first point. SOSCF may
# converge better than DIIS if the
# starting orbitals are good.
# default = false

ReducePrint true # reduce printout after the first point
# default=true

# The initial guess can be changed after the first point.
# The default is MORead. The MOs of the previous point will,
# in many cases, be a very good guess for the next point.
# However, in some cases you may want to be more conservative
# and use a general guess.

(continues on next page)
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(continued from previous page)

ScanGuess OneElec # the one-electron matrix
Hueckel # the extended Hueckel guess
PAtom # the PAtom guess
PModel # the PModel guess
MORead # MOs of the previous point

end

ò Note

• You can scan along normal modes of a Hessian using the NMScan feature as described in section Normal
Mode Scan Calculations Between Different Structures.

• The surface scan options are also supported in conjunction with TD-DFT/CIS or MR-CI calculations
(see section Potential Energy Surface Scans).

7.2.3 Mixing internal and Cartesian coordinates

In some cases it may be practical to define some atomic positions in Cartesian and some in internal coordinates.
This can be achieved by specifying all coordinates in the *int block: using “0 0 0” as reference atoms indicates
Cartesian coordinates. Note that for the first atom the flags are “1 1 1”, as “0 0 0” would be the normal values for
internal coordinates. Consider, for example, the relaxed surface scan from section Relaxed Surface Scans, where
the methyl group is given first in an arbitrary Cartesian reference frame and then the water molecule is specified in
internal coordinates:

! UKS B3LYP SV(P) TightSCF Opt SlowConv
%geom scan B 4 0 = 2.0, 1.0, 15 end end
* int 0 2
# First atom - reference atoms 1,1,1 mean Cartesian coordinates

C 1 1 1 -0.865590 1.240463 -2.026957

# Next atoms - reference atoms 0,0,0 mean Cartesian coordinates
H 0 0 0 -1.141534 2.296757 -1.931942
H 0 0 0 -1.135059 0.703085 -2.943344
H 0 0 0 -0.607842 0.670110 -1.127819

# Actual internal coordinates
H 1 2 3 1.999962 100.445 96.050
O 5 1 2 0.984205 164.404 27.073
H 6 5 1 0.972562 103.807 10.843

*

Internal and Cartesian coordinates can thus be mixed in any order but it is recommended that the first 3 atoms are
specified in Cartesian coordinates in order to define a unique reference frame.

7.2.4 Inclusion of Point Charges

In some situations it is desirable to add point charges to the system. In ORCA there are two mechanisms to add
point-charges. If you only want to add a few point charges you can “mask” them as atoms as in the following
(nonsense) input:

# A water dimer
! BP86 def2-SVP

* xyz 0 1
O 1.4190 0.0000 0.0597
H 1.6119 0.0000 -0.8763

(continues on next page)
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(continued from previous page)

H 0.4450 0.0000 0.0898
Q -0.834 -1.3130 0.0000 -0.0310
Q 0.417 -1.8700 0.7570 0.1651
Q 0.417 -1.8700 -0.7570 0.1651
*

Here the “Q“‘s define the atoms as point charges. The next four numbers are the magnitude of the point charge and
its position. The program will then treat the point charges as atoms with no basis functions and nuclear charges
equal to the “Q” values.

If you have thousands of point charges to treat, as in a QM/MM calculation, it is more convenient, and actually
necessary, to read the point charges from an external file as in the following example:

# A water dimer
! BP86 def2-SVP

% pointcharges "pointcharges.pc"

* xyz 0 1
O 1.4190 0.0000 0.0597
H 1.6119 0.0000 -0.8763
H 0.4450 0.0000 0.0898
*

The program will now read the file “pointcharges.pc” that contains the point-charge information and then call
the module orca_pcwhich adds the point charge contribution to the one-electron matrix and the nuclear repulsion.
The file “pointcharges.pc” is a simple ASCII file in the following format:

3
-0.834 -1.3130 0.0000 -0.0310
0.417 -1.8700 0.7570 0.1651
0.417 -1.8700 -0.7570 0.1651

The first line gives the number of point charges. Each consecutive line gives the magnitude of the point charge (in
atomic units) and its position (in Ångström units!). However, it should be noted that ORCA treats point charges from
an external file differently than “Q” atoms. When using an external point charge file, the interaction between the
point charges is not included in the nuclear energy. This behavior originates from QM/MM, where the interactions
among the point charges is done by the MM program. These programs typically use an external point charge file
when generating the ORCA input. To add the interaction of the point charges to the nuclear energy, the DoEQ
keyword is used either in the simple input or the %method block as shown below.

# A non QM/MM pointcharge calculation
! DoEQ

%pointcharges "pointcharges.pc"

%method
DoEQ true

end
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7.3 Details on the numerical integration grids

As in all other popular grid schemes, our grids are constructed from assembling a set of atomic grids into a molec-
ular one, using Becke’s approach. Each individual atomic grid is build based on optimized parameters for that
atom, and are composed of an angular and a radial part, that are defined separately.

The whole scheme was updated from ORCA 5.0, but we tried to keep things as close as possible to the previous
one. First, the overall construction of these grids needs to be explained.

7.3.1 The angular grid scheme

Instead of using a single angular grid throughout the whole atom, most schemes apply a so-called grid pruning in
order to reduce the number of grid points outside of the most important regions, as we do in ORCA. In the current
scheme, we split the atomic grids into five regions, using Lebedev grids with the following number of points on
each of those:

Table 7.1: Different angular grid schemes used in ORCA. The numbers indicate the Lebedev grids used.

AngularGrid Region 1 Region 2 Region 3 Region 4 Region 5
1 14 26 50 50 26
2 14 26 50 110 50
3 26 50 110 194 110
4 26 110 194 302 194
5 26 194 302 434 302
6 50 302 434 590 434
7 110 434 590 770 590

The ideal cutoffs between those regions were subjected to optimization, and are defined for all atoms. Whenever
we refer to a AngularGrid flag in ORCA, one of these schemes is chosen.

7.3.2 The radial grid scheme

The number of radial points (𝑛𝑟) for a given atom is simply defined using the equation first defined by Krack and
Köster:

𝑛𝑟 = (15× 𝜀− 40) + 𝑏×𝑅𝑂𝑊

where 𝜀 is called the IntAcc of that grid in ORCA, b is any number and ROW refers to the row of the periodic table
for that atom. In its original formulation, 𝑏 was set to 5, but here it as now optimized and varies slightly depending
on the AngularGrid schemes shown above.

One important thing to note is that each increase of IntAcc by 1, adds 15 radial points to the atomic grids, as in the
previous grid scheme. These IntAcc values were optimized for each angular grid:

Table 7.2: Optmimized IntAcc parameters for the exchange-correlation and COSX grids.

AngularGrid XC COSX
1 4.004 3.816
2 4.004 4.020
3 4.159 4.338
4 4.388 4.871
5 4.629 4.871
6 4.959 4.871
7 4.959 4.871

452 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

After defining the number of radial points 𝑛𝑟, the actual radial grid is then defined from a Gauss-Chebyschev
quadrature using the so-called M3 mapping from Treutler and Ahlrich:

𝑟 =
𝜉

𝑙𝑛2
𝑙𝑛

2

1− 𝑥

where−1 ≤ 𝑥 ≤ 1, and the center of the grid (𝑥 = 0) coincides with the value of 𝜉. These 𝜉 parameters were also
optimized for each atom type.

7.3.3 The DEFGRIDs

With all that in mind, we can now present how the DEFGRIDs are built in terms of their AngularGrid scheme and
IntAccs, which define the angular and radial parts of the atomic grids. More details can be found in Ref. [383].

Table 7.3: Angular grid schemes used in different part of ORCA. The XC and COSX grids are separated by a slash,
and multiple COSX grid schemes are separated by a comma.

Grid Name SCF TD-DFT CP-SCF MP2 grad MP2 2ndder
DEFGRID1 3 / 1, 1, 2 1 / 1 1 / 1 3 1
DEFGRID2 4 / 1, 2, 3 1 / 1 1 / 1 4 4
DEFGRID3 6 / 2, 3, 4 3 / 2 3 / 2 5 4

OBS.: The IntAccs for TD-DFT and the CP-SCF are 3.467 for the XC and 3.067 for the COSX instead of the
default. These numbers can be smaller here and we exploit this to increase the overall speed.

From the Table 7.3 one can see, for instance, that the default SCF XC grid now is defined from AngularGrid 4
(with no extra final integration in the end). The default COSX uses a 1,2,3 grid scheme, with the COSX third grid
being used to update the energy after the SCF converges and for the gradients.

7.3.4 Other details and options

The new adaptive pruning. The current pruning scheme uses lower grids close to the nucleus, and far away from
the bonding region. However, if the basis set has polarized functions close to the nuclei, or diffuse Gaussians, this
might not be sufficient.

To improve the grids for these problems, we now use by default an adaptive pruning scheme, that detects core-
polarization, diffuse functions and steep basis set orbitals by analyzing the expectation value of the position opera-
tor, ⟨𝑟⟩, and fixes the grid accordingly. This can increase the grids in these cases by 10-20%, but gives significantly
better results. To use the non-adaptive scheme, just set %METHOD GRIDPRUNING OLDPRUNING END. For
a completely unpruned grid, set GRIDPRUNING to UNPRUNED.

A simpler Gauss-Legendre angular grid. By setting AngularGrid to 0, instead of using the Lebedev grids, a
Gauss-Legendre angular grid will be built, as suggested by Treutler and Ahlrich [851]. The number of 𝜃 points is
defined as 0.4𝑛𝑟 by default and the number of 𝜑 points is chosen as to avoid crowding close to the poles.

These grids are in general less efficient than the Lebedev’s, but are useful if one needs to construct extremely large
grids for specific applications.

The SpecialGrid Option. Sometimes, you might want to increase the integration accuracy for some atoms that
need special care, while it is not necessary to enlarge the grid generally. ORCA provides you with a basic mecha-
nism to increase the radial integration accuracy for a few atoms while maintaining the chosen grid for all others.

%METHOD
# a maximum of 64 assignments can be made
# in = 0 : no changes are made
# in > 0 : the grid will be changed for all atoms with
# atomic number=in to IntAcc=an
# in < 0 : only the specific n'th atom will have its
# IntAcc value changed to an

(continues on next page)
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SpecialGridAtoms i1, i2, i3,...,in;
SpecialGridIntAcc a1,a2,a3,...,an;

END

OBS.: Starting from ORCA 5.0 it is not necessary to use this option anymore unless you have very specific reasons.
The basis set is considered during the grid construction and that is automatically extended if needed.

7.3.5 SCF grid keyword list

A complete description of the SCF grid options is given below. There are keywords specific to the XC integration,
COSX integration and a general part that applies to all:

%METHOD
# XC grids
AngularGrid 1 #Lebedev50

2 #Lebedev110
3 #Lebedev194
4 #Lebedev302
5 #Lebedev434
6 #Lebedev590
7 #Lebedev770
0 #SimpleGrid

IntAcc 5.0 # determines no. of radial points

# COSX grids
AngularGridX 1,1,2,4,5 # the first three are used in the SCF

# the 4th in the MP2 gradient and
# the 5th for MP2 second derivatives

IntAccX 3.56,-1,4.5 # if a -1 is given, the default IntAcc is used.

# General
NThetaMax 0.4 # only for AngularGrid=0, multiplier for nr
GridPruning Unpruned # no Pruning

OldPruning # the old pruning
Adaptive # default (and recommended)

HGridReduced true # Reduce grids for H and He by one
# unit (default and recommended)

BFCut 1e-10 # basis fcn. cut. Is adjusted according to
# convergence tolerances

WeightCut 1e-14 # grid weight cut. default: 1e-14
END

7.3.6 Changing TD-DFT, CP-SCF and Hessian grids

TD-DFT. The grids used in CIS or TD-DFT can be changed in their respective block:

%TDDFT # or %CIS, they are equivalent
# XC grids
IntAccXC 3.467
GridXC 1

#COSX grids
IntAccX 3.076
GridX 1

END

CP-SCF. The CP-SCF grids are changed in the %METHOD block:
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%METHOD
# XC grids
Z_IntAccXC 3.467
Z_GridXC 1

#COSX grids
Z_IntAccX 3.076
Z_GridX 1
Z_GridX_RHS 2

END

OBS.: The Z_Grid_RHS is only used in MP2 and the number here has a different meaning. It refers to which of
the COSX grids used in the SCF will be chosen, rather than an AngularGrid scheme. The default is to use the
second COSX grid.

Hessian. The XC grids used to compute the DFT terms in the Hessian are automatically chosen to be one unit
higher than the SCF grids. Because of the second derivative terms, we found that it is better to have a slightly
higher XC grid here. The COSX grid can be changed freely:

%FREQ
HessGridX = 2,2,2,2

END

These four numbers refer to the possible usages of COSX in the Hessian, as explained in Sec. Frequency calcula-
tions - numerical and analytical

Non-local functionals (VV10 and alike). The default non-local grid is defined by AngularGrid 2, and is not
recommended to be changed. In any case, these can be altered by using:

%METHOD
# non-local grids
VdwAngularGrid 2 # same scheme as the SCF ones
VdWIntAcc 5.0 # determines no. of radial points
VdwGridPruning Adaptive # default
VdwDistTCut 10 # cutoff distance between grid points, in angstroem

END

7.3.7 When should I change from the default grids?

In general, the errors from the default grids are rather small and reasonable for most applications. After bench-
marking against the GMTNK55 test set with the default !DEFGRID2, we found an error of about 0.01 ± 0.03
kcal/mol from DFT (compared to a reference grid), and 0.05 ± 0.10 kcal/mol for the COSX (compared to the
analytical integration). We also benchmarked geometries, excitation energies and frequencies, and all errors are
systematically low.

However, there might still be cases where an improved grid is needed:

• If you need to be confident that your energy error is below 0.2 kcal/mol;

• When dealing with anions with large negative charges (< −3);

• For very subtle intermolecular interactions;

• When dealing with weird electronic structures;

• With large conjugated systems - graphene-like structures and large polyaromatics.

When needed, the !DEFGRID3 is very large and conservative - it was built to cover almost all these cases. In
contrast, !DEFGRID1 will yield grids of the size close to previous ORCA versions defaults, but still with increased
accuracy.
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7.4 Choice of Computational Model

7.4.1 Features Common to All Calculations

The computational model is specified in the block %method. The following choices exist:

%method
Method HFGTO (or HF) # Hartree-Fock with GTOs

DFGTO (or DFT) # Density Functional Theory with GTOs
MP2 # Second-order Møller-Plesset Perturbation Theory
CNDO # Complete neglect of differential overlap
INDO # Intermediate neglect of differential overlap
NDDO # Neglect of diatomic differential overlap

end

In the case of Hartree-Fock calculations [840], nothing else is required in this block. Density functional calculations
[451, 647] need slightly more attention, as will be seen in the next section.

The type of calculation to be performed can be chosen by the RunTyp flag as follows:

%method
RunTyp Energy (or SinglePoint) # Single point calculation (default)

Scan (or Trajectory) # Geometric scan
Gradient # Single point energy and gradient
Opt (or GeometryOpt) # Geometry optimization
MD # Molecular dynamics calculation

end

7.4.2 Density Functional Calculations

Choice of Functional

Basic Choice of Density Functional. If you are doing a DFT calculation [451, 647], the following choices for
local, gradient-corrected, and hybrid density functionals are available. See also the simple input keywords in
section Density Functional Methods for a more complete list of density functionals (including double-hybrids,
which cannot be called from the %method block for technical reasons).

%method

Functional
#***************************************
# Local functionals
#***************************************

HFS # Hartree-Fock Slater (Slater exchange only)
LSD # Local spin density (VWN-5A form)
VWN5 # Local spin density (VWN-5)
VWN3 # Local spin density (VWN-3)
PWLDA # Local spin density (PW-LDA)

#***************************************
# ``Pure'' GGA functionals
#***************************************

BNULL # Becke '88 exchange, no correlation
BVWN # Becke '88 exchange, VWN-5 correlation
BP # Becke '88 exchange, Perdew '86 correlation
PW91 # Perdew-Wang (PW) GGA-II '91 functional
mPWPW # Modified PW exchange, PW correlation
mPWLYP # Modified PW exchange, Lee-Yang-Parr (LYP) correlation
BLYP # Becke '88 exchange, LYP correlation
GP # Gill '96 exchange, Perdew '86 correlation

(continues on next page)
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GLYP # Gill '96 exchange, LYP correlation
PBE # Perdew-Burke-Ernzerhof (PBE) functional
revPBE # Revised PBE (exchange scaling)
RPBE # Revised PBE (modified exchange functional)
PWP # PW '91 exchange, Perdew '86 correlation
OLYP # Hoe/Cohen/Handy's optimized exchange, LYP correlation
OPBE # Hoe/Cohen/Handy's optimized exchange, PBE correlation
XLYP # Xu/Goddard exchange, LYP correlation
B97D # Grimme's GGA including D2 dispersion correction
PW86PBE # PW '86 exchange, PBE correlation (as used for vdw-DF and related)
RPW86PBE # Revised PW '86 exchange, PBE correlation

#***************************************
# Meta-GGA functionals
#***************************************

M06L # Truhlar's semi-local functional
TPSS # TPSS functional
revTPSS # Revised TPSS functional
SCANfunc # Perdew's SCAN functional
RSCAN # Regularized SCAN functional
R2SCAN # Regularized and restored SCAN functional

#***************************************
# GGA Hybrid functionals
#***************************************

B1LYP # 1-parameter hybrid of BLYP (25% HF exchange)
B1P # Similar with Perdew '86 correlation
G1LYP # 1-parameter analog with Gill '96 exchange
G1P # Similar with Perdew '86 correlation
B3LYP # 3-parameter Hybrid of BLYP (20% HF exchange)
B3P # Similar with Perdew '86 correlation
G3LYP # 3-parameter analog with Gill '96 exchange
G3P # Similar with Perdew '86 correlation
PBE0 # 1-parameter version of PBE (25% HF exchange)
PWP1 # 1-parameter version of PWP (analog of PBE0)
mPW1PW # 1-parameter version of mPWPW (analog of PBE0)
mPW1LYP # 2-parameter version of mPWLYP (analog of PBE0)
PW91_0 # 1-parameter version of PW91 (analog of PBE0)
O3LYP # 3-parameter version of OLYP
X3LYP # 3-parameter version of XLYP
B97 # Becke's original hybrid functional
BHANDHLYP # Becke's half-and-half hybrid functional (50% HF exchange)

#***************************************
# Meta-GGA Hybrid functionals
#***************************************

TPSSh # TPSS hybrid with 10% HF exchange
TPSS0 # TPSS hybrid with 25% HF exchange
PW6B95 # Truhlar's 6-parameter hybrid functional
M06 # Truhlar's 2006 low-HF hybrid (27% HF exchange)
M062X # Truhlar's 2006 high-HF hybrid (54% HF exchange)
r2SCANh # r2SCAN global hybrid with 10% HF exchange
r2SCAN0 # r2SCAN global hybrid with 25% HF exchange
r2SCAN50 # r2SCAN global hybrid with 50% HF exchange

#***************************************
# Range-Separated Hybrid functionals
#***************************************

wB97 # Head-Gordon's fully variable DF
wB97X # Head-Gordon's DF with minimal HF exchange
CAMB3LYP # Handy's fit
LC_BLYP # Hirao's original application
LC_PBE # Hirao's PBE-based range-separated hybrid
wr2SCAN # r2SCAN range-separated hybrid

end
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Note that Functional is a compound keyword. It chooses specific values for the variables Exchange,
Correlation, and ACM described below. If given as a simple input keyword, in some cases, it will also activate a
dispersion correction. You can explicitly give these variables instead or in addition to Functional. However, make
sure that you specify these variables after you have assigned a value to Functional or the values of Exchange,
Correlation and ACM will be reset to the values chosen by Functional.

Empirical Parameters in Density Functionals. Some functionals incorporate empirical parameters that can be
changed to improve agreement with experiment. Currently, there are a few parameters that can be changed (other
than the parameters used in the hybrid functionals, which are described later).

The first of these parameters is 𝛼 of Slater’s X𝛼 method. Theoretically, it has a value of 2/3 and this is used
in the HFS and LSD functionals. However, the exchange contribution is underestimated by about 10% by this
approximation (quite significant!) and a value around 0.70-0.75 is recommended for molecules.

The second parameter is the 𝛽 for Becke’s gradient-corrected exchange functional. Becke determined the value
0.0042 by fitting the exchange energies for rare gas atoms. There is some evidence that with smaller basis sets, a
slightly smaller value such as 0.0039 gives improved results for molecules.

The next parameter is the value 𝜅, which occurs in the PBE exchange functional. It has been given the value 0.804
by Perdew et al. in order to satisfy the Lieb-Oxford bound. Since then, other workers have argued that a larger
value for this parameter (around 1.2) gives better energetics, which is explored in the revPBE functional. Note,
however, that while revPBE gives slightly better energetics, it also gives slightly poorer geometries.

The last two parameters are also related to PBE. Within the PBE correlation functional, there is 𝛽𝐶 (not to be
confused with the 𝛽 exchange parameter in Becke’s exchange functional), whose original value is 𝛽𝐶 = 0.066725.
Modified variants exist with different 𝛽𝐶 values, e.g., the PBEsol functional and the PBEh-3c compound method.
Furthermore, the 𝜇 parameter in the PBE exchange functional may be modified. In the original formulation, it is
related to 𝛽𝐶 via 𝜇 = 𝛽𝐶

𝜋2

3 , but has been modified in later variants as well.

%method
XAlpha 0.75 # Slater's alpha parameter (default 2/3)
XBeta 0.0039 # Becke's beta parameter (default 0.0042)
XKappa 0.804 # PBE(exchange) kappa parameter (default 0.804)
XMuePBE 0.21952 # PBE(exchange) mue parameter (default 0.21952)
CBetaPBE 0.066725 # PBE(correlation) beta parameter (default 0.066725)

end

Specifying Exchange and Correlation approximations individually. The following keywords are available for
specifying the exchange and correlation approximations individually. In addition, scaling parameters can be defined
to construct user-defined hybrid or “extended” hybrid functionals:

%method

Exchange
X_NOX # No exchange
X_SLATER # Slater's local exchange
X_B88 # Becke '88 gradient exchange
X_wB88 # Short-range Becke '88 exchange for range-separated functionals
X_G96 # Gill '96 gradient exchange
X_PW91 # Perdew-Wang (PW) '91 gradient exchange
X_mPW # Adamo-Barone modification of PW exchange
X_PBE # Perdew-Burke-Ernzerhof (PBE) exchange
X_RPBE # Revised PBE exchange
X_OPTX # Hoe/Cohen/Handy's optimized exchange
X_X # Xu/Goddard exchange
X_TPSS # TPSS meta-GGA exchange
X_B97D # Grimme's modified exchange for the B97-D GGA
X_B97BECKE # Becke's original exchange for the B97 hybrid
X_SCAN # Perdew's constrained exchange for the SCAN meta-GGA
X_RSCAN # Perdew's constrained exchange for the rSCAN meta-GGA
X_R2SCAN # Perdew's constrained exchange for the r2SCAN meta-GGA

Correlation
(continues on next page)
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C_NOC # No correlation
C_VWN5 # Local Vosko-Wilk-Nusair correlation (parameter set "V")
C_VWN3 # Local Vosko-Wilk-Nusair correlation (parameter set "III")
C_PWLDA # Local PW correlation
C_P86 # Perdew '86 correlation
C_PW91 # PW '91 correlation
C_PBE # PBE correlation
C_LYP # LYP correlation
C_TPSS # TPSS meta-GGA correlation
C_B97D # Grimme's modified correlation for the B97-D GGA
C_B97BECKE # Becke's original correlation for the B97 hybrid
C_SCAN # Perdew's constrained correlation for the SCAN meta-GGA
C_RSCAN # Perdew's constrained correlation for the rSCAN meta-GGA
C_R2SCAN # Perdew's constrained correlation for the r2SCAN meta-GGA

# Parameters for hybrid functionals
ACM ACM-A, ACM-B, ACM-C

# ACM-A: fraction of HF exchange in hybrid DFT
# ACM-B: scaling of GGA exchange part of DFT
# ACM-C: scaling of GGA correlation part of DFT

# Parameters for "extended" hybrid functionals
ScalLDAC 1.0 # scaling of the LDA correlation part
ScalMP2C 0.0 # fraction of MP2 correlation mixed into the density functional

end

Hybrid Density Functionals. The hybrid DFs [87, 88] are invoked by choosing a nonzero value for the variable
ACM. (ACM stands for “adiabatic connection model”). Specifically, these functionals have the following form:

𝐸XC = 𝑎𝐸X
HF + (1− 𝑎)𝐸X

LSD + 𝑏𝐸X
GGA + 𝐸C

LSD + 𝑐𝐸C
GGA (7.1)

Here,𝐸XC is the total exchange/correlation energy,𝐸X
HF is the Hartree-Fock exchange,𝐸X

LSD is the local (Slater) ex-
change,𝐸X

GGA is the gradient correction to the exchange,𝐸C
LSD is the local, spin-density based part of the correlation

energy, and 𝐸C
GGA is the gradient correction to the correlation energy.

This brings us to a slightly awkward subject: several hybrid functionals with the same name give different values
in different programs. The reason for this is that they choose slightly different default values for the parameters 𝑎,
𝑏, and 𝑐 and/or differ in the way they treat the local part of the correlation energy.

Different parametrizations exist. The most popular example of this is due to Vosko, Wilk, and Nusair (VWN,
[874]). VWN in their classic paper give two sets of parameters — one in the main body (parametrization of RPA
results; known as VWN-III) and one in their table 5 of correlation energies (parametrization of the Ceperley/Alder
Monte Carlo results; known as VWN-V). Some programs use VWN-III, while others use VWN-V. Additionally, a
slightly better fit to the uniform electron gas has been produced by Perdew and Wang [668]. The results from this
fit are very similar to those using VWN5, whereas VWN3 yields quite different values.

In ORCA, almost all functionals choose PWLDA as the underlying LDA functional. A special situation arises if
LYP is the correlation functional [502] since LYP is not a correction to the correlation, but rather includes the full
correlation. It is therefore used in the B3LYP functional as:

𝐸C
B3LYP = 𝐸C

LSD + 𝑐
(︀
𝐸C

LYP − 𝐸C
LSD
)︀

(7.2)

In ORCA, VWN5 is chosen for the local correlation part of B3LYP. This choice is consistent with the TurboMole
program [12, 13, 14], but not with the Gaussian program [278]. However, the user has full control over this setting.
The underlying local part of any correlation functional can be set in the input with the variable LDAOpt:

%method
LDAOpt C_PWLDA

C_VWN5
C_VWN3

end
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Specifying C_VWN3 for LDAOpt together with Functional=B3LYP should give results very close to the B3LYP
functional as implemented in the Gaussian series of programs1. Due to the popularity of the B3LYP functional,
the following aliases are defined in order to facilitate comparisons with other major electronic structure packages:

%method
Functional B3LYP # consistent with TurboMole

B3LYP_TM # := Functional B3LYP
# LDAOpt C_VWN5

B3LYP_G # consistent with Gaussian
# := Functional B3LYP
# LDAOpt C_VWN3

end

One-Parameter Hybrid Density Functionals. The underlying LDA-dependence of the three-parameter (i.e.
ACM) hybrids causes slightly different results from programs which use a different choice of LDA. It has been
argued from a theoretical viewpoint that the optimal mixing of HF exchange is 25% [248]. It has been further
shown that use of this fixed ratio and not scaling the GGA correlation or exchange contributions gives results that
are as good as the original three-parameter hybrids [9]. The one-parameter hybrid PBE0 has been advertised as a
hybrid functional of overall well-balanced accuracy [8].

As such, the one-parameter hybrids are based more in theory and remove some arbitrariness from the hybrid
procedures. The slightly higher HF-exchange (0.25 in favor of 0.20 used in the original three-parameter hybrids)
is also reasonable for many systems. The one-parameter hybrids have the simple form:

𝐸XC = 𝐸X
DFT + 𝑎′

(︀
𝐸X

HF − 𝐸X
DFT
)︀
+ 𝐸C

DFT (7.3)

with 𝑎′ = 1
4 . This is the same as the three-parameter hybrids (equation (7.1)) with 𝑎 = 𝑎′, 𝑏 = 1− 𝑎′, and 𝑐 = 1

and is how it is implemented.

Extended “double-hybrid” functionals. In addition to mixing the HF-exchange into a given DF, Grimme has
proposed to mix in a fraction of the MP2 correlation energy as calculated with hybrid DFT orbitals [320]. Such
functionals may be referred to as “extended” or “double” hybrid functionals. Grimme’s expression is:

𝐸XC = 𝑎𝐸HF
X + (1− 𝑎)𝐸DFT

X + (1− 𝑐)𝐸DFT
C + 𝑐𝐸MP2

C (7.4)

Such functionals can be defined by the user in ORCA as follows:

%method
ScalHFX = a
ScalDFX = 1-a
ScalGGAC = 1-c
ScalLDAC = 1-c
ScalMP2C = c

end

Grimme recommends the B88 exchange functional, the LYP correlation functional and the parameters 𝑎 = 0.53
and 𝑐 = 0.27. This gives the B2PLYP functional which appears to be a fair bit better than B3LYP based on
Grimme’s detailed evaluation study.

Presently, this methodology covers single point calculations, analytic gradients (and thus also geometry optimiza-
tions, relaxed scans, and transition state searches), and frequencies and other second-derivative properties (without
the frozen core approximation in the MP2 part). Note that %mp2 density relaxed end should be specified in
order to get the response density that is consistent with first-order properties from analytic first-derivatives. By
default, this response density is not calculated since its construction adds significant overhead to the calculation.
Therefore, you have to specifically request it to look at the consistent density. The considerably less costly unre-
laxed (expectation value-like) density may instead requested by %mp2 density unrelaxed end. However, this
is not recommended since the changes to the relaxed density are considerable in our experience and the unrelaxed
density has a much weaker theoretical status than its relaxed counterpart.

1 There is some evidence that the version used in the Gaussian program gives slightly better results in molecular applications than the
TurboMole variant, but the differences are very small [387].
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Range-separated hybrid functionals. ORCA supports functionals based on the error function splitting of the
two-electron operator used for exchange as first realized by Hirao and coworkers [410]:

𝑟−112 = erfc(𝜇 · 𝑟12) · 𝑟−112⏟  ⏞  
SR

+ erf(𝜇 · 𝑟12) · 𝑟−112⏟  ⏞  
LR

(7.5)

where erf(𝑥) = 2√
𝜋

∫︀ 𝑥
0
exp(−𝑡2)𝑑𝑡 and erfc(𝑥) = 1−erf(𝑥). Note that the splitting is only applied to the exchange

contribution; all other contributions (one-electron parts of the Hamiltonian, the electron-electron Coulomb inter-
action and the approximation for the DFT correlation) are not affected. Later, Handy and coworkers generalized
the ansatz to [900]:

𝑟−112 =
1− [𝛼+ 𝛽 · erf(𝜇 · 𝑟12)]

𝑟12⏟  ⏞  
SR

+
𝛼+ 𝛽 · erf(𝜇 · 𝑟12)

𝑟12⏟  ⏞  
LR

(7.6)

This form of the splitting used in ORCA is shown visually (according to Handy and coworkers) in Fig. 7.1.

Fig. 7.1: Graphical description of the Range-Separation ansatz. The gray area corresponds to Hartree-Fock ex-
change. 𝛼 and 𝛽 follow Handy’s terminology [900].

The splitting has been used to define the 𝜔B97 family of functionals, wherein the short-range part (SR) is described
by DFT exchange and the long-range part by exact exchange, i.e. Hartree-Fock exchange. The same is true for
CAM-B3LYP, LC-BLYP, and LC-PBE. It is possible to use a fixed amount of Hartree-Fock exchange (EXX) and/or
a fixed amount of DFT exchange in this ansatz. Here are some examples of range-separated hybrid functionals
available in ORCA and their parameters:
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Functional Keyword fixed EXX variable part 𝜇/bohr−1 fixed DFT-X Reference
𝜔B97 WB97 — 100% 0.40 — [151]
𝜔B97X WB97X 15.7706% 84.2294% 0.30 — [151]
𝜔B97X-D3 WB97X-D3 19.5728% 80.4272% 0.25 — [525]
𝜔B97X-V WB97X-V 16.7% 83.3% 0.30 — [555]
𝜔B97X-D3BJ WB97X-D3BJ 16.7% 83.3% 0.30 — [603]
CAM-B3LYP CAM-B3LYP 19% 46% 0.33 35% [900]
LC-BLYP LC-BLYP — 100% 0.33 — [846]
LC-PBE LC-PBE — 100% 0.47 — [410]

The currently available speed-up options are RIJONX and RIJCOSX. Integral-direct single-point calculations,
calculations involving the first nuclear gradient (i.e. geometry optimizations), frequency calculations, TDDFT,
TDDFT nuclear gradient, and EPR/NMR calculations are the supported job types with range-separated hybrid
functionals thus far.

In principle, it is possible to change the amount of fixed Hartree-Fock exchange (ACM-A), the amount of variable
exchange (RangeSepScal), and 𝜇, though this is not recommended. The amount of fixed DFT Exchange (ACM-B)
can only be changed for CAM-B3LYP and LC-BLYP. In other words, ACM-B is ignored by the 𝜔B97 approaches
as no corresponding 𝜇-independent exchange functional has been defined.

! RKS CAM-B3LYP DEF2-SVP

# default parameters for CAM-B3LYP:
%method

RangeSepEXX True # must be set
RangeSepMu 0.33 # should not be set to 0.0 or below
RangeSepScal 0.46 # should sum to 1 with ACM-A and ACM-B
ACM 0.19, 0.35, 0.81 # ACM-A, ACM-B, ACM-C(same as B3LYP)

end

* xyz 0 1
H 0.0 0.0 0.0
H 0.0 0.0 0.7
*

ò Note

For information on the ACM formalism, see preceding section called “Specifying Exchange and Correlation
approximations individually”. While it is technically possible to choose an exchange functional that has no
𝜇-dependence, this makes no sense conceptually.

LibXC Functionals

Since ORCA 4.2, it is possible to use the functionals provided by LibXC2 within the ORCA framework. The LibXC
version used by ORCA is printed at the beginning of the output. The LibXC reference should be cited when LibXC
is used as part of your calculations. For reference, see [506].

The complete list of functionals available via the LibXC interface can always be inspected by typing at the command
line

orca -libxcfunctionals

The list of functionals has the following form:

2 https://libxc.gitlab.io
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Functionals available via LibXC:
No.: ID / Keyword - Name
0: 18 / lda_c_1d_csc - Casula, Sorella & Senatore
1: 26 / lda_c_1d_loos - P-F Loos correlation LDA
2: 15 / lda_c_2d_amgb - AMGB (for 2D systems)
3: 16 / lda_c_2d_prm - PRM (for 2D systems)
4: 552 / lda_c_br78 - Brual & Rothstein 78

...

The list is grouped by “level” of functional (LDA, GGA, meta-GGA, etc.) and then by part of the energy it models
(correlation, exchange, exchange-correlation). Correlation functionals carry a ’_c_’ in their names, exchange
functionals an ’_x_’, and combined exchange-correlation functionals an ’_xc_’. Additional information for a
specific functional can be requested using

orca -libxcinfo [functional name]

where the functional name is the keyword in the above list.

Specification of LibXC functionals in the ORCA input follows the standard format:

%method
method dft
functional hyb_gga_xc_b3lyp

end

or in the case of separate exchange and correlation specifications:

%method
method dft
exchange mgga_x_m06_l
correlation mgga_c_m06_l

end

CAM-type range-separated functionals are supported through the LibXC interface since ORCA 5.0. So are func-
tionals that include non-local (VV10) correlation (see DFT Calculations with the Non-Local, Density Dependent
Dispersion Correction (VV10): DFT-NL). The VV10 part is computed internally by ORCA. Other non-local func-
tionals, such as BEEF-vdW, are not supported. Meta-GGA functionals that depend on the kinetic energy density
𝜏 are supported, but not those that depend on the Laplacian of the density ∇2𝜌.

Double-hybrid functionals can be constructed with LibXC components as described in section DFT Calcu-
lations with Second Order Perturbative Correction (Double-Hybrid Functionals), but only with separate ex-
change and correlation components. So exchange=gga_x_pbe and correlation=gga_c_pbe can be used, but
functional=hyb_gga_xc_pbeh cannot be used in a double-hybrid formulation. Beware that the exchange and
correlation contributions calculated by LibXC are simply scaled by ScalDFX and ScalGGAC, respectively, and no
care is taken to separately scale LDA components or alter other internal parameters!

Screening Thresholds

When the density is smaller than a certain threshold, LibXC skips the evaluation of the functional and instead
sets all the output quantities to zero in order to avoid under- and/or overflows. The default thresholds for different
functionals are set by the LibXC developers, but may sometimes be too low. We have not performed extensive
testing, but allow the user to set the threshold. Similarly, there are thresholds for minimum values of 𝜁 and 𝜏
in order to avoid division by zero. The default values are functional-independent and can be changed using the
following keywords.

%method
LibXCDensityThreshold 1e-12 # seems to be reasonable
LibXCZetaThreshold 2e-16 # default value in LibXC

(continues on next page)
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(continued from previous page)

LibXCTauThreshold 1e-20 # default value in LibXC
end

Modifying LibXC Functional Parameters

Starting with ORCA 5.1 it is possible to modify the “external parameters” of a functional that the LibXC in-
terface provides. The available parameters and their default values can be seen in the output or with the orca
-libxcinfo command above. Please exercise caution when using this interface and if using a published func-
tional reparametrization, make sure you can reproduce results from the original publication. The syntax requires
one of the ExtParamX, ExtParamC, or ExtParamXC keywords (depending on which functional is modified), fol-
lowed by the parameter name in quotation marks, and finally the new value. For example, here is an input for the
PWPB95 double-hybrid functional, where the simple input keyword is used to set most parameters (such as the
MP2 scaling factors) and only the exchange and correlation parameters of the mPW91 and B95 LibXC functionals,
respectively, are modified.

! Opt PWPB95 def2-SVP def2-SVP/C

%method
Exchange gga_x_mpw91
Correlation mgga_c_bc95
ExtParamX "_bt" 0.00444
ExtParamX "_alpha" 19.823391
ExtParamX "_expo" 3.7868
ExtParamC "_css" 0.03241
ExtParamC "_copp" 0.00250

end

*xyz 0 1
H 0 0 0
F 0 0 0.9

*

Note that the variable definitions in LibXC may be different from the ones used internally in ORCA or in the
original publication, due to various constant factors, etc. When in doubt, please consult the LibXC documentation
or source code repository — we simply provide access to the interface.

Simple Input of LibXC Functionals

Some LibXC functionals are accessible via the simple input keyword !LibXC(Keyword), e.g. !LibXC(TPSS).
The keywords match those in section Density Functional Methods for functionals that are also implemented na-
tively in ORCA. Using this syntax, parameters for the DFT-D dispersion corrections are also set automatically (if
implemented). Table Table 7.4 lists the available functionals and their LibXC names.

Table 7.4: LibXC functionals available via the simple input !LibXC(Keyword)

Keyword LibXC name(s) Notes
GGA functions
B97-D gga_xc_b97_d Uses D2
B97-D3 gga_xc_b97_d Uses D3(0)
B97-D4 gga_xc_b97_d Uses D4
BLYP gga_x_b88 + gga_c_lyp
BP86 gga_x_b88 + gga_c_p86
KT2 gga_xc_kt2
KT3 gga_xc_kt3
PBE gga_x_pbe + gga_c_pbe

continues on next page
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Table 7.4 – continued from previous page
Keyword LibXC name(s) Notes
Meta-GGA functionals
B97M-V mgga_xc_b97m_v Uses VV10
B97M-D3BJ mgga_xc_b97m_v Uses D3(BJ)
B97M-D4 mgga_xc_b97m_v Uses D4
M06L mgga_x_m06_l + mgga_c_m06_l
MN15L mgga_x_mn15_l + mgga_c_mn15_l
r2SCAN mgga_x_r2scan + mgga_c_r2scan
rSCAN mgga_x_rscan + mgga_c_rscan
SCAN mgga_x_scan + mgga_c_scan
TPSS mgga_x_tpss + mgga_c_tpss
Hybrid GGA functionals
B3LYP hyb_gga_xc_b3lyp5
B3LYP/G hyb_gga_xc_b3lyp
B97 hyb_gga_xc_b97
PBE0 hyb_gga_xc_pbeh
wB97 hyb_gga_xc_wb97
wB97X hyb_gga_xc_wb97x
wB97X-D3 hyb_gga_xc_wb97x_d3 Uses D3(0)
wB97X-V hyb_gga_xc_wb97x_v Uses VV10
wB97X-D3BJ hyb_gga_xc_wb97x_v Uses D3(BJ)
wB97X-D4 hyb_gga_xc_wb97x_v Uses D4
Hybrid meta-GGA functionals
M05 hyb_mgga_x_m05 + mgga_c_m05
M052X hyb_mgga_x_m05_2x + mgga_c_m05_2x
M06 hyb_mgga_x_m06 + mgga_c_m06
M062X hyb_mgga_x_m06_2x + mgga_c_m06_2x
MN15 hyb_mgga_x_mn15 + mgga_c_mn15
PW6B95 hyb_mgga_xc_pw6b95
SCAN0 hyb_mgga_x_scan0 + mgga_c_scan
TPSS0 hyb_mgga_xc_tpss0
TPSSH hyb_mgga_xc_tpssh
wB97M-V hyb_mgga_xc_wb97m_v Uses VV10
wB97M-D3BJ hyb_mgga_xc_wb97m_v Uses D3(BJ)
wB97M-D4 hyb_mgga_xc_wb97m_v Uses D4
Double-hybrid functionals
DSD-PBEB95-D3 gga_x_pbe + mgga_c_bc95 Custom mixing, uses D3(BJ)
DSD-PBEB95-D4 gga_x_pbe + mgga_c_bc95 Custom mixing, uses D4
PWPB95 gga_x_mpw91 + mgga_c_bc95 Custom mixing and ExtParam’s

Using the RI-J Approximation to the Coulomb Part

ò Note

This is the default for non-hybrid DFT! Can be turned off by using !NORI.

A very useful approximation that greatly speeds up DFT calculations unless the molecule gets very large is the so
called “RI-approximation” [65, 225, 245, 246, 440, 862, 888]. RI stands for “Resolution of the identity”. In short,
charge distributions arising from products of basis functions are approximated by a linear combination of auxiliary
basis functions.

𝜑𝑖 (�⃗�)𝜑𝑗 (�⃗�) ≈
∑︁
𝑘

𝑐𝑖𝑗𝑘 𝜂𝑘(r) (7.7)
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There are a variety of different possibilities to determine the expansion coefficients 𝑐𝑖𝑗𝑘 . A while ago, Almlöf
and coworkers [860] have shown that for the approximation of electron repulsion integrals, the best choice is to
minimize the residual repulsion3.

Define:

𝑅𝑖𝑗 ≡ 𝜑𝑖 (�⃗�)𝜑𝑗 (�⃗�)−
∑︁
𝑘

𝑐𝑖𝑗𝑘 𝜂𝑘 (�⃗�) (7.8)

and

𝑇𝑖𝑗 =

∫︁ ∫︁
𝑅𝑖𝑗 (�⃗�)

1

|�⃗� − �⃗�′|
𝑅𝑖𝑗 (�⃗�) 𝑑

3𝑟𝑑3𝑟′ (7.9)

Determining the coefficients that minimize 𝑇𝑖𝑗 leads to

c𝑖𝑗 = V−1t𝑖𝑗 (7.10)

where:

𝑡𝑖𝑗𝑘 =
⟨︀
𝜑𝑖𝜑𝑗

⃒⃒
𝑟−112

⃒⃒
𝜂𝑘
⟩︀

(7.11)

𝑉𝑖𝑗 =
⟨︀
𝜂𝑖
⃒⃒
𝑟−112

⃒⃒
𝜂𝑗
⟩︀

(7.12)

Thus, an ordinary two-electron integral becomes⟨︀
𝜑𝑖𝜑𝑗

⃒⃒
𝑟−112

⃒⃒
𝜑𝑘𝜑𝑙

⟩︀
≈
∑︁
𝑝,𝑞

𝑐𝑖𝑗𝑝 𝑐
𝑘𝑙
𝑞 𝑉𝑝𝑞

=
∑︁
𝑝,𝑞

𝑉𝑝𝑞
∑︁
𝑟

(︀
V−1

)︀
𝑝𝑟
𝑡𝑖𝑗𝑟
∑︁
𝑠

(︀
V−1

)︀
𝑞𝑠
𝑡𝑘𝑙𝑠

=
∑︁
𝑟,𝑠

(︀
V−1

)︀
𝑟𝑠
𝑡𝑖𝑗𝑟 𝑡

𝑘𝑙
𝑠

(7.13)

and the total Coulomb energy becomes

𝐸𝐽 =
∑︁
𝑖,𝑗

∑︁
𝑘,𝑙

𝑃𝑖𝑗𝑃𝑘𝑙
⟨︀
𝜑𝑖𝜑𝑗

⃒⃒
𝑟−112

⃒⃒
𝜑𝑘𝜑𝑙

⟩︀
≈
∑︁
𝑖,𝑗

∑︁
𝑘,𝑙

𝑃𝑖𝑗𝑃𝑘𝑙
∑︁
𝑟,𝑠

(︀
V−1

)︀
𝑟𝑠
𝑡𝑖𝑗𝑟 𝑡

𝑘𝑙
𝑠

=
∑︁
𝑟,𝑠

(︀
V−1

)︀
𝑟𝑠

∑︁
𝑖,𝑗

𝑃𝑖𝑗𝑡
𝑖𝑗
𝑟⏟  ⏞  

X𝑟

∑︁
𝑘,𝑙

𝑃𝑘𝑙𝑡
𝑘𝑙
𝑠⏟  ⏞  

X𝑠

(7.14)

where P is the total density matrix.

In a similar way, the Coulomb contribution to the Kohn-Sham matrix is calculated. There are substantial advantages
from this approximation: the quantities to be stored are the matrix V−1 — which depends only on two indices —
and the three-index auxiliary integrals 𝑡𝑖𝑗𝑟 . This leads to a tremendous reduction of storage requirements compared
to a four-index list of repulsion integrals. In addition, the two- and three-index electron repulsion integrals are
easier to compute than the four-index integrals, leading to further reductions in processing time. Furthermore,
the Coulomb energy and the Kohn-Sham matrix contributions can be quickly assembled by simple vector/matrix
operations, leading to large time savings. This arises because each auxiliary basis function 𝜂𝑘 (�⃗�) appears in the
expansion of many charge distributions 𝜑𝑖 (�⃗�)𝜑𝑗 (�⃗�). Unfortunately, a similar strategy is less easily applied (or, at
least, with less benefit) to the Hartree-Fock exchange term.

If the auxiliary basis set {𝜂} is large enough, the approximation is also highly accurate. Since any DFT procedure
already has a certain, sometimes sizable, error from the noise in the numerical integration of the XC part, it might be
argued that a similarly large error in the Coulomb part is perfectly acceptable without affecting the overall accuracy

3 The basic theory behind the RI method has been known for a long time and since at least the late sixties, methods similar to the RI
approximation have been used — mainly in the context of “approximate ab initio methods” such as LEDO, PDDO, and MADO, but also in
density functional theory in the mid and late seventies by Baerends, Dunlap, and others [65, 225, 862, 888].
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of the calculation much. Furthermore, the errors introduced by the RI method are usually much smaller than the
errors in the calculation due to basis set incompleteness. It is therefore recommended to use the RI procedure for
pure DFs. However, one should probably not directly mix absolute total energies obtained from RI and non-RI
calculations as the error in the total energy accumulates and will rise with increased molecular size, while the
errors in the relative energies will tend to cancel.

There are several choices for auxiliary basis sets described in the next section, which depend on the choice of the
primary GTO basis set used to expand the molecular orbitals4.

In ORCA, the RI approximation is toggled by the input

%method
RI on # do use the RI-J approximation

off # do not use the RI-J approximation
end

ò Note

If you use RI, you must specify an auxiliary basis set (in the %basis section or using the appropriate simple
keyword) or use the !AutoAux simple keyword.

The Split-RI-J Coulomb Approximation

There is an improved version of the RI-algorithm that has been implemented since ORCA 2.2.09. This Split-
RI-J algorithm yields the same Coulomb energy as the standard RI-algorithm, but is significantly faster if the
basis set contains many high angular momentum functions (d-, f-, g-functions). For small basis sets, there is
virtually no difference between the two algorithms, except that Split-RI-J uses more memory than standard RI.
However, calculations with ca. 2000 basis functions only need about an extra 13 MB for Split-RI-J, which is a
trivial requirement on present-day hardware.

The Split-RI-J algorithm is invoked with the !Split-RI-J simple keyword. Split-RI-J is presently only available
for SCF and gradient calculations.

ò Note

• The Split-RI-J algorithm is the default if RI is turned on via !RI. If you do not want to use Split-RI-J,
please also use the keyword !NoSplit-RI-J

Using the RI Approximation for Hartree-Fock and Hybrid DFT (RIJONX)

The RI approximation can be used, although with less benefit, for hybrid DFT and Hartree-Fock (RHF and UHF)
calculations. In this case, a different algorithm5 is used that allows a fair approximation to the Hartree-Fock ex-
change matrix (RI-JK). It can be difficult to make this approximation highly accurate. It is, however, usefully fast
compared to direct SCF if the molecule is “dense” enough. There are special auxiliary basis sets for this purpose
(see section Basis Sets).

%method
RI on

end

(continues on next page)

4 It probably should be noted that a slightly awkward step in the procedure is the inversion of the auxiliary integral matrix V, which can
easily become very large. Matrix inversion is an O(N3) process such that for large molecules, this step takes some real time. However, in
ORCA, this is only done once during the calculation, whereas other programs that constrain the fit to also exactly reproduce the number of
electrons perform a similar process each iteration. Starting from ORCA 2.2.09, the Cholesky decomposition is used in favor of matrix inversion,
removing any bottleneck concerning the solution of the linear equation system.

5 This algorithm was described by Kendall and Früchtl [440].
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(continued from previous page)

%basis
Aux "def2/JK"

end

ò Note

There has been little experimentation with this feature. It is provided on an experimental basis here.

Alternatively, the RI method can be used for the Coulomb term and the standard treatment for the exchange term.
This method is called RIJONX since the exchange term should tend towards linear scaling for large molecules.
This feature can be used for Hartree-Fock and hybrid DFT calculations by using:

%method
RI on # do use the RI approximation
RIFlags 1 # ...but treat exchange exactly

end

# Equivalently, use the following simple keyword:
! RIJONX

# Remember to assign an auxiliary basis set!

The requirements for the auxiliary basis are the same as for the normal RI-J method.

Using the RI Approximation for Hartree-Fock and Hybrid DFT (RIJCOSX)

ò Note

This is the default for hybrid DFT! Can be turned off by using !NOCOSX.

The aim of this approximation is to efficiently compute the elements of exchange-type matrices6:

𝐾𝜇𝜈 =
∑︁
𝜅𝜏

𝑃𝜅𝜏 (𝜇𝜅|𝜈𝜏) (7.15)

where P is some kind of density-type matrix (not necessarily symmetric) and the two-electron integrals are defined
over the basis set {𝜙} by:

(𝜇𝜅|𝜈𝜏) =
∫︁
𝜇(r1)𝜅(r1)𝜈(r2)𝜏(r2)𝑟

−1
12 𝑑r1𝑑r2 (7.16)

The approximation pursued here can be written as follows:

𝐾𝜇𝜈 ≈
∑︁
𝑔

𝑋𝜇𝑔

∑︁
𝜏

𝐴𝜐𝜏 (r𝑔)
∑︁
𝜅

𝑃𝜅𝜏𝑋𝜅𝑔 (7.17)

Here, the index 𝑔 refers to grid points r𝑔 and:

𝑋𝜅𝑔 = 𝑤1/2
𝑔 𝜅(r𝑔) (7.18)

𝐴𝜐𝜏 (r𝑔) =

∫︁
𝜈(r)𝜏(r)

|r− r𝑔|
𝑑r (7.19)

where 𝑤𝑔 denotes the grid weights. Thus, the first integration is carried out numerically and the second one
analytically. Note that this destroys the Hermitian character of the two-electron integrals.

6 The theory of this approach together with all evaluations and implementation details is described in [383, 624]. References to earlier work
can also be found there.
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Equation (7.17) is perhaps best evaluated in three steps:

𝐹𝜏𝑔 = (PX)𝜏𝑔 (7.20)

𝐺𝜈𝑔 =
∑︁
𝜏

𝐴𝜈𝜏 (r𝑔)𝐹𝜏𝑔 (7.21)

𝐾𝜇𝜈 = (XG+)𝜇𝜈 (7.22)

As such, the equations are very similar to the pseudo-spectral method extensively developed and discussed by
Friesner and co-workers since the mid 1980s and commercially available in the Jaguar quantum chemistry package.
The main difference at this point is that instead of𝑋𝜅𝑔 there appears a least-square fitting operator𝑄𝜅𝑔 in Friesner’s
formulation. Note that an analogue of the fitting procedure has also been implemented in ORCA and — in contrast
to Friesner’s pseudo-spectral method — does not need specially optimized grids. The basic idea is to remove the
grid errors within the basis set by “fitting” the numerical overlap to the analytical one. Due to its nature, overlap
fitting is supposed to work better with larger basis sets.

The RIJCOSX gradient

Given the exchange matrix, the exchange energy is given by (a sum over spin cases is left out here for simplicity):

𝐸X =
1

2

∑︁
𝜇𝜈

𝑃𝜇𝜈𝐾𝜇𝜈(P) (7.23)

Previous to ORCA6, the gradient of the COSX contribution to the energy was taken as an approximation:

𝜕𝐸𝑋
𝜕𝜆

≈ 2
∑︁
𝑔

∑︁
𝜇𝜈

𝜕𝐹𝜇𝑔
𝜕𝜆

𝐺𝜈𝑔 (7.24)

with
𝜕𝐹𝜇𝑔
𝜕𝜆

= 𝑤1/2
𝑔

∑︁
𝜅

𝑃𝜅𝜇
𝜕𝑋𝜇𝑔

𝜕𝜆 (7.25)

as published in the original implementation paper [624].

Starting from ORCA6, this was updated to the full derivative of the energy component, including the derivative of
all terms: grid weight derivatives, derivative of the SFitting matrices and all derivatives of 𝐹 and𝐺7. The gradient
is thus now more accurate and less noisy. In case one wants to revert to the previous approximated version (not
recommended), just set:

%method
cosxgradtype grad_n
useqgradfit false

end

Working with the COSX Numerical Grids

For expert users, the grid parameters for the exchange grids can be even more finely controlled:

%method
IntAccX Acc1, Acc2, Acc3
GridX Ang1, Ang2, Ang3

end

There are three grids involved: the smallest grid (Acc1, Ang1) that is used for the initial SCF iterations, the medium
grid (Acc2, Ang2) that is used until the end of the SCF and the largest grid (Acc3, Ang3) that is used for the final
energy and the gradient evaluations. UseFinalGridX can be used to turn this last grid on or off, though changing
this is not generally recommended. More details about the grid constructions can be found in Details on the
numerical integration grids.

7 The theory is not yet published, but will be soon.
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Some SFitting Parameters

To modify the overlap fitting parameters, the following input can be specified:

%method
UseSFitting false # Same as NoSFitting in the simple input

# (Default is true)
UseQGradFit false # Uses the SCF fitting matrix for gradient calculations

# (Default is true)
end

Note that overlap fitting also works for HF and MP2 gradients without specifying any additional keyword. The
UseQGradFit parameter uses the same fitting matrix for the gradients as for the energy calculation and is the
default behavior since ORCA6.

Use of Partial Contraction Scheme

Since ORCA 5.0, generally-contracted basis sets can be handled efficiently by using an intermediate partially con-
tracted (pc) atomic-orbital basis for the exchange-matrix computation without affecting the results [383]. Depend-
ing on the basis set and element type, computational speedups by many orders of magnitude are possible. For
testing or benchmark purposes, the K matrix computation can be done in the original basis by using the flag

%method
COSX_PartialContraction false # No intermediate basis for generally contracted shells

# (Default is true)
end

Restoring Full Symmetry

The semi-numerical integration scheme in the default COSX algorithm breaks the permutational symmetry of the
two-electron integrals. We have observed that this flaw is often the cause of convergence problems for iterative
algorithms, in particular for multi-reference theories [382]. An input option is available since ORCA 6.0 to preserve
the full eight-fold permutational symmetry of the two-electron integrals:

%method
COSX_IntSymmetry Full # Fully symmetrized integrals

Standard # Original COSX algorithm
end

The full-symmetrization algorithm often improves the numerical stability and is enabled by default for TRAH-
CASSCF and CASSCF linear-response calculations. However, the full-symmetrization algorithm may come with
additional costs that depend on the number of F intermediates. The number of F intermediates depends on the
symmetry of the density matrix (symmetric (S), anti-symmetric (A), and non-symmetric (N)) and whether overlap
fitting is employed, as summarized in the table below.

Table 7.5: Number of COSX F intermediates per density matrix

S fitting P symmetry (S, A, N) Number of F intermediates
No S / A 1
No N 2
Yes S / A 2
Yes N 4

Note that for symmetric (S) and anti-symmetric (A) densities, we symmetrize and anti-symmetrize, respectively,
exchange matrices at the end, which reduces the number of F intermediates by a factor of 2. The actual com-
putational costs usually do not increase linearly with the number of F intermediates since we compute the costly

470 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

analytic integrals (𝐴𝜈𝜏 (r𝑔)) only once and then contract them with the additional F intermediates. From our expe-
rience the overhead of the full-symmetrization algorithm is roughly between 1.2 and 1.5 times that of the original
algorithm.

COSX Grid and Convergence Issues

Symptoms of convergence issues: Erratic convergence behavior, often starting from the first SCF step or possibly
setting in at a later stage, which produce crazy energy values with “megahartree” jumps. If overlap fitting is on,
the following error message may also be encountered: “Error in Cholesky inversion of numerical overlap”.

Convergence issues may arise when the chosen grid has difficulties in representing the basis set. This is the “grid
equivalent” of a linear dependence problem, as discussed in Linear Dependence. It should also be mentioned that
the grid-related problem discussed here often goes hand in hand with basis set linear dependence, although not
necessarily. The most straightforward way of dealing with this is to increase the size of the integration grid. This,
however, is not always desirable or possible.

One way to avoid the Cholesky inversion issue is to turn overlap fitting off (!NoSFitting). However, this means
that the numerical problems are still present, but are ignored. Due to the fact that overlap fitting operates with
the numerical overlap and its inverse, it is more sensitive to linear dependence issues, so turning off the fitting
procedure may lead to convergence. This may be a pragmatic — but by no means clean — solution, since it relies
on the assumption that the numerical errors are small.

On the other hand, overlap fitting also gives a similar tool to deal with linear dependence issues as the one discussed
for basis sets. The eigenvalues of the numerical overlap can be similarly inspected and small values screened out.
There is unfortunately no universal way to determine this screening parameter, but see Linear Dependence for
typical values.

The parameters influencing the method used for inversion and obtaining the fitting matrix are:

%method
SFitInvertType Cholesky # Cholesky inversion (default)

Cholesky_Q # Cholesky + full Q matrix
Diag # Inversion via diagonalization
Diag_Q # Diag + full Q matrix

SInvThresh 1e-8 # Inversion threshold for Diag and Diag_Q (default 1e-8)
end

By default, the inversion procedure proceeds through Cholesky decomposition as it is the fastest option. Ideally,
the overlap matrix is non-singular if the basis set is not linearly dependent. For singular matrices, the Cholesky
procedure will fail. It should be noted at this point that the numerical overlap can become linearly dependent even if
the overlap of basis functions is not, and so a separate parameter will be needed to take care of grid-related issues. To
achieve this, a diagonalization procedure (Diag) can be used instead of Cholesky with the corresponding parameter
to screen out eigenvectors belonging to eigenvalues below a threshold (SInvThresh). For both Cholesky and
diagonalization procedures, a “full Q” approach is also available (Cholesky_Q and Diag_Q), which corresponds
to the use of a more accurate (untruncated) fitting matrix.

Treatment of Dispersion Interactions with DFT-D3

Introduction

DFT-D3 is an atom-pairwise (atom-triplewise) dispersion correction which can be added to the KS-DFT energies
and gradient [324]:

𝐸DFT-D3 = 𝐸KS-DFT + 𝐸disp (7.26)

𝐸disp is then the sum of the two- and three-body contributions to the dispersion energy, 𝐸disp = 𝐸(2)+𝐸(3). Most
important is the two-body term, which is given at long range by:

𝐸disp = −
∑︁
𝐴<𝐵

∑︁
𝑛=6,8

𝑠𝑛
𝐶𝐴𝐵𝑛
𝑟𝑛𝐴𝐵

(7.27)
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where 𝐶𝐴𝐵𝑛 denotes the averaged (isotropic) 𝑛th-order dispersion coefficient for atom pair AB and 𝑟𝐴𝐵 is their
internuclear distance. 𝑠𝑛 is a functional-dependent scaling factor (see below). In the general case, an adequate
damping function must be employed.

Damping Functions

In order to avoid near-singularities for small 𝑟𝐴𝐵 , the dispersion contribution needs to be damped at short distances.
One possible way is to use rational damping as proposed by Becke and Johnson [90, 424, 425]:

𝐸(2) = −
∑︁
𝐴<𝐵

∑︁
𝑛=6,8

𝑠𝑛
𝐶𝐴𝐵𝑛

𝑟𝑛𝐴𝐵 + 𝑓(𝑅𝐴𝐵0 )𝑛
(7.28)

with [425]

𝑅𝐴𝐵0 =

√︃
𝐶𝐴𝐵8

𝐶𝐴𝐵6

(7.29)

and

𝑓(𝑅𝐴𝐵0 ) = 𝑎1𝑅
𝐴𝐵
0 + 𝑎2. (7.30)

Damping the dispersion contribution to zero for short ranges (as in Ref. [324]) is also possible:

𝐸(2) = −
∑︁
𝐴<𝐵

∑︁
𝑛=6,8

𝑠𝑛
𝐶𝐴𝐵𝑛
𝑟𝑛𝐴𝐵

𝑓𝑑,𝑛(𝑟𝐴𝐵) (7.31)

with

𝑓𝑑,𝑛 =
1

1 + 6( 𝑟𝐴𝐵

𝑠𝑟,𝑛𝑅𝐴𝐵
0

)−𝛼𝑛
(7.32)

Note that the 𝑅𝐴𝐵0 used with this damping are from Ref. [324]. For more information on the supported damping
functions, see Ref [326]. The recommended variant is that with Becke-Johnson damping and is invoked by the
keyword !D3BJ or simply !D3. The dispersion correction with zero damping is invoked by the keyword !D3ZERO.

Three-body term

It is possible to calculate the three-body dispersion contributions with DFT-D3, according to

𝐸(3) = −
∑︁

𝐴<𝐵<𝐶

𝐶𝐴𝐵𝐶9 (3 cos 𝜃𝑎 cos 𝜃𝑏 cos 𝜃𝑐 + 1)

(𝑟𝐴𝐵𝑟𝐵𝐶𝑟𝐶𝐴)3
𝑓𝑑,(3)(𝑟𝐴𝐵𝐶) (7.33)

where 𝜃𝑎, 𝜃𝑏 and 𝜃𝑐 are the internal angles of the triangle formed by 𝑟𝐴𝐵 , 𝑟𝐵𝐶 and 𝑟𝐶𝐴. The 𝐶9 coefficient is
approximated by

𝐶𝐴𝐵𝐶9 ≈ −
√︁
𝐶𝐴𝐵6 𝐶𝐴𝐶6 𝐶𝐵𝐶6

(7.34)

The three-body contribution has a small effect on medium-sized molecules and is damped according to equation
(7.33). The damping function 𝑓𝑑,(3)(𝑟𝐴𝐵𝐶) is similar to the one shown in equation (7.32) with 𝑟𝐴𝐵𝐶 being the
geometric mean of 𝑟𝐴𝐵 , 𝑟𝐵𝐶 and 𝑟𝐶𝐴. It can be used with both variants of the 𝐸(2) term, although the three-body
term itself will always be calculated using the zero damping scheme. Adding the three-body correction has proven
to give quite accurate results for the thermochemistry of supramolecular systems[322]. The three-body term is
invoked by the keyword !ABC, along with either the !D3ZERO keyword for zero damping of 𝐸(2) or !D3BJ for
Becke-Johnson damping of 𝐸(2).
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Options

Note that correcting Hartree-Fock (HF) is only parametrized with BJ-damping. For a constantly updated list of
supported functionals, check the website of the Grimme group [329]. If there is a functional on this website that
is parametrized, but the parameters are not yet implemented into ORCA, you can specify the parameters manually
as shown below (using the respective parameters from [329]). In the same fashion, one could also use one’s own
parameters, but this is not recommended.

Important: GGA and hybrid functionals should only be used with 𝑠6 = 1.0 to ensure asymptotically correct
behavior. Double-hybrid functionals already account for parts of the dispersion interaction and should therefore
be used with 𝑠6 < 1.0. In the %method block, it is possible to change the 𝑠6, 𝑎1, 𝑠8, and 𝑎2 parameters for the
variant with Becke-Johnson damping:

! d3bj b2plyp

%method
D3S6 0.64
D3A1 0.3065
D3S8 0.9147
D3A2 5.0570

end

The variant with zero damping offers the parameters 𝑠6, 𝑟𝑠6, 𝑠8, and 𝛼6.

! d3zero blyp

%method
D3S6 1.0
D3RS6 1.094
D3S8 1.682
D3alpha6 14

end

If a geometry optimization is performed (!OPT), then the program automatically calls the DFT-D3 gradient. There
are also special functional parameters, which were optimized for triple-zeta basis sets. This option is only available
with zero damping and can be invoked by the keywords !D3ZERO D3TZ. Preliminary results in the SI of Ref. [324]
indicate that results are only slightly worse than with quadruple-zeta basis sets using the default parameters. This
option should be carefully tested for future use in large computations.

Example input files

Following are some example input files. In this first example, a computation using the DFT-D3 dispersion correc-
tion with BJ-damping is run. The use of !D3BJ is identical to !D3 as the BJ-damping is on by default.

! pbe svp d3bj

* xyz 0 1
C 0.000000 0.000000 0.000000
O 0.000000 0.000000 1.400000
O 0.000000 0.000000 -1.400000

*

The output for the dispersion correction in the ORCA output will look like this:

-------------------------------------------------------------------------------
DFT DISPERSION CORRECTION

DFTD3 V3.1 Rev 1
USING Becke-Johnson damping

-------------------------------------------------------------------------------

(continues on next page)
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(continued from previous page)

The PBE functional is recognized
Active option DFTDOPT ... 4

molecular C6(AA) [au] = 156.562480

DFT-D V3
parameters
s6 scaling factor : 1.0000
a1 scaling factor : 0.4289
s8 scaling factor : 0.7875
a2 scaling factor : 4.4407
ad hoc parameters k1-k3 : 16.0000 1.3333 -4.0000

Edisp/kcal,au: -0.563071585638 -0.000897311593
E6 /kcal : -0.390909076
E8 /kcal : -0.172162510
% E8 : 30.575598941

------------------------- ----------------
Dispersion correction -0.000897312
------------------------- ----------------

------------------------- --------------------
FINAL SINGLE POINT ENERGY -188.136908447288
------------------------- --------------------

𝐸disp is given as the “Dispersion correction” and is automatically included in the final single point energy.
As discussed above, the parameters 𝑠6, 𝑎1, 𝑠8, and 𝑎2 may be manually defined by:

! pbe svp d3bj

%method
D3S6 1.0
D3A1 0.4289
D3S8 0.7875
D3A2 4.4407

end

*xyz 0 1
C 0.000000 0.000000 0.000000
O 0.000000 0.000000 1.400000
O 0.000000 0.000000 -1.400000

*

This results in the same output as above, but with additional messages that user inputs were found for the parameters:

A user input s6-coefficient scaling factor has been recognized
A user input a1-coefficient scaling factor has been recognized
A user input s8-coefficient scaling factor has been recognized
A user input a2-coefficient scaling factor has been recognized

The calculation of the same system using zero damping is run by the input:

! pbe svp d3zero

*xyz 0 1
C 0.000000 0.000000 0.000000
O 0.000000 0.000000 1.400000
O 0.000000 0.000000 -1.400000

(continues on next page)
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*

As stated above, the parameters 𝑠6, 𝑟𝑠6, 𝑠8 and 𝛼6 can be defined by the user. The next example shows this along
with the call for the three-body correction (!ABC):

! pbe svp d3zero abc

%method
D3S6 1.0000
D3RS6 1.2170
D3S8 0.7220
D3ALPHA6 14.0

end

*xyz 0 1
C 0.000000 0.000000 0.000000
O 0.000000 0.000000 1.400000
O 0.000000 0.000000 -1.400000

*

DFT Calculations with the Non-Local, Density Dependent Dispersion Correction (VV10): DFT-NL

Accounting for the missing van der Waals (vdW, dispersion) forces in standard Kohn-Sham Density Functional
Theory (DFT) has become essential in many studies of chemical and physical electronic structure problems. Com-
mon approaches use atom pair-wise additive schemes such as the popular DFT-D3 [324, 326] method, which is also
available in ORCA by invoking the keyword !D3 (see section Treatment of Dispersion Interactions with DFT-D3),
but these are not self-consistent, and thus do not correct the MOs or any computed property besides the energies.

A different route is followed by the van der Waals Density Functional (vdW-DF) as pioneered by Langreth and
Lundquist [503]. These methods use only the electron density to include such dispersion/correlation effects. The
vdW correlation functional VV10 of Vydrov and Van Voorhis [876] currently seems to be the most promising
candidate for a general and accurate electronic structure method.

We use the term DFT-NL for any density functional in combination with the non-local part of the VV10 functional
with an optimized parameter 𝑏, which will be defined below. The performance of these methods has been evaluated
in Ref. [400] using the GMTKN30 [307, 308, 309] database and the S66 set [6]. The performance of weak hydrogen
bonds were evaluated in Ref. [401].

DFT-NL and DFT-D3 perform very similarly, but NL is to be preferred for metallic systems or when the basic
electronic structure changes significantly (e.g. oxidations or ionizations). As a recent example, Janes and Iron
showed that for functionals such as wB97X-V, including VV10 correlation results in very high quality reaction
barriers when metals are involved [411].

The total exchange-correlation (XC) energy of VV10-type functionals is defined in eq. (7.35). It is composed of
standard exchange (X) and correlation (C) parts and the non-local (NL) term, which covers (mainly) long-range
dispersive energy:

𝐸DFT-NL
XC = 𝐸(hybrid)GGA

X + 𝐸GGA
C + 𝐸VV10

C-NL (7.35)

The NL term is given by the following double integral:

𝐸VV10
C-NL =

∫︁
𝑑𝑟𝜌(𝑟)

[︂
𝛽 +

1

2

∫︁
𝑑𝑟′𝜌(𝑟′)𝜙(𝑟, 𝑟′)

]︂
(7.36)

where 𝜌 is the total electron density, and the definitions of the kernel 𝜙(𝑟, 𝑟′) and 𝛽 are as follows (in a.u.):

𝜙 (𝑟, 𝑟′) = − 3

2𝑔𝑔′ (𝑔 + 𝑔′)
(7.37)

𝛽 =
1

32

[︂
3

𝑏2

]︂3/4
(7.38)
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with

𝑔 (𝑟) = 𝜔0 (𝑟)𝑅
2 + 𝜅(𝑟)

𝑅 = |𝑟 − 𝑟′|

𝜔0 (𝑟) =

√︃
𝐶

⃒⃒⃒⃒
∇𝜌(𝑟)
𝜌(𝑟)

⃒⃒⃒⃒4
+

4𝜋

3
𝜌(𝑟)

𝜅 (𝑟) = 𝑏
3𝜋

2

[︂
𝜌(𝑟)

9𝜋

]︂1/6
In the original definition, the short-range attenuation parameter 𝑏 appearing in 𝜅 and 𝛽 was fitted to the S22 set [429]
of non-covalent interactions (𝑏 = 5.9 for the rPW86PBE GGA). The other parameter𝐶 = 0.0093, appearing in 𝜔0,
determines the long-range behavior, and was set to its original value. Other DFT-NL functionals are constructed
analogously. For a detailed discussion of the derivation of the formulas and their physical meaning and basis, see
the references given above.

The defined energy of the non-local DFT-NL exchange-correlation functional can be computed in two ways: as
a post-SCF addition based on a converged SCF density or in a self-consistent treatment. We take B3LYP as an
example.

In our implementation of the non-self-consistent B3LYP-NL functional, a self-consistent B3LYP computation is
performed as the first step. In the second step, the optimized electron density from the B3LYP computation is
taken as input for the energy calculation of the non-local part. This procedure is invoked by the combination
of the keywords !B3LYP NL. The use of the keywords !B3LYP SCNL would request a self-consistent treatment in
which orbitals and density are optimized in the presence of the full B3LYP + VV10 exchange-correlation potential.
According to many test calculations, an SCNL treatment is rarely necessary for normal energy evaluations.

The computation of the double integral given in eq. (7.36) requires using an integration grid, just like for normal
exchange-correlation functionals. This grid is built similarly to the regular grids available in the ORCA, see Sec.
Details on the numerical integration grids.

In the following, we compute the energy of the argon dimer at a distance of 3.76 Å with the def2-TZVP basis
set and using the B3LYP hybrid functional as an example. Here, we choose the non-self-consistent variant of the
DFT-NL dispersion correction.

! B3LYP NL
! def2-TZVP def2/JK RIJK

*xyz 0 1
Ar 0.0 0.0 0.0
Ar 0.0 0.0 3.76

*

The DFT-NL output for this example is shown below:

-------------------------------------------------------------------------------
post-SCF DFT-NL dispersion correction

-------------------------------------------------------------------------------

SCF Energy: -1054.960547980
NL Energy: 0.209449625
SC+NL Energy: -1054.751098355
NL done in : 0.1 sec
-------------------------------------------------------------------------------

----------------
TOTAL SCF ENERGY
----------------

(...)

DFT components:

(continues on next page)
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N(Alpha) : 17.999996327923 electrons
N(Beta) : 17.999996327923 electrons
N(Total) : 35.999992655845 electrons
E(X) : -47.880990295917 Eh
E(C) : -1.761924720763 Eh
NL Energy, E(C,NL) : 0.209449624689 Eh
E(XC) : -49.433465391991 Eh

Here, we find the B3LYP total energy (”SCF Energy”), the non-local contribution (”NL Energy”), and their sum
(”SC+NL Energy”), which is the final total energy. In the “DFT components” section, the non-local contribution
is listed separately (”NL Energy, E(C,NL)”) in order to be consistent with the !SCNL output.

In the current version of ORCA, there are several functionals with pre-fitted 𝑏 parameters (the parameter 𝐶 is not
changed), available for use by the keyword !DF NL or !DF SCNL, where DF stands for one of the following density
functional keywords:

DF keyword
(meta-)GGA
BLYP
PBE
REVPBE
RPBE
RPW86PBE
SCANfunc
TPSS
hybrid
B3LYP
B3LYP/G
B3P86
B3PW91
mPW1PW
PBE0
PW1PW
PW6B95
REVPBE0
REVPBE38
TPSSh
TPSS0
R2SCANh (see [128])
R2SCAN0 (see [128])
R2SCAN50 (see [128])
range-separated hybrid
WR2SCAN50 (see [891])
double-hybrid
B2PLYP (see [51])
DSD-BLYP (see [906]). Same 𝑏 used for DSD-BLYP/2013
DSD-PBEP86 (see [906]). Same 𝑏 used for DSD-PBEP86/2013
PWPB95 (see [906])
PR2SCAN50 (see [891])
KPR2SCAN50 (see [891])
PR2SCAN69 (see [891])
range-separated double-hybrid
WPR2SCAN50 (see [891])

Additionally, one can include the non-local term in Hartree-Fock (HF) with a parameter of 𝑏 = 3.9 using the
keywords “!HF NL”.
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The B97-V Family

Head-Gordon’s𝜔B97X-V functional [555] is a reparametrized version of the range-separated𝜔B97X, which makes
use of the non-local VV10 kernel to capture London-dispersion effects (𝑏 = 6.0 and 𝐶 = 0.01; note that 𝐶 is,
unlike for the other functionals, changed for 𝜔B97X-V). The keyword !wB97X-V evaluates the VV10 kernel in a
post-SCF way by default (i.e. only the semi-local exchange-correlation part is converged self-consistently and the
resulting density is then used to assess the VV10-type energy contribution). A recent study showed that this saves
computer time and does not have a significant effect on the resulting relative energies [603]. The keyword “!NL”
does not have to be specified in this case as the VV10 kernel is invoked automatically. If a user wishes to carry out
fully self-consistent calculations with 𝜔B97X-V, the “!SCNL” keyword must be specified.

The range-separated meta-GGA hybrid 𝜔B97M-V [557] and the meta-GGA B97M-V [556] are also available (via
keywords !wB97M-V and !B97M-V, respectively). In the spirit of 𝜔B97X-V, the VV10 (NL) correction is called
automatically in the post-SCF way by default.

Changing the 𝑏, 𝐶 and Scaling Parameters

All density functionals that are available in ORCA, but for which no 𝑏 parameter is available, can be used with the
DFT-NL method by providing a value for the parameter 𝑏 as shown here:

%method
NLb 5.0

end

The other parameter 𝐶, appearing in 𝜔0, may also be changed, as shown in the following example.

! B3LYP NL
! def2-TZVP def2/JK RIJK nososcf nopop

%method
NLC 0.0083

end

*xyz 0 1
Ar 0.0 0.0 0.0
Ar 0.0 0.0 3.76

*

Of course, both parameters may be changed by using the NLb and NLC keywords in the %method block at the same
time.

ò Note

In order to improve the scaling for larger systems, a distance cutoff was also introduced, controlled by the
vdWdistTCUT flag in the %method block. The default value is 10 Å, so two grid points more than 10 Å away
from each other do not correlate via the VV10 potential. This is already very conservative and has practically
zero effect on the final energy, but can be altered if needed.

For methods where the long-range correlation is already partly covered, e.g. in double-hybrids, the NL energy can
be scaled down using the NLScal parameter as shown below. By default, the scaling factor is 1.0 if not otherwise
specified by the employed functional.

%method
NLScal 0.5

end
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Self-consistent Computations with the DFT-NL Dispersion Correction

Self-consistent calculations with the DFT-NL dispersion correction are possible by using the keyword !SCNL in
combination with one of the available density functionals. Note that due to technical reasons, self-consistent cal-
culations are not possible with the Hartree-Fock method.

For example, we can use the B3LYP hybrid functional with the self-consistent DFT-NL variant by the following
input:

! B3LYP SCNL
! def2-TZVP def2/JK RIJK

*xyz 0 1
Ar 0.0 0.0 0.0
Ar 0.0 0.0 3.76

*

The output is the same as a normal SCF calculation, but after convergence, a line with NL Energy, E(C,NL) is
printed under “DFT components”, as it was for the post-SCF DFT-NL variant.

• Analytic gradients are already available, thus geometry optimizations with numerical frequencies can be
computed using these functionals.

• TD-DFT calculations are not yet available.

• Any calculation that requires second derivatives of the NL functional is not yet possible. These are needed
for real type perturbations in the CP-SCF solutions, e.g. for analytic Hessians, dipole polarizabilities, and
double-hybrid gradients.

• Strictly imaginary perturbations such as NMR shielding and EPR g-tensors (both also with GIAOs), and
hyperfine couplings are available.

DFT and HF Calculations with the Geometrical Counterpoise Correction: gCP

The central idea of the gCP correction [476] is to add a semi-empirical correction ∆𝐸gCP to the energies of molec-
ular systems that removes artificial overbinding effects from BSSE (see section Counterpoise Correction). gCP
uses atomic corrections and therefore also has the ability to correct for intramolecular BSSE. The parametriza-
tion is constructed such that it approximates the Boys and Bernadi counterpoise (CP) correction ∆𝐸𝐶𝑃 in the
intermolecular case. That is,

∆𝐸𝐶𝑃 ≈ ∆𝐸gCP (7.39)

where e.g. for a complexation reaction 𝐴+𝐵 → 𝐶, our correction is given by

∆𝐸gCP = 𝐸gCP(𝐶)− 𝐸gCP(𝐴)− 𝐸gCP(𝐵) (7.40)

In practice, 𝐸gCP can be simply added to the HF/DFT energy

𝐸total = 𝐸HF/DFT + 𝐸gCP (7.41)

which is done automatically in ORCA (the FINAL SINGLE POINT ENERGY includes the gCP correction).

The central equation of the gCP correction over all atoms 𝑁 reads:

𝐸gCP = 𝜎 ·
𝑁∑︁
𝑎

𝑁∑︁
𝑏 ̸=𝑎

𝑒miss
𝑎 · 𝑓dec(𝑅𝑎𝑏) (7.42)

where the energy 𝑒miss
𝑎 is a measure of the incompleteness of the chosen target basis set (which is typically small)

and 𝑓dec(𝑅𝑎𝑏) is a decay function that depends on the interatomic distance 𝑅𝑎𝑏. The scaling factor 𝜎 is one of 4
parameters needed for every method/basis set combination. More details on this can be found in the original
gCP paper [476].
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Analytical gradients with gCP are available for geometry optimization. Due to its semi-empirical nature, the
correction is calculated within seconds, even for very large systems.

The gCP correction can be invoked by using the !GCP(level) keyword, where level is a compound of the
method (HF or DFT) and the basis set keyword. See Table 7.7 for the available basis sets and the corresponding
keywords. For example, gCP can be invoked in a B3LYP calculation with the def2-SV(P) basis set using the input:

! B3LYP def2-SV(P) GCP(DFT/SV(P))
*xyzfile 0 1 example.xyz

Table 7.7: Overview of parametrized basis sets. The level keyword in !GCP(level) is a compound of HF or DFT
and the basis set keyword. Valid inputs are, for example: !GCP(HF/MINIS), !GCP(DFT/LANL), !GCP(HF/TZ),
!GCP(DFT/631GD), . . .

parametrized basis set HF DFT basis set

MINIS yes yes MINIS
SV yes yes SV
6-31G(d) yes yes 631GD
6-31G(d) + LANL2DZ (Sc-Zn) no yes LANL
def2-SV(P) no yes SV(P)
def2-SV(P/h,c) no yes SVX or SV(P/H,C)
def2-SVP yes yes SVP
def2-TZVP yes yes TZ

At all print levels, warnings from the gCP program are printed. Using the default print level, the only addi-
tional output is the final gCP correction before FINAL SINGLE POINT ENERGY. Using !LargePrint or %output
Print[P_gCP] 2 end states the gCP level, the 4 parameters mentioned above, and the computed correction. A
larger print level can be specified to get more details (more information on this below).

Several warnings and notices may be issued. Elements of the 5th and higher periods are treated as their 4th period
analogs — e.g. Sn is treated with the same parameters as Ge. If this is the case, a note is printed. Another note
is printed if there is a mismatch between the basis used for the SCF calculation and that of the requested gCP
calculation. For example, the following input with tetramethyltin

! HF def2-SVP GCP(HF/MINIS)
*xyzfile 0 1 tetramethyltin.xyz

should use the parameters of Ge in place of Sn and there should be a mismatch between the basis set in ORCA
(def2-SVP) and gCP (MINIS). Sure enough, the output is as follows:

** NOTE ** -> element sn will be treated as ge
NOTIFICATION: Different basis set in ORCA and otool_gcp:
ORCA: 142 gCP: 32
If you are NOT using ECPs, check your basis set inputs!
------------------ -----------------
gCP correction 0.073031339
------------------ -----------------

A mismatch between the basis sets used is allowed since a minor mismatch may only result in a small error. One
should still be careful with such results; use your own judgment! This also allows gCP in calculations that use
an unparametrized basis set. However, in this case, the number of basis functions and exponents should be very
similar!

It should be noted that some elements are not parametrized, depending on the gCP level used. If only a few
atoms in a large molecule are treated inaccurately or not at all, the error is expected to be small. To check all
parameters used and the individual atomic contributions, specify the print level %output Print[P_gCP] 3 end.
For example, the above tetramethyltin input with this print level has the following output:

------------------------------------------------------------------------------

(continues on next page)
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(continued from previous page)

g C P - geometrical counterpoise correction

------------------------------------------------------------------------------
Method: hf/minis

** NOTE ** -> element sn will be treated as ge
Parameters: sigma eta alpha beta

0.1290 1.1526 1.1549 1.1763
Nbf: 32
NAtoms: 17

gCP element parameters:
elem emiss nbas elem emiss nbas elem emiss nbas
h 0.04240 1 he 0.02832 1 li 0.25266 2
be 0.19720 2 b 0.22424 5 c 0.27995 5
n 0.35791 5 o 0.47901 5 f 0.63852 5
ne 0.83235 5 na 1.23292 6 mg 1.34339 6
al 1.44828 9 si 1.61336 9 p 1.76814 9
s 1.99201 9 cl 2.23311 9 ar 2.49323 9
k 3.02964 10 ca 3.38998 10 sc 0.00000 0
ti 0.00000 0 v 0.00000 0 cr 0.00000 0
mn 0.00000 0 fe 0.00000 0 co 0.00000 0
ni 0.00000 0 cu 0.00000 0 zn 0.00000 0
ga 0.00000 0 ge 0.00000 0 as 0.00000 0
se 0.00000 0 br 0.00000 0 kr 0.00000 0

# ON sites Nvirt Emiss BSSE [kcal/mol]
1 6 15 2.0 0.2799 10.0090
2 32 16 -16.0 0.0000 0.0000
3 6 15 2.0 0.2799 10.0084
4 6 15 2.0 0.2799 10.0095
5 6 15 2.0 0.2799 10.0083
6 1 15 0.5 0.0424 0.4827
7 1 15 0.5 0.0424 0.4828
8 1 15 0.5 0.0424 0.4828
9 1 15 0.5 0.0424 0.4827
10 1 15 0.5 0.0424 0.4827
11 1 15 0.5 0.0424 0.4827
12 1 15 0.5 0.0424 0.4828
13 1 15 0.5 0.0424 0.4827
14 1 15 0.5 0.0424 0.4828
15 1 15 0.5 0.0424 0.4827
16 1 15 0.5 0.0424 0.4827
17 1 15 0.5 0.0424 0.4827

Egcp: 0.0730313386 a.u.
NOTIFICATION: Different basis set in ORCA and otool_gcp:
ORCA: 142 gCP: 32
If you are NOT using ECPs, check your basis set inputs!
------------------ -----------------
gCP correction 0.073031339
------------------ -----------------

From this, it can be seen that the Sn atom (atom 2 in the list of atomic contributions) gives no contribution because
its Emiss is zero (unparametrized for the given gCP level). This is confirmed by looking at the gCP element
parameters section, which lists the emiss of Sn as zero for !GCP(HF/MINIS). Rerunning this example with
!GCP(HF/SVP) now gives a contribution for Sn, as seen by the following output. Note that this calculation also
has a much smaller basis set mismatch, and so should be the more accurate gCP correction of the two.

------------------------------------------------------------------------------

g C P - geometrical counterpoise correction

(continues on next page)
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(continued from previous page)

------------------------------------------------------------------------------
Method: hf/svp

** NOTE ** -> element sn will be treated as ge
Parameters: sigma eta alpha beta

0.2054 1.3157 0.8136 1.2572
Nbf: 148
NAtoms: 17

gCP element parameters:
elem emiss nbas elem emiss nbas elem emiss nbas
h 0.00811 5 he 0.00805 5 li 0.11358 9
be 0.02837 9 b 0.04937 14 c 0.05538 14
n 0.07278 14 o 0.10031 14 f 0.13327 14
ne 0.17360 14 na 0.18114 15 mg 0.12556 18
al 0.16719 18 si 0.14984 18 p 0.14540 18
s 0.16431 18 cl 0.18299 18 ar 0.20567 18
k 0.20096 24 ca 0.29966 24 sc 0.32599 31
ti 0.30549 31 v 0.29172 31 cr 0.29380 31
mn 0.29179 31 fe 0.29673 31 co 0.30460 31
ni 0.24204 31 cu 0.35419 31 zn 0.35072 31
ga 0.35002 32 ge 0.34578 32 as 0.34953 32
se 0.36731 32 br 0.38201 32 kr 0.39971 32

# ON sites Nvirt Emiss BSSE [kcal/mol]
1 6 16 11.0 0.0554 2.5093
2 32 16 16.0 0.3458 6.8274
3 6 16 11.0 0.0554 2.5092
4 6 16 11.0 0.0554 2.5094
5 6 16 11.0 0.0554 2.5092
6 1 16 4.5 0.0081 0.1703
7 1 16 4.5 0.0081 0.1703
8 1 16 4.5 0.0081 0.1703
9 1 16 4.5 0.0081 0.1703
10 1 16 4.5 0.0081 0.1703
11 1 16 4.5 0.0081 0.1703
12 1 16 4.5 0.0081 0.1703
13 1 16 4.5 0.0081 0.1703
14 1 16 4.5 0.0081 0.1703
15 1 16 4.5 0.0081 0.1703
16 1 16 4.5 0.0081 0.1703
17 1 16 4.5 0.0081 0.1703

Egcp: 0.0301322002 a.u.
NOTIFICATION: Different basis set in ORCA and otool_gcp:
ORCA: 142 gCP: 148
If you are NOT using ECPs, check your basis set inputs!
------------------ -----------------
gCP correction 0.030132200
------------------ -----------------

The gCP input can also be defined in the %method block of the input:

%method
DoGCP true/false # turn gCP on/off
GCPMETHOD "method" # define method string for otool_gcp, e.g. "dft/svp"
GCP.D3MINIS true/false # use special DFT-D3 refit for HF/MINIS (default=true)

end

General advice:

• Small basis sets show not only a large BSSE, but general shortcomings. These effects are not always clearly
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distinguishable.

• If computationally affordable, large basis sets (triple-𝜁 and higher) are always preferable for a given system.

• gCP only makes sense for somewhat large molecules

• gCP should always be applied together with a dispersion correction for DFT: gCP-D3 is well tested, but gCP-
NL also works well (see sections Treatment of Dispersion Interactions with DFT-D3 and DFT Calculations
with the Non-Local, Density Dependent Dispersion Correction (VV10): DFT-NL)

ò Note

• !GCP(HF/MINIS) automatically sets the refitted D3 parameter, as proposed in the original gCP paper.

• The gCP method is implemented via an external tool called otool_gcp, which is based on the original
Fortran program used in the publication. Thus, the otool_gcp binary can also be called directly via the
command line (otool_gcp -h gives an overview of the options).

• It is also possible to read an external parameter file ($HOME/.gcppar) using the !GCP(FILE) keyword.
For further information, please look at the manual for the gcp program as provided by Prof. S. Grimme8.

• During the calculation, some temporary output files are written by ORCA: BASENAME.gcp.in.tmp and
BASENAME.gcp.out.tmp will contain the input for otool_gcp and its output, respectively.

• It has been demonstrated that the popular combination of B3LYP with 6-31G(d) can be strongly improved
using DFT-D3 and gCP [475]. For convenience, the keyword !B3LYP-gCP-D3/6-31G* has been de-
fined. This is equivalent to !B3LYP 6-31G* D3BJ GCP(DFT/631GD).

HF-3c: Hartree-Fock with three corrections

HF-3c is a fast Hartree-Fock based method developed for computation of structures, vibrational frequencies and
non-covalent interaction energies in huge molecular systems [834]. The starting point for evaluating the electronic
energy is a standard HF calculation with a small Gaussian AO basis set. The used so-called MINIX basis set
consists of different sets of basis functions for different groups of atoms as shown in table Table 7.8.

Table 7.8: Composition of the MINIX basis set.

element basis
H-He, B-Ne MINIS
Li-Be MINIS+1(p)
Na-Mg MINIS+1(p)
Al-Ar MINIS+1(d)
K-Zn SV
Ga-Kr SVP
Rb-Rn def2-SVP with Stuttgart-Dresden ECPs

Three terms are added to correct the HF energy 𝐸HF/MINIX
tot in order to include London dispersion interactions, to

account for the BSSE and to correct for basis set deficiencies, i.e. overestimated bond lengths. The corrected total
energy is therefore calculated as

𝐸HF-3c
tot = 𝐸HF/MINIX

tot + 𝐸D3(BJ)
disp + 𝐸gCP

BSSE + 𝐸SRB. (7.43)

The first correction term𝐸D3(BJ)
disp is the atom-pair wise London dispersion energy from the D3 dispersion correction

scheme[324] applying Becke-Johnson (BJ) damping [90, 424, 425] (see section Treatment of Dispersion Interac-
tions with DFT-D3). The second term 𝐸gCP

BSSE denotes the geometrical counterpoise (gCP) correction [476] to treat
the BSSE (see section DFT and HF Calculations with the Geometrical Counterpoise Correction: gCP). For the
HF-3c method, the three usual D3 parameters 𝑠8, 𝑎1 and 𝑎2 were re-fitted using reference interaction energies of
the complexes of the S66 test set [6]. This results in 𝑠8 = 0.8777, 𝑎1 = 0.4171 and 𝑎2 = 2.9149. The parameter

8 http://www.thch.uni-bonn.de/tc/
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𝑠6 was set to unity as usual to enforce the correct asymptotic limit and the gCP correction was already applied in
this fitting step.

The last term𝐸SRB is a short-ranged correction to deal with basis set deficiencies which occur when using small or
minimal basis sets. It corrects for systematically overestimated covalent bond lengths for electronegative elements
and is calculated as a sum over all atom pairs:

𝐸SRB = −𝑠
Atoms∑︁
𝐴

Atoms∑︁
𝐵 ̸=𝐴

(𝑍𝐴𝑍𝐵)
3/2 exp(−𝛾(𝑅0,D3

𝐴𝐵 )3/4𝑅𝐴𝐵)

Here, 𝑅0,D3
𝐴𝐵 are the default cut-off radii as determined ab initio for the D3 scheme [324] and 𝑍𝐴, 𝑍𝐵 are the

nuclear charges. This correction is applied for all elements up to argon. The empirical fitting parameters 𝑠 = 0.03
and 𝛾 = 0.7 were determined to produce vanishing HF-3c total atomic forces for B3LYP-D3(BJ)/def2-TZVPP
equilibrium structures of 107 small organic molecules. More details can be found in the original publication [834].

The HF-3c method can only be invoked with a simple keyword:

! HF-3c

! HF-3c is a compound keyword and equals ! HF MINIX D3BJ GCP(HF/MINIX) PATOM, hence no basis set etc.
has to be specified. The PATOM guess is selected since the grid construction for the default guess can take more
time than an actual SCF step. The guess can only be overwritten manually in the %method section.

The default mode for the integral handling is set to Conventional. The storing of the two-electron integrals on
disk or in memory if possible leads to large computational savings. In case one want to use the Direct mode, this
has to be specified in the %scf input section:

%scf
SCFmode Direct

end

The output gives the used parameters and the correction itself for D3 and gCP separately. As the SRB correction is
also calculated with the otool_gcp, the results are given in the gCP output section. The Total correction to
HF/MINIX is the sum of all three corrections (D3, gCP and SRB) and FINAL SINGLE POINT ENERGY is the total
HF-3c energy as given in equation (7.43).

-------------------------------------------------------------------------------
DFT DISPERSION CORRECTION

DFTD3 V2.1 Rev 6
USING Becke-Johnson damping

-------------------------------------------------------------------------------
The default Hartree-Fock is recognized
Active option DFTDOPT ... 4

molecular C6(AA) [au] = 1689.256597

DFT-D V3
parameters
using HF/MINIX parameters
s6 scaling factor : 1.0000
a1 scaling factor : 0.4171
s8 scaling factor : 0.8777
a2 scaling factor : 2.9149
ad hoc parameters k1-k3 : 16.0000 1.3333 -4.0000

Edisp/kcal,au: -32.163184627631 -0.051255291794
E6 /kcal : -18.007221978
E8 /kcal : -14.155962649
% E8 : 44.012938437

(continues on next page)
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(continued from previous page)

------------------------- ----------------
Dispersion correction -0.051255292
------------------------- ----------------

------------------------------------------------------------------------------

g C P - geometrical counterpoise correction

------------------------------------------------------------------------------
Method: hf/minix

Parameters: sigma eta alpha beta
0.1290 1.1526 1.1549 1.1763

Egcp: 0.0723150636 a.u.
Ebas: -0.0636976872 a.u.
------------------ -----------------
gCP+bas correction 0.008617376
------------------ -----------------
---------------------------- ----------------
Total correction to HF/MINIX -0.042637915
---------------------------- ----------------

------------------------- --------------------
FINAL SINGLE POINT ENERGY -163.002895262171
------------------------- --------------------

For the elements up to Xe, the default initial guess is a Hückel guess. Beyond Xe, the guess mode is changed to
HCORE since no Hückel parameters for the respective ECP bases are available and other models are not implemented
at the moment. For calculations with only lighter elements and therefore no ECPs, the ECP printouts in the output
file can be ignored.

PBEh-3c: A PBE hybrid density functional with small AO basis set and two corrections

PBEh-3c is a highly efficient electronic structure approach performing particularly well in the optimization of ge-
ometries and for interaction energies of non-covalent complexes.[325] Here, a global hybrid variant of the Perdew-
Burke-Ernzerhof (PBE) functional with a relatively large amount of non-local Fock-exchange (42%) is employed
with a valence-double-zeta Gaussian AO basis set (def2-mSVP). Basis set superposition errors (BSSE) and Lon-
don dispersion effects are accounted for by the gCP and D3 schemes, respectively (see above). The basis set is
constructed such that:

Table 7.9: Composition of the def2-mSVP basis set.

element basis
H def2-SV(P) (𝛼 scaled by 1.2)
He def2-SVP(-p)
Li-Be,Na-Kr def2-SV(P)
B,Ne Ahlrichs’ DZ + Polarization from def2-SVP
C-F Ahlrichs’ DZ + Polarization from 6-31G*
Rb-Rn def2-SVP with Stuttgart-Dresden ECPs

For inter- and intramolecular BSSE the gCP expression from Eq. (7.42) is used but with a damping function (sim-
ilar to the zero-damping in Eq. (7.32)). This damping improves the thermochemistry of the method significantly
compared with the non-damped version. London dispersion effects are accounted for by the DFT-D3 (BJ-damping)
scheme including the three-body term. Compared to the related HF-3c approach, the PBEh-3c is somewhat more
costly, however, it yields much better geometries. These are roughly of MP2-quality (or even better for non-covalent
structures) but may be computed at much lower cost. Due to the moderate amount of non-local Fock exchange, the
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method is less prone to self-interaction errors (as in GGAs) but still applicable in cases when Hartree-Fock fails
(strongly correlated systems).

The PBEh-3c method may be invoked with the simple keyword:

! PBEh-3c

Identical to HF-3c, the default initial guess for all elements up to Xe is a Hückel guess. Beyond Xe, the guess mode
is changed to HCORE. For calculations with only lighter elements and therefore no ECPs, the ECP printouts in the
output file can be ignored.

Recently, a new composite ‘low-cost’ method for accurate thermochemistry, structures, and noncovalent interac-
tions specifically also for transition metal chemistry and other stronger correlated systems was implemented. As
it is based on the B97 GGA including D3 with three-body contribution, a short range bond length correction, and
a modified, stripped-down triple-𝜁 basis, def2-mTZVP, the computational cost of this method termed B97-3c are
between that of HF-3c and PBEh-3c (for large systems roughly two times more expensive than HF-3c). It is invoked
with a simple keyword analogously to the latter methods. Some more detailed information can be found in Ref.
[121] .

𝑟2SCAN-3c: A robust “Swiss army knife” composite electronic-structure method

The 𝑟2SCAN-3c composite method[333] is available as robust “Swiss army knife” electronic structure method for
thermochemistry, geometries and non-covalent interactions and has shown in preliminary tests consistent perfor-
mance for both open and closed shell transition metal complexes. It is based on the 𝑟2SCAN[282] meta-GGA
combined with the D4 dispersion correction[244] and the geometrical counter poise-correction[476]. The modi-
fied triple-𝜁 basis set, def2-mTZVPP, is larger and more consistent for the light main-group elements and almost
as computationally efficient as the def2-mTZVP basis set of B97-3c. The computational cost of 𝑟2SCAN-3c is
slightly larger than B97-3c. It is invoked with the simple keyword

! r2SCAN-3c

𝜔B97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized
valence double-𝜁 basis set

The𝜔B97X-3c composite method[540] is based on the𝜔B97X-V functional and combines a tailored and molecule-
optimized polarized valence double-𝜁 (vDZP) basis set and a specifically adapted D4 dispersion correction. The
vDZP basis set employs large-core ECPs and shows only very small basis set superposition and incompleteness
errors compared to conventional double-𝜁 basis sets. In thorough tests on standard benchmarks sets, the 𝜔B97X-3c
method was shown to be on par with well-performing hybrid DFT methods in a quadruple-𝜁 basis set at a fraction
of their computational cost. 𝜔B97X-3c is consistently available for all elements up to Rn (Z = 1–86).

It is invoked with the simple keyword:

! wB97X-3c

The vDZP basis set alone is utilized as follows (note that the corresponding large-core ECPs are called automati-
cally):

! vDZP
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7.4.3 Semiempirical Methods

The present version of ORCA has inherited the capability of doing semiempirical calculations from the earlier
versions. A number of methods based on the “neglect of differential overlap” [692, 779] are currently implemented
for energies and analytic gradients (for geometry optimization).

%method
Method CNDO

INDO
NDDO

# for Method=CNDO
Version CNDO_1

CNDO_2
CNDO_S

# for Method=INDO
Version INDO_1

INDO_2
INDO_S
ZINDO_1
ZINDO_2
ZINDO_S

# for Method=NDDO
Version ZNDDO_1

ZNDDO_2
MNDO
AM1
PM3

end

The methods MNDO [206, 207, 848], AM1 [208] and PM3 [822] are available for main group elements only
and arise from the work of the Dewar group. They have been optimized to reproduce molecular structure and
energetics. The older CNDO/1,2 and INDO/1,2 were developed by the Pople group [61, 175, 176, 177, 693,
696, 697, 749, 750] and were designed to roughly mimic minimal basis ab initio calculations. The methods of the
Zerner group (ZINDO/1,2 and ZINDO/S) are closely related to the older methods but have been well parameterized
for transition metals too [36, 37, 38, 63, 183, 466, 720, 908, 909, 910, 912]. ZINDO/1 (and less so ZINDO/2)
are suitable for geometry optimization. ZINDO/S gives good results for electronically excited states at moderate
configuration interaction levels and is also successful for the calculation of electron and spin distributions in large
transition metal complexes [37, 183, 466, 908, 909, 910]. The ZNDDO/1,2 methods have been implemented
into ORCA as straightforward extensions of the corresponding INDO methods without changing any parameter.
However, the methods benefit from the somewhat more accurate representation of the Coulomb interaction within
the NDDO approximation [431, 634]. The preliminary experience with these methods is that they are better than
the corresponding INDO methods for calculation of transition metal complex structures but on the whole have also
similar deficiencies.

The analytic gradients are available for all of these methods and can be used to produce reasonable molecular
structures at low computational cost or to get preliminary insight in the behavior of the system under investigation9.

There is also a mechanism for simplified input. Instead of giving values for Method and Version separately you
can also assign the value that would normally belong to Method to Version. The program will recognize that and
assign the correct values to both Method and Version.

%method
# shortcut to Method=NDDO; and Version=AM1;
Method AM1

end

• If you want you can also combine semiempirical methods with MP2 (energies only). For example use Method
=AM1; and DoMP2=true; It is questionable if this makes the results of semiempirical calculations any better
but at least it is possible in ORCA.

9 However, do not try to use ZINDO/S (or CNDO/S) for structure optimizations - it does not make sense and will lead to disastrous results
because there is no accurate representation of nuclear repulsion in these methods.
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You can change the built-in semiempirical parameters in a straightforward fashion. For example:

! ZINDO/S TightSCF DIIS NoMOPrint

%cis NRoots 20
MaxDim 3 # Davidson expansion space = MaxDim * NRoots
end

%ndoparas P[6,25] 20
P[6,26] 20
end

The %ndoparas block is there in order to let you input your favorite personal parameters. The “molecular” param-
eters are set using “INTFA” (“interaction factors”);

%ndoparas INTFA[PP_PI] 0.585
# The interaction factors exist for
# ss_sigma
# sp_sigma
# sd_sigma
# pp_sigma
# pd_sigma
# dd_sigma
# pp_pi
# pd_pi
# dd_pi
# dd_delta
# the parameter entering the Coulomb integrals
# in INDO/S
FGAMMA 1.2
end

All atomic parameters are collected in an array “P”. The first index is the atomic number of the element whose
parameters you want to change. The second index identifies which parameter. The list of parameters follows
below. Most of them will only be interesting for expert users. The most commonly modified parameters are the
Beta’s (number 25 through 28). Note that most programs require a negative number here. In ORCA the resonance
integrals are defined in a way that makes the Beta’s positive.

# core integrals (in eV)
US 0
UP 1
UD 2
UF 3
# Basis set parameters (double-zeta for generality)
NSH 4 # number of shells for the element
NZS 5 # number of Slater type orbitals for the s shell
ZS1 6 # first exponent
ZS2 7 # second exponent
CS1 8 # first contraction coefficient
CS2 9 # second contraction coefficient
NZP 10 # number of Slater type orbitals for the p shell
ZP1 11 # ...
ZP2 12
CP1 13
CP2 14
NZD 15 # number of Slater type orbitals for the d shell
ZD1 16 # ...
ZD2 17
CD1 18
CD2 19
NZF 20 # number of Slater type orbitals for the f shell
ZF1 21 # ...

(continues on next page)
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(continued from previous page)

ZF2 22
CF1 23
CF2 24
# Resonance integral parameters (in eV)
BS 25 # s shell beta
BP 26 # p shell beta
BD 27 # d shell beta
BF 28 # f shell beta
# Number of electrons in the g.s.
NEL 29 # total number of electrons (integer)
NS 30 # fractional occupation number of the s shell
NP 31 # fractional occupation number of the p shell
ND 32 # fractional occupation number of the d shell
NF 33 # fractional occupation number of the f shell
# The one center repulsion (gamma) integrals (in eV)
GSS 34
GSP 35
GSD 36
GSF 37
GPP 38
GPD 39
GPF 40
GDD 41
GDF 42
GFF 43
# The Slater Condon parameters (in eV)
F2PP 44
F2PD 45
F2DD 46
F4DD 47
G1SP 48
G1PD 49
G2SD 50
G3PD 51
R1SPPD 52
R2SDPP 53
R2SDDD 54
# The nuclear repulsion parameters for Dewar type models
NR1 55
NR2 56
NR3 57
NR4 58
NR5 59
NR6 60
NR7 61
NR8 62
NR9 63
NR10 64
NR11 65
NR12 66
NR13 67
# The nuclear attraction/repulsion parameter for MNDO/d
RHO 68
# Spin orbit coupling parameters
SOCP 69 # SOC for the p shell
SOCD 70 # SOC for the d shell
SOCF 71 # SOC for the f shell
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Semi-empirical tight-binding methods: Grimme’s GFN0-xTB, GFN-xTB and GFN2-xTB

ORCA is interfaced to the XTB tool by Grimme and coworkers, allowing the user to request all kinds of calculations
using the popular GFN0-xTB, GFN-xTB and GFN2-xTB Hamiltonians.[70, 332, 699] From the technical side, the
user has to provide the executable provided by the Grimme group. The xtb program package can be obtained
free of charge from https://github.com/grimme-lab/xtb/releases and detailed information on the usage of the xtb
standalone program and its utilities can be found at https://xtb-docs.readthedocs.io/en/latest/contents.html. Only
the file bin/xtb is used by ORCA . The user should copy this file into the directory where the other ORCA
executables are located, and rename it as otool_xtb.

Please use the 6.7.1 version (or any later version) of xtb; older versions are not fully compatible with ORCA
anymore or are missing features, for example it may not be possible to invoke the solvation model! Addi-
tionally, Windows users should copy libiomp5md.dll from the XTB directory to the ORCA directory.

XTB is invoked by the following keywords:

! XTB0 # for GFN0-xTB. Synonym: GFN0-XTB
! XTB1 # for GFN1-xTB. Synonym: GFN-XTB
! XTB2 # for GFN2-xTB. Synonym: GFN2-XTB
! XTBFF # for GFN-FF. Synonym: GFN-FF

The following methods can be used in conjunction with XTB:

• Single Point Energy

• Energy and Gradient

• Optimization, using all kinds of constraints, relaxed surface scans, etc.

• Nudged-Elastic Band calculations

• Numerical Frequency Calculations

• Intrinsic Reaction Coordinate

• Molecular Dynamics Calculations

• QM/MM calculations

ò Note

• XTB0 is a non-self-consistent tight-binding method, and as such, its accuracy is generally inferior to
XTB1 and XTB2 (and sometimes even XTBFF), despite that it is a few times faster than XTB1 and
XTB2. From our experience, we only recommend XTB0 when both XTB1 and XTB2 exhibit qualitative
failures for the system of interest.

• Please note that XTB0, XTB1 and XTB2 can also be used for the initial path generation or for the
calculation of an initial TS structure on XTB level, both as input for the subsequent NEB calculation on
a higher level of theory. For more details, please consult section Nudged Elastic Band Method.

Solvation

Three implicit solvation models can be requested in XTB calculations: (1) the analytical linearized Poisson-
Boltzmann (ALPB) solvation model, (2) the domain decomposition COSMO (ddCOSMO)[136], and (3) the ex-
tended conductor-like polarizable continuum model (CPCM-X).[815] These three models can be requested via the
following tags in the simple input

! ALPB(solvent) # use ALPB

or

! DDCOSMO(solvent) # use ddCOSMO

(continues on next page)
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or

! CPCMX(solvent) # use CPCMX

where solvent is any of the solvents in Table 7.29.

Keywords for XTB

A list of additional keywords for XTB is detailed here:

! XTB
! ALPB(water) # use ALPB for implicit solvation, solvent water,
! DDCOSMO(water) # use ddCOSMO for implicit solvation, solvent water,
! CPCMX(water) # use CPCMX for implicit solvation, solvent water,

# they can also be defined in the xtb block
%xtb

XTBINPUTSTRING "argument 1" # string passed on to XTB call
XTBINPUTSTRING2 "keyword 2" # string passed on to XTB call
ETemp 0 # electronic temperature, value for --etemp
DOALPB false # use implicit solvation, ALPB
ALPBSOLVENT "" # ALPB solvent, no default, string for --alpb
DODDCOSMO false # use implicit solvation, ddCOSMO
DDCOSMOSOLVENT "" # ddCOSMO solvent, no default, string for --cosmo
DOCPCMX false # use implicit solvation, CPCMX
CPCMXSOLVENT "" # CPCMX solvent, no default, string for --cpcmx
EPSILON 3.5 # Dielectric constant (only for ddCOSMO)
ACCURACY 1 # accuracy, value for --acc, default is ORCA's accuracy x 1.e6
MAXCORE 1024 # memory in MB reserved for XTB calculation,

# default is ORCA's maxcore
NPROCS 1 # number of processors for running XTB",

# default is ORCA's PAL command
end

ò Note

• If jobs are run over several nodes, the number of cores used by the XTB tool might be lower than requested
via the pal keyword.

7.5 Choice of Basis Set

A fair number of reasonable basis sets is hardwired in the program as will be described in the next section. In
addition, whole basis sets can be read from a file, basis sets can be assigned for all atoms of a given type or, at
the highest resolution, basis sets can be assigned to individual atoms which is convenient if different parts of the
molecule are to be treated at different levels of accuracy. Most hard wired basis sets were obtained from the EMSL
library [251] and the input format in ORCA is closely related to the “GAMESS-US” format.

ò Note

As of ORCA version 4.0, the basis set handling has been significantly modified!
Please check your basis sets very carefully!
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7.5.1 Built-in Basis Sets

The basis set is specified in the block %BASIS. Note that there are three distinguished slots for auxiliary basis
sets (AuxJ, AuxC and AuxJK) to be used with RI approximation. Which auxiliary basis slot is used in the actual
program depends on the context. The AuxJ and AuxJK slots are used in the context of Fock matrix construction,
whereas the AuxC slot is used for all other integral generation steps e.g. in post-Hartree Fock methods. Assigning
the auxiliary basis with the simple input, takes care of the individual slots. However, in specific cases they must
be set explicitly in the block input. For example, a “/JK” basis may be assigned to AuxJ in this way.

ò Note

As of ORCA 4.0, the basis set name has to be put in quotation marks, and the basis set name identifiers are the
same as in the simple input!

%basis

Basis "Def2-TZVP" # The orbital expansion basis set
AuxJ "Def2/J" # RI-J auxiliary basis set
AuxJK "Def2/JK" # RI-JK auxiliary basis set
AuxC "Def2-TZVP/C" # Auxiliary basis set for correlated

# calcualtions, e.g. RI-MP2
CABS "cc-pVDZ-F12-OptRI" # complementary auxiliary basis set

# for F12 calculations

DecontractBas false # if chosen "true" the program will
# decontract the orbital basis set

DecontractAuxJ false # if "true" - decontract the AuxJ basis set
DecontractAuxJK false # if "true" - decontract the AuxJK basis set
DecontractAuxC false # if "true" - decontract the AuxC basis set
DecontractCABS true # if "false" - do not decontract the CABS
Decontract false # if "true" - decontract all basis sets

end

. Warning

• ORCA uses pure d and f functions (5D and 7F instead of Cartesian 6D and 10F) for all basis sets. This
needs to be taken into account when results are compared with other programs, especially for Pople-style
basis sets that were optimized with Cartesian (6D) functions.

• If you use Decontract: if your basis set arises from general contraction it will contain duplicate primi-
tives in several contractions and these will be removed such that only unique primitives remain and there
is no problem with redundancy.

A complete list of predefined basis sets and their availability is given in Table 7.10.

Table 7.10: Basis sets availability

Keyword Availability
Orbital basis sets (Basis)
STO-3G H–I
MINI H–Ca
MINIS H–Ca
MINIX1 H–Rn
MIDI H–Na, Al–K
3-21G H–Cs
3-21GSP H–Ar

continues on next page
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Table 7.10 – continued from previous page
Keyword Availability
4-22GSP H–Ar
6-31G H–Zn
6-31G* H–Zn
m6-31G Sc–Cu
m6-31G* Sc–Cu
6-31G** H–Zn
6-31G(d) H–Zn
6-31G(d,p) H–Zn
6-31G(2d) H–Zn
6-31G(2d,p) H–Zn
6-31G(2d,2p) H–Zn
6-31G(2df) H–Zn
6-31G(2df,2p) H–Zn
6-31G(2df,2pd) H–Zn
6-31+G* H–Zn
6-31+G** H–Zn
6-31+G(d) H–Zn
6-31+G(d,p) H–Zn
6-31+G(2d) H–Zn
6-31+G(2d,p) H–Zn
6-31+G(2d,2p) H–Zn
6-31+G(2df) H–Zn
6-31+G(2df,2p) H–Zn
6-31+G(2df,2pd) H–Zn
6-31++G** H–Zn
6-31++G(d,p) H–Zn
6-31++G(2d,p) H–Zn
6-31++G(2d,2p) H–Zn
6-31++G(2df,2p) H–Zn
6-31++G(2df,2pd) H–Zn
6-311G H–Br
6-311G* H–Br
6-311G** H–Br
6-311G(d) H–Br
6-311G(d,p) H–Br
6-311G(2d) H–Br
6-311G(2d,p) H–Br
6-311G(2d,2p) H–Br
6-311G(2df) H–Br
6-311G(2df,2p) H–Br
6-311G(2df,2pd) H–Br
6-311G(3df) H–Br
6-311G(3df,3pd) H–Br
6-311+G* H–Br
6-311+G** H–Br
6-311+G(d) H–Br
6-311+G(d,p) H–Br
6-311+G(2d) H–Br
6-311+G(2d,p) H–Br
6-311+G(2d,2p) H–Br
6-311+G(2df) H–Br
6-311+G(2df,2p) H–Br
6-311+G(2df,2pd) H–Br
6-311+G(3df) H–Br
6-311+G(3df,2p) H–Br

continues on next page
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Table 7.10 – continued from previous page
Keyword Availability
6-311+G(3df,3pd) H–Br
6-311++G** H–Br
6-311++G(d,p) H–Br
6-311++G(2d,p) H–Br
6-311++G(2d,2p) H–Br
6-311++G(2df,2p) H–Br
6-311++G(2df,2pd) H–Br
6-311++G(3df,3pd) H–Br
SV H–Kr
SV(P) H–Kr
SVP H–Kr
TZV H–Kr
TZV(P) H–Kr
TZVP H–Kr
TZVPP H–Kr
QZVP H–Kr
QZVPP H–Kr
DKH-SV(P) H–Kr
DKH-SVP H–Kr
DKH-TZV(P) H–Kr
DKH-TZVP H–Kr
DKH-TZVPP H–Kr
DKH-QZVP H–Kr
DKH-QZVPP H–Kr
ZORA-SV(P) H–Kr
ZORA-SVP H–Kr
ZORA-TZV(P) H–Kr
ZORA-TZVP H–Kr
ZORA-TZVPP H–Kr
ZORA-QZVP H–Kr
ZORA-QZVPP H–Kr
def2-mSVP2 H–Rn
def2-mTZVPPage 502, 2 H–Rn
def2-mTZVPPPage 502, 2 H–Lr
def2-SV(P)Page 502, 2 H–Rn
def2-SVPPage 502, 2 H–Rn
def2-TZVP(-f)Page 502, 2 H–Rn
def2-TZVPPage 502, 2 H–Rn
def2-TZVPPPage 502, 2 H–Rn
def2-QZVPPage 502, 2 H–Rn
def2-QZVPPPage 502, 2 H–Rn
def2-SVPDPage 502, 2 H–Rn
def2-TZVPDPage 502, 2 H–Rn
def2-TZVPPDPage 502, 2 H–Rn
def2-QZVPDPage 502, 2 H–Rn
def2-QZVPPDPage 502, 2 H–Rn
dhf-SV(P)3 H–Kr, Rb–Rn
dhf-SVPPage 502, 3 H–Kr, Rb–Rn
dhf-TZVPPage 502, 3 H–Kr, Rb–Rn
dhf-TZVPPPage 502, 3 H–Kr, Rb–Rn
dhf-QZVPPage 502, 3 H–Kr, Rb–Rn
dhf-QZVPPPage 502, 3 H–Kr, Rb–Rn
dhf-SV(P)-2cPage 502, 3 H–Kr, Rb–Rn
dhf-SVP-2cPage 502, 3 H–Kr, Rb–Rn
dhf-TZVP-2cPage 502, 3 H–Kr, Rb–Rn

continues on next page
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Table 7.10 – continued from previous page
Keyword Availability
dhf-TZVPP-2cPage 502, 3 H–Kr, Rb–Rn
dhf-QZVP-2cPage 502, 3 H–Kr, Rb–Rn
dhf-QZVPP-2cPage 502, 3 H–Kr, Rb–Rn
DKH-def2-SV(P) H–Kr
DKH-def2-SVP H–Kr
DKH-def2-TZVP(-f) H–Kr
DKH-def2-TZVP H–Kr
DKH-def2-TZVPP H–Kr
DKH-def2-QZVPP H–Kr
ZORA-def2-SV(P) H–Kr
ZORA-def2-SVP H–Kr
ZORA-def2-TZVP(-f) H–Kr
ZORA-def2-TZVP H–Kr
ZORA-def2-TZVPP H–Kr
ZORA-def2-QZVPP H–Kr
ma-def2-mSVPPage 502, 2 H–Rn
ma-def2-SV(P)Page 502, 2 H–Rn
ma-def2-SVPPage 502, 2 H–Rn
ma-def2-TZVP(-f)Page 502, 2 H–Rn
ma-def2-TZVPPage 502, 2 H–Rn
ma-def2-TZVPPPage 502, 2 H–Rn
ma-def2-QZVPPage 502, 2 H–Rn
ma-def2-QZVPPPage 502, 2 H–Rn
ma-DKH-def2-SV(P) H–Kr
ma-DKH-def2-SVP H–Kr
ma-DKH-def2-TZVP(-f) H–Kr
ma-DKH-def2-TZVP H–Kr
ma-DKH-def2-TZVPP H–Kr
ma-DKH-def2-QZVPP H–Kr
ma-ZORA-def2-SV(P) H–Kr
ma-ZORA-def2-SVP H–Kr
ma-ZORA-def2-TZVP(-f) H–Kr
ma-ZORA-def2-TZVP H–Kr
ma-ZORA-def2-TZVPP H–Kr
ma-ZORA-def2-QZVPP H–Kr
old-SV H–I
old-SV(P) H–I
old-SVP H–I
old-TZV H–I
old-TZV(P) H–I
old-TZVP H–I
old-TZVPP H–I
old-DKH-SV(P) H–I
old-DKH-SVP H–I
old-DKH-TZV(P) H–I
old-DKH-TZVP H–I
old-DKH-TZVPP H–I
old-ZORA-SV(P) H–I
old-ZORA-SVP H–I
old-ZORA-TZV(P) H–I
old-ZORA-TZVP H–I
old-ZORA-TZVPP H–I
ANO-SZ H–Ar, Sc–Zn
ANO-pVDZ H–Ar, Sc–Zn
ANO-pVTZ H–Ar, Sc–Zn

continues on next page
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Table 7.10 – continued from previous page
Keyword Availability
ANO-pVQZ H–Ar, Sc–Zn
ANO-pV5Z H–Ar, Sc–Zn
ANO-pV6Z H–Ar, Sc–Zn
aug-ANO-pVDZ H–Ar, Sc–Zn
aug-ANO-pVTZ H–Ar, Sc–Zn
aug-ANO-pVQZ H–Ar, Sc–Zn
aug-ANO-pV5Z H–Ar, Sc–Zn
saug-ANO-pVDZ H–Ar, Sc–Zn
saug-ANO-pVTZ H–Ar, Sc–Zn
saug-ANO-pVQZ H–Ar, Sc–Zn
saug-ANO-pV5Z H–Ar, Sc–Zn
ANO-RCC-DZP H–Cm
ANO-RCC-TZP H–Cm
ANO-RCC-QZP H–Cm
ANO-RCC-Full H–Cm
pc-0 H–Ca, Ga–Kr
pc-1 H–Kr
pc-2 H–Kr
pc-3 H–Kr
pc-4 H–Kr
aug-pc-0 H–Ca, Ga–Kr
aug-pc-1 H–Kr
aug-pc-2 H–Kr
aug-pc-3 H–Kr
aug-pc-4 H–Kr
pcJ-0 H–He, B–Ne, Al–Ar
pcJ-1 H–He, B–Ne, Al–Ar
pcJ-2 H–He, B–Ne, Al–Ar
pcJ-3 H–He, B–Ne, Al–Ar
pcJ-4 H–He, B–Ne, Al–Ar
aug-pcJ-0 H–He, B–Ne, Al–Ar
aug-pcJ-1 H–He, B–Ne, Al–Ar
aug-pcJ-2 H–He, B–Ne, Al–Ar
aug-pcJ-3 H–He, B–Ne, Al–Ar
aug-pcJ-4 H–He, B–Ne, Al–Ar
pcseg-0 H–Kr
pcseg-1 H–Kr
pcseg-2 H–Kr
pcseg-3 H–Kr
pcseg-4 H–Kr
aug-pcseg-0 H–Kr
aug-pcseg-1 H–Kr
aug-pcseg-2 H–Kr
aug-pcseg-3 H–Kr
aug-pcseg-4 H–Kr
pcSseg-0 H–Kr
pcSseg-1 H–Kr
pcSseg-2 H–Kr
pcSseg-3 H–Kr
pcSseg-4 H–Kr
aug-pcSseg-0 H–Kr
aug-pcSseg-1 H–Kr
aug-pcSseg-2 H–Kr
aug-pcSseg-3 H–Kr
aug-pcSseg-4 H–Kr
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Table 7.10 – continued from previous page
Keyword Availability
W1-mtsmall H–Ar
W1-DZ H–Ar
W1-TZ H–Ar
W1-QZ H–Ar
W1-Opt H–Ar
Sapporo-DZP-2012 H–Xe
Sapporo-TZP-2012 H–Xe
Sapporo-QZP-2012 H–Xe
Sapporo-DKH3-DZP-2012 K–Rn
Sapporo-DKH3-TZP-2012 K–Rn
Sapporo-DKH3-QZP-2012 K–Rn
LANL084 Na–La, Hf–Bi
LANL08(f)Page 502, 4 Sc–Cu, Y–Ag, La, Hf–Au
LANL2DZPage 502, 4 H, Li–La, Hf–Bi, U–Pu
LANL2TZPage 502, 4 Sc–Zn, Y–Cd, La, Hf–Hg
LANL2TZ(f)Page 502, 4 Sc–Cu, Y–Ag, La, Hf–Au
vDZP5 H–Rn
def-TZVPPage 502, 1 Fr–Lr
ma-def-TZVPPage 502, 1 Fr–Lr
HGBS-5 H–Og
HGBS-7 H–Og
HGBS-9 H–Og
HGBSP1-5 H–Og
HGBSP1-7 H–Og
HGBSP1-9 H–Og
HGBSP2-5 H–Og
HGBSP2-7 H–Og
HGBSP2-9 H–Og
HGBSP3-5 H–Og
HGBSP3-7 H–Og
HGBSP3-9 H–Og
AHGBS-5 H–Og
AHGBS-7 H–Og
AHGBS-9 H–Og
AHGBSP1-5 H–Og
AHGBSP1-7 H–Og
AHGBSP1-9 H–Og
AHGBSP2-5 H–Og
AHGBSP2-7 H–Og
AHGBSP2-9 H–Og
AHGBSP3-5 H–Og
AHGBSP3-7 H–Og
AHGBSP3-9 H–Og
cc-pVDZ H–Ar, Ca–Kr
cc-pVTZ H–Ar, Ca–Kr, Y, Ag, Au
cc-pVQZ H–Ar, Ca–Kr
cc-pV5Z H–Ar, Ca–Kr
cc-pV6Z H–He, Be–Ne, Al–Ar
aug-cc-pVDZ H–Ar, Sc–Kr
aug-cc-pVTZ H–Ar, Sc–Kr, Ag, Au
aug-cc-pVQZ H–Ar, Sc–Kr
aug-cc-pV5Z H–Ar, Sc–Kr
aug-cc-pV6Z H–He, B–Ne, Al–Ar
cc-pVD(+d)Z Na–Ar
cc-pVT(+d)Z Na–Ar

continues on next page
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Keyword Availability
cc-pVQ(+d)Z Na–Ar
cc-pV5(+d)Z Na–Ar
apr-cc-pV(Q+d)Z H–Ar
may-cc-pV(T+d)Z H–Ar
may-cc-pV(Q+d)Z H–Ar
jun-cc-pV(D+d)Z H–Ar
jun-cc-pV(T+d)Z H–Ar
jun-cc-pV(Q+d)Z H–Ar
jul-cc-pV(D+d)Z H–Ar
jul-cc-pV(T+d)Z H–Ar
jul-cc-pV(Q+d)Z H–Ar
maug-cc-pV(D+d)Z H–Ar
maug-cc-pV(T+d)Z H–Ar
maug-cc-pV(Q+d)Z H–Ar
aug-cc-pVD(+d)Z Al–Ar
aug-cc-pVT(+d)Z Al–Ar
aug-cc-pVQ(+d)Z Al–Ar
aug-cc-pV5(+d)Z Al–Ar
aug-cc-pV6(+d)Z Al–Ar
aug-cc-pVTZ-J H, B–F, Al–Cl, Sc–Zn, Se
cc-pCVDZ6 H–Ar, Ca, Ga–Kr
cc-pCVTZPage 502, 6 H–Ar, Ca, Ga–Kr
cc-pCVQZPage 502, 6 H–Ar, Ca, Ga–Kr
cc-pCV5ZPage 502, 6 H–Ar, Ca, Ga–Kr
cc-pCV6ZPage 502, 6 H–He, B–Ne, Al–Ar
aug-cc-pCVDZPage 502, 6 H–Ar, Ga–Kr
aug-cc-pCVTZPage 502, 6 H–Ar, Ga–Kr
aug-cc-pCVQZPage 502, 6 H–Ar, Ga–Kr
aug-cc-pCV5ZPage 502, 6 H–Ar, Ga–Kr
aug-cc-pCV6ZPage 502, 6 H–He, B–Ne, Al–Ar
cc-pwCVDZPage 502, 6 H–Ar, Ca, Ga–Kr
cc-pwCVTZPage 502, 6 H–Ar, Ca–Kr, Ag, Au
cc-pwCVQZPage 502, 6 H–Ar, Ca–Kr
cc-pwCV5ZPage 502, 6 H–Ar, Ca–Kr
aug-cc-pwCVDZPage 502, 6 H–Ar, Ga–Kr
aug-cc-pwCVTZPage 502, 6 H–Ar, Sc–Kr, Ag, Au
aug-cc-pwCVQZPage 502, 6 H–Ar, Sc–Kr
aug-cc-pwCV5ZPage 502, 6 H–Ar, Sc–Kr
cc-pVDZ-PP7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra, U
cc-pVTZ-PPPage 502, 7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra, U
cc-pVQZ-PPPage 502, 7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra, U
cc-pV5Z-PPPage 502, 7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra
aug-cc-pVDZ-PPPage 502, 7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra
aug-cc-pVTZ-PPPage 502, 7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra
aug-cc-pVQZ-PPPage 502, 7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra
aug-cc-pV5Z-PPPage 502, 7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra
cc-pCVDZ-PPPage 502, 7 Ca, Sr, Ba, Ra
cc-pCVTZ-PPPage 502, 7 Ca, Sr, Ba, Ra
cc-pCVQZ-PPPage 502, 7 Ca, Sr, Ba, Ra
cc-pCV5Z-PPPage 502, 7 Ca, Sr, Ba, Ra
aug-cc-pCVDZ-PPPage 502, 7 Ca, Sr, Ba, Ra
aug-cc-pCVTZ-PPPage 502, 7 Ca, Sr, Ba, Ra
aug-cc-pCVQZ-PPPage 502, 7 Ca, Sr, Ba, Ra
aug-cc-pCV5Z-PPPage 502, 7 Ca, Sr, Ba, Ra
cc-pwCVDZ-PPPage 502, 7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra, U
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cc-pwCVTZ-PPPage 502, 7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra, U
cc-pwCVQZ-PPPage 502, 7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra, U
cc-pwCV5Z-PPPage 502, 7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra
aug-cc-pwCVDZ-PPPage 502, 7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra
aug-cc-pwCVTZ-PPPage 502, 7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra
aug-cc-pwCVQZ-PPPage 502, 7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra
aug-cc-pwCV5Z-PPPage 502, 7 Ca, Cu–Kr, Sr–Xe, Ba, Hf–Rn, Ra
cc-pVDZ-DK H–Ar, Sc–Kr
cc-pVTZ-DK H–Ar, Sc–Kr, Y–Xe, Hf–Rn
cc-pVQZ-DK H–Ar, Sc–Kr, In–Xe, Tl–Rn
cc-pV5Z-DK H–Ar, Sc–Kr
cc-pVDZ-DK3 U
cc-pVTZ-DK3 U
cc-pVQZ-DK3 U
aug-cc-pVDZ-DK H–Ar, Sc–Kr
aug-cc-pVTZ-DK H–Ar, Sc–Kr, Y–Xe, Hf–Rn
aug-cc-pVQZ-DK H–Ar, Sc–Kr, In–Xe, Tl–Rn
aug-cc-pV5Z-DK H–Ar, Sc–Kr
cc-pwCVDZ-DKPage 502, 6 H–Be, Na–Mg, Ca–Zn
cc-pwCVTZ-DKPage 502, 6 H–Be, Na–Mg, Ca–Zn, Y–Xe, Hf–Rn
cc-pwCVQZ-DKPage 502, 6 H–Be, Na–Mg, Ca–Zn, In–Xe, Tl–Rn
cc-pwCV5Z-DKPage 502, 6 H–Be, Na–Mg, Ca–Zn
cc-pwCVDZ-DK3 U
cc-pwCVTZ-DK3 U
cc-pwCVQZ-DK3 U
aug-cc-pwCVDZ-DKPage 502, 6 H–Be, Na–Mg, Sc–Zn
aug-cc-pwCVTZ-DKPage 502, 6 H–Be, Na–Mg, Sc–Zn, Y–Xe, Hf–Rn
aug-cc-pwCVQZ-DKPage 502, 6 H–Be, Na–Mg, Sc–Zn, In–Xe, Tl–Rn
aug-cc-pwCV5Z-DKPage 502, 6 H–Be, Na–Mg, Sc–Zn
cc-pVDZ-F12 H–Ar
cc-pVTZ-F12 H–Ar
cc-pVQZ-F12 H–Ar
cc-pVDZ-PP-F12Page 502, 7 Ga–Kr, In–Xe, Tl–Rn
cc-pVTZ-PP-F12Page 502, 7 Ga–Kr, In–Xe, Tl–Rn
cc-pVQZ-PP-F12Page 502, 7 Ga–Kr, In–Xe, Tl–Rn
cc-pCVDZ-F12 Li–Ar
cc-pCVTZ-F12 Li–Ar
cc-pCVQZ-F12 Li–Ar
haV(T+d)Z H–Ar
haV(Q+d)Z H–Ar
haV(5+d)Z H–Ar
Partridge-1 H, Li–Sr
Partridge-2 H, Li–Kr
Partridge-3 H, Li–Zn
Partridge-4 Sc–Zn
x2c-SV(P)all H–Rn
x2c-SVPall H–Rn
x2c-TZVPall H–Rn
x2c-TZVPPall H–Rn
x2c-QZVPall H–Rn
x2c-QZVPPall H–Rn
x2c-SV(P)all-2c H–Rn
x2c-SVPall-2c H–Rn
x2c-TZVPall-2c H–Rn
x2c-TZVPPall-2c H–Rn
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x2c-QZVPall-2c H–Rn
x2c-QZVPPall-2c H–Rn
x2c-SV(P)all-s H–Rn
x2c-SVPall-s H–Rn
x2c-TZVPall-s H–Rn
x2c-TZVPPall-s H–Rn
x2c-QZVPall-s H–Rn
x2c-QZVPPall-s H–Rn
x2c-QZVPall-2c-s H–Rn
x2c-QZVPPall-2c-s H–Rn
SARC-DKH-SVP Hf–Hg
SARC-DKH-TZVP Rb–Rn, Ac–Lr
SARC-DKH-TZVPP Rb–Rn, Ac–Lr
SARC-ZORA-SVP Hf–Hg
SARC-ZORA-TZVP Rb–Rn, Ac–Lr
SARC-ZORA-TZVPP Rb–Rn, Ac–Lr
SARC2-DKH-QZV La–Lu
SARC2-DKH-QZVP La–Lu
SARC2-ZORA-QZV La–Lu
SARC2-ZORA-QZVP La–Lu
D95 H, Li, B–Ne, Al–Cl
D95p H, Li, B–Ne, Al–Cl
EPR-II H, B–F
EPR-III H, B–F
IGLO-II H, B–F, Al–Cl
IGLO-III H, B–F, Al–Cl
UGBS H–Th, Pu–Am, Cf–Lr
CP Sc–Zn
CP(PPP) Sc–Zn
Wachters+f Sc–Cu
Coulomb-fitting auxiliary basis sets (`AuxJ``)
def2/J H–Rn
def2-mTZVP/J H–Rn
def2-mTZVPP/J H–Rn
x2c/J H–Rn
SARC/J H–Rn, Ac–Lr
Coulomb and exchange-fitting auxiliary basis sets (AuxJK)
def2/JK H–Ba, Hf–Rn
def2/JKsmall H–Ra, Th–Lr
cc-pVTZ/JK H, B–F, Al–Cl, Ga–Br
cc-pVQZ/JK H, B–F, Al–Cl, Ga–Br
cc-pV5Z/JK H, B–F, Al–Cl, Ga–Br
aug-cc-pVTZ/JK H, B–F, Al–Cl, Ga–Br
aug-cc-pVQZ/JK H, B–F, Al–Cl, Ga–Br
aug-cc-pV5Z/JK H, B–F, Al–Cl, Ga–Br
SARC2-DKH-QZV/JK La–Lu
SARC2-DKH-QZVP/JK La–Lu
SARC2-ZORA-QZV/JK La–Lu
SARC2-ZORA-QZVP/JK La–Lu
Auxiliary basis sets for correlated methods (AuxC)
def2-SVP/C H–Rn
def2-TZVP/C H–Rn
def2-TZVPP/C H–Rn
def2-QZVPP/C H–Rn
def2-SVPD/C H–La, Hf–Rn

continues on next page
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def2-TZVPD/C H–La, Hf–Rn
def2-TZVPPD/C H–La, Hf–Rn
def2-QZVPPD/C H–La, Hf–Rn
cc-pVDZ/C H–Ar, Ga–Kr
cc-pVTZ/C H–Ar, Sc–Kr
cc-pVQZ/C H–Ar, Sc–Kr
cc-pV5Z/C H–Ar, Ga–Kr
cc-pV6Z/C H–He, B–Ne, Al–Ar
aug-cc-pVDZ/C H–He, Be–Ne, Mg–Ar, Ga–Kr
aug-cc-pVTZ/C H–He, Be–Ne, Mg–Ar, Sc–Kr
aug-cc-pVQZ/C H–He, Be–Ne, Mg–Ar, Sc–Kr
aug-cc-pV5Z/C H–Ne, Al–Ar, Ga–Kr
aug-cc-pV6Z/C H–He, B–Ne, Al–Ar
cc-pwCVDZ/CPage 502, 6 H–He, B–Ne, Al–Ar, Ga–Kr
cc-pwCVTZ/CPage 502, 6 H–He, B–Ne, Al–Ar, Sc–Kr
cc-pwCVQZ/CPage 502, 6 H–He, B–Ne, Al–Ar, Ga–Kr
cc-pwCV5Z/CPage 502, 6 H–Ne, Al–Ar
aug-cc-pwCVDZ/CPage 502, 6 H–He, B–Ne, Al–Ar, Ga–Kr
aug-cc-pwCVTZ/CPage 502, 6 H–He, B–Ne, Al–Ar, Sc–Kr
aug-cc-pwCVQZ/CPage 502, 6 H–He, B–Ne, Al–Ar, Ga–Kr
aug-cc-pwCV5Z/CPage 502, 6 H–Ne, Al–Ar
cc-pVDZ-PP/C Cu–Kr, Y–Xe, Hf–Rn
cc-pVTZ-PP/C Cu–Kr, Y–Xe, Hf–Rn
cc-pVQZ-PP/C Cu–Kr, Y–Xe, Hf–Rn
aug-cc-pVDZ-PP/C Cu–Kr, Y–Xe, Hf–Rn
aug-cc-pVTZ-PP/C Cu–Kr, Y–Xe, Hf–Rn
aug-cc-pVQZ-PP/C Cu–Kr, Y–Xe, Hf–Rn
cc-pwCVDZ-PP/C Cu–Kr, Y–Xe, Hf–Rn
cc-pwCVTZ-PP/C Cu–Kr, Y–Xe, Hf–Rn
cc-pwCVQZ-PP/C Cu–Kr, Y–Xe, Hf–Rn
aug-cc-pwCVDZ-PP/C Cu–Kr, Y–Xe, Hf–Rn
aug-cc-pwCVTZ-PP/C Cu–Kr, Y–Xe, Hf–Rn
aug-cc-pwCVQZ-PP/C Cu–Kr, Y–Xe, Hf–Rn
cc-pVDZ-F12-MP2Fit H–Ar
cc-pVTZ-F12-MP2Fit H–Ar
cc-pVQZ-F12-MP2Fit H–Ar
cc-pVDZ-PP-F12-MP2Fit Ga–Kr, In–Xe, Tl–Rn
cc-pVTZ-PP-F12-MP2Fit Ga–Kr, In–Xe, Tl–Rn
cc-pVQZ-PP-F12-MP2Fit Ga–Kr, In–Xe, Tl–Rn
cc-pCVDZ-F12-MP2Fit Li–Ar
cc-pCVTZ-F12-MP2Fit Li–Ar
cc-pCVQZ-F12-MP2Fit Li–Ar
Complementary auxiliary basis sets for F12 calculations (CABS)
cc-pVDZ-F12-CABS H, B–Ne, Al–Ar
cc-pVTZ-F12-CABS H, B–Ne, Al–Ar
cc-pVQZ-F12-CABS H, B–Ne, Al–Ar
cc-pVDZ-F12-OptRI H–Ar
cc-pVTZ-F12-OptRI H–Ar
cc-pVQZ-F12-OptRI H–Ar
cc-pVDZ-PP-F12-OptRI Ga–Kr, In–Xe, Tl–Rn
cc-pVTZ-PP-F12-OptRI Ga–Kr, In–Xe, Tl–Rn
cc-pVQZ-PP-F12-OptRI Ga–Kr, In–Xe, Tl–Rn
aug-cc-pVDZ-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg
aug-cc-pVTZ-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg
aug-cc-pVQZ-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg
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aug-cc-pV5Z-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg
cc-pCVDZ-F12-OptRI Li–Ar
cc-pCVTZ-F12-OptRI Li–Ar
cc-pCVQZ-F12-OptRI Li–Ar
aug-cc-pwCVDZ-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg
aug-cc-pwCVTZ-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg
aug-cc-pwCVQZ-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg
aug-cc-pwCV5Z-PP-OptRI Cu–Zn, Ag–Cd, Au–Hg

ò Note

Check these pointers for more information on the basis sets: (indicated in ecah element of the table as well)

• 1Used with the Def-ECP pseudopotentials (Rb–Lr).

• 2Used with the Def2-ECP pseudopotentials (Rb–Rn).

• 3Used with the dhf-ECP or dhf-ECP-2c pseudopotentials (Rb–Rn). For elements H–Kr equivalent to the
respective def2-XVP basis set.

• 4Used with the HayWadt pseudopotentials (Na–La, Hf–Bi, U–Pu).

• 5Valence double-ζ with large-core pseudopotentials. For the respective ECP types per element, see Ref.
[15] and table 6.5.

• 6The respective basis sets without core correlation functions, i.e. (aug-)cc-pVXZ(-DK)(/C), are used for
H and He.

• 7Used with the SK-MCDHF-RSC pseudopotentials (Ca, Cu–Kr, Sr–Xe, Ba, Hf–Ra, U).

A note on RI and auxiliary basis sets: one thing that is certainly feasible and reasonable if you do not want to
depend on the RI approximation is to converge a RI-J calculation and then take the resulting orbitals as initial
guess for a calculation with exact Coulomb term. This should converge within a few cycles and the total execution
time should still be lower than just converging the calculation directly with exact Coulomb treatment.

7.5.2 Automatic generation of auxiliary basis sets

If no auxiliary basis set is available for your chosen orbital basis set, one can be generated automatically by ORCA
using the keyword AutoAux. This is specified as any other fitting basis set: as a value to the AuxJ/AuxJK/AuxC
variables in the %basis block or as a separate keyword in the simple input line (in which case all three Aux slots
are populated with identical fitting basis sets). AutoAux can also be assigned to individual elements or atoms
- see sections Assigning or Adding Basis Functions to an Element and Assigning or Adding Basis Functions to
Individual Atoms. The generated basis sets can be used for Coulomb, exchange and correlation fitting and are
as accurate as the optimized auxiliary basis sets at the cost of being up to twice as large. The exact generation
procedure is described elsewhere [828] but notably it has been significantly altered since ORCA 3.1 and will
not produce the same results! For compatibility, the old version is still accessible via the setting OldAutoAux
true in the %basis block. Some additional settings for AutoAux are given below with their default values.

1 Used with the Def-ECP pseudopotentials (Rb–Lr).
2 Used with the Def2-ECP pseudopotentials (Rb–Rn).
3 Used with the dhf-ECP or dhf-ECP-2c pseudopotentials (Rb–Rn).
4 Used with the HayWadt pseudopotentials (Na–La, Hf–Bi, U–Pu).
5 Valence double-ζ with large-core pseudopotentials. For the respective ECP types per element, see Ref. [540] and Table 4.3.
6 The respective basis sets without core correlation functions, i.e. (aug-)cc-pVXZ(-DK)(/C), are used for H and He.
7 Used with the SK-MCDHF-RSC pseudopotentials (Ca, Cu–Kr, Sr–Xe, Ba, Hf–Ra, U).
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%basis
AuxJ "AutoAux" # Use AutoAux to generate the AuxJ fitting basis set
AuxJK "AutoAux" # Use AutoAux to generate the AuxJK fitting basis set
AuxC "AutoAux" # Use AutoAux to generate the AuxC fitting basis set
AutoAuxSize 0-3 # 0 use minimal effective rather than minimal

# primitive exponent (suitable for ANO basis sets)
# 1 (default) increases the maximal exponent
# for the shells with low angular momenta.
# 2 increases the maximal exponent for all shells
# 3 directly uses the primitives and produces
# the largest fitting basis

AutoAuxLmax false # If true increase the maximal angular momentum of
# the fitting basis set to the highest value
# permitted by ORCA and by the orbital basis set.

AutoAuxLLimit -1 # If >0, do not exceed the given angular momentum.
OldAutoAux false # If true selects the ORCA 3.1 generation procedure

# Only change the defaults below if you know what you are doing

AutoAuxF[0] 20.0 # The factor to increase the maximal s-exponent
AutoAuxF[1] 7.0 # Same for the p-shell
AutoAuxF[2] 4.0 # Same for the d-shell
AutoAuxF[3] 4.0 # Same for the f-shell
AutoAuxF[4] 3.5 # Same for the g-shell
AutoAuxF[5] 2.5 # Same for the h-shell
AutoAuxF[6] 2.0 # Same for the i-shell
AutoAuxF[7] 2.0 # Same for the j-shell
AutoAuxB[0] 1.8 # Even-tempered expansion factor for the s-shell
AutoAuxB[1] 2.0 # Same for the p-shell
AutoAuxB[2] 2.2 # Same for the d-shell
AutoAuxB[3] 2.2 # Same for the f-shell
AutoAuxB[4] 2.2 # Same for the g-shell
AutoAuxB[5] 2.3 # Same for the h-shell
AutoAuxB[6] 3.0 # Same for the i-shell
AutoAuxB[7] 3.0 # Same for the j-shell
AutoAuxTightB true # Only use B[l] for shells with high l and B[0] for the rest

end

Note that if the orbital basis set contains diffuse functions, as is the case for the aug-cc-pVXZ sets, the AutoAux
fitting basis may contain (near-)linear dependencies. In this case, the Cholesky decomposition of the Coulomb
metric will fail and the program will likely crash. One may print the offending auxiliary basis using !PrintBasis
and manually remove the most diffuse s- and/or p-functions, which will usually resolve the problem. An alternative,
automatic solution is implemented in ORCA 5.0 – see section Removal of Redundant Basis Functions.

7.5.3 Assigning or Adding Basis Functions to an Element

In order to assign a new basis set to a given element, use:

%basis
NewGTO 8 # New basis for oxygen.

# NewGTO O # This works as well.
S 3
1 910.10034975 0.03280967
2 137.19711335 0.23422391
3 30.85279077 0.81490980
S 2
1 1.72885887 0.27389659
2 0.39954770 0.79112437
P 1
1 8.35065975 1.00000000

(continues on next page)
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end
end

Note that for simplicity and consistency the input format is the same as that used in the basis set files. In this format
the first line carries first the angular momentum of the shell to be added (s, p, d, f, g, h, i, j) and the number of
primitives. Then for each primitive one line follows which has (a) the index of the primitive (1, 2, 3, . . . ) (b) the
exponent of the primitive and (c) the contraction coefficient (unnormalized). Note that ORCA always uses spherical
harmonic Gaussian functions. L-shells (not to be confused with angular momentum equal to 9) can only be dealt
with as separate s- and p-shells. There also is the possibility to include a SCALE X statement after the number of
primitives in the first line to indicate that the basis function exponents should be scaled.

In order to add basis functions to the basis of a given element (for example because you do not like the standard
polarization functions) use AddGTO instead of NewGTO. In NewGTO or AddGTO you can also use the nicknames of
internally stored basis sets. An example is:

%basis
NewGTO 8 # new basis for oxygen
"6-31G"
D 1
1 0.4 1.0

end
end

In this example the 6-31G basis is assigned to oxygen and in addition a polarization function with exponent 0.4 is
added to the oxygen basis.

Note that the NewGTO keyword does not change the ECP for the given element - you must use NewECP or DelECP
(see section Advanced Specification of Effective Core Potentials).

A similar mechanism was established for the auxiliary basis sets in RI calculations:

%basis
NewAuxJGTO 8 # new auxiliary basis for oxygen
s 1
1 350 1.0
... etc

end
AddAuxJGTO 8 # add a shell to the auxiliary basis for

# oxygen
D 1
1 0.8 1.0

end
end

New basis functions can be specifically assigned to any auxiliary basis sets. The keywords NewAuxCGTO,
AddAuxCGTO, NewAuxJKGTO, AddAuxJKGTO, NewCABSGTO, AddCABSGTO are used in the same way. The key-
words NewAuxGTO and AddAuxGTO are the same as NewAuxJGTO and AddAuxJGTO, that is, they only influence
the Coulomb auxiliary basis (/J basis)!

7.5.4 Assigning or Adding Basis Functions to Individual Atoms

Sometimes you may want to not treat all carbon atoms with the same basis set but to assign a specific basis set to a
specific atom in the molecules. This is also possible in ORCA and takes place in the coordinate section (%coords,
*xyz, etc.). The format is the same as described above. An example may help to make things clear:

*int 0 1
C(1) 0 0 0 0.00 0.0 0.00
AddGTO

D 1

(continues on next page)
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1 1.0 1.0
end
O(2) 1 0 0 1.13 0.0 0.00
NewGTO

"6-311G"
D 1
1 1.2 1.0

end
*

In this example an extra d-shell with exponent 1.0 is added to the first carbon atom and the basis for the oxygen
atom is changed to 6-311G with an extra d-function of exponent 1.2 added.

Analogously, AUX basis functions can be assigned or added to individual atoms using the keywords NewAuxJGTO,
AddAuxJGTO, NewAuxCGTO, AddAuxCGTO, NewAuxJKGTO, AddAuxJKGTO, NewCABSGTO, AddCABSGTO.

A note on the use of AutoAux: if you change the basis set on a given atom and want to generate a fitting basis, you
have to specify it again in the COORDS section, even if AutoAux is already present in the simple input line or in the
%basis block. For example:

! Def2-SVP Def2/JK
%basis

NewAuxJKGTO H
"AutoAux"

end
end
*xyz 0 1

O 0.00 0.00 0.00
H -0.25 0.93 0.00
H 0.96 0.00 0.00
AddGTO

P 1
1 1.6 1.0
D 1
1 1.0 1.0

end
NewAuxJKGTO

"AutoAux"
end

*

Here the oxygen atom is assigned the Def2-SVP basis and the Def2/JK fitting basis, the first hydrogen atom is
assigned the Def2-SVP basis and an automatically generated fitting basis and the second hydrogen atom is assigned
the Def2-SVP basis with two additional polarization functions and a larger automatically generated fitting basis
that accounts for these functions.

� Tip

When assigning custom basis sets it is always a good idea to print the basis set information (%output
print[p_basis] 2 end or simply !PrintBasis) and check that everything is correct.
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7.5.5 Assigning Basis Sets and ECPs to Fragments

In multi-level or QM/QM calculations it may be convenient to assign different basis sets to different fragments.
This can be done with the keywords FragBasis, FragAuxJ, FragAuxJK, FragAuxC, FragCABS, and FragECP in
the %basis block, followed by the number of the fragment (numbering starts at 1!) and a standard basis set or ECP
from the ORCA library (see Tables Table 7.10 and Table 4.3). Note that unlike the NewGTO keyword, FragBasis
also changes the ECP, if applicable. Fragment basis sets will overload the global or element-specific (Assigning or
Adding Basis Functions to an Element) choice but can be overloaded for individual atoms (Assigning or Adding
Basis Functions to Individual Atoms). If AutoAux is requested for a fragment, it will be generated for the actual
orbital basis set chosen for each atom, even if it is changed in the coordinates section. However, if AutoAux was
requested for an element or in the simple input, the auxiliary basis will be generated before the fragment basis is
assigned (which is not desired), therefore AutoAux must be requested again for the fragment. An example is given
below:

! PrintBasis BP86 NoIter
! def2-SVP def2/J
%basis

FragBasis 1 "def2-TZVP"
FragBasis 2 "cc-pVTZ-PP"
FragAuxJ 2 "AutoAux"
FragECP 3 "SK-MCDHF-RSC"
FragAuxJ 3 "def2/JK"

end
*xyz 0 1

H(1) 0 0 0
I(1) 0 0 1.6
H(2) 0 5 0 NewGTO "cc-pVTZ" end
I(2) 0 5 1.6
H(3) 5 0 0
I(3) 5 0 1.6

*
# Final basis sets:
# Atom Basis ECP AuxJ
# 0H def2-TZVP def2-ECP def2/J
# 1I def2-TZVP def2-ECP def2/J
# 2H cc-pVTZ - AutoAux(cc-pVTZ)
# 3I cc-pVTZ-PP SK-MCDHF-RSC AutoAux(cc-pVTZ-PP)
# 4H def2-SVP - def2/JK
# 5I def2-SVP SK-MCDHF-RSC def2/JK

It is also possible to read fragment-specific basis sets from a file. The syntax is analogous, using the keywords
ReadFragBasis, ReadFragAuxJ, ReadFragAuxJK, ReadFragAuxC, ReadFragCABS, and ReadFragECP. In this
case, the input string is expected to be an existing basis set file in GAMESS-US format (see section Reading Orbital
and Auxiliary Basis Sets from a File). All other details above (e.g., regarding ECPs and AutoAux) also apply here.

7.5.6 Reading Orbital and Auxiliary Basis Sets from a File

By using the variables GTOName, GTOAuxJName, GTOAuxJKName, GTOAuxCName, and GTOCABSName (GTOAuxName
is a synonym for GTOAuxJName) a basis set can be read from an ASCII file. In this way you can construct or modify
your favorite standard basis set and load it easily into the program.

%basis
# read an externally specified orbital basis
GTOName = "MyBasis.bas"
# read an externally specified Coulomb-fitting basis for RI calculations
GTOAuxJName = "MyAuxJBasis.bas"
# read an externally specified Coulomb- and exchange-fitting basis
GTOAuxJKName = "MyAuxJKBasis.bas"
# read an externally specified correlation-fitting basis
GTOAuxCName = "MyAuxCBasis.bas"

(continues on next page)
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# read an externally specified complementary auxiliary basis set
GTOCABSName = "MyCABSBasis.bas"

end

A word of caution: in C/C++ the backslashes in directory assignments must be given twice to be correctly under-
stood! The format is that used for “GAMESS-US” in the EMSL library [251]. To give an example of what this
format looks like here is a part of the 3-21GSP basis of Buenker and coworkers [588, 589]:

! lines in the beginning with '!' or '#' are comments
! BASIS="3-21GSP"
!Elements References
!-------- ----------
! H - Ne: A.V. Mitin, G. Hirsch, R. J. Buenker, Chem. Phys. Lett. 259, 151 (1996)
! Na - Ar: A.V. Mitin, G. Hirsch, R. J. Buenker, J. Comp. Chem. 18, 1200 (1997).
!
$DATA ! Optional
HYDROGEN ! (3s) -> [2s] Element symbols are also recognized
S 2
1 4.50036231 0.15631167
2 0.68128924 0.90466909

S 1
1 0.15137639 1.00000000

CARBON ! (6s,3p) -> [3s,2p]
S 3
1 499.24042249 0.03330322
2 75.25419194 0.23617745
3 16.86538669 0.81336259

L 2 ! L shells are a s and a p shell with identical exponents
1 0.89739483 0.24008573 0.46214684
2 0.21746772 0.81603757 0.66529098

L 1
1 4.52660451 1.00000000 1.00000000

$END ! Optional

The file format for the auxiliary basis sets is exactly the same. Basis sets can be also exported in GAMESS-US
format by the orca_exportbasis utility (section orca_exportbasis). Note that in order to read basis sets printed
by ORCA (using !PrintBasis), the NewGTO and end keywords must be removed.

7.5.7 Advanced Specification of Effective Core Potentials

Library ECPs and Basis Sets

Besides the simple input line (section Effective Core Potentials), assignment of ECPs can be done within the %basis
block using the ECP and NewECP keywords as in the following example:

%basis
ECP "def2-ECP" # All elements (for which the ECP is defined)
NewECP Pt "def2-SD" end # Different ECP for Pt

end

A variant of the NewECP keyword can be used for individual atoms inside the geometry definition:

* xyz ...
...
S 0.0 0.0 0.0 NewECP "SDD" end
...

*

Note that these keywords only affect the ECP and not the valence basis set!
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In case the basis set for an element/atom has been changed using the NewGTO keyword (see sections Assigning
or Adding Basis Functions to an Element and Assigning or Adding Basis Functions to Individual Atoms above) it
may be necessary to remove the ECP from that element/atom. This can be done with the DelECP keyword in the
%basis block or coordinates input, respectively:

! LANL2DZ # Uses HayWadt ECPs by default, starting from Na
%basis

NewGTO S "Def2-TZVP" end # All-electron up to Kr
DelECP S # Remove HayWadt ECP

end
* xyz ...
...
Cu 0.0 0.0 0.0

DelECP # Remove HayWadt ECP
NewGTO "Def2-QZVPP" end # All-electron up to Kr

...
*

To remove all ECPs loaded by default (e.g. in case no global basis set is chosen) you can use the !NoECP simple
keyword.

Manual Input of ECP Parameters

To manually specify ECP parameters, the NewECP keyword is followed by the element for which an ECP is to be
entered, the number of core electrons to be replaced (N_core) and the maximum angular momentum (lmax). The
ECP specification is finished by giving the definitions of the individual shells that constitute the angular dependent
potentials U𝑙.

%basis
NewECP <element>

N_core <number of core electrons>
lmax <max. angular momentum>
[shells]

end
end

For each ECP shell, first the angular momentum 𝑙 has to be given, followed by the number of primitives. The prim-
itives themselves are then specified by giving a running index and the respective tuple of exponent 𝑎𝑘𝑙, expansion
coefficient 𝑑𝑘𝑙 and radial power 𝑛𝑘𝑙.

# ECP shell
l <number of primitives>
1 a1l d1l n1l
2 a2l d2l n3l
...

As an example, consider the SD(10,MDF) for Vanadium. The name indicates a Stuttgart–Dresden type ECP that
replaces 10 core electrons and is derived from a relativistic calculation for the neutral atom. It consists of 4 shells
with angular momentum s, p, d, and f. Note that the f shell has an expansion coefficient of 0.0 and thus will
not contribute at all to this effective core potential. This is typical for all SD potentials (but may be different for
program packages like TURBOMOLE that do not support arbitrary angular momentum with respect to the ECP
and therefore use recontractions of the original parameter sets).

%basis
# ECP SD(10,MDF) for V
# M. Dolg, U. Wedig, H. Stoll, H. Preuss,
# J. Chem. Phys. 86, 866 (1987).
NewECP V
N_core 10
lmax f

(continues on next page)
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s 2
1 14.4900000000 178.4479710000 2
2 6.5240000000 19.8313750000 2

p 2
1 14.3000000000 109.5297630000 2
2 6.0210000000 12.5703100000 2

d 2
1 17.4800000000 -19.2196570000 2
2 5.7090000000 -0.6427750000 2

f 1
1 1.0000000000 0.0000000000 2

end
end

ECPs and ghost atoms

When ghost atoms are defined on the input (see section Special definitions), ECPs are not added to these atoms by
default. If that is somehow needed, please add GhostECP true under the %basis block.

%basis
GhostECP true
# AllowGhostECP true # synonym
end

7.5.8 Embedding Potentials

Computations on cluster models sometimes require the presence of embedding potentials in order to account for
otherwise neglected repulsive terms at the border [304]. In order to simplify these kind of calculations with ORCA
the ECP embedding can be accomplished quite easily:

*xyz ...
# atom> charge x y z optional ECP declaration
Zr> 4.0 0.0 0.0 0.0 NewECP "SDD" end
...
*

The declaration of such a coreless ECP center takes place in the coordinates section by appending a bracket “>”
to the element symbol. Note that embedding ECPs are treated as point charges in ORCA, so the charge has to
be given next. The coordinates of the coreless ECP center have to be specified as usual and may be followed by
an optional ECP assignment. In general, calculations that employ an ECP embedding procedure should be single
point calculations. However if the need arises to perform a geometry optimization, make sure to set up explicit
Cartesian constraints for the coreless ECP centers.

7.5.9 Linear Dependence

The previous sections describe the assessment of a desired molecular basis set from appropriately parametrized
functions at various locations within the molecule (normally centered on atoms). The parametrization of these
functions is such that the chance for redundancy is minimal. Since however, one is limited to work with finite nu-
merical precision, and furthermore these parameters also depend on the molecular geometry, redundancies cannot
be completely eliminated in advance. Redundancy means that the subspace spanned by the given basis functions
at given values of parameters (including geometry), can be identically spanned by a smaller number of linear in-
dependent basis functions. Linear dependent (redundant) function sets however may cause numerical instabilities.
Linear dependence is normally identified by searching for zero eigenvalues of the overlap matrix. Note that the
inverse of the overlap (or related matrices) are used for orthogonalization purposes, and it follows that if near zero
eigenvalues are not treated properly, the inverse becomes ill-defined, and the SCF procedure numerically unstable.
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From the previous discussion, it is evident that the crucial parameter for curing linear dependence is the threshold
below which an overlap eigenvalue is considered zero. This parameter may be changed using the following keyword

%scf
sthresh 1e-6 # default 1e-7

end

Although there is no strict limit for the value of the above parameter, it should reasonably be somewhere between
1e-5 and 1e-8 (the default is 1e-7). One may get away with 1e-9 or perhaps even lower without convergence
problem, but there is a risk that the result is contaminated with noise caused by the near zero vectors. In difficult
cases, an 1e-6 threshold was often found to work smoothly, and above that one risks throwing away more and more
functions, which also influence comparability of results with other calculations. To monitor the behavior of the
small eigenvalues, one should look for the following block in the output

Diagonalization of the overlap matrix:
Smallest eigenvalue ... -1.340e-17
Time for diagonalization ... 0.313 sec
Threshold for overlap eigenvalues ... 1.000e-07
Number of eigenvalues below threshold ... 1
Smallest eigenvalue above threshold ... 6.013e-07
Time for construction of square roots ... 0.073 sec
Total time needed ... 0.387 sec

Here, the smallest eigenvalue is printed, along with the currently used overlap threshold, and the number of func-
tions below this (which will be dropped). It is a recommended consistency check to look for an equal number of
zero entries among orbital energies once the SCF procedure converged. Note that for functions belonging to zero
eigenvalues no level shifts are applied!

In case that redundant vectors were removed from the basis, ! MORead NoIter should only be used in conjunction
with the same SThresh as in the original calculation, otherwise the results will be inconsistent. ! MORead may
still be used together with a change in SThresh, but a few SCF iterations will be required.

Automatic Adjustments for Near Linear-Dependent Cases

Starting from ORCA6, there is now a keyword called DiffSThresh, which controls an automatic tightening of the
integral cutoff parameters Thresh and TCut in case small eigenvalues of the overlap matrix are found. We found
this to be important in some calculations using diffuse basis, and these parameters are set to a minimum value
of Thresh=1e-12 and TCut=1e-13 in case the “Smallest eigenvalue” shown above gets below that number. If the
cutoffs are already tighter than that, for instance when using !VeryTightSCF, than nothing will happen.

We found empirically that these are safe numbers to mitigate noise and increase the robustness of the SCF proce-
dure, thus they are enforced by default. The default is 1e-6 and this can be turned off by setting %SCF DiffSThresh
-1 END on the input in case you don’t want this automatic adjustment to happen.

Removal of Redundant Basis Functions

While the approach described above is usually successful in removing linear dependencies from the orbital basis set,
the auxiliary basis used in RI is not orthogonalized the same way. Instead, the RI linear equation system is solved
using a Cholesky decomposition (CD) of the auxiliary basis Coulomb metric. If the auxiliary basis is redundant,
the CD fails and the program usually aborts. One simple solution implemented in ORCA is to perform a pivoted
Cholesky decomposition (PCD) of the metric, terminating at a given threshold. Then, the shells contributing to the
nullspace are removed from the basis at the beginning of the calculation. This can be requested for any of the basis
sets using either the overlap or the Coulomb metric. It is most appropriate for the AuxJ/AuxJK/AuxC basis using
the Coulomb metric. The truncated basis can be examined using the !PrintBasis keyword. Often, functions
may be removed for some atoms of a given element, but kept for others. As long as the threshold is low enough,
i.e. only truly redundant functions are removed, this should not affect the molecular symmetry of the results.
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%basis
PCDTrimBas Overlap # Trim the orbital basis in the overlap metric
PCDTrimAuxJ Coulomb # Trim the AuxJ basis in the Coulomb metric
PCDTrimAuxJK Coulomb # Trim the AuxJK basis in the Coulomb metric
PCDTrimAuxC Coulomb # Trim the AuxC basis in the Coulomb metric
PCDThresh -1 # Threshold for the PCD: chosen automatically if <0

end

7.6 Choice of Initial Guess and Restart of SCF Calculations

The initial guess is an important issue in each SCF calculation. If this guess is reasonable, the convergence of the
procedure will be much better. ORCA makes some effort to provide a good initial guess and gives the user enough
flexibility to tailor the initial guess to his or her needs.

The initial guess is also controlled via the %scf block and the variables Guess, MOInp and GuessMode.

%scf
Guess HCore # One electron matrix

Hueckel # Extended H\"uckel guess
PAtom # Polarized atomic densities
PModel # Model potential
MORead # Restart from an earlier calc.

MOInp "Name.gbw" # orbitals used for MORead
GuessMode FMatrix # FMatrix projection

CMatrix # Corresponding orbital projection
AutoStart true # try to use the orbitals from the existing

# GBW file of the same name (if possible)
# (default)

false # don't use orbitals from existing GBW file
end

7.6.1 AutoStart feature

Older versions of ORCA always created a new GBW file at the beginning of the run no matter whether a file of
the same name existed or perhaps contained orbitals. Now, in the case of single-point calculations the program
automatically checks if a .gbw file of the same name exists. If yes, the program checks if it contains orbitals
and all other necessary information for a restart. If yes, the variable Guess is set to MORead. The existing .gbw
file is renamed to BaseName.ges and MOInp is set to this filename. If the AutoStart feature is not desired, set
AutoStart false in the %scf block or give the keyword !NoAutoStart in the simple input line. Note that
AutoStart is ignored for geometry optimizations: in this case, using previously converged orbitals contained in
a .gbw file (of a different name) can be achieved via MORead and MOInp.

7.6.2 One Electron Matrix Guess

The simplest guess is to diagonalize the one electron matrix to obtain starting orbitals. This guess is very simple
but usually also a disaster because it produces orbitals that are far too compact.
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7.6.3 Basis Set Projection

The remaining guesses (may) need the projection of initial guess orbitals onto the actual basis set. In ORCA
there are two ways this can be done. GuessMode FMatrix and GuessMode CMatrix. The results from the
two methods are usually rather similar. In certain cases GuessMode CMatrix may be preferable. GuessMode
FMatrix is simpler and faster. In short the FMatrix projection defines an effective one electron operator:

𝑓 =
∑︁
𝑝

𝜀𝑝𝑎
†
𝑝𝑎𝑝 (7.44)

where the sum is over all orbitals of the initial guess orbital set, 𝑎†𝑝 is the creation operator for an electron in guess
MO 𝑝, 𝑎𝑝 is the corresponding annihilation operator and 𝜀𝑖 is the orbital energy. This effective one electron operator
is diagonalized in the actual basis and the eigenvectors are the initial guess orbitals in the target basis. For most
wavefunctions this produces a fairly reasonable guess.

CMatrix is more involved. It uses the theory of corresponding orbitals to fit each MO subspace (occupied, partially
occupied or spin-up and spin-down occupied) separately [34, 444]. After fitting the occupied orbitals, the virtual
starting orbitals are chosen in the orthogonal complement of the occupied orbitals. In some cases, especially when
restarting ROHF calculations, this may be an advantage. Otherwise, it is not expected that CMatrix will be grossly
superior to FMatrix for most cases.

7.6.4 PModel Guess

The PModel guess (chosen by Guess PModel in the %scf block or simply a keyword line with !PModel) is one
that is usually considerably successful. It consists of building and diagonalizing a Kohn–Sham matrix with an
electron density which consists of the superposition of spherical neutral atoms densities which are predetermined
for both relativistic and nonrelativistic methods. This guess is valid for both Hartree–Fock and DFT methods,
but not for semiempirical models. However, due to the complexity of the guess it will also take a little computer
time (usually less than one SCF iteration). The model densities are available for most atoms of the periodic table
and consequently the PModel guess is usually the method of choice (particularly for molecules containing heavy
elements) unless you have more accurate starting orbitals available.

7.6.5 Hückel and PAtom Guesses

The extended Hückel guess proceeds by performing a minimal basis extended Hückel calculation and projecting
the MOs from this calculation onto the actual basis set using one of the two methods described above. The minimal
basis is the STO-3G basis set. The Hückel guess may not be very good because the STO-3G basis set is so poor.
There is also accumulating evidence that the superposition of atomic densities produces a fairly good initial guess.
The critique of the atomic density method is that the actual shape of the molecule is not taken into account and it
is more difficult to reliably define singly occupied orbitals for ROHF calculations or a reasonable spin density for
UHF calculations. Therefore ORCA chooses a different way in the PAtom guess (which is the default guess): the
Hückel calculation is simply carried out for all electrons in a minimal basis of atomic SCF orbitals. These were
determined once and for all and are stored inside the program. This means that the densities around the atoms
are very close to the atomic ones, all orbitals on one center are exactly orthogonal, the initial electron distribution
already reflects the molecular shape and there are well defined singly occupied orbitals for ROHF calculations.

7.6.6 Restarting SCF Calculations

To restart SCF calculations, it can be very helpful and time-saving to read in the orbital information of a previous
calculation. To do this, specify:

! moread
%moinp "name.gbw"

This is done by default for single-point calculations if the .gbw file of the same name exists.

The program stores the current orbitals in every SCF cycle. Should a job crash, it can be restarted from the orbitals
that were present at this time by just re-running the calculation to use the present .gbw file. In addition, an effort has
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been made to make .gbw files from different releases compatible with each other. If your input .gbw file is from an
older release, use ! rescue moread noiterwith % moinp "name.gbw" to produce an up-to-date .gbw. When
the rescue keyword is invoked, only the orbital coefficients are read from the .gbw file, and everything else from
the input file. Thus, make sure that the geometry and the basis set of the old .gbw file and the new input match.

Within the same ORCA version, neither the geometry nor the basis set stored in name.gbw need to match the
present geometry or basis set. The program merely checks if the molecules found in the current calculation and
name.gbw are consistent with each other and then performs one of the possible orbital projections. If the two basis
sets are identical the program by default only reorthogonalizes and renormalizes the input orbitals. However, this
can be overruled by explicitly specifying GuessMode in the % scf block as CMatrix or FMatrix.

If redundant components were removed from the basis (see Linear Dependence), then ! moread noiter
must not be used to read SCF orbitals from a previous calculation, as it is going to lead to wrong results. In
that case, ! rescue moread may be used (without noiter) if doing the entire calculation in one go is not
possible.

For pre 2.5-03 versions of ORCA the input .gbw file from the earlier calculation must have a different name than
the new calculation, because in the very beginning of a calculation, a new .gbw file is written. If the names are the
same, the .gbw file from the earlier calculation is overwritten and all information is lost. Therefore, if you want to
restart a calculation with an input file of the same name as the previous calculation, you have to rename the .gbw
file first. This is good practice anyway to avoid surprises, particularly for expensive calculations.

There is an additional aspect of restarting SCF calculations — if you have chosen SCFMode = Conventional the
program stores a large number of integrals that might have been time consuming to calculate on disk. Normally
the program deletes these integrals at the end of the calculation. However, if you want to do a closely related
calculation that requires the same integrals (i.e. the geometry, the basis set and the threshold Thresh are the same)
it is faster to use the integrals generated previously. This is done by using KeepInts = true in the % scf block
of the first calculation and then use ReadInts = true in the % scf block of the second calculation. If the second
calculation has a different name than the first calculation you have to use IntName = "FirstName" to tell the
program the name of the integral files. Note that the file containing the integrals does not have an extension — it
is simply the name of the previous input file with .inp stripped off.

%scf
KeepInts true # Keep integrals on disk
ReadInts true # Read integrals from disk
IntName "MyInts" # Name of the integral files without extension

end

Note that, in general, restarting calculations with old integral files requires the awareness and responsibility of the
user. If properly used, this feature can save considerable amounts of time.

7.6.7 Changing the Order of Initial Guess MOs and Breaking the Initial Guess
Symmetry

Occasionally you will want to change the order of initial guess MOs — be it because the initial guess yielded an
erroneous occupation pattern or because you want to converge to a different electronic state using the orbitals of
a previous calculation. Reordering of MOs and other tasks (like breaking the symmetry of the electronic wave-
function) are conveniently handled with the Rotate feature in ORCA. Rotate is a subblock of the SCF block that
allows you to linearly transform pairs of MOs.

%scf
Rotate
{ MO1, MO2, Angle }
{ MO1, MO2, Angle, Operator1, Operator2 }
{ MO1, MO2} # Shortcut to swap MO1 and MO2. Angle=90 degrees.
end

end

Here, MO1 and MO2 are the indices of the two MOs of interest. Recall that ORCA starts counting MOs with index
0, i.e. the MO with index 1 is the second MO. Angle is the rotation angle in degrees. A rotation angle of 90∘
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corresponds to flipping two MOs, an angle of 45∘ leads to a 50:50 mixture of two MOs, and a 180∘ rotation leads to
a change of phase. Operator1 and Operator2 are the orbitals sets for the rotation. For UHF calculations spin-up
orbitals belong to operator 0 and spin-down orbitals to operator 1. RHF and ROHF calculations only have a single
orbital set.

Among others, the Rotate feature can be used to produce broken-symmetry solutions, for example in transition
metal dimers. In order to do that, first perform a high-spin calculation, then find the pairs of MOs that are symmetric
and antisymmetric combinations of each other. Take these MOs as the initial guess and use rotations of 45∘ for each
pair to localize the starting MOs. If you are lucky and the broken symmetry solution exists, you have a good chance
of finding it this way. See section Broken-Symmetry Wavefunctions and Exchange Couplings for more details on
the broken-symmetry approach.

7.6.8 Automatically Breaking of the Initial Guess Symmetry

Another simple way to break the initial guess symmetry for more trivial cases, is to simply use the keyword !
GUESSMIX. This will automatically mix 50% of the alpha LUMO into the alpha HOMO. That is equivalent to a 45
degree rotation as done above and only for these orbitals. It might be useful when one wants an open-shell singlet
and needs the alpha and beta orbitals to start differently.

The specific angle of rotation can be controlled with:

%scf
guessmix 75 # angle in degrees, default is 45

end

7.6.9 Calculating only the energy of an input density

In case you want to give the result of a previous SCF and recalculate the energy, or maybe some other property
(like the MP2 energy) using that density without changing the orbitals, you can use the flags !CALCGUESSENERGY
NOITER.

The SCF program will read the orbitals, compute the density and one Fock matrix necessary to get the energy and
move on with no orbital updates. This can be used to combine DFT orbitals with DLPNO-CCSD(T) for example.
Be careful with the results you get from this because these orbitals are not variational anymore!

7.7 SCF Convergence

SCF convergence is a pressing problem in any electronic structure package because the total execution times in-
creases linearly with the number of iterations. Thus, it remains true that the best way to enhance the performance of
an SCF program is to make it converge better. In some cases, especially for open-shell transition metal complexes,
convergence may be very difficult. ORCA makes a dedicated effort to achieve reasonable SCF convergence for
these cases without compromising efficiency.

Another issue is whether the solution found by ORCA is stable, i.e. a minimum on the surface of orbital rotations.
Especially for open-shell singlets it can be hard to achieve a broken-symmetry solution. The SCF stability analysis
(section SCF Stability Analysis) may be able to help in such situations. Please also note that if ! TRAH is used the
solution must be a true local minimum though not necessarily a global.
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7.7.1 Convergence Tolerances

Before discussing how to converge a SCF calculation it should be defined what is meant by “converged”. ORCA
has a variety of options to control the target precision of the energy and the wavefunction that can be selected in the
% scf block, or with a simple input line keyword that merges the criterion label with “SCF”, e.g. ! StrongSCF
or ! VeryTightSCF:

%scf
Convergence # The default convergence is between medium and strong

Sloppy # very weak convergence
Loose # still weak convergence
Medium # intermediate accuracy
Strong # stronger
Tight # still stronger
VeryTight # even stronger
Extreme # close to numerical zero of the computer

# in double precision arithmetic
end

Like other keys, Convergence is a compound key that assigns default values to a variety of other variables given
in the box below. In table Threshold choices for compound convergence keys we present the chosen values for
each compound key. If the corresponding simple inputs are given (StrongSCF, VeryTightSCF, . . . etc), then in
addition the values of table Additional threshold choices set by the simple input keys (strongSCF, . . . etc.) are also
set. The default convergence criteria are reasonable and should be sufficient for most purposes. For a cursory
look at populations weaker convergence may be sufficient, whereas other cases may require stronger than default
convergence. Note that Convergence does not only affect the target convergence tolerances but also the integral
accuracy as discussed in the section about direct SCF and alike. This is very important: if the error in the
integrals is larger than the convergence criterion, a direct SCF calculation cannot possibly converge.

The convergence criteria are always printed in the output. Given below is a list of the convergence criteria for
! TightSCF, which is often used for calculations on transition metal complexes.

%scf
TolE 1e-8 # energy change between two cycles
TolRMSP 5e-9 # RMS density change
TolMaxP 1e-7 # maximum density change
TolErr 5e-7 # DIIS error convergence
TolG 1e-5 # orbital gradient convergence
TolX 1e-5 # orbital rotation angle convergence
ConvCheckMode 2 # = 0: check all convergence criteria

# = 1: stop if one of criterion is met, this is sloppy!
# = 2: check change in total energy and in one-electron energy
# Converged if delta(Etot)<TolE and delta(E1)<1e3*TolE

ConvForced # = 0: convergence not mandatory for next calculation step
# = 1: break, if you did not meet the convergence criteria

end

Table 7.11: Threshold choices for compound convergence keys

Sloppy

TolE 3e-5
TolMAXP 1e-4
TolRMSP 1e-5
TolErr 1e-4
Thresh 1e-9
TCut 1e-10
DFTGrid.BFCut 1e-10

continues on next page
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Table 7.11 – continued from previous page

TolG 3e-4
TolX 3e-4
Z_Tol 5e-3
Loose

TolE 1e-5
TolMAXP 1e-3
TolRMSP 1e-4
TolErr 5e-4
Thresh 1e-9
TCut 1e-10
DFTGrid.BFCut 1e-10
TolG 1e-4
TolX 1e-4
Z_Tol 3e-3
Medium

SCFConvMode _CONVCHECK_ENERGY
TolE 1e-6
TolMAXP 1e-5
TolRMSP 1e-6
TolErr 1e-5
Thresh 1e-10
TCut 1e-11
DFTGrid.BFCut 1e-10
TolG 5e-5
TolX 5e-5
Z_Tol 1e-3
Strong

SCFConvMode _CONVCHECK_ENERGY
TolE 3e-7
TolMAXP 3e-6
TolRMSP 1e-7
TolErr 3e-6
Thresh 1e-10
TCut 3e-11
DFTGrid.BFCut 3e-11
TolG 2e-5
TolX 2e-5
Z_Tol 7e-4
Tight

SCFConvMode _CONVCHECK_ENERGY
TolE 1e-8
TolMAXP 1e-7
TolRMSP 5e-9
TolErr 5e-7
Thresh 2.5e-11
TCut 2.5e-12
DFTGrid.BFCut 1e-11
TolG 1e-5
TolX 1e-5
Z_Tol 1e-4
VeryTight

continues on next page
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Table 7.11 – continued from previous page

SCFConvMode _CONVCHECK_ENERGY
TolE 1e-9
TolMAXP 1e-8
TolRMSP 1e-9
TolErr 1e-8
Thresh 1e-12
TCut 1e-14
DFTGrid.BFCut 1e-12
TolG 2e-6
TolX 2e-6
Z_Tol 3e-5
Extreme

SCFConvMode _CONVCHECK_ALL
TolE 1e-14
TolMAXP 1e-14
TolRMSP 1e-14
TolErr 1e-14
Thresh 3e-16
TCut 3e-16
TolG 1e-09
TolX 1e-09
Z_Tol 3e-06
DFTGrid.BFCut 3e-16

Table 7.12: Additional threshold choices set by the simple input keys (strongSCF, . . . etc.)

SloppySCF

DCAS.TolG 5.0e-3
DCAS.TolE 1.0e-6
DMDCI.STol 1.0e-4
DMRCI.ETol 1.0e-5
DMRCI.RTol 1.0e-5
DCIS.ETol 1.0e-5
DCIS.RTol 1.0e-5
LooseSCF

IN.DCAS.TolG 5.0e-3
DCAS.TolE 1.0e-6
DMDCI.STol 1.0e-4
DMRCI.ETol 1.0e-5
DMRCI.RTol 1.0e-5
DCIS.ETol 1.0e-5
DCIS.RTol 1.0e-5
NORMALSCF

DCAS.TolG 1.0e-3
DCAS.TolE 1.0e-7
DMDCI.STol 2.5e-5

continues on next page
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Table 7.12 – continued from previous page

DMRCI.ETol 1.0e-6
DMRCI.RTol 1.0e-6
DCIS.ETol 1.0e-6
DCIS.RTol 1.0e-6
STRONGSCF

DCAS.TolG 5.00e-4
DCAS.TolE 6.66e-8
DMDCI.STol 7.50e-6
DMRCI.ETol 6.66e-7
DMRCI.RTol 6.66e-7
DCIS.ETol 6.66e-7
DCIS.RTol 6.66e-7
TIGHTSCF

DCAS.TolG 2.5e-4
DCAS.TolE 2.5e-8
DMDCI.STol 1.0e-5
DMRCI.ETol 2.5e-7
DMRCI.RTol 2.5e-7
DCIS.ETol 2.5e-7
DCIS.RTol 2.5e-7
VERYTIGHTSCF

DCAS.TolG 1.0e-5
DCAS.TolE 1.0e-8
DMDCI.STol 1.0e-6
DMRCI.ETol 1.0e-7
DMRCI.RTol 1.0e-7
DCIS.ETol 1.0e-7
DCIS.RTol 1.0e-7
EXTREMESCF

DCAS.TolG 1.0e-9
DCAS.TolE 1.0e-12
DMDCI.STol 1.0e-9
DMDCI.TCutInt 0.0
DMRCI.ETol 1.0e-12
DMRCI.RTol 1.0e-12
DCIS.ETol 1.0e-12
DCIS.RTol 1.0e-12

If ConvCheckMode=0, all convergence criteria have to be satisfied for the program to accept the calculation
as converged, which is a quite rigorous criterion. In this mode, the program also has mechanisms to decide
that a calculation is converged even if one convergence criterion is not fulfilled but the others are overachieved.
ConvCheckMode=1 means that one criterion is enough. This is quite dangerous, so ensure that none of the criteria
are too weak, otherwise the result will be unreliable. The default ConvCheckMode=2 is a check of medium rigor
— the program checks for the change in total energy and for the change in the one-electron energy. If the ratio
of total energy and one-electron energy is constant, the self-consistent field does not fluctuate anymore and the
calculation can be considered converged. If you have small eigenvalues of the overlap matrix, the density may not
be converged to the number of significant figures requested by TolMaxP and TolRMSP.

ConvForced is a flag to prevent time consuming calculations on non-converged wave functions. It will default to
ConvForced=1 for Post-HF methods, Excited States runs and Broken Symmetry calculations. You can overwrite
this default behavior by setting ConvForced=0.
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Irrespective of the ConvForced value that has been chosen, properties or numerical calculations (NumGrad, Num-
Freq) will not be performed on non-converged wavefunctions!

7.7.2 Dynamic and Static Damping

Damping is the oldest and simplest convergence aid. It was already invented by Douglas Hartree when he did his
famous atomic calculations. Damping consists of mixing the old density with the new density as:

𝑃new, damped = (1− 𝛼)𝑃new + 𝛼𝑃old (7.45)

where 𝛼 is the damping factor, which must have a value of less than 1. Thus the permissible range (not checked
by the program) is 0 . . . 0.999999. For 𝛼 values larger than 1, the calculation cannot proceed since no new density
is admixed. Damping is important in the early stages of a calculation where 𝑃old and 𝑃new are very different from
each other and the energy is strongly fluctuating. Many schemes have been suggested that vary the damping factor
dynamically to give strong damping in the beginning and no damping in the end of an SCF. The scheme imple-
mented in ORCA is that by Hehenberger and Zerner [911] and is invoked with CNVZerner=true. Static damping
is invoked with CNVDamp=true. These convergers are mutually exclusive. They can be used in the beginning of a
calculation when it is not within the convergence radius of DIIS or SOSCF. Damping works reasonably well, but
most other convergers in ORCA are more powerful.

If damping used in conjunction with DIIS or SOSCF, the value of DampErr is important: once the DIIS error falls
below DampErr, the damping is turned off. In case SOSCF is used, DampErr refers to the orbital gradient value at
which the damping is turned off. The default value is 0.1 Eh. In difficult cases, however, it is a good idea to choose
DampErr much smaller, e.g. 0.001. This is — to some extent — chosen automatically together with the keyword
! SlowConv.

%scf
# control of the Damping procedure
CNVDamp true # default: true
CNVZerner false # default: false
DampFac 0.98 # default: 0.7
DampErr 0.05 # default: 0.1
DampMin 0.1 # default: 0.0
DampMax 0.99 # default: 0.98
# more convenient:
Damp fac 0.98 ErrOff 0.05 Min 0.1 Max 0.99 end

end

7.7.3 Level Shifting

Level shifting is a frequently used technique. The basic idea is to shift the energies of the virtual orbitals such that af-
ter diagonalization the occupied and virtual orbitals mix less strongly and the calculation converges more smoothly
towards the desired state. Also, level shifting should prevent flipping of electronic states in near-degenerate cases.
In a special context it has been shown by Saunders and Hillier [335, 751] to be equivalent to damping.

Similar to DampErr described in the previous section, ShiftErr refers to the DIIS error at which the level shifting
is turned off.

%scf
# control of the level shift procedure
CNVShift true # default: true
LShift 0.1 # default: 0.25, energy unit is Eh.
ShiftErr 0.1 # default: 0.0
# more convenient:
Shift Shift 0.1 ErrOff 0.1 end

end
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7.7.4 Direct Inversion in Iterative Subspace (DIIS)

The direct inversion in iterative subspace (DIIS) is a technique that was invented by Pulay [702, 703]. It has become
the de facto standard in most modern electronic structure programs, because DIIS is robust, efficient and easy to
implement. Basically DIIS uses a criterion to judge how far a given trial density is from self-consistency. The
commutator of the Fock and density matrices [F,P] is a convenient measure for this error. With this information,
an extrapolated Fock matrix from the present and previous Fock matrices is constructed, which should be much
closer to self-consistency. In practice this is usually true, and better than linear convergence has been observed
with DIIS. In some rare (open-shell) cases however, DIIS convergence is slow or absent after some initial progress.
As self-consistency is approached, the set of linear equations to be solved for DIIS approaches linear dependency
and it is useful to bias DIIS in favor of the SCF cycle that had the lowest energy using the factor DIISBfac. This is
achieved by multiplying all diagonal elements of the DIIS matrix with this factor unless it is the Fock matrix/density
which leads to the lowest energy. The default value for DIISBfac is 1.05.

The value of DIISMaxEq is the maximum number of old Fock matrices to remember. Values of 5-7 have been rec-
ommended, while other users store 10-15 Fock matrices. Should the standard DIIS not achieve convergence, some
experimentation with this parameter can be worthwhile. In cases where DIIS causes problems in the beginning of
the SCF, it may have to be invoked at a later stage. The start of the DIIS procedure is controlled by DIISStart.
It has a default value of 0.2 Eh, which usually starts DIIS after 0-3 cycles. A different way of controlling the DIIS
start is adjusting the value DIISMaxIt, which sets the maximum number of cycles after which DIIS will be started
irrespective of the error value.

%scf
# control of the DIIS procedure
CNVDIIS true # default: true
DIISStart 0.1 # default: 0.2
DIISMaxIt 5 # default: 12
DIISMaxEq 7 # default: 5
DIISBFac 1.2 # default: 1.05
DIISMaxC 15.0 # default: 10.0
# more convenient:
DIIS Start 0.1 MaxIt 5 MaxEq 7 BFac 1.2 MaxC 15.0 end

end

Note that for troublesome or lacking SCF convergence the TRAH algorithm should be used (see Sec. Trust-Region
Augmented Hessian (TRAH) SCF). If not turned off explicitly, TRAH is switched on automatically whenever conver-
gence problems are present by means of the AutoTRAH feature (see Sec. Trust-Region Augmented Hessian (TRAH)
SCF).

7.7.5 An alternative DIIS algorithm: KDIIS

An alternative algorithm that makes use of the DIIS concept is called KDIIS (Kolmar’s DIIS[452, 453]) in ORCA.
The KDIIS algorithm is designed to bring the orbital gradient of any energy expression to zero using a combination
of DIIS extrapolation and first order perturbation theory. Thus, the method is diagonalization-free. In our hands
it is superior to the standard DIIS algorithm in many cases, but not always. The algorithm is invoked with the
keyword ! KDIIS and is available for RHF, UHF and CASSCF.

7.7.6 Approximate Second Order SCF (SOSCF)

SOSCF is an approximately quadratically convergent variant of the SCF procedure [264, 608]. The theory is
relatively involved and will not be described here. In short – SOSCF computes an initial guess to the inverse orbital
Hessian and then uses the BFGS formula in a recursive way to update orbital rotation angles. As information from
a few iterations accumulates, the guess to the inverse orbital Hessian becomes better and better and the calculation
reaches a regime where it converges superlinearly. As implemented, the procedure converges as well or slightly
better than DIIS and takes a somewhat less time. However, it is also a lot less robust, so that DIIS is the method of
choice for many problems (see also the description of the full second-order trust-region augmented Hessian (TRAH)
procedure in the next section). On the other hand, SOSCF is useful when DIIS gets stuck at some error around ∼
0.001 or 0.0001. Such cases were the primary motive for the implementation of SOSCF into ORCA.
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The drawback of SOSCF is the following: in the beginning of the SCF, the orbital gradient (the derivative of the
total energy with respect to rotations that describe the mixing of occupied and virtual MOs) is large, so that one is far
from the quadratic regime. In such cases, the procedure is not successful and may even wildly diverge. Therefore it
is recommended to only invoke the SOSCF procedure in the very end of the SCF where DIIS may lead to “trailing”
convergence. SOSCF is controlled by the variables SOSCFStart and SOSCFMaxIt. SOSCFStart is a threshold
for the orbital gradient. When the orbital gradient, or equivalently the DIIS Error, fall below SOSCFStart, the
SOSCF procedure is initiated. SOSCFMaxIt is the latest iteration to start the SOSCF even if the orbital gradient is
still above SOSCFStart.

%scf
# control of the SOSCF procedure
CNVSOSCF true # default: false
SOSCFStart 0.1 # default: 0.01
SOSCFMaxIt 5 # default: 1000
# more convenient:
SOSCF Start 0.1 MaxIt 5 end

end

For many calculations on transition metal complexes, it is a good idea to be conservative in the startup criterion
for SOSCF, it may diverge otherwise. A choice of 0.01 or lower is recommended.

7.7.7 Trust-Region Augmented Hessian (TRAH) SCF

The trust-region augmented Hessian (! TRAH) approach[64, 349, 381, 735] should be used if the standard SCF
solver[264, 608, 703, 704] DIIS+SOSCF fails or is expected to fail. TRAH-SCF should converge for any system.
Convergence to the electronic ground state is also guaranteed because information of the electronic Hessian is
exploited.

The TRAH approach constructs a quadratic model of the SCF energy as a function of the orbital rotation parameters
x,

𝐸(x) = 𝐸0 + g𝑇x+
1

2
x𝑇Hx

and minimizes 𝐸(x) w.r.t x with the constraint that orbital rotations should lie within a trust region ℎ

||x|| ≤ ℎ .

Such a constraint minimization leads to the level-shifted Newton equations

(H− 𝜇I)x = −g,

which have the two unknowns (𝜇,x). Instead of solving the level-shifted Newtons equations, the eigenvalues and
eigenvectors of the scaled augmented Hessian are solved,(︂

0 𝛼g𝑇

𝛼g H

)︂(︂
1
x̃

)︂
= 𝜇

(︂
1
x̃

)︂
,

The TRAH eigenvalue equations are solved iteratively with the Davidson algorithm until the residual norm for x̃
is below a scaled (by TolFacMicro) norm of the electronic gradient. The scaling parameter 𝛼 is adjusted in every
Davidson iteration (micro iteration) such that

||x|| ≈ || 1
𝛼
x̃|| ≤ ℎ

by using a bisection search within [𝛼0, 𝛼1] and ensures that the orbital rotation (update) vectors are within the
trust region. Once x is found, the orbitals are updated and a new macro iteration starts with the SCF energy and
electronic gradient computation g. TRAH terminates if the gradient norm ||g|| is below a user-given threshold
TolG.

The most time consuming steps of the algorithm are the computation of the electronic gradient g and the linear
transformations of the electronic Hessian H with some trial vectors during the Davidson micro iterations. Both
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intermediates can be computed efficiently in the atomic-orbital basis using AO-Fock matrices as done for TD-DFT
or CP-SCF. Hence, TRAH-SCF can be also used for very large molecules. However, in contrast to a standard
DIIS approach, difference density matrices cannot be used which makes the shell pair screening based on Schwarz
estimates and density matrices less effective for TRAH. To accelerate the various sigma vector computations, we
choose for those steps in the micro iterations as for CP-SCF smaller grids for evaluation of XC functionals and
semi-numerical exchange COSX, which is controlled via

%method
Z_GridXC 1 // Lebedev Grid
Z_IntAccXC 3.467 // eps parameter of radial grid
Z_GridX 1 // Lebedev Grid
Z_IntAccX 3.067 // eps parameter of radial grid

end

TRAH-SCF is currently implemented for restricted closed-shell (RHF and RKS) and unrestricted open-shell deter-
minants (UHF and UKS) and can be accelerated with RIJ, RIJONX, RIJK, or RIJCOSX. Solvation effects can also be
accounted for with the C-PCM model. The implementation is also parallelized with MPI. A restricted open-shell
implementation (ROHF and ROKS) is not yet available.

The default preconditioner (diag) for the Davidson algorithm uses approximate matrix element of the diago-
nal Hessian. We have also added an improved preconditioner (full) that uses the exact orbital Hessian for a
subset of the most important occupied-virtual MO pairs (with smallest orbital-energy difference). This number
PreconMaxRed (default 250) cannot be too large.

%scf
trah
Precond Diag # DIAG, FULL, or NONE
PreconMaxRed 250 # maximum dimension of FULL Hessian for preconditioning

end
end

Otherwise, additional computational bottlenecks would be introduced when transforming the two-electron integrals
in the MO basis or when diagonalizing this reduced-space Hessian. Note that for the integral transformation the
RI approximation is used and an auxiliary /C basis must be provided. Please also note that, so far, we have only
implemented an XC Hessian contribution for LDA functionals. From our experience, the “full” precondition is
very advantageous for RHF and UHF calculations of small molecules but does not provide any advantage for other
(TRAH-)SCF calculations.

In cases for which the conventional SCF procedures (DIIS/KDIIS/SOSCF) struggle, we invoke TRAH-SCF auto-
matically (AutoTRAH). For this purpose, we perform a linear interpolation of the norm of the electronic gradient on
the log10 scale after a minimum number of SCF iterations AutoTRAHIter (default 20). The number of iterations
for interpolations is controlled by AutoTRAHNInter (default 10). If the slope 𝑠 of the interpolated gradient norm
10−𝑠 becomes smaller than AutoTRAHTol (default 1.125), conventional SCF is shut down and TRAH-SCF start
from the current set of MOs. Those parameters were optimized for a benchmark set with the purpose to minimize
the calculation times even for SCF calculations that are hard to converge. There is not really a need to modify the
AutoTRAH parameters except for turning TRAH off entirely.

! NoTRAH

The accuracy of the SCF calculation is controlled by via the simple keywords NORMALSCF, LOOSESCF, etc. The
accuracy threshold that checks the gradient norm for TRAH-SCF calculations is is read from the SCF input block.
Note that checking the Frobensius norm of ||g|| is the only convergence check in TRAH.

%scf
TolG 1.e-6 # gradient norm threshold (converging macro iterations)

end

Below a complete list of input parameters is given for TRAH. Please note that all parameters influence the conver-
gence and should not be changed carelessly!
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%scf
# AutoTRAH parameter
AutoTRAH true
AutoTRAHTol 1.125
AutoTRAHIter 20
AutoTRAHNInter 10

# TRAH parameter
trah

MaxRed 16 # maximum number of Davidson micro iterations
NStart 2 # number of start vectors for Davidson (at least 2)
TolFacMicro 0.1 # Scaling factor for Davidson convergence

# threshold = TolFacMicro * || G ||
MinTolMicro 1.e-2 # minimum accuracy of micro iterations
QuadRegionStart 1.e-3 # start Newton-Raphson if || G || < QuadRegionStart
tradius 0.4 # initial trust radius
AlphaMin 0.1 # lower bound of gradient scaling parameter
AlphaMax 1000. # upper bound of gradient scaling parameter
Randomize true # add white noise to Davidson start vectors
PseudoRand false # use pseudo random numbers for comparibility
MaxNoise 1.e-2 # maximum random number magnitude
OrbUpdate Taylor # orbital update algorithm (TAYLOR or CAYLEY)
InactiveMOs Canonical # CANONICAL or NOTSET
Precond Diag # DIAG, FULL, or NONE
PreconMaxRed 250 # maximum dimension of FULL Hessian for preconditioning

end
end

OBS.: The maximum number of macro iterations is defined by MAXITER under the %SCF block.

7.7.8 Finite Temperature HF/KS-DFT

A finite temperature can be used to apply a Fermi-like occupation number smearing over the orbitals of the system,
which may sometimes help to get convergence of the SCF equations in near hopeless cases. Through the smearing,
the electrons are distributed according to Fermi statistics among the available orbitals. The “chemical potential” is
found through the condition that the total number of electrons remains correct. Gradients can be computed in the
presence of occupation number smearing.

%scf SmearTemp 5000 # ``temperature'' in Kelvin
end

ò Note

• Finite temperature SCF (fractional occupation numbers or FOD analysis, see sections Fractional Oc-
cupation Numbers and Fractional Occupation Number Weighted Electron Density (FOD), respectively)
cannot be used together with the CNVRico or SOSCF methods.
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Fractional Occupation Numbers

Only a very basic implementation of fractional occupation numbers is presently provided. It is meant to deal with
orbitally degenerate states in the UHF/UKS method. Mainly it was implemented to avoid symmetry breaking
in DFT calculations on orbitally degenerate molecules and atoms. The program checks the orbital energies of
the initial guess orbitals, finds degenerate sets and averages the occupation numbers among them. Currently the
criterion for degenerate orbitals is 10−3 Eh. The fractional occupation number option is invoked by:

%scf
FracOcc true

end

Clearly, the power of fractional occupation numbers goes far beyond what is presently implemented in the program
and future releases will likely make more use of them. The program prints a warning whenever it uses fractional
occupation numbers. The fractionally occupied orbitals should be checked to ensure they are actually the intended
ones.

ò Note

• Using GuessMode = CMatrix will cause problems because there are no orbital energies for the initial
guess orbitals. The program will then average over all orbitals — which makes no sense at all.

Fractional Occupation Number Weighted Electron Density (FOD)

Many approximate QC methods do not yield reliable results for systems with significant static electron correlation
(SEC) but it is often difficult to predict if the system in question suffers from SEC or not. Existing scalar SEC
diagnostics (e.g., the 𝑇1 diagnostic) do not provide any information where the SEC is located in the molecule.
Furthermore, often quite expensive calculations have to be performed first (e.g., CCSD) in order to judge the reli-
ability of the results based on a single number. Molecular systems with strong SEC (e.g. covalent bond-breaking,
biradicals, open-shell transition metal complexes) are usually characterized by small energy gaps between fron-
tier orbitals, and hence, the appearance of many equally important determinants in their electronic wavefunction.
This finding is used in the FOD analysis[327] which is based on finite temperature KS-DFT where the fractional
occupation numbers are determined from the Fermi distribution (“Fermi smearing”)

𝑓𝑖 =
1

𝑒(𝜀𝑖−𝐸𝐹 )/𝑘𝑇𝑒𝑙 + 1

The central quantity of the FOD analysis is the fractional occupation number weighted electron density (𝜌𝐹𝑂𝐷), a
real-space function of the position vector 𝑟:

𝜌𝐹𝑂𝐷(𝑟) =

𝑁∑︁
𝑖

(𝛿1 − 𝛿2𝑓𝑖)|𝜙𝑖(𝑟)|2

(𝛿1 and 𝛿2 are unity if the level is lower than 𝐸𝐹 while they are 0 and −1, respectively, for levels higher than
𝐸𝐹 ). The 𝑓𝑖 represent the fractional occupation numbers (0≤ 𝑓𝑖 ≤1; sum over all electronic single-particle levels
obtained by solving self-consistently the KS-SCF equations minimizing the free-electronic energy).

𝜌𝐹𝑂𝐷(𝑟) can be plotted using a pre-defined contour surface value (see FOD plots). FOD plots only show the
contribution of the ‘hot’ (strongly correlated) electrons and can thus be used to choose a suitable QC method for
the system in question based on some rules of thumb (see FOD plots). Mulliken reduced orbital charges based on
𝜌𝐹𝑂𝐷(𝑟) (see Mulliken Population Analysis) offer a fast alternative to get the information of the FOD plot.

The integration of 𝜌𝐹𝑂𝐷 over all space yields as additional information a single size-extensive number termed
𝑁𝐹𝑂𝐷 which correlates well with other scalar SEC diagnostics and can be used to globally quantify SEC effects
in the molecule.

𝜌𝐹𝑂𝐷 (and 𝑁𝐹𝑂𝐷) strongly depend on the orbital energy gap which itself depends almost linearly on the amount
of the non-local Fock exchange admixture 𝑎𝑥. The following (empirical) function of the optimal electronic tem-
perature 𝑇𝑒𝑙 on 𝑎𝑥

𝑇𝑒𝑙 = 20000K× 𝑎𝑥 + 5000K
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is used to ensure that similar results of the FOD analysis are obtained with various functionals. For example, the
SmearTemp has to be 5000 K for TPSS (𝑎𝑥 = 0), 9000 K for B3LYP (𝑎𝑥 = 20%), 10000 K for PBE0 (𝑎𝑥 = 25%), and
15800 K for M06-2x (𝑎𝑥 = 54%). The result of the FOD analysis is not strongly dependent on the employed basis
set (see supplementary information of the original publication[327]). TPSS/def2-TZVP/TightSCF was chosen as
the default since it is fast and robust. The FOD analysis is a very efficient and practicable tool to get information
about the amount and localization of SEC in the system of question. It is called by a simple keyword:

# ground state of p-benzyne
! FOD

* xyz 0 1
C 0.0000000 1.2077612 0.7161013
C 0.0000000 0.0000000 1.3596219
C 0.0000000 -1.2077612 0.7161013
C 0.0000000 -1.2077612 -0.7161013
C 0.0000000 0.0000000 -1.3596219
C 0.0000000 1.2077612 -0.7161013
H 0.0000000 2.1606260 1.2276695
H 0.0000000 -2.1606260 1.2276695
H 0.0000000 -2.1606260 -1.2276695
H 0.0000000 2.1606260 -1.2276695
*

The respective output reads:

-------------------------------------------------------------------------------------------
ORCA LEAN-SCF

memory conserving SCF solver
-------------------------------------------------------------------------------------------

----------------------------------------D-I-I-S--------------------------------------------
Iteration Energy (Eh) Delta-E RMSDP MaxDP DIISErr Damp Time(sec)
-------------------------------------------------------------------------------------------

*** Starting incremental Fock matrix formation ***
1 -230.8982516003082139 0.00e+00 5.01e-03 1.01e-01 1.12e-01 0.700 1.7

Warning: op=0 Small HOMO/LUMO gap ( -0.021) - skipping pre-diagonalization
Will do a full diagonalization

2 -230.9463607195993120 -4.81e-02 1.15e-03 2.59e-02 4.06e-02 0.700 1.6
***Turning on AO-DIIS***

... etc.
12 -231.0033984839932089 -5.02e-09 3.33e-07 7.37e-06 7.95e-06 0.000 1.1

**** Energy Check signals convergence ****

FOD:
Fermi smearing:E(HOMO(Eh)) = -0.201252 MUE = -0.179318 gap= 1.119 eV

N_FOD = 0.920364

The default functional and basis set are TPSS and def2-TZVP respectively. If the FOD analysis should be done
employing a different functional, one has to explicitly specify the functional and basis set in the simple keyword
line and adjust the SmearTemp accordingly.

# ozone molecule
! B3LYP def2-TZVP TightSCF

%scf
SmearTemp 9000
end

* xyz 0 1
O 0.00000000017911 0.00000000000000 0.43702029765776
O -1.09512651993192 0.00000000000000 -0.21851064888325

(continues on next page)
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(continued from previous page)

O 1.09512651975281 0.00000000000000 -0.21851064877451
*

The FOD analysis may also be useful for finding a suitable active space for e.g. CASSCF calculations.

ò Note

• The FOD analysis will be always printed (including Mulliken reduced orbital charges based on 𝜌𝐹𝑂𝐷)
if SmearTemp > 0 K 𝜌𝐹𝑂𝐷 is stored on disk in the file Basename.scfp_fod which is included in the
general Basename.densities container).

• Since the 𝑆2 expectation value is not defined for fractional occupation numbers, its printout is omitted.

7.8 Choice of Wavefunction and Integral Handling

7.8.1 Choice of Wavefunction Type

The basic variable that controls the type of wavefunction to be computed is the variable HFTyp in the %scf block. If
nothing is specified for HFTyp, the program will check the multiplicity given in the input: for closed-shell molecules
with multiplicity 1, RHF/RKS is assumed; for open shell molecules with multiplicity larger than 1, UHF/UKS is
invoked. RHF will lead to a spin restricted closed-shell type computation [840]. For DFT calculations, RKS, UKS
and ROKS can be used as synonyms for RHF, UHF and ROHF. The restricted open-shell DFT method (ROKS) is only
operative for high-spin states that have 𝑛 unpaired electrons and 𝑆 = 𝑛/2. UKS wavefunctions will not be spin-
purified.

%scf
HFTyp RHF # closed-shell (RKS for DFT)

UHF # unrestricted open-shell (UKS for DFT)
ROHF # restricted open-shell (ROKS for DFT)
CASSCF # complete active space SCF

end

In certain cases you may want to run open-shell molecules with RHF/RKS to get a “half-electron” type wave-
function [205]. The total energy is not corrected! Sometimes these half-electron computations lead to acceptable
convergence, and the resulting orbitals may be used as input for ROHF, UHF or MRCI calculations. Especially
for transition metal complexes the orbitals are quite different from ROHF or UHF orbitals, so that it is not rec-
ommended to over-interpret the wavefunctions from such calculations. The calculation is set up in the following
way:

%method AllowRHF true end
# or simply: ! AllowRHF

7.8.2 ROHF Options

For ROHF calculations[102, 112, 125, 141, 243, 452, 453, 575, 598] the program will try to figure out what type
of open-shell situation is present on the basis of the initial guess orbitals and their energies. Most “simple” cases
are well recognized, but sometimes a little help from the user is needed.

The simplest ROHF case is the HIGHSPIN case, where all unpaired electrons in the open-shell are coupled parallel
to each other, resulting in the highest multiplicity possible. The user can request this case as follow:

%scf
HFTyp ROHF
ROHF_case HIGHSPIN

(continues on next page)
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ROHF_NEl[1] 4 # number of electrons in the open-shell
end

The ROHF code also has a very powerful feature that goes back to insights of Mike Zerner [818, 907]. It can
average over either all states of a given configuration (CAHF) or all states of a given spin for a given configuration
(SAHF). Especially the SAHF feature gives you easy access to most degenerate high symmetry situations and the
orbitals resulting from such calculations will be very convenient as input for CI calculations.

%scf
HFTyp ROHF
ROHF_case CAHF # configuration averaged HF

SAHF # spin averaged HF
ROHF_NumOp 3 # number of operators (3, 2 or 1)
ROHF_NOrb[1] 2,1 # number of orbitals in each open-shell
ROHF_NEl[1] 1,1 # number of electrons in each open-shell

end

The hypothetical example below could represent an excited state of an octahedral d3 transition metal complex. In
this case there are five open-shell orbitals. The first three open-shell orbitals contain two electrons and the last two
one electron. The input for a SAHF calculation is identical, just replace CAHF with SAHF.

%scf
HFTyp ROHF
ROHF_case CAHF # configuration averaged HF
ROHF_NumOp 3 # 3 operators in this case: closed, open1, open2
ROHF_NOrb[1] 3,2 # 3 orbitals in first open shell, 2 in the second
ROHF_NEl[1] 2,1 # 2 electrons in first open shell, 1 in the second

end

Another feature of the ROHF code is the ability to converge the SCF to a given Configuration State Function
(CSF-ROHF) [512]. In this way one can approach results from MCSCF calculations. This can be requested in two
ways.

The user can give a specific coupling situation.

%scf
HFTyp ROHF
ROHF_CASE USER_CSF # User defined CSF
ROHF_REF {1 1 -1 -1} end # CSF to be converged to

end

Or the user can give how many orbitals per shell. Where each open-shell will couple with antiparallel spin with
the previous one.

%scf
HFTyp ROHF
ROHF_CASE AF_CSF # User defined CSF
ROHF_AFORBS 2,2 # Coupling Situation

end

As an example, one can think of a Fe(III) dimer, where each center is locally high spin, but they couple antiferro-
magnetically to each other. In order to get the ROHF solution for this system, first one need a set of guess orbitals.
The guess orbitals can be obtained either from the QROs of an UHF calculation, or a high spin ROHF calculation,
or even a SAHF or CAHF. Independently of the method used, the orbitals need to be localized and ordered in a
way that the 5 3d orbitals of each iron are grouped together in sequence. From this, one can run a CSF-ROHF
calculation for the antiferromagnetic CSF as shown bellow:

%scf
HFTyp ROHF
ROHF_CASE USER_CSF # User defined CSF

(continues on next page)
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ROHF_REF {1 1 1 1 1 -1 -1 -1 -1 -1} end # 2 open shells coupling antiparallel
end

or

%scf
HFTyp ROHF
ROHF_CASE AF_CSF # User defined CSF
ROHF_AFORBS 5,5 # 2 open shells coupling antiparallel

end

The CSF-ROHF procedure can recognize doubly occupied and virtual orbitals in the definition of the CSF when
the USER_CSF case is invoked. When detected, these orbitals will be rotated out of the open-shells defined in the
ROHF method and the calculation will run normally:

%scf
HFTyp ROHF
ROHF_CASE USER_CSF # User defined CSF
ROHF_REF {1 1 2 1 -1 -1 0 -1} end # the DOMO will be rotated to the closed-shell and

# the VMO will be rotated to the virtual space.
end

The user can also directly input the ROHF variables by means of the ROHFOPT Case User keyword. For example
for the high spin case with three electrons in three orbitals gives two operators with vector coupling coefficients
𝑎 = 1 and 𝑏 = 2 (Zerner convention).

%scf
HFTyp ROHF
ROHFOP Case User # manual input of ROHF variables
Nop 2 # number of operators
Norb[1] 3 # number of open-shell orbitals
Nel[1] 3 # number of open-shell electrons
A[1,1] 1 # Coulomb vector in the open shell
B[1,1] 2 # Exchange vector in the open shell

end
end

One awkward feature of the ROHF theory is that the Fock operator is somewhat arbitrarily defined. Different
choices lead to the same wavefunction, but have different convergence properties that may vary from system to
system. ORCA thus lets the user choose the desired variant. Playing around with these choices may turn a divergent
or slowly converging ROHF calculation into a successful calculation!

The ROHF_Restrict feature is another feature that may be useful. If you suspect that the ROHF calculation does
not converge because an open-shell and a closed-shell orbital are flipping back and forth, you can try to avoid this
behavior by choosing ROHF_Restrict true. Of course there is no guarantee that it will work, and no guarantee
that the system stays in the desired state. However, it decreases the chances of large, uncontrolled steps.

%scf
ROHF_Mode 0 # construct F according to Pulay (default)

1 # construct F as in the Gamess program
2 # construct F according to Kollmar

ROHF_Restrict false # restrict orbital interchanges and off-diagonal elements
# (default=false)

# a complete list of ROHF variables
ROHFOP
Case User # manual input of ROHF variables
Nop 2 # number of operators
Norb[1] 3 # number of open-shell orbitals
Nel[1] 3 # number of open-shell electrons

(continues on next page)
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A[1,1] 1 # Coulomb vector in the open shell
B[1,1] 2 # Exchange vector in the open shell
Mode 2 # use the Kollmar operator
Restrict false # do not restrict

end
end

7.8.3 UHF Natural Orbitals

The program can produce the UHF natural orbitals (UNOs). With these, the open-shell wavefunction can be
pictured conveniently. The syntax is simple:

%scf
UHFNO true

end
# or simply: ! UNO

There are various printing options for UNOs described in the output section Population Analyses and Control of
Output. The UNOs can also be plotted as described in the plots section Orbital and Density Plots. In general the
program stores a file BaseName.uno, where BaseName is by default the name of you input file with .inp stripped
off. Accordingly, the gbw file is named BaseName.gbw. The .uno file is a normal gbw file that contains the
geometry, basis set and the UNO orbitals. It could be used, for example, to start a ROHF calculation.

7.8.4 Integral Handling (Conventional and Direct)

As the number of nonzero integrals grows very rapidly and reaches easily hundreds of millions even with medium
sized basis sets in medium sized molecules, storage of all integrals is not generally feasible. This desperate situation
prevented SCF calculations on larger molecules for quite some time, so that Almlöf [19, 20, 21] made the insightful
suggestion to repeat the integral calculation, which was already the dominant step, in every SCF cycle to solve the
storage problem. Naively, one would think that this raises the effort for the calculation to 𝑛iter𝑡integrals (where 𝑛iter is
the number of iterations and 𝑡integrals is the time needed to generate the nonzero integrals). However, this is not the
case because only the change in the Fock matrix is required from one iteration to the next, but not the Fock matrix
itself. As the calculations starts to converge, more and more integrals can be skipped. The integral calculation
time will still dominate the calculation quite strongly, so that ways to reduce this burden are clearly called for. As
integrals are calculated in batches1 the cost of evaluating the given batch of shells 𝑝, 𝑞, 𝑟, 𝑠 may be estimated as:

cost ≈ 𝑛𝑝𝑛𝑞𝑛𝑟𝑛𝑠 (2𝑙𝑝 + 1) (2𝑙𝑞 + 1) (2𝑙𝑟 + 1) (2𝑙𝑠 + 1) (7.46)

Here, 𝑛𝑝 is the number of primitives involved in shell 𝑝, and 𝑙𝑝 is the angular momentum for this shell. Large
integrals are also good candidates for storage, because small changes in the density that multiply large integrals are
likely to give a nonzero contribution to the changes in the Fock matrix.

ORCA thus features two possibilities for integral handling, which are controlled by the variable SCFMode. In the
mode Conventional, all integrals above a given threshold are stored on disk (in a compressed format that saves
much disk space). In the mode Direct, all two-electron integrals are recomputed in each iteration.

Two further variables are of importance: In the Conventional mode the program may write enormous amounts
of data to disk. To ensure this stays within bounds, the program first performs a so-called “statistics run” that gives
a pessimistic estimate of how large the integral files will be. Oftentimes, the program will overestimate the amount
of disk space required by a factor of two or more. The maximum amount of disk space that is allowed for the
integral files is given by MaxDisk (in Megabytes).

On the other hand, if the integral files in Conventional run are small enough to fit into the central memory, it is
faster to do this since it avoids I/O bottlenecks. The maximum amount of memory allocated for integrals in this

1 A batch is a set of integrals that arises from all components of the shells involved in the integral. For example a ⟨𝑝𝑝|𝑝𝑝⟩ batch gives rise
to 3× 3× 3× 3 = 81 integrals due to all possible combinations of 𝑝𝑥, 𝑝𝑦 and 𝑝𝑧 functions in the four shells. Computations based on batches
lead to great computational advantages because the 81 integrals involved in the ⟨𝑝𝑝|𝑝𝑝⟩ batch share many common intermediate quantities.
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way is specified by MaxIntMem (in Megabytes). If the integral files are larger than MaxIntMem, no integrals will
be read into memory.

%scf
MaxIter 100 # Max. no. of SCF iterations
SCFMode Direct # default, other choice: Conventional
Thresh 1e-8 # Threshold for neglecting integrals / Fock matrix contributions

# Depends on the chosen convergence tolerance (in Eh).
TCut 1e-10 # Threshold for neglecting primitive batches. If the prefactor

# in the integral is smaller than TCut, the contribution of the
# primitive batch to the total batch is neglected.

UseCheapInts false # default: false
DirectResetFreq 20 # default: 15
MaxDisk 2500 # Max. amount of disk for 2 el. ints. (MB)
MaxIntMem 400 # Max. amount of RAM for 2 el. ints. (MB)

end

The flag UseCheapInts has the following meaning: In a Direct SCF calculation, the oscillations in the total
energy and density are initially quite large. High accuracy in the integrals is therefore not crucial. If UseCheapInts
is switched on, the program loosens the threshold for the integrals and thus saves a lot of computational time. After
having obtained a reasonable initial convergence, the thresholds are tightened to the target accuracy. One pitfall with
this method is that the number of cycles required to reach convergence may be larger relative to a calculation with
full integral accuracy throughout.2 When restarting calculations that are close to convergence, it is recommended
to switch UseCheapInts off. UseCheapInts has no meaning in a conventional SCF.

The value of DirectResetFreq sets the number of incremental Fock matrix builds after which the program should
perform a full Fock matrix build in a Direct SCF calculation. To prevent numerical instabilities that arise from
accumulated errors in the recursively build Fock matrix, the value should not be too large, since this will adversely
affect the SCF convergence. If the value is too small, the program will update more frequently, but the calculation
will take considerably longer, since a full Fock matrix build is more expensive than a recursive one.

The thresholds TCut and Thresh also deserve a closer explanation. Thresh is a threshold that determines when to
neglect two-electron integrals. If a given integral is smaller than Thresh Eh, it will not be stored or used in Fock
matrix construction. Additionally, contributions to the Fock matrix that are smaller than Thresh Eh will not be
calculated in a Direct SCF.

Clearly, it would be wasteful to calculate an integral, then find out it is good for nothing and thus discard it. A
useful feature would be an efficient way to estimate the size of the integral before it is even calculated, or even have
an estimate that is a rigorous upper bound on the value of the integral. Häser and Ahlrichs [346] were the first to
recognize that such an upper bound is actually rather easy to calculate. They showed that:

|⟨𝑖𝑗 |𝑘𝑙 ⟩| ⩽
√︀
⟨𝑖𝑗 |𝑖𝑗 ⟩

√︀
⟨𝑘𝑙 |𝑘𝑙 ⟩ (7.47)

where:

⟨𝑖𝑗 |𝑘𝑙 ⟩ =
∫︁ ∫︁

𝜑𝑖 (�⃗�1)𝜑𝑗 (�⃗�1) 𝑟
−1
12 𝜑𝑘 (�⃗�2)𝜑𝑙 (�⃗�2) 𝑑�⃗�1𝑑�⃗�2 (7.48)

Thus, in order to compute an upper bound for the integral only the right hand side of this equation must be known.
This involves only two index quantities, namely the matrix of two center exchange integrals ⟨𝑖𝑗 |𝑖𝑗 ⟩. These integrals
are easy and quick to calculate and they are all ⩾0 so that there is no trouble with the square root. Thus, one has
a powerful device to avoid computation of small integrals. In an actual calculation, the Schwartz prescreening is
not used on the level of individual basis functions but on the level of shell batches because integrals are always
calculated in batches. To realize this, the largest exchange integral of a given exchange integral block is looked for
and its square root is stored in the so called pre-screening matrix K (that is stored on disk in ORCA). In a Direct
SCF this matrix is not recalculated in every cycle, but simply read from disk whenever it is needed. The matrix of
exchange integrals on the level of individual basis function is used in Conventional calculations to estimate the
disk requirements (the “statistics” run).

Once it has been determined that a given integral batch survives it may be calculated as:

⟨𝑖𝑗 |𝑘𝑙 ⟩ =
∑︁
𝑝

𝑑𝑝𝑖
∑︁
𝑞

𝑑𝑞𝑗
∑︁
𝑟

𝑑𝑘𝑟
∑︁
𝑠

𝑑𝑠𝑙 ⟨𝑖𝑝𝑗𝑞 |𝑘𝑟𝑙𝑠 ⟩ (7.49)

2 This might be an undesirable feature of the current implementation.
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where the sums 𝑝, 𝑞, 𝑟, 𝑠 run over the primitive Gaussians in each basis function 𝑖, 𝑗, 𝑘, 𝑙 and the 𝑑’s are the con-
traction coefficients. There are more powerful algorithms than this one and they are also used in ORCA. However,
if many terms in the sum can be skipped and the total angular momentum is low, it is still worthwhile to compute
contracted integrals in this straightforward way. In equation (7.49), each primitive integral batch ⟨𝑖𝑝𝑗𝑞 |𝑘𝑟𝑙𝑠 ⟩ con-
tains a prefactor 𝐼𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑠 that depends on the position of the four Gaussians and their orbital exponents. Since
a contracted Gaussian usually has orbital exponents over a rather wide range, it is clear that many of these prim-
itive integral batches will contribute negligibly to the final integral values. In order to reduce the overhead, the
parameter TCut is introduced. If the common prefactor 𝐼𝑝𝑞𝑟𝑠 is smaller than TCut, the primitive integral batch is
skipped. However, 𝐼𝑝𝑞𝑟𝑠 is not a rigorous upper bound to the true value of the primitive integral. Thus, one has
to be more conservative with TCut than with Thresh. In practice it appears that choosing TCut=0.01*Thresh
provides sufficient accuracy, but the user is encouraged to determine the influence of TCut if it is suspected that
the accuracy reached in the integrals is not sufficient.

� Hint

• If the direct SCF calculation is close to convergence but fails to finally converge, this maybe related to a
numerical problem with the Fock matrix update procedure – the accumulated numerical noise from the
update procedure prevents sharp convergence. In this case, set Thresh and TCut lower and/or let the
calculation more frequently reset the Fock matrix (DirectResetFreq).

ò Note

• For a Direct calculation, there is no way to have Thresh larger than TolE. If the errors in the Fock
matrix are larger than the requested convergence of the energy, the change in energy can never reach
TolE. The program checks for that.

• The actual disk space used for all temporary files may easily be larger than MaxDisk. MaxDisk only
pertains to the two-electron integral files. Other disk requirements are not currently checked by the
program and appear to be uncritical.

7.9 DeltaSCF: Converging to Arbitrary Single-Reference Wave-
functions

The regular SCF procedure is supposed to bring the wavefunction to a stationary point, and most times that means
a minimum. However, sometimes one might want to converge to some kind of “excited state”, that is, a higher
order saddle-point on the SCF surface.

Using the conventional SCF technology, it is usually not enough to start from an excited-state guess, but one needs
to make some extra effort to keep the convergence towards that state. The stack of such methods to keep convergence
to a given non-trivial state is called in the literature the DeltaSCF approach.

The general idea was first introduced by the group of Peter Gill [299] as the Maximum Overlap Method (MOM),
and in ORCA we also feature the more recent PMOM from the group of Hrant Hratchian [184]. It has also been
referred to as as “orbital optimized DFT for electronic excited states” [351].

To be very clear, let’s show one example in a picture:
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Fig. 7.2: A simple scheme of a HOMO-LUMO state using DeltaSCF

Using ORCA’s DeltaSCF, we can choose to converge the SCF to a HOMO/LUMO excited state. Now that excited
state was obtained by fully relaxing the orbitals and can include any contributions such as the VV10 correlation or
CPCM for solvation. We will also allow for gradients, geometry optimization, Hessian, EPR, NMR, or anything
else that ORCA can do for a “normal” ground state calculation.

s Important

The states obtained here are still represented by single-determinant wavefunctions, and in some cases might not
even have physically correct meaning. Be careful and conscious of what you are doing! These are relatively
reasonable wavefunctions for cases when:

1. the excited state can be simply described by a particle-hole interaction. That is for example NOT the
case of a benzene molecule or most pi-pi* excited states.

2. the occupied and virtual orbitals are orthogonal or separated in space such that the relevant exchange
integral is zero. Eg. some n-pi* states, orthogonal or long-distance charge separated states, etc;

3. for open-shell and doubly-excited states which can be represented by a single-determinant wavefunction.

7.9.1 First Example: HOMO-LUMO Excited State of Formaldehyde

Let’s begin by trying to converge and optimize to the first excited state of formaldehyde, starting from its regular
planar structure:

!PBE DEF2-TZVP OPT FREQ DELTASCF UHF
%SCF ALPHACONF 0,1 END
* XYZ 0 1
C 0.000000 0.000000 -0.602985
O 0.000000 0.000000 0.605394
H 0.000000 0.934673 -1.182175
H 0.000000 -0.934673 -1.182175
*

Besides the regular keywords like method, basis set, OPT and FREQ, one needs to specify DELTASCF on the main
input, and in this case, UHF, since the alpha and beta orbitals will be different (for doubly-excited states RHF is
sufficient).

It is also necessary to add the ALPHACONF or BETACONF under the %SCF block. That is a minimal representation of
the configuration you want to converge to. In this case, 0,1 means a HOMO/LUMO transition, where the HOMO
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has occupation zero and LUMO occupation one. For a HOMO-1/LUMO transition, it would be ALPHACONF 0,1,
1. For a HOMO/LUMO+1 it would be ALPHACONF 0,0,1 and so on. Just picture how the frontier orbitals should
look like. Any orbital below the first zero is assumed to be occupied and any orbital above the last occupied is
assumed to be empty.

After the regular startup, the DeltaSCF-specific print shows:

-------------------------------
DELTA-SCF INITIAL CONFIGURATION
-------------------------------

Alpha: 1.00 1.00 1.00 0.00 1.00 0.00 0.00 0.00
Beta : 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00

Hessian update ... L-SR1
Aufbau metric ... MOM
Keep initial reference ... true

Here you can follow the initial configuration and some other important things:

1. Hessian update refers to which method will be used for the SOSCF Hessian update. ORCA’s default is
L-BFGS, which forces the electronic Hessian to be positive definite and will always push the system down to
a minimum. As we want to go to a saddle point the L-SR1 is set by default for DeltaSCF. More details on
Hessian updates and their consequences at this reference from the group of Hannes Jónsson [510].

2. Aufbau metric is the way one measures the “overlap” between the actual and reference wavefunctions
(more details on [184]). It is MOM by default, but can be also set to %SCF PMOM TRUE END to use PMOM.

3. Keep initial reference TRUE means we will always try to keep the initial reference state defined after
the guess phase. That is sometimes called IMOM in the literature [71]. If %SCF KEEPINITIALREF FALSE
END is set, it is always the last SCF iteration that is taken as reference.

s Important

Here are starting the orbitals from the PMODEL guess because it is trivial. In general we recommend always
starting the SCF by reading the orbitals of a previously converged ground-state SCF! Please check Restarting
SCF Calculations for more info on that.

This calculation trivially converges in 12 steps:

----------------------------------------D-I-I-S--------------------------------------------
Iteration Energy (Eh) Delta-E RMSDP MaxDP DIISErr Damp Time(sec)
-------------------------------------------------------------------------------------------

*** Starting incremental Fock matrix formation ***
MOM changed the orbital occupation numbers

1 -114.2533654537761123 0.00e+00 2.06e-03 6.64e-02 7.14e-02 0.700 0.1
MOM changed the orbital occupation numbers

2 -114.2675698961360382 -1.42e-02 4.71e-04 1.46e-02 3.08e-02 0.700 0.1
***Turning on AO-DIIS***

MOM changed the orbital occupation numbers
3 -114.2754325617175226 -7.86e-03 1.98e-04 3.98e-03 2.21e-02 0.700 0.1

MOM changed the orbital occupation numbers
4 -114.2806616906060100 -5.23e-03 4.98e-04 6.40e-03 1.60e-02 0.000 0.1

MOM changed the orbital occupation numbers
*** Initializing SOSCF ***

---------------------------------------S-O-S-C-F--------------------------------------
Iteration Energy (Eh) Delta-E RMSDP MaxDP MaxGrad Time(sec)
--------------------------------------------------------------------------------------

5 -114.2932665018211225 -1.26e-02 7.19e-05 1.55e-03 2.33e-03 0.1
*** Restarting incremental Fock matrix formation ***

*** Restarting Hessian update ***
6 -114.2932913947584979 -2.49e-05 5.82e-05 1.33e-03 1.11e-03 0.1

(continues on next page)
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7 -114.2932671856877818 2.42e-05 2.54e-05 5.00e-04 2.58e-03 0.1
8 -114.2932914986330530 -2.43e-05 1.76e-05 3.20e-04 1.02e-03 0.1
9 -114.2932961472105404 -4.65e-06 2.13e-06 6.94e-05 6.42e-05 0.1
10 -114.2932961779292640 -3.07e-08 2.99e-05 1.10e-03 8.27e-06 0.1
11 -114.2932921911087050 3.99e-06 3.05e-05 1.12e-03 5.44e-04 0.1
12 -114.2932961794015654 -3.99e-06 2.45e-08 5.31e-07 2.39e-07 0.1

*** Gradient check signals convergence ***

ò Note

The statement MOM changed the orbital occupation numbers is normal, it is just printing what it is
doing. Nothing to worry about.

and one can see from the spin contamination, that this is indeed an open-shell singlet:

----------------------
UHF SPIN CONTAMINATION
----------------------

Warning: in a DFT calculation there is little theoretical justification to
calculate <S**2> as in Hartree-Fock theory. We will do it anyways
but you should keep in mind that the values have only limited relevance

Expectation value of <S**2> : 1.006910
Ideal value S*(S+1) for S=0.0 : 0.000000
Deviation : 1.006910

The gradient is then computed, and the geometry is optimized until convergence. Finally the frequencies show this
is actually not a minimum, but a saddle point on the geometry space!

-----------------------
VIBRATIONAL FREQUENCIES
-----------------------

Scaling factor for frequencies = 1.000000000 (already applied!)

0: 0.00 cm**-1
1: 0.00 cm**-1
2: 0.00 cm**-1
3: 0.00 cm**-1
4: 0.00 cm**-1
5: 0.00 cm**-1
6: -591.31 cm**-1 ***imaginary mode***
7: 799.56 cm**-1
8: 1228.37 cm**-1
9: 1271.29 cm**-1

10: 2971.77 cm**-1
11: 3067.96 cm**-1

The reason is: the HOMO/LUMO transition on formaldehyde populated the 𝜋* LUMO, thus breaking the double
bound and making the carbon atom pyramidal. If one starts from a slightly distorted structure, it then converges to
the actual geometry minimum. Starting from a pyramidal structure:

!wB97M-D4 DEF2-TZVP DELTASCF UHF OPT FREQ
%SCF ALPHACONF 0,1 END
* XYZ 0 1
C 0.00000 0.00000 -0.60298
O -0.74131 -0.10909 0.45746
H 0.00000 0.93467 -1.18217

(continues on next page)
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H 0.00000 -0.93467 -1.18217
*

now converges to a minimum, as shown by the absence of negative frequencies:

-----------------------
VIBRATIONAL FREQUENCIES
-----------------------

Scaling factor for frequencies = 1.000000000 (already applied!)

0: 0.00 cm**-1
1: 0.00 cm**-1
2: 0.00 cm**-1
3: 0.00 cm**-1
4: 0.00 cm**-1
5: 0.00 cm**-1
6: 713.25 cm**-1
7: 826.75 cm**-1
8: 1206.57 cm**-1
9: 1292.70 cm**-1

10: 2826.06 cm**-1
11: 2893.16 cm**-1

The final geometry is surprisingly accurate for the gas phase formaldehyde too! We will also show the results
here using the range-corrected, meta-GGA hybrid wB97M-D4 and the double-hybrid DFT !B2PLYP DEF2-QZVPP
AUTOAUX, just to show that MP2 also works.

Table 7.13: Geometry of gas phase formaldehyde versus the DeltaSCF results, in Angstroem and degrees.

parameter exp. PBE wB97M-D4 B2PLYP
r(C-O) 1.323 1.300 1.310 1.311
r(C-H) 1.098 1.113 1.093 1.090
∠HCH 118.8 115.0 117.0 116.8
∠OOP 34.0 41.1 36.5 37.0

• exp. taken from [299].

s Important

We are using the default SCF algorithm here, AO-DIIS + SOSCF because this is relatively simple. In general
and for more complicated cases we suggest using directly the second order method, to avoid escaping back to
the ground state with !NODIIS.

s Important

Do NOT combine DeltaSCF wavefunctions with CCSD, or any such method with single excitations. It requires
a speciallized version of CC which we don’t have yet.

s Important

When running the same calculation above with wB97M-D4, there will not be a virtual orbital between the alpha
HOMO-1 and the HOMO (so no negative HOMO-LUMO gap). There is nothing wrong here, it just optimized
the orbitals to the excited state such that this is now a minimum on the SCF surface.
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The energy is still higher than the non-DeltaSCF solution and if you plot the orbitals you will see that the alpha
HOMO is now a 𝜋 orbital instead of an 𝑛.

7.9.2 Core-ionized States

Another big advantage of the DeltaSCF is the possibility to converge to core-excited and/or core-ionized states.
We have a simple keyword to kick out electrons from any orbital, even the deep core ones:

%SCF IONIZEALPHA 2 END

and the electron from orbital number two will be removed. IONIZEBETA works for beta orbitals. One can start
from an anion UHF -electronic structure obtained by adding one extra electron and remove a core electron like
this to obtain core-excited states too. Geometry optimization, EPR, and even TD-DFT calculations are all valid for
these states.

As an example, the input below will ionize the 1s electron from a water molecule, which corresponds to MO 0
here:

!PBE0 DEF2-TZVP DELTASCF NODIIS UHF
%SCF IONIZEALPHA 0 END
* xyz 0 1

O 2.127880 -0.361920 0.104770
H 3.117210 -0.387460 0.070360
H 1.838520 -0.926280 -0.655730

*

ò Note

If the orbital is not localized over a single atom one might need to localized them first!

and one can see from the results that is exactly where it converged to.

----------------
ORBITAL ENERGIES
----------------

SPIN UP ORBITALS
NO OCC E(Eh) E(eV)
0 0.0000 -20.108086 -547.1688
1 1.0000 -1.567415 -42.6515
2 1.0000 -1.057257 -28.7694
3 1.0000 -0.939315 -25.5601
4 1.0000 -0.882871 -24.0241
5 0.0000 -0.304254 -8.2792
6 0.0000 -0.239285 -6.5113
7 0.0000 0.044344 1.2066

(...)

ò Note

ORCA automatically adjusts charge and multiplicity here. The input should contain those from the reference
system!

Here are some examples of binding energies for 1s electrons. The atom from where it was removed is highlighted
in bold:

Table 7.14: Binding energies from 1s electrons found by DeltaSCF using wB97M-V/DEF2-TZVPP, in eV.
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1s ionization exp. wB97M-V
H2O 539.82 541.17
CO2 297.69 299.10
NH3 405.56 406.82
CH3CN 405.64 406.92

• exp. taken from [143]

7.9.3 Diabatic Couplings

DeltaSCF is also a quite accurate method to obtained diabatic couplings, which can later be used in Markus
theory to compute electron transfer rates. These can be computed by calculating the energy difference between
electron transfer states and using the Generalized Mulliken-Hush Approach (GMH). For more details please check
for example this paper from the group of Blumberger [477].

There is not enough space to go through the details here, but one can get these diabatic coupling from essentially
one regular SCF for the ground state + a DeltaSCF for the excited state. For symmetric systems, this is trivial:

2|𝐻𝑎𝑏| = ∆𝐸12

where states 𝑎 and 𝑏 are diabatic states ∆𝐸12 is the energy difference between adiabatic states 1 and 2 (which are
obtained via SCF solution). Here is an example of the diabatic couplings obtained for a benzene dimer, obtained
by starting from the ground state cation and exciting the beta electron with:

%SCF BETACONF 0,1 END

Table 7.15: Diabatic couplings found by DeltaSCF using wB97M-V/DEF2-TZVPP, in meV.

Distance in Ang MRCI+Q wB97M-V TD-DFT
3.5 435.2 473.1 593
4.0 214.3 236.7 374
4.5 104.0 115.9 267.5
5.0 51.70 56.7 218.5

• MRCI+Q taken from [477]

ò Note

There is more to come with respect to DeltaSCF. We are collaborating further with Prof. Hannes Jónsson’s
group - stay tuned.

7.9.4 Full keyword list

Here we present a complete list of options to be given under %SCF related to DeltaSCF:

%SCF

#
# general options
#

DOMOM TRUE # do the reordering of the orbitals at all? (default TRUE)
KEEPINITIALREF TRUE # always keep initial reference: IMOM? (default TRUE)

PMOM FALSE # use the PMOM metric instead of the regular MOM? (default FALSE)

(continues on next page)
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#
# occupation number
#

ALPHACONF 0,1 # define the occupation of the frontier orbitals.
# for RHF and doubly occupied states it could be 0,2.

BETACONF 0,0,1 # same for the beta orbitals.

IONIZEALPHA 23 # remove electron from alfa MO number 23?
IONIZEBETA 12 # remove electron from alfa MO number 12?

#
# SOSCF Hessian update
#

SOSCFHESSUP LSR1 # symmetryc rank-1 update (default and recommended).
LBFGS # L-BFGS update.
LPOWELL # regular L-Powell update.
LBOFILL # Bofill update, a combination of SR1 and Powell.

7.10 CP-SCF Options

The coupled perturbed self-consistent field (CP-SCF) equations have to be solved in many cases, such as when sec-
ond derivative properties (e.g. vibrational frequencies, polarizability, NMR shielding, indirect spin-spin coupling,
hyperfine coupling, g-tensor) or the MP2 relaxed density (in this case they are referred to as Z-vector equations)
are calculated. They are a set of linear equations generally expressed as

AU𝑥 = B𝑥,

whereU𝑥 is the vector of solutions for perturbation 𝑥, the right-hand side (RHS) matrixB𝑥 is perturbation-specific
and the left-hand side (LHS) matrix A is perturbation-independent and contains, among other terms, the two-
electron repulsion integrals (𝑖𝑗|𝑎𝑏) and (𝑖𝑎|𝑗𝑏). The equations are solved iteratively and the LHS is reassembled
at every step, while the RHS does not change. The generation and transformation of the two-electron integrals are
therefore the most time-consuming parts of the CP-SCF solution.

The ORCA module which solves these equations accepts several options given below with their default values:

%method
Z_Solver Pople # (default) Use the Pople algorithm to solve the equations

DIIS # Use the DIIS algorithm
CG # Use the conjugate gradient algorithm

Z_Tol 1e-3 # Convergence tolerance for the residual norm.
# Default is 1e-5 for VeryTightOpt
# and varies from 3e-3 to 3e-6 from LooseSCF to ExtremeSCF

Z_MaxIter 128 # Maximum number of iterations
Z_MaxDIIS 12 # Maximum number of DIIS vectors
Z_Shift 0.3 # Level shift for DIIS
Z_GridXC 1 # XC angular grid used for the LHS
Z_IntAccXC 3.467 # XC radial grid accuracy used for the LHS
Z_GridX 1 # COSX angular grid used for the LHS
Z_IntAccX 3.067 # COSX radial grid accuracy used for the LHS
Z_GridX_RHS 2 # COSX grid used for the RHS of MP2 Z-vector eqs (see below)
Z_COSX_Alg 0 # (default) choose the best COSX algorithm automatically

1 # better prescreening, more efficient for few densities
2 # uses more memory, more efficient for many densities

end

Since ORCA 6, the same settings are used for all electric response property calculations as well as for CIS/TD-DFT
gradients and relaxed densities. For convenience, the keywords in the %elprop input block are still available but
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they modify the same internal variables as those in %method. For magnetic response properties, the solver and
convergence tolerance are set separately in %eprnmr, because the convergence behavior of the magnetic response
CP-SCF equations is sometimes different.

%elprop
Solver # Alias, see: %method Z_Solver
Tol # Alias, see: %method Z_Tol
MaxIter # Alias, see: %method Z_MaxIter
MaxDIIS # Alias, see: %method Z_MaxDIIS
LevelShift # Alias, see: %method Z_Shift

end

%eprnmr
Solver # Solver for magnetic response, see options at: %method Z_Solver
Tol # Convergence tolerance for magnetic response
MaxIter # Alias, see: %method Z_MaxIter
MaxDIIS # Alias, see: %method Z_MaxDIIS
LevelShift # Alias, see: %method Z_Shift

end

The keywords Z_GridX and Z_IntAccX are applicable if the RIJCOSX approximation is chosen for the treat-
ment of two-electron integrals. They determine the angular and radial COSX integration grids, as discussed in
section Changing TD-DFT, CP-SCF and Hessian grids. Analogously, the keywords Z_Grid and Z_IntAcc deter-
mine the integration grid for DFT XC functionals.

Integrals on the RHS are evaluated differently for different perturbations - refer to sections Using the RI Approx-
imation for Hartree-Fock and Hybrid DFT (RIJCOSX), EPR and NMR properties, RIJCOSX-RI-MP2 Gradients,
and MP2 and RI-MP2 Second Derivatives and RI-MP2 and Double-Hybrid DFT Response Properties for SCF-
level gradients, EPR/NMR calculations with GIAOs, MP2 gradients, and MP2 second derivatives, respectively.
For MP2 Z-vector equations, the RIJCOSX Fock-response terms in the RHS are evaluated with the COSX grid
specified by Z_GridX_RHS. Note that it is used differently to Z_GridX: instead, it selects one of the three grids used
in the SCF (see Sections Using the RI Approximation for Hartree-Fock and Hybrid DFT (RIJCOSX), COSX Grid
and Convergence Issues, and Details on the numerical integration grids for details) and it is not recommended to
change the default value of 2.

If the RIJONX or RIJK approximation is used in the SCF, the same is also employed in the CP-SCF. Note, however,
that the RI-K approximation is not efficient for these terms.

7.11 SCF Stability Analysis

The SCF stability analysis evaluates the electronic Hessian (with respect to orbital rotations) at the point indicated
by the SCF solution to determine the lowest eigenvalues of the Hessian. If one or more negative eigenvalues are
found, the SCF solution corresponds to a saddle point and not a true local minimum in the space considered in
the analysis. A typical case are stretched bonds of diatomics, where the symmetry of the initial guess leads to a
restricted solution instead of the often preferred unrestricted one. Several spaces are theoretically possible[780].
However, ORCA limits itself to the analysis RHF/RKS in the space of UHF/UKS or UHF/UKS in the space of
UHF/UKS. As such, it is on the available for the SCF parts of DFT and HF.[80] We mention passing, that a
stability analysis is also available for the CASSCF type wave function and is described elswhere in more detail
(Section Detecting CASSCF Instabilities). In the following, HF is used to indicate both HF and KS. Consider the
following input (unless indicated otherwise, default values are shown):

! BHLYP def2-SVP NORI

%scf
guess hcore # for illustrative purposes only
HFTyp UHF # default based on spin multiplicity
STABPerform true # default false
STABRestartUHFifUnstable true # restart the UHF-SCF if unstable
STABNRoots 3 # number of eigenpairs sought

(continues on next page)
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STABMaxDim 3 # Davidson expansion space = MaxDim * NRoots
STABMaxIter 100 # maximum number of Davidson iterations
STABNGuess 4096 # size of initial guess matrix: 4096 x 4096
STABDTol 0.0001 # convergence criterion from iteration to iteration
STABRTol 0.0001 # convergence criterion max residual norm
STABlambda +0.5 # mixing parameter
STABORBWIN -1, -1, -1, -1, -1, -1, -1, -1 # defines the donor / acceptor spaces

# 4 parameters for RHF
# 8 paramters for UHF (4 alpha, 4 beta)
# orbital window, -1 refers to automatic determination

STABEWIN -5.0, 5.0 # lower and upper cutoff in Eh for automatic freezing
#---------------------------------------------------------------------------------
# alternative specification using a sub-block:
stab
NRoots 3
MaxDim 3 # etc.

end
end

* xyz 0 1
h 0.0 0.0 0.0
h 0.0 0.0 1.4
*

The determination of the electronic Hessian is structurally comparable to the TDHF/CIS/TDDFT procedure. Thus,
many options are very similar and the user is encouraged to read the section on TDDFT (Section Excited States via
RPA, CIS, TD-DFT and SF-TDA) to clarify some of the options given here. Since one is usually only interested
in the qualitative determination “stable or not?”, three roots should be sufficient to find the lowest eigenvalue. By
the same philosophy, StabMaxDim, StabMaxIter, StabNGuess and the convergence criteria were chosen. The
parameter StabLambda refers to the 𝜆 of equation 37 of reference [780], which determines the mixing of the
original SCF solution and the new orbitals to yield a new guess. Choosing this value is not trivial, since positive
and negative values can lead to different new solutions (at least in principle). The convergence of the ensuing SCF
depends on it, as well, since all SCF procedures require a sufficiently good guess to converge in a decent number
of iterations (or even at all).

The orbital window and the energy window can be specified. Note that the StabEWIN will be overridden by the
appropriate StabORBWIN values. The automatic determination is also influenced by the %method FrozenCore
settings. Tests have shown that significant curtailing of the actual orbital window can drastically influence the
results to the point of qualitative failure.

Current limitations on the method are:

• Only single-point-like calculations are supported. For geometry optimizations etc., one must use the guess
MORead feature Choice of Initial Guess and Restart of SCF Calculations to employ the guess obtained here.
Likewise, one must extract a geometry and run a separate calculation if one is interested in the SCF stability.

• As for TDDFT, NORI, RIJONX, and RIJCOSX are supported. RI-JK is not supported.

• Other, more advanced features like finite-temperature calculations and relativistic calculations (beside ECPs)
are not possible at this time.

Overall, the user is cautioned against using the stability analysis blindly without critically evaluating the result in
terms of energy difference and by investigating the orbitals (by the printout or by plotting). Its usefulness cannot
be denied, but it is certainly not black-box.

An SCF stability analysis with default settings can be requested via STABILITY, SCFSTABILITY, SCFSTAB or
STAB on the simple input line.
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7.12 Frozen Core Options

The frozen core (FC) approximation is usually applied in correlated calculation and consists in neglecting corre-
lation effects for electrons in the low-lying core orbitals. The FC approximation and the number of core electrons
per element can be adjusted in the %method block. The default number of core electrons per element is listed in
Table 7.16.

Table 7.16: Default values for number of frozen core electrons.

H He

0 0

Li Be B C N O F Ne

0 0 2 2 2 2 2 2

Na Mg Al Si P S Cl Ar

2 2 10 10 10 10 10 10

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
10 10 10 10 10 10 10 10 10 10 10 10 18 18 18 18 18 18
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
18 18 28 28 28 28 28 28 28 28 28 28 36 36 36 36 36 36
Cs Ba Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
36 36 46 46 46 46 46 46 46 46 46 46 68 68 68 68 68 68
Fr Ra Lr Rf Db Sg Bh Hs Mt Ds Rg Cn

68 68 68 100 100 100 100 100 100 100 100 100

Lan-
thanides

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb

36 36 36 36 36 36 36 36 36 36 36 36 36 36

Ac-
tinides

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No

68 68 68 68 68 68 68 68 68 68 68 68 68 68

For systems containing heavy elements, core electrons might have higher orbital energies compared to the orbital
energies of valence MOs of some lighter elements. In that case, core electrons might be included in the correlation
calculation, which ultimately leads to large errors in correlation energy. In order to prevent this, the MO ordering
is checked: Do all lower energy MOs in the core region have core electron character, i.e. are they strongly localized
on the individual elements? For post-(CAS)SCF calulations, this check is always performed both after the SCF
calculation, and after the initial guess (because the SCF may be skipped with !NoIter). For other calculations,
the check is off by default but may be switched on with the CheckFrozenCore keyword in the %method block.
If core orbitals are found in the valence region, while more delocalized orbitals are found in the core region, the
corresponding MO pairs are swapped. This behavior can be disabled using the CorrectFrozenCore keyword.

%method
FrozenCore FC_ELECTRONS #Freeze all core electrons

FC_EWIN #Freeze selected core electrons via an energy window
(continues on next page)
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#e.g. for MP2: %mp2 EWin EMin,EMax
FC_NONE #No frozencore approximation
-n #Freeze a total of n electrons

NewNCore Bi 68 end #Set the number of core electrons for Bi to 68
CheckFrozenCore true #Check whether frozen core orbitals are ordered correctly

#Default: true only for post-(CAS)SCF calculations
CorrectFrozenCore true #Whether to rotate valence orbitals out of the core region

end

ò Note

• The FrozenCore options are applied to all post Hartree-Fock methods.

• If including all electrons is desired, the !NoFrozenCore keyword can be simply inserted. For MP2:
Frozen virtual orbitals are not allowed in gradient runs or geometry optimization!

• If ECPs are used, the number for NewNCore has to include the electrons represented by the ECPs as
well. E.g. if an element is supposed to have 60 electrons in the ECP and additional 8 electrons should
be frozen in the correlation calculation, NewNCore should be 68.

• In ORCA we use rather conservative frozencore settings, i. e. a large number of electrons are included
in the correlation treatment. Therefore, we recommend to use properly optimized correlating basis func-
tions in all cases, such as the cc-pwCVXZ basis sets.

• For DLPNO calculations the virtual space for core-core and core-valence correlation is adjusted by de-
fault, which is described in detail in section Including (semi)core orbitals in the correlation treatment.

• In general, NewNCore only has an effect in calculations with FC_ELECTRONS. In calculations using the
DLPNO approximation (except DLPNO-NEVPT2), NewNCore has also an effect in the other cases, as is
described in section Including (semi)core orbitals in the correlation treatment.

• Double-hybrid density functional (section DFT Calculations with Second Order Perturbative Correction
(Double-Hybrid Functionals)) calculations by default use the FrozenCore option for the perturbative part,
as is the case for MP2.

7.13 The Second Order Many Body Pertubation Theory Module
(MP2)

Throughout this section, indices 𝑖, 𝑗, 𝑘, . . . refer to occupied orbitals in the reference determinant, 𝑎, 𝑏, 𝑐, . . . to
virtual orbitals and 𝑝, 𝑞, 𝑟, . . . to general orbitals from either set while 𝜇, 𝜈, 𝜅, 𝜏, . . . refer to basis functions.

7.13.1 Standard MP2

The standard (or full accuracy) MP2 module has two different branches. One branch is used for energy calculations,
the other for gradient calculations.

For standard MP2 energies, the program performs two half-transformations and the half-transformed integrals are
stored on disk in compressed form. This appears to be the most efficient approach that can also be used for medium
sized molecules.The module should parallelize acceptably well as long as I/O is not limiting.

For standard MP2 gradients, the program performs four quarter transformations that are ordered by occupied or-
bitals. Here, the program massively benefits from large core memory (%maxcore) since this minimizes the number
of batches that are to be done. I/O demands are minimal in this approach.

In “memory mode” (Q1Opt>0) basically the program treats batches of occupied orbitals at the same time. Thus,
there must be at least enough memory to treat a single occupied MO at each pass. Otherwise the MP2 module will
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fail. Thus, potentially, MP2 calculations on large molecules take significant memory and may be most efficiently
done through the RI approximation.

Alternatively, in the “disk based mode” (Q1Opt=-1) the program performs a half transformation of the exchange
integrals and stores the transformed integrals on disk. A bin-sort then leads to the AO operator 𝐾𝑖𝑗 (𝜇, 𝜈) =
(𝑖𝜇|𝑗𝜈) in (11|22) integral notation. These integrals are then used to make the final K𝑖𝑗(a,b) (a,b=virtual MOs)
and the EMP2 pair energy contributions. In many cases, and in particular for larger molecules, this algorithm is
much more efficient than the memory based algorithm. It depends, however, much more heavily on the I/O system
of the computer that you use. It is important, that the program uses the flags CFLOAT, UCFLOAT, CDOUBLE or
UCDOUBLE in order to store the unsorted and sorted AO exchange integrals. Which flag is used will influence the
performance of the program and to some extent the accuracy of the result (float based single precision results are
usually very slightly less accurate; 𝜇Eh-range deviations from the double precision result1). Finally, gradients are
presently only available for the memory based algorithm since in this case a much larger set of integrals is required.

The ! MP2 command does the following: (a) it changes the Method to HFGTO and (b) it sets the flag DoMP2 to
true. The program will then first carry out a Hartree-Fock SCF calculation and then estimate the correlation
energy by MP2 theory. RHF, UHF and high-spin ROHF reference wavefunctions are permissible and the type of
MP2 calculation to be carried out (for high-spin ROHF the gradients are not available) is automatically chosen
based on the value of HFTyp. If the SCF is carried out conventionally, the MP2 calculation will also be done in a
conventional scheme unless the user forces the calculation to be direct. For SCFMode =Direct the MP2 energy
evaluation will be fully in the integral direct mode.

The following variables can be adjusted in the block for conventional MP2 calculations:

%mp2
EMin -1.5 # orbital energy cutoff that defines the

# frozen core in Eh
EMax 1.0e3 # orbital energy cutoff that defines the

# neglected virtual orbitals in Eh
EWin EMin,EMax # the same, but accessed as array

# (respects settings in %method block!)
MaxCore 256 # maximum amount of memory (in MB) to be

# used for integral buffering
ForceDirect false # Force the calculation to be integral

# direct
RI false # use the RI approximation
F12 false # apply F12 correction
Q1Opt # For non-RI calculations a flag how to perform

# the first quarter transformation
# 1 - use double precision buffers
# (default for gradient runs)
# 2 - use single precision buffers. This reduces
# the memory usage in the bottleneck step by
# a factor of two. If several passes are re-
# quired, the number of passes is reduced by
# a factor of two.
# -1 - Use a disk based algorithm. This respects
# the flags UCFLOAT,CFLOAT,UCDOUBLE and
# CDOUBLE. (but BE CAREFUL with FLOAT)
# (default for energy runs)

PrintLevel 2 # How much output to produce. PrintLevel 3 produces
# also pair correlation energies and other info.

DoSCS false # use spin-component scaling
Ps 1.2 # scaling factor for ab pairs
Pt 0.333 # scaling factor for aa and bb pairs
Density none # no density construction

unrelaxed # only "unrelaxed densities"
relaxed # full relaxed densities

NatOrbs false # calculate natural orbitals

1 However, sometimes, and in particular when transition metals and core orbitals are involved we have met unpleasantly large errors. So –
be careful and double check when using floats!
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7.13.2 RI-MP2

The RI-MP2 module is of a straightforward nature. The program first transforms the three-index integrals (𝑖𝑎|𝑃 ),
where “𝑖” is a occupied, “𝑎” is a virtual MO and “𝑃 ” is an auxiliary basis function that is orthogonalized against
the Coulomb metric. These integrals are stored on disk, which is not critical, even if the basis has several thousand
functions. The integral transformation is parallelized and has no specifically large core memory requirements.

In the next step, the integrals are read ordered with respect to the occupied labels and the exchange operators
𝐾𝑖𝑗(𝑎, 𝑏) = (𝑖𝑎|𝑗𝑏) =

∑︀NAux
𝑃 (𝑖𝑎|𝑃 )(𝑃 |𝑗𝑏) are formed in the rate limiting O(N5) step. This step is done with

high efficiency by a large matrix multiplication and parallelizes well. From the exchange operators, the MP2
amplitudes and the MP2 energy is formed. The program mildly benefits from large core memory (%maxcore) as
this minimizes the number of batches and hence reads through the integral list.

The RI-MP2 gradient is also available. Here, all necessary intermediates are made on the fly.

In the RI approximation, one introduces an auxiliary fitting basis 𝜂𝑃 (r) and then approximates the two-electron
integrals in the Coulomb metric as:

(𝑝𝑞|𝑟𝑠) ≈
∑︁
𝑃𝑄

(𝑝𝑞|𝑃 )𝑉 −1𝑃𝑄 (𝑄|𝑟𝑠) (7.50)

where 𝑉𝑃𝑄 = (𝑃 |𝑄) is a two-index electron-electron repulsion integral. As first discussed by Weigend and Häser,
the closed-shell case RI-MP2 gradient takes the form:

𝐸𝑥RI-MP2 = 2
∑︁
𝜇𝜈𝑃

(𝜇𝜈|𝑃 )(𝑥)
∑︁
𝑖

𝑐𝜇𝑖Γ
𝑃
𝑖𝜈 +

∑︁
𝑅𝑆

𝑉 𝑥𝑅𝑆

(︁
V−1/2𝛾V−1/2

)︁
𝑅𝑆

+ ⟨DF𝑥⟩ (7.51)

The F-matrix derivative terms are precisely handled as in the non-RI case and need not be discussed any further.
Γ𝑃𝑖𝑎 is a three-index two-particle “density”:

Γ𝑃𝑖𝑎 =
∑︁
𝑗𝑏𝑄

(1 + 𝛿𝑖𝑗) 𝑡
𝑖𝑗
𝑎𝑏𝑉

−1/2
𝑃𝑄 (𝑄|𝑗𝑏) (7.52)

Which is partially transformed to the AO basis by:

Γ𝑃𝑖𝜈 =
∑︁
𝑎

𝑐𝜈𝑎Γ
𝑃
𝑖𝑎 (7.53)

The two-index analogue is given by:

𝛾𝑃𝑄 =
∑︁
𝑖𝑎𝑅

Γ𝑄𝑖𝑎 (𝑖𝑎|𝑅)𝑉
−1/2
𝑅𝑃 (7.54)

The RI contribution to the Lagrangian is particularly convenient to calculate:

𝐿𝑅𝐼𝑎𝑖 =
∑︁
𝜇

𝑐𝜇𝑎

⎡⎣2∑︁
𝑃𝑄𝜈

Γ𝑃𝑖𝜈 (𝜇𝜈|𝑄)𝑉
−1/2
𝑃𝑄

⎤⎦ (7.55)

In a similar way, the remaining contributions to the energy weighted density matrix can be obtained efficiently.
Note, however, that the response operator and solution of the CP-SCF equations still proceed via traditional four-
index integrals since the SCF operator was built in this way. Thus, while the derivatives of the three-index integrals
are readily and efficiently calculated, one still has the separable contribution to the gradient, which requires the
derivatives of the four-index integrals.

The RI-MP2 energy and gradient calculations can be drastically accelerated by employing the RIJCOSX or the
RIJDX approximation.
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7.13.3 “Double-Hybrid” Density Functional Theory

A slightly more general form is met in the double-hybrid DFT gradient. The theory is briefly described below.

The energy expression for perturbatively and gradient corrected hybrid functionals as proposed by Grimme is:

𝐸 = 𝑉𝑁𝑁 +
⟨︀
Ph+

⟩︀
+

1

2

∫︁ ∫︁
𝜌 (r1) 𝜌 (r2)

|r1 − r2|
𝑑r1𝑑r2 −

1

2
𝑎𝑥

∑︁
𝜇𝜈𝜅𝜏𝜎

𝑃𝜎𝜇𝜅𝑃
𝜎
𝜈𝜏 (𝜇𝜈|𝜅𝜏) + 𝑐DF𝐸XC [𝜌𝛼, 𝜌𝛽 ] + 𝑐PT𝐸PT

𝐸 = 𝐸SCF + 𝑐PT𝐸PT (7.56)

Here 𝑉𝑁𝑁 is the nuclear repulsion energy and ℎ𝜇𝜈 is a matrix element of the usual one-electron operator which
contains the kinetic energy and electron-nuclear attraction terms (⟨ab⟩ denotes the trace of the matrix product ab).
As usual, the molecular spin-orbitals are expanded in atom centered basis functions (𝜎 = 𝛼, 𝛽):

𝜓𝜎𝑝 (r) =
∑︁
𝜇

𝑐𝜎𝜇𝑝𝜙𝜇 (r) (7.57)

with MO coefficients 𝑐𝜎𝜇𝑝. The total density is given by (real orbitals are assumed throughout):

𝜌 (r) =
∑︁
𝑖𝜎

|𝜓𝜎𝑖 (r)|
2
=
∑︁
𝜇𝜈𝜎

𝑃𝜎𝜇𝜈𝜙𝜇 (r)𝜙𝜈 (r) = 𝜌𝛼 (r) + 𝜌𝛽 (r) (7.58)

Where P = P𝛼 +P𝛽 and 𝑃𝜎𝜇𝜈 =
∑︀
𝑖𝜎
𝑐𝜎𝜇𝑖𝑐

𝜎
𝜈𝑖.

The second term of (7.56) represents the Coulombic self-repulsion. The third term represents the contribution of
the Hartree-Fock exchange with the two-electron integrals being defined as:

(𝜇𝜈|𝜅𝜏) =
∫︁ ∫︁

𝜑𝜇 (r1)𝜑𝜈 (r1) 𝑟
−1
12 𝜑𝜅 (r2)𝜑𝜏 (r2) 𝑑r1𝑑r2 (7.59)

The mixing parameter 𝑎𝑥 controls the fraction of Hartree-Fock exchange and is of a semi-empirical nature. The
exchange correlation contribution may be written as:

𝐸XC [𝜌𝛼, 𝜌𝛽 ] = (1− 𝑎𝑥)𝐸GGA
X [𝜌𝛼, 𝜌𝛽 ] + 𝑏𝐸GGA

C [𝜌𝛼, 𝜌𝛽 ] (7.60)

Here, 𝐸GGA
X [𝜌𝛼, 𝜌𝛽 ] is the exchange part of the XC- functional in question and 𝐸GGA

C [𝜌𝛼, 𝜌𝛽 ] is the correlation
part. The parameter 𝑏 controls the mixing of DFT correlation into the total energy and the parameter 𝑐DF is a
global scaling factor that allows one to proceed from Hartree-Fock theory (𝑎X = 1, 𝑐DF = 0, 𝑐PT = 0) to MP2
theory (𝑎X = 1, 𝑐DF = 0, 𝑐PT = 1) to pure DFT (𝑎X = 1, 𝑐DF = 0, 𝑐PT = 1) to hybrid DFT (0 < 𝑎X < 1,
𝑐DF = 1, 𝑐PT = 0) and finally to the general perturbatively corrected methods discussed in this work (0 < 𝑎X < 1,
𝑐DF = 1, 0 < 𝑐PT < 1). As discussed in detail by Grimme, the B2- PLYP functional uses the Lee-Yang-Parr
(LYP) functional as correlation part, the Becke 1988 (B88) functional as GGA exchange part and the optimum
choice of the semi-empirical parameters was determined to be 𝑎X = 0.53, 𝑐PT = 0.27, 𝑐DF = 1, 𝑏 = 1 − 𝑐PT.
For convenience, we will suppress the explicit reference to the parameters 𝑎X and 𝑏 in the XC part and rewrite the
gradient corrected XC energy as:

𝐸XC
[︀
𝜌𝛼, 𝜌𝛽

]︀
=

∫︁
𝑓
(︀
𝜌𝛼, 𝜌𝛽 , 𝛾𝛼𝛼, 𝛾𝛽𝛽 , 𝛾𝛼𝛽

)︀
𝑑r (7.61)

with the gradient invariants 𝛾𝜎𝜎′
= ∇⃗𝜌𝜎∇⃗𝜌𝜎′ . The final term in eq (48) represents the scaled second order

perturbation energy:

𝐸PT2 =
1

2

∑︁
𝑖𝛼<𝑗𝛼

⟨︀
t𝑖𝛼𝑗𝛼K̄𝑖𝛼𝑗𝛼+

⟩︀
+

1

2

∑︁
𝑖𝛽<𝑗𝛽

⟨︀
t𝑖𝛽𝑗𝛽K̄𝑖𝛽𝑗𝛽+

⟩︀
+
∑︁
𝑖𝛼,𝑗𝛽

⟨︀
t𝑖𝛼𝑗𝛽K̄𝑖𝛼𝑗𝛽+

⟩︀
(7.62)

The PT2 amplitudes have been collected in matrices t𝑖𝜎𝑗𝜎′ with elements:

𝑡
𝑖𝜎𝑗𝜎′
𝑎𝜎𝑏𝜎′ = �̄�

𝑖𝜎𝑗𝜎′
𝑎𝜎𝑏𝜎′

(︁
𝜀𝜎𝑖 + 𝜀𝜎

′

𝑗 − 𝜀𝜎𝑎 − 𝜀𝜎
′

𝑏

)︁−1
(7.63)
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Where the orbitals were assumed to be canonical with orbital energies 𝜀𝜎𝑝 . The exchange operator matrices are
𝐾
𝑖𝜎𝑗𝜎′
𝑎𝜎𝑏𝜎′ = (𝑖𝜎𝑎𝜎|𝑗𝜎′𝑏𝜎′) and the anti-symmetrized exchange integrals are defined as �̄�𝑖𝜎𝑗𝜎′

𝑎𝜎𝑏𝜎′ = (𝑖𝜎𝑎𝜎|𝑗𝜎′𝑏𝜎′) −
𝛿𝜎𝜎′ (𝑖𝜎𝑏𝜎|𝜎𝑎𝜎).

The orbitals satisfy the SCF equations with the matrix element of the SCF operator given by:

𝐹𝜎𝜇𝜈 = ℎ𝜇𝜈 +
∑︁
𝜅𝜏

𝑃𝜅𝜏 (𝜇𝜈|𝜅𝜏)− 𝑎X𝑃
𝜎
𝜅𝜏 (𝜇𝜅|𝜈𝜏) + 𝑐DF (𝜇|𝑉 𝜎XC|𝜈) (7.64)

The matrix elements of the XC–potential for a gradient corrected functional are: [840]

(𝜇|𝑉 𝛼XC|𝜈) =
∫︁ {︂

𝛿𝑓

𝛿𝜌𝛼 (r)
(𝜙𝜇𝜙𝜈) + 2

𝛿𝑓

𝛿𝛾𝛼𝛼
∇⃗𝜌𝛼∇⃗ (𝜙𝜇𝜙𝜈) +

𝛿𝑓

𝛿𝛾𝛼𝛽
∇⃗𝜌𝛽∇⃗ (𝜙𝜇𝜙𝜈)

}︂
𝑑r (7.65)

The energy in equation (7.56) depends on the MO-coefficients, the PT2-amplitudes and through 𝑉𝑁𝑁 , 𝑉𝑒𝑁 (in ℎ)
and the basis functions also explicitly on the molecular geometry. Unfortunately, the energy is only stationary with
respect to the PT2 amplitudes since they can be considered as having been optimized through the minimization of
the Hylleraas functional:

𝐸PT2 = min
t

⎧⎨⎩1

2

∑︁
𝑖𝛼<𝑗𝛼

⟨︀
t𝑖𝛼𝑗𝛼K̄𝑖𝛼𝑗𝛼+

⟩︀
+

1

2

∑︁
𝑖𝛽<𝑗𝛽

⟨︀
t𝑖𝛽𝑗𝛽K̄𝑖𝛽𝑗𝛽+

⟩︀
+
∑︁
𝑖𝛼𝑗𝛽

⟨︀
t𝑖𝛼𝑗𝛽K̄𝑖𝛼𝑗𝛽+

⟩︀
+
⟨︀
D′

𝛼
F𝛼+

⟩︀
+
⟨
D′

𝛽
F𝛽+

⟩⎫⎬⎭
(7.66)

The unrelaxed PT2 difference density is defined as:

𝐷
′𝛼
𝑖𝑗 = −1

2

∑︁
𝑘𝛼

⟨︀
t𝑖𝛼𝑘𝛼t𝑘𝛼𝑗𝛼

⟩︀
−
∑︁
𝑘𝛽

⟨︀
t𝑖𝛼𝑘𝛽t𝑘𝛽𝑗𝛼

⟩︀
(7.67)

𝐷
′𝛼
𝑎𝑏 =

∑︁
𝑖𝛼<𝑗𝛼

t𝑖𝛼𝑗𝛼t𝑖𝛼𝑗𝛼+ +
∑︁
𝑖𝛽𝑗𝛼

t𝑖𝛽𝑗𝛼+t𝑖𝛽𝑗𝛼 (7.68)

With analogous expressions for the spin-down unrelaxed difference densities. Minimization of this functional with
respect to the amplitudes yields the second order perturbation energy. The derivative of the SCF part of equation
(7.56) with respect to a parameter “𝑥” is straightforward and well known. It yields:

𝐸𝑥SCF = 𝑉 𝑥𝑁𝑁 + ⟨Ph𝑥⟩+
⟨︀
W𝑆𝐶𝐹S(𝑥)

⟩︀
+
∑︀
𝜇𝜈𝜅𝜏 Γ𝜇𝜈𝜅𝜏 (𝜇𝜈|𝜅𝜏)

(𝑥)

+
∑︁
𝜎⏟ ⏞ 

(𝜎′ ̸=𝜎)

∫︀ {︁
𝛿𝑓

𝛿𝜌𝜎(r)
𝜌
(𝑥)
𝜎 + 2 𝛿𝑓

𝛿𝛾𝜎𝜎
∇⃗𝜌𝜎∇⃗𝜌(𝑥)𝜎 + 𝛿𝑓

𝛿𝛾𝜎𝜎′
∇⃗𝜌𝜎′∇⃗𝜌(𝑥)𝜎

}︁
𝑑r (7.69)

Superscript “𝑥” refers to the derivative with respect to some perturbation “𝑥” while a superscript in parentheses
indicates that only the derivative of the basis functions with respect to “𝑥” is to be taken. For example:

𝜌
(𝑥)
𝜎 =

∑︀
𝜇𝜈 𝑃

𝜎
𝜇𝜈

{︁
𝜕𝜙𝜇

𝜕𝑥 𝜙𝜈 + 𝜙𝜇
𝜕𝜙𝜈

𝜕𝑥

}︁
ℎ𝑥𝜇𝜈 =

(︁
𝜕𝜙𝜇

𝜕𝑥 |ℎ̂|𝜙𝜈
)︁
+
(︁
𝜙𝜇|ℎ̂|𝜕𝜙𝜈

𝜕𝑥

)︁
+
(︁
𝜙𝜇|𝜕ℎ̂𝜕𝑥 |𝜙𝜈

)︁ (7.70)

In equation (7.69), S is the overlap matrix and W SCF the energy weighted density:

𝑊 SCF
𝜇𝜈 =𝑊𝛼;SCF

𝜇𝜈 +𝑊 𝛽;SCF
𝜇𝜈 = −

∑︁
𝑖𝜎

𝑐𝜎𝜇𝑖𝑐
𝜎
𝜈𝑖𝜀

𝜎
𝑖 (7.71)

At this point, the effective two-particle density matrix is fully separable and reads:

Γ𝜇𝜈𝜅𝜏 =
1

2
𝑃𝜇𝜈𝑃𝜅𝜏 −

1

2
𝑎𝑥𝑃

𝛼
𝜇𝜅𝑃

𝛼
𝜈𝜏 −

1

2
𝑎𝑥𝑃

𝛽
𝜇𝜅𝑃

𝛽
𝜈𝜏 (7.72)

The derivative of the PT2 part is considerably more complex, since 𝐸PT2 is not stationary with respect to changes
in the molecular orbitals. This necessitates the solution of the coupled-perturbed SCF (CP-SCF) equations. We
follow the standard practice and expand the perturbed orbitals in terms of the unperturbed ones as:

𝜓𝜎;𝑥𝑝 (r) =
∑︁
𝑞

𝑈𝜎;𝑥𝑞𝑝 𝜓
𝜎
𝑞 (r) (7.73)
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The occupied-occupied and virtual-virtual blocks of U are fixed, as usual, through the derivative of the orthonor-
mality constraints:

𝑈𝜎;𝑥𝑖𝑗 = −1

2
𝑆
𝜎(𝑥)
𝑖𝑗 (7.74)

𝑈𝜎;𝑥𝑎𝑏 = −1

2
𝑆
𝜎(𝑥)
𝑎𝑏

(7.75)

𝑈𝜎;𝑥𝑖𝑎 = −𝑆𝜎(𝑥)𝑖𝑎 − 𝑈𝜎;𝑥𝑎𝑖
(7.76)

Where 𝑆𝜎(𝑥)𝑝𝑞 =
∑︀
𝜇𝜈 𝑐

𝜎
𝜇𝑝𝑐

𝜎
𝜈𝑞𝑆

(𝑥)
𝜇𝜈 . The remaining virtual-occupied block of U 𝑥 must be determined through the

solution of the CP-SCF equations. However, as shown by Handy and Schaefer, this step is unnecessary and only a
single set of CP-SCF equations (Z-vector equations) needs to be solved. To this end, one defines the Lagrangian:

𝐿𝛼𝑎𝑖 = 𝑅𝜎 (D′)𝑎𝑖 + 2
∑︀
𝑗𝛼𝑏𝛼𝑐𝛼

(𝑎𝛼𝑐𝛼|𝑗𝛼𝑏𝛼) 𝑡𝑖𝛼𝑗𝛼𝑐𝛼𝑏𝛼
− 2

∑︀
𝑗𝛼𝑘𝛼𝑏𝛼

(𝑘𝛼𝑖𝛼|𝑗𝛼𝑏𝛼) 𝑡𝑘𝛼𝑗𝛼𝑎𝛼𝑏𝛼

+2
∑︀
𝑗𝛽𝑏𝛽𝑐𝛼

(𝑎𝛼𝑐𝛼|𝑗𝛽𝑏𝛽) 𝑡
𝑗𝛽𝑖𝛼
𝑏𝛽𝑐𝛼
− 2

∑︀
𝑗𝛽𝑘𝛼𝑏𝛽

(𝑘𝛼𝑖𝛼|𝑗𝛽𝑏𝛽) 𝑡
𝑗𝛽𝑘𝛼
𝑏𝛽𝑎𝛼

(7.77)

An analogous equation holds for 𝐿𝛽𝑎𝑖. The matrix elements of the response operator 𝑅𝛼 (D′) are best evaluated in
the AO basis and then transformed into the MO basis. The AO basis matrix elements are given by:

𝑅𝛼 (D′)𝜇𝜈 =
∑︁
𝜅𝜏

2𝐷′𝜅𝜏 (𝜇𝜈|𝜅𝜏)−𝐷
′𝛼
𝜅𝜏 [(𝜇𝜅|𝜈𝜏) + (𝜈𝑘|𝜇𝜏)]

+
∑︁
𝜁

∫︁ [︂
𝛿2𝑓

𝛿𝜌𝛼𝛿𝜁
𝜁 (D′) (𝜑𝜇𝜑𝜈) +

(︂
2

𝛿2𝑓

𝛿𝛾𝛼𝛼𝛿𝜁
∇⃗𝜌𝛼P +

𝛿2𝑓

𝛿𝛾𝛼𝛽𝛿𝜁
∇⃗𝜌𝛽P

)︂
𝜁 (D′) ∇⃗ (𝜑𝜇𝜑𝜈)

+

(︂
2
𝛿𝑓

𝛿𝛾𝛼𝛼
∇⃗𝜌𝛼D′ +

𝛿𝑓

𝛿𝛾𝛼𝛽
∇⃗𝜌𝛽D′

)︂
∇⃗ (𝜑𝜇𝜑𝜈)

]︂
𝑑r

(7.78)

where

𝜁 (D′) = 𝜌𝛼D′ , 𝜌
𝛽
D′ , 𝛾𝛼𝛼 (D

′) , 𝛾𝛽𝛽 (D
′) , 𝛾𝛼𝛽 (D

′) (7.79)

The 𝜁-gradient-parameters are evaluated as a mixture of PT2 difference densities and SCF densities. For example:

𝛾𝛼𝛼(D′) = 2∇⃗𝜌𝛼D′∇⃗𝜌𝛼P′ (7.80)

With

𝜌𝛼D′ (r) =
∑︁
𝜇𝜈

𝐷
′𝛼
𝜇𝜈𝜑𝜇 (r)𝜑𝜈 (r) (7.81)

𝜌𝛼P (r) =
∑︁
𝜇𝜈

𝑃𝛼𝜇𝜈𝜑𝜇 (r)𝜑𝜈 (r) (7.82)

Having defined the Lagrangian, the following CP-SCF equations need to be solved for the elements of the “Z-
vector”:

(𝜀𝜎𝑎 − 𝜀𝜎𝑖 )𝑍𝜎𝑎𝑖 +𝑅𝜎 (Z)𝑎𝑖 = −𝐿
𝜎
𝑎𝑖 (7.83)

The solution defines the occupied-virtual block of the relaxed difference density, which is given by:

D𝜎 = D′
𝜎
+ Z𝜎 (7.84)

For convenience, D𝜎 is symmetrized since it will only be contracted with symmetric matrices afterwards. After
having solved the Z-vector equations, all parts of the energy weighted difference density matrix can be readily
calculated:

𝑊𝛼;PT2
𝑖𝑗 = −1

2
𝐷𝛼
𝑖𝑗

(︀
𝜀𝛼𝑖 + 𝜀𝛼𝑗

)︀
− 1

2
𝑅 (D)𝑖𝑗 −

∑︁
𝑘𝛼𝑎𝛼𝑏𝛼

(𝑖𝛼𝑎𝛼|𝑘𝛼𝑏𝛼) 𝑡𝑗𝛼𝑘𝛼𝑎𝛼𝑏𝛼
−

∑︁
𝑘𝛽𝑎𝛼𝑏𝛽

(𝑖𝛼𝑎𝛼|𝑘𝛽𝑏𝛽) 𝑡
𝑘𝛽𝑗𝛼
𝑏𝛽𝑎𝛼 (7.85)

𝑊𝛼;PT2
𝑎𝑏 = −1

2
𝐷𝛼
𝑎𝑏 (𝜀

𝛼
𝑎 + 𝜀𝛼𝑏 )−

∑︁
𝑖𝛼𝑗𝛼𝑐𝛼

(𝑖𝛼𝑎𝛼|𝑗𝛼𝑐𝛼) 𝑡𝑖𝛼𝑗𝛼𝑏𝛼𝑐𝛼
−
∑︁
𝑖𝛼𝑗𝛽𝑐𝛽

(𝑖𝛼𝑎𝛼|𝑗𝛽𝑐𝛽) 𝑡
𝑗𝛽𝑖𝛼
𝑐𝛽𝑏𝛼 (7.86)
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𝑊𝛼;PT2
𝑎𝑖 = −2

∑︁
𝑗𝛼𝑘𝛼𝑏𝛼

(𝑘𝛼𝑖𝛼|𝑗𝛼𝑏𝛼) 𝑡𝑘𝛼𝑗𝛼𝑎𝛼𝑏𝛼
− 2

∑︁
𝑗𝛽𝑘𝛼𝑏𝛽

(𝑘𝛼𝑖𝛼|𝑗𝛽𝑏𝛽) 𝑡
𝑗𝛽𝑘𝛼
𝑏𝛽𝑎𝛼 (7.87)

𝑊𝛼;PT2
𝑖𝑎 = −𝜀𝛼𝑖 𝑍𝛼𝑎𝑖 (7.88)

Once more, analogous equations hold for the spin-down case. With the relaxed difference density and energy
weighted density matrices in hand, one can finally proceed to evaluate the gradient of the PT2 part as (WPT2 =
W𝛼;PT2 +W𝛽;PT2):

𝐸𝑥PT2 = ⟨Dh𝑥⟩+
⟨︀
WPT2S(𝑥)

⟩︀
+
∑︀
𝜇𝜈𝜅𝜏 Γ

PT2
𝜇𝜈𝜅𝜏 (𝜇𝜈|𝜅𝜏)

(𝑥)

+
∑︀

𝜎
(𝜎 ̸=𝜎′)

∫︁ {︂
𝛿𝑓

𝛿𝜌𝜎(r)
𝜌
(𝑥)
𝜎 + 2 𝛿𝑓

𝛿𝛾𝜎𝜎

𝑟

∇𝜌𝜎
𝑟

∇𝜌(𝑥)𝜎 + 𝛿𝑓
𝛿𝛾𝜎𝜎

𝑟

∇𝜌𝜎′
𝑟

∇𝜌(𝑥)𝜎

}︂
𝑑r

(7.89)

The final derivative of eq. (7.56) is of course the sum 𝐸𝑥𝑆𝐶𝐹 + 𝑐𝑃𝑇𝐸
𝑥
PT2. Both derivatives should be evaluated

simultaneously in the interest of computational efficiency.

Note that the exchange-correlation contributions to the gradient take a somewhat more involved form than might
have been anticipated. In fact, from looking at the SCF XC-gradient (eq. (7.69)) it could have been speculated that
the PT2 part of the gradient is of the same form but with 𝜌𝜎(𝑥)P being replaced by �̂� , the relaxed PT2 difference
density. This is, however, not the case. The underlying reason for the added complexity apparent in equation (7.89)
is that the XC contributions to the PT2 gradient arise from the contraction of the relaxed PT2 difference density with
the derivative of the SCF operator. Since the SCF operator already contains the first derivative of the XC potential
and the PT2 energy is not stationary with respect to changes in the SCF density, a response type term arises which
requires the evaluation of the second functional derivative of the XC-functional. Finally, as is well known from
MP2 gradient theory, the effective two- particle density matrix contains a separable and a non-separable part:

ΓPT2
𝜇𝜈𝜅𝜏 = 𝐷𝜇𝜈𝑃𝜅𝜏 −𝐷𝛼

𝜇𝜅𝑃
𝛼
𝜈𝜏 −𝐷𝛽

𝜇𝜅𝑃
𝛽
𝜈𝜏 + ΓNS

𝜇𝜈𝜅𝜏 (7.90)

ΓNS
𝜇𝜈𝜅𝜏 =

∑︁
𝑖𝛼𝑗𝛼𝑎𝛼𝑏𝛼

𝑐𝛼𝜇𝑖𝑐
𝛼
𝜈𝑎𝑐

𝛼
𝜅𝑗𝑐

𝛼
𝜏𝑏𝑡

𝑖𝛼𝑗𝛼
𝑎𝛼𝑏𝛼

+
∑︁

𝑖𝛽𝑗𝛽𝑎𝛽𝑏𝛽

𝑐𝛽𝜇𝑖𝑐
𝛽
𝜈𝑎𝑐

𝛽
𝜅𝑗𝑐

𝛽
𝜏𝑏𝑡

𝑖𝛽𝑗𝛽
𝑎𝛽𝑏𝛽

+ 2
∑︁

𝑖𝛼𝑗𝛽𝑎𝛼𝑏𝛽

𝑐𝛼𝜇𝑖𝑐
𝛼
𝜈𝑎𝑐

𝛽
𝜅𝑗𝑐

𝛽
𝜏𝑏𝑡

𝑖𝛼𝑗𝛽
𝑎𝛼𝑏𝛽 (7.91)

Thus, the non-separable part is merely the back-transformation of the amplitudes from the MO to the AO basis. It
is, however, important to symmetrize the two-particle density matrix in order to be able to exploit the full permu-
tational symmetry of the AO derivative integrals.

7.13.4 Orbital Optimized MP2

The MP2 energy can be regarded as being stationary with respect to the MP2 amplitudes, since they can be con-
sidered as having been optimized through the minimization of the Hylleraas functional:

𝐸MP2 = min
t

{︁
2
⟨
Ψ1|�̂�|Ψ0

⟩
+
⟨
Ψ1|�̂�0 − 𝐸0|Ψ1

⟩}︁
(7.92)

�̂� is the 0𝑡ℎ order Hamiltonian as proposed by Møller and Plesset, Ψ0 is the reference determinant, Ψ1 is the
first-order wave function and 𝐸0 = 𝐸HF = ⟨ΨHF| �̂� |ΨHF⟩ is the reference energy. The quantities t collectively
denote the MP2 amplitudes.

The fundamental idea of the OO-MP2 method is to not only minimize the MP2 energy with respect to the MP2
amplitudes, but to minimize the total energy additionally with respect to changes in the orbitals. Since the MP2
energy is not variational with respect to the MO coefficients, no orbital relaxation due to the correlation field is taken
into account. If the reference determinant is poor, the low-order perturbative correction then becomes unreliable.
This may be alleviated to a large extent by choosing better orbitals in the reference determinant. Numerical evidence
for the correctness of this assumption will be presented below.

In order to allow for orbital relaxation, the Hylleraas functional can be regarded as a functional of the wavefunction
amplitudes t and the orbital rotation parameters R that will be defined below. Through a suitable parameterization
it becomes unnecessary to ensure orbital orthonormality through Lagrange multipliers. The functional that we
minimize reads:

𝐿 {t, R} = 𝐸0 [R] + 2 ⟨Ψ1| �̂� |Ψ0⟩+ ⟨Ψ1| �̂�0 − 𝐸0 |Ψ1⟩ (7.93)
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Ψ0 is the reference determinant. However, it does no longer correspond to the Hartree-Fock (HF) determinant.
Hence, the reference energy 𝐸0 [R] = ⟨Ψ0 [R]| �̂� |Ψ0 [R]⟩ also changes during the variational process and is no
longer stationary with respect to the HF MO coefficients. Obviously, 𝐸0 [R] ⩾ 𝐸HF since the HF determinant is,
by construction, the single determinant with the lowest expectation value of the full Hamiltonian.

The reference energy is given as:

𝐸0 [R] =
∑︁
𝑖

⟨𝑖|ℎ |𝑖⟩+ 1

2

∑︁
𝑖𝑗

⟨𝑖𝑗||𝑖𝑗⟩ (7.94)

The first-order wave function excluding single excitations is:

|Ψ1⟩ =
1

4

∑︁
𝑖𝑗𝑎𝑏

𝑡𝑖𝑗𝑎𝑏| Ψ
𝑎𝑏
𝑖𝑗

⟩︀
(7.95)

A conceptually important point is that Brillouin’s theorem [419] is no longer obeyed since the Fock matrix will
contain off-diagonal blocks. Under these circumstances the first-order wavefunction would contain contributions
from single excitations. Since the orbital optimization brings in all important effects of the singles we prefer to
leave them out of the treatment. Any attempt to the contrary will destroy the convergence properties. We have
nevertheless contemplated to include the single excitations perturbatively:

𝐸
(2)
Singles = −

∑︁
𝑖𝑎

|𝐹𝑖𝑎|2

𝜀𝑎 − 𝜀𝑖
(7.96)

The perturbative nature of this correction would destroy the stationary nature of the total energy and is hence not
desirable. Furthermore, results with inclusion of single excitation contributions represent no improvement to the
results reported below. They will therefore not be documented below and henceforth be omitted from the OO-MP2
method by default.

The explicit form of the orbital-optimized MP2 Hylleraas functional employing the RI approximation (OO-RI-
MP2) becomes:

𝐿∞ [t, R] =
∑︁
𝑖

⟨𝑖|ℎ̂ |𝑖⟩+ 1

2

∑︁
𝑖𝑗

⟨𝑖𝑗||𝑖𝑗⟩+
∑︁
𝑖𝑎𝑃

(𝑖𝑎|𝑃 )Γ
′𝑃
𝑖𝑎 +

∑︁
𝑖𝑗

𝐷𝑖𝑗𝐹𝑖𝑗 +
∑︁
𝑎𝑏

𝐷𝑎𝑏𝐹𝑎𝑏 (7.97)

with:

Γ
′𝑃
𝑖𝑎 =

∑︁
𝑄

𝑉 −1𝑃𝑄

∑︁
𝑗𝑏

(𝑄|𝑗𝑏)𝑡𝑖𝑗𝑎𝑏 (7.98)

(𝑖𝑎|𝑃 ) =
∫︁ ∫︁

𝜓𝑖(r1)𝜓𝑎(r1)
1

|r1 − r2|
𝜂𝑃 (r2)𝑑r1𝑑r2 (7.99)

(𝑃 |𝑄) =

∫︁ ∫︁
𝜂𝑝(r1)

1

|r1 − r2|
𝜂𝑄(r2)𝑑r1𝑑r2 (7.100)

Here, {𝜓} is the set of orthonormal molecular orbitals and {𝜂} denotes the auxiliary basis set. 𝐹𝑝𝑞 denotes a Fock
matrix element:

𝐹𝑝𝑞 = ⟨𝑝| ℎ̂ |𝑞⟩+
∑︁
𝑘

⟨𝑝𝑘||𝑞𝑘⟩ (7.101)

and it is insisted that the orbitals diagonalize the occupied and virtual subspaces, respectively:

𝐹𝑖𝑗 = 𝛿𝑖𝑗𝐹𝑖𝑖 = 𝛿𝑖𝑗𝜀𝑖
𝐹𝑎𝑏 = 𝛿𝑎𝑏𝐹𝑎𝑎 = 𝛿𝑎𝑏𝜀𝑎

(7.102)

The MP2 like density blocks are,

𝐷𝑖𝑗 = − 1
2

∑︀
𝑘𝑎𝑏 𝑡

𝑖𝑘
𝑎𝑏𝑡

𝑗𝑘
𝑎𝑏

𝐷𝑎𝑏 =
1
2

∑︀
𝑖𝑗𝑐 𝑡

𝑖𝑗
𝑎𝑐𝑡

𝑖𝑗
𝑏𝑐

(7.103)
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where the MP2 amplitudes in the case of a block diagonal Fock matrix are obtained through the condition𝜕𝐿∞
𝜕𝑡𝑖𝑗𝑎𝑏

= 0:

𝑡𝑖𝑗𝑎𝑏 = −
⟨𝑖𝑗||𝑎𝑏⟩

𝜀𝑎 + 𝜀𝑏 − 𝜀𝑖 − 𝜀𝑗
(7.104)

The orbital changes are parameterized by an anti-Hermitian matrix R and an exponential Ansatz,

cnew = cold exp(R)

R =

(︂
0 R𝑖𝑎

−R𝑖𝑎 0

)︂
(7.105)

The orbitals changes to second order are,

exp(R) |𝑖⟩ = |𝑖⟩+
∑︀
𝑎R𝑎𝑖 |𝑎⟩ − 1

2

∑︀
𝑗𝑏R𝑏𝑖R𝑏𝑗 |𝑗⟩+ . . .

exp(R) |𝑎⟩ = |𝑎⟩ −
∑︀
𝑖R𝑎𝑖 |𝑖⟩ − 1

2

∑︀
𝑗𝑏R𝑎𝑗R𝑏𝑗 |𝑏⟩+ . . .

(7.106)

Through this Ansatz it is ensured that the orbitals remain orthonormal and no Lagrangian multipliers need to be
introduced. The first-order expansion of the Fock operator due to the orbital rotations are:

𝐹𝑝𝑞 [𝑅] = 𝐹𝑝𝑞 [0] +𝑅(1)
𝑝𝑞 +

∑︁
𝑟

𝑅𝑟𝑝𝐹𝑟𝑞 [0] +𝑅𝑟𝑞𝐹𝑝𝑟 [0] (7.107)

𝑅(1)
𝑝𝑞 =

∑︁
𝑘𝑐

𝑅𝑐𝑘 {⟨𝑝𝑐||𝑞𝑘⟩+ ⟨𝑝𝑘||𝑞𝑐⟩} (7.108)

The first-order energy change becomes
(︁
ℎ𝑝𝑞 ≡ ⟨𝑝| ℎ̂ |𝑞⟩ , 𝑔𝑝𝑞𝑟𝑠 ≡ ⟨𝑝𝑞||𝑟𝑠⟩

)︁
:

𝐿∞ [t,R] =
∑︀
𝑖𝑐𝑅𝑐𝑖 (ℎ𝑐𝑖 + ℎ𝑖𝑐) +

1
2

∑︀
𝑖𝑗𝑐𝑅𝑐𝑖 (𝑔𝑐𝑗𝑖𝑗 + 𝑔𝑖𝑗𝑐𝑗) +𝑅𝑐𝑗 (𝑔𝑖𝑐𝑖𝑗 + 𝑔𝑖𝑗𝑖𝑐)

+2
∑︀
𝑖𝑎𝑐𝑃 𝑅𝑐𝑖(𝑎𝑐|𝑃 )Γ

′𝑃
𝑖𝑎 − 2

∑︀
𝑖𝑘𝑎𝑃 𝑅𝑎𝑘(𝑖𝑘|𝑃 )Γ

′𝑃
𝑖𝑎

−
∑︀
𝑖𝑗 𝐷𝑖𝑗

(︁
𝑅

(1)
𝑖𝑗 +

∑︀
𝑐 (𝑅𝑐𝑖𝐹𝑐𝑗 +𝑅𝑐𝑗𝐹𝑖𝑐)

)︁
+
∑︀
𝑎𝑏𝐷𝑎𝑏

(︁
𝑅

(1)
𝑎𝑏 −

∑︀
𝑘 (𝑅𝑎𝑘𝐹𝑘𝑏 +𝑅𝑏𝑘𝐹𝑎𝑘)

)︁ (7.109)

The condition for the energy functional to be stationary with respect to the orbital rotations
(︁
𝜕𝐿∞[t,R]
𝜕𝑅𝑎𝑖

= 0
)︁

, yields
the expression for the orbital gradient and hence the expression for the OO-RI-MP2 Lagrangian.

𝜕𝐿∞[t,R]

𝜕𝑅𝑎𝑖
≡ 𝑔𝑎𝑖 = 2𝐹𝑎𝑖 + 2

∑︁
𝑗

𝐷𝑖𝑗𝐹𝑎𝑗 − 2
∑︁
𝑏

𝐷𝑎𝑏𝐹𝑖𝑏 +𝑅(1)(D)𝑎𝑖 (7.110)

+2
∑︁
𝑐𝑃

(𝑎𝑐|𝑃 )Γ′𝑃𝑖𝑎 − 2
∑︁
𝑘𝑃

(𝑖𝑘|𝑃 )Γ′𝑃𝑖𝑎

The goal of the orbital optimization process is to bring this gradient to zero. There are obviously many ways to
achieve this. In our experience, the following simple procedure is essentially satisfactory. We first build a matrix
B in the current MO basis with the following structure:

B𝑖𝑗 = 𝛿𝑖𝑗F𝑖𝑖
B𝑎𝑏 = 𝛿𝑎𝑏(F𝑎𝑎 +Δ)
B𝑎𝑖 = B𝑖𝑎 = g𝑎𝑖

(7.111)

where ∆ is a level shift parameter. The occupied/occupied and virtual/virtual blocks of this matrix are arbitrary
but their definition has a bearing on the convergence properties of the method. The orbital energies of the block
diagonalized Fock matrix appear to be a logical choice. If the gradient is zero, the B-matrix is diagonal. Hence
one obtains an improved set of orbitals by diagonalizing B.

In order to accelerate convergence a standard DIIS scheme is used. [451, 576] However, in order to carry out the
DIIS extrapolation of the B-matrix it is essential that a common basis is used that does not change from iteration
to iteration. Since the B-matrix itself is defined in the molecular orbitals of the current iteration we choose as a
common set of orthonormal orbitals the MOs of the HF calculation. The extrapolation is carried out in this basis
and the extrapolated B-matrix is transformed back to the current set of MOs prior to diagonalization. Obviously,
the same strategy can be used for orbital optimization in any method for which an orbital gradient is available.

For well behaved cases this simple scheme converges in 5-10 iterations. Transition metals and more complicated
molecules may require up to 20 iterations and level shifting in order to achieve convergence.

Upon convergence the sum of the matrix D and the density of the reference determinant 𝑃𝜇𝜈 =
∑︀
𝑖 𝑐𝜇𝑖𝑐𝜈𝑖 form the

true one-particle density matrix of the OO-MP2 approach that can be used for property or gradient calculations.
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7.13.5 Regularized MP2 and RI-MP2

Regularized MP2 is a variant of second-order Moller-Plesset theory (MP2) introduced by J. Shee, M. Loipersberger,
A. Rettig, J. Lee, and M. Head-Gordon [791] that aims to improve its accuracy for systems with 𝜋-driven dispersion
interactions and dative bonds in transition metal complexes. The approach achieves this by introducing a single-
parameter, energy-gap dependent regularization that dampens overestimated pairwise additive contributions, thus
renormalizing first-order amplitudes to empirically mimic higher-order correlations.

For this, the standard MP2 energy and thus the standard algorithms are modified. For the 𝜎 (𝑝 = 1) and 𝜎2 (𝑝 = 2)
regularization, the energy is modified according to

𝐸𝜎𝑝-MP2 = −1

4

∑︁
𝑖𝑗𝑎𝑏

| ⟨𝑖𝑗||𝑎𝑏⟩ |2

∆𝑎𝑏
𝑖𝑗

(1− 𝑒−𝜎(Δ
𝑎𝑏
𝑖𝑗 )

𝑝

)

which corresponds to regularizing the first-order amplitudes. For the 𝜅 regularization, the MP2 energy is modified
according to

𝐸𝜅-MP2 = −1

4

∑︁
𝑖𝑗𝑎𝑏

| ⟨𝑖𝑗||𝑎𝑏⟩ |2

∆𝑎𝑏
𝑖𝑗

(︁
1− 𝑒−𝜅(Δ

𝑎𝑏
𝑖𝑗 )
)︁2

which corresponds to regularizing the first-order amplitudes and the exchange integrals.

Regularized MP2 is available for standard MP2 in “memory mode” (Q1Opt>0) and RI-MP2 (RIJDX, RIJCOSX,
RIJK).

The usage of regularized MP2 is controlled by the DoRegMP2 keyword, the type of regularization can be specified
by setting the RegMP2Type parameter to 0 for 𝜅, 1 for 𝜎, or 2 for 𝜎2. The value of the regularizers can be specified
by RegMP2Kappa and RegMP2Sigma respectively.

%mp2
DoRegMP2 true # required
RegMP2Type 0 # kappa regularizer

1 # sigma regularizer
2 # sigma-sqaured regularizer

RegMP2Kappa 1.1 # kappa value
RegMP2Sigma 0.5 # sigma value

end

It is important to note that only single point energies are available and tested for regularized MP2. Density, Gradient,
and Hessian calculations are not yet supported.

7.13.6 RIJCOSX-RI-MP2 Gradients

Additional grids are introduced for the RIJCOSX-MP2 gradient. They have sensible default settings and therefore
do not usually require any intervention from the user. However, a number of expert options are available, as
described below.

The COSX terms in the Z-vector equations are calculated on a grid, controlled by the keywords Z_GridX and
Z_IntAccX, as discussed in sections Changing TD-DFT, CP-SCF and Hessian grids and CP-SCF Options. For
example, the DefGrid3 CP-SCF COSX grid can be requested as:

%method
Z_GridX 2 # Lebedev 110-point grid
Z_IntAccX 3.067 # radial integration accuracy

end

The grid used for evaluation of the response operator on the right-hand side of the Z-vector equations (see for
example eqs (7.77) and (7.78)) can be independently selected using the keyword Z_GridX_RHS. Note that starting
with ORCA 5, the usage is different to Z_GridX - the choice is between one of the three grids used during the
RIJCOSX SCF procedure: a small grid for the initial iterations, a medium grid for the final iterations (default in
ORCA 5), and a large grid to evaluate the energy more accurately after the iterations have converged.
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%method
Z_GridX_RHS 1 # small SCF grid

2 # medium SCF grid (default)
3 # large SCF grid

end

Yet another grid is used to evaluate basis functions derivatives. Appropriate parameters are chosen through !
DefGridn (in addition to the three SCF grids), but one can override this by setting the angular (GridX) and radial
(IntAccX) grids explicitly through:

%mp2 GridX 4 # default 4: angular Lebedev grid 302
IntAccX 4.871 # radial grid

end

7.13.7 MP2 and RI-MP2 Second Derivatives

Analytical second-order properties with the MP2, RI-MP2 and double-hybrid DFT methods are available in ORCA
for calculations without frozen core orbitals. The most expensive term in the second derivative calculations is the
four-external contribution which can be evaluated either via an AO direct (default) or a semi-numerical Chain-of-
Spheres approach. In case that the latter approach is chosen, appropriate grid parameters are defined through the
! DefGridn settings. However, a more fine-grained specification is available to expert users as follows:

%mp2 KCOpt _AOBLAS # (default) AO direct with BLAS routines
_COSX # semi-numerical evaluation using the COSX method

KC_GridX 2 # default 2: angular Lebedev grid 110
KC_IntAccX 4.020 # radial grid

end

Alternatively, all the grid settings can be defined in the %method block, as discussed in section SCF grid keyword
list. The first three entries define the three SCF grids, the fourth entry the MP2 grid for basis function derivatives
(refer to section RIJCOSX-RI-MP2 Gradients) and the fifth entry the grid for the four-external contribution.

%method
IntAccX Acc1, Acc2, Acc3, Acc4, Acc5
GridX Ang1, Ang2, Ang3, Ang4, Ang5

end

7.13.8 RI-MP2 and Double-Hybrid DFT Response Properties

Starting from ORCA 5, both the electric (for the dipole polarizability) and the magnetic (for NMR shielding and
the EPR g-tensor) field response as well as the nucleus-orbit response (hyperfine couplings 𝐴orb term) for RI-MP2
(and double-hybrid functionals) is handled by a different implementation of the RI-MP2 second derivatives than
that used for geometric Hessian calculations (MP2 and RI-MP2 Second Derivatives). This code is more efficient,
uses the RI approximation throughout (including the four-external contribution) and supports frozen core orbitals.
The implementation is described in detail in refs [829, 850]. Consider the following input for a GIAO-RI-MP2
NMR shielding calculation:

! RIJK RI-MP2 def2-SVP def2/JK def2-SVP/C TightSCF NMR NoFrozenCore
%mp2

Density relaxed # required
UsePertCanOrbs true # Whether to use perturbed canonical orbitals for

# the internal block of the perturbed Fock matrix
PertCan_EThresh 1e-6 # Energy threshold for special treatment of

# degenerate orbital pairs
PertCan_UThresh 10 # Coefficient threshold for special treatment of

# strongly interacting orbital pairs
FCut 1e-5 # Threshold for internal perturbed Fock elements

(continues on next page)
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(continued from previous page)

RespStoreT true # Whether to precalculate and store all necessary
# unperturbed amplitudes on disk

RespDijConv false # Whether to store intermediates required for the
# internal block of the response density on disk

end
* int 0 1
O 0 0 0 0 0 0
H 1 0 0 1.1056 0 0
H 1 2 0 1.1056 109.62 0
*

By default perturbed canonical orbitals are used for the occupied block, i.e., the internal orbital rotation coefficients
are chosen as

𝑈B
𝑖𝑗 =

𝐹
(B)
𝑖𝑗 − 𝑆(B)

𝑖𝑗 𝜀𝑗

𝜀𝑗 − 𝜀𝑖

which results in 𝐹B
𝑖𝑗 = 0, thereby eliminating its contribution to the perturbed amplitudes:

𝑇 𝑖𝑗,B𝑎𝑏 ← −
∑︁
𝑘

[︁
𝑇 𝑖𝑘𝑎𝑏𝐹

B
𝑘𝑗 + 𝑇 𝑘𝑗𝑎𝑏 𝐹

B
𝑘𝑖

]︁
(7.112)

If |𝜖𝑗 − 𝜖𝑖| < PertCan_EThresh or |𝑈𝐵𝑖𝑗 | > PertCan_UThresh, then 𝑈B
𝑖𝑗 is chosen using the standard formula

𝑈B
𝑖𝑗 = −1

2
𝑆
(B)
𝑖𝑗

And the relevant contributions to eq (7.112) are added, unless
⃒⃒
𝐹B
𝑖𝑗

⃒⃒
< FCut. The required amplitudesT𝑖𝑘 andT𝑘𝑗

(all amplitudes, in case UsePertCanOrbs = false) are stored on disk if RespStoreT = true or recalculated
as needed otherwise. The latter option is significantly slower and not recommended unless disk space is an issue.
Similarly, in the case of insufficient RAM, the option RespDijConv = true tells ORCA to store all amplitudes in
the batch (required to calculate 𝐷B

𝑖𝑗 ) on disk, rather than keep them in memory. The 3-index 2-particle densities,
needed for the right-hand side of the Z-vector equations, are always stored on disk.

Note also that in this implementation the RIJCOSX Fock-response terms are calculated with one of the SCF grids,
chosen with Z_GridX_RHS (see section CP-SCF Options).

7.13.9 Local MP2

In analogy to the domain-based local pair natural orbital coupled-cluster methods, there is also a local linear scaling
version of MP2 (DLPNO-MP2) implemented in ORCA. Its default thresholds are chosen to reproduce about 99.9%
of the total RI-MP2 correlation energy, resulting in an accuracy of a fraction of 1 kcal/mol for energy differences.
The theory has been described in the literature.[654, 685]

Further information of local correlation methods in ORCA can be found in section Local correlation. The local
MP2 method becomes truly beneficial for very large molecules and can be used to compute energies of systems
containing several hundred atoms. Fig. 7.3 shows the scaling behavior for linear alkane chains. Note that this
represents an idealized situation. For three-dimensional molecules the crossover with canonical RI-MP2 is going
to occur at a later point.
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Fig. 7.3: Scaling of the DLPNO-MP2 method with default thresholds for linear alkane chains in def2-TZVP basis.
Shown are also the times for the corresponding Hartree-Fock calculations with RIJCOSX and for RI-MP2.

In the following, the most important design principles of the RHF-DLPNO-MP2 are pointed out.

• Unlike in the 2013 version of the DLPNO methodology, domains are selected by means of the differen-
tial overlap

√︁∫︀
𝑖2(r)�̃�′2(r)𝑑r between localized MOs 𝑖 and projected atomic orbitals (PAOs) �̃�′ which are

normalized to unity. The default value for the corresponding cutoff is 𝑇CutDO = 10−2.

• MP2 amplitudes for each pair of localized orbitals 𝑖𝑗 are expressed in a basis of pair natural orbitals (PNOs)
�̃�𝑖𝑗 . PNOs are obtained from diagonalization of an approximate, “semicanonical” MP2 pair density D𝑖𝑗 .
Only PNOs with an occupation number > 𝑇CutPNO are retained, with a default value of 𝑇CutPNO = 10−8 for
DLPNO-MP2. The pair density is given by:

D𝑖𝑗 = T𝑖𝑗†T̃𝑖𝑗 +T𝑖𝑗T̃𝑖𝑗† where
𝑇 𝑖𝑗�̃�𝜈 = − (𝑖�̃�|𝑗𝜈)

𝜀�̃� + 𝜀𝜈 − 𝐹𝑖𝑖 − 𝐹𝑗𝑗
T̃𝑖𝑗 = (1 + 𝛿𝑖𝑗)

−1 (︀
4T𝑖𝑗 − 2T𝑖𝑗†)︀

• Since the occupied block of the Fock matrix is not diagonal in the basis of localized orbitals, the MP2
amplitudes T𝑖𝑗 are obtained by solving the following set of residual equations iteratively (where subscripts
of PNOs have been dropped):

𝑅𝑖𝑗
�̃��̃�

=
(︁
𝑖�̃�
⃒⃒⃒
𝑗�̃�
)︁
+
(︀
𝜀�̃� + 𝜀�̃� − 𝐹𝑖𝑖 − 𝐹𝑗𝑗

)︀
𝑇 𝑖𝑗
�̃��̃�
−
∑︁
𝑘 ̸=𝑖

∑︁
𝑐𝑑

𝐹𝑖𝑘𝑆
𝑖𝑗,𝑘𝑗
�̃�𝑐 𝑇 𝑘𝑗

𝑐𝑑
𝑆𝑘𝑗,𝑖𝑗
𝑑�̃�
−
∑︁
𝑘 ̸=𝑗

∑︁
𝑐𝑑

𝐹𝑘𝑗𝑆
𝑖𝑗,𝑖𝑘
�̃�𝑐 𝑇 𝑖𝑘

𝑐𝑑
𝑆𝑖𝑘,𝑖𝑗
𝑑�̃�

= 0

• The largest part of the error relative to canonical RI-MP2 is controlled by the domain (TCutDO) and PNO
(TCutPNO) thresholds, which should be adequate for most applications. If increased accuracy is needed
(e.g. for studying weak interactions), tighter truncation criteria can be invoked by means of the ! TightPNO
keyword. Conversely, a less accurate but faster calculation can be performed with the ! LoosePNO keyword.
For more details refer to table Table 7.17.

• Fitting domains are determined by means of orbital Mulliken populations with a threshold 𝑇CutMKN = 10−3.
This threshold results in an error contribution that is typically about an order of magnitude smaller than the
overall total energy deviation from RI-MP2.
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• Prior to performing the local MP2 calculation, pairs of localized molecular orbitals 𝑖𝑗 are prescreened using
an MP2 energy estimate with a dipole approximation, and the differential overlap integral between orbitals
𝑖 and 𝑗. This procedure has been chosen conservatively and leads to minimal errors.

• Residual evaluation can be accelerated significantly by neglecting terms with associated Fock matrix ele-
ments 𝐹𝑖𝑘 and 𝐹𝑘𝑗 below 𝐹Cut = 10−5. Errors resulting from this approximation are typically below 1𝜇Eh
and thus negligible.

• Sparsity of the MO and PAO coefficient matrices in atomic orbital basis is exploited to accelerate integral
transformations for large systems. Truncation of the coefficients is controlled by a parameter 𝑇CutC. Neglect
of these coefficients has to be performed very carefully in order to avoid uncontrollable errors. The threshold
has been chosen so as to make the errors essentially vanish.

• By default, core orbitals are frozen in the MP2 module. However, if core orbitals are subject to an MP2
treatment, it is necessary to use a tighter PNO cutoff for pairs involving at least one core orbital. For this
purpose core orbitals and valence orbitals are localized separately. The cutoff for pairs involving core orbitals
is given by 𝑇CutPNO × 𝑇ScalePNO_Core, where 𝑇ScalePNO_Core = 10−2 by default. For more details refer to
section Including (semi)core orbitals in the correlation treatment.

The UHF-DLPNO-MP2 implementation differs somewhat from the RHF case, particularly regarding construction
of PNOs, as described below.

• A separate set of PAOs �̃�′𝛼 and �̃�′𝛽 is obtained for each spin case.

• For 𝛼𝛽 pairs, separate pair domains of PAOs need to be determined for each spin case. For example, the 𝛼
pair domain [𝑖𝛼𝑗𝛽 ]𝛼 is the union of the domains [𝑖𝛼]𝛼 and [𝑗𝛽 ]𝛼. The latter domain [𝑗𝛽 ]𝛼 is determined by
evaluating the spatial differential overlap between 𝑗𝛽 and 𝛼-spin PAOs �̃�′𝛼.

• One set of PNOs is needed for each same-spin pair. Opposite-spin pairs require a set of 𝛼-PNOs and a set
of 𝛽-PNOs. In total this results in four types of PNO sets.

• Semicanonical amplitudes are obtained as follows, where 𝑖, 𝑗 are spin orbitals and �̃�𝜈 are nonredundant spin
PAOs.

𝑇 𝑖𝑗�̃�𝜈 = − ⟨𝑖𝑗||�̃�𝜈⟩
𝜀�̃� + 𝜀𝜈 − 𝐹𝑖𝑖 − 𝐹𝑗𝑗

In the same-spin case ⟨𝑖𝛼𝑗𝛼||�̃�𝛼𝜈𝛼⟩ = ⟨𝑖𝑗|�̃�𝜈⟩ − ⟨𝑖𝑗|𝜈�̃�⟩, while in the opposite-spin case ⟨𝑖𝛼𝑗𝛽 ||�̃�𝛼𝜈𝛽⟩ =
⟨𝑖𝑗|�̃�𝜈⟩.

• For opposite-spin pairs, 𝛼-PNOs and 𝛽-PNOs are obtained from diagonalisation of T𝑖𝑗T𝑖𝑗† and T𝑖𝑗†T𝑖𝑗 ,
respectively. For same-spin pairs the pair density is symmetric and only one set of PNOs is needed. PNOs
are discarded whenever the absolute value of their natural occupation number is below the threshold 𝑇CutPNO.

• The following residual equations need to be solved for the cases 𝑅𝑖𝛼𝑗𝛼
�̃�𝛼�̃�𝛼

, 𝑅𝑖𝛽𝑗𝛽
�̃�𝛽 �̃�𝛽

and 𝑅𝑖𝛼𝑗𝛽
�̃�𝛼�̃�𝛽

:
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• Most approximations are consistent between the RHF and UHF schemes, with the exception of the PNO
truncation. This means that results would match for closed-shell molecules with 𝑇CutPNO = 0 (provided both
Hartree-Fock solutions are identical), but this is not true whenever the PNO space is truncated. Therefore,
UHF-DLPNO-MP2 energies should only be compared to other UHF-DLPNO-MP2 energies, even for closed-
shell species.

• We found that it is necessary to use tighter PNO thresholds for UHF-DLPNO-MP2. With NormalPNO
settings the default value is 𝑇CutPNO = 10−9. For an overview of accuracy settings refer to table Table 7.17.
As in the RHF implementation, the PNO cutoff for pairs involving core orbitals is scaled with 𝑇ScalePNO_Core.

Table 7.17: Accuracy settings for DLPNO-MP2.
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Setting 𝑇CutDO 𝑇CutPNO (RHF) 𝑇CutPNO (UHF)
LoosePNO 2× 10−2 10−7 10−8

NormalPNO 1× 10−2 10−8 10−9

TightPNO 5× 10−3 10−9 10−10

Options specific to DLPNO-MP2 are listed below.

%mp2 DLPNO false # Do DLPNO-MP2 (also requires RI true)
TolE 1e-6 # Energy convergence threshold. Default: TolE of SCF
TolR 5e-6 # Residual convergence threshold. Default: 5 * TolE
MaxPNOIter 100 # Maximum number of residual iterations
MaxLocIter 128 # Maximum number of iterations for orbital localization
LocMet AHFB # Localization method

# options: FB, PM, IAOIBO, IAOBOYS, NEWBOYS, AHFB
LocTol 1e-6 # Localization convergence tolerance

# Default: 0.1 * TolG from SCF
DIISStart_PNO 0 # First iteration to invoke DIIS extrapolation
MaxDIIS_PNO 7 # length of DIIS vector
Damp1_PNO 0.5 # Damping before DIIS is started
Damp2_PNO 0.0 # Damping with DIIS
MP2Shift_PNO 0.2 # level shift in amplitude update (Eh)

# Truncation parameters:
TCutPNO 1e-8 # PNO occupation number cutoff (RHF)

1e-9 # PNO occupation number cutoff (UHF)
TScalePNO_Core 1e-2 # Core PNO scaling factor
TCutDO 1e-2 # Differential overlap cutoff for domain selection
TCutMKN 1e-3 # Mulliken population cutoff for fitting domain selection
FCut 1e-5 # Occupied Fock matrix element cutoff
TCutPre 1e-6 # Energy threshold for dipole prescreening
TCutDOij 1e-5 # Maximum differential overlap between screened MOs
TCutDOPre 3e-2 # Cutoff to select PAOs for domains in prescreening
TCutC 1e-3 # Cutoff for PAO coefficient truncation
ScaleTCutC_MO 1.0 # Cutoff for MO truncation: TCutC * ScaleTCutC_MO
PAOOverlapThresh 1e-8 # Threshold for constructing non-redundant PAOs

end

Local MP2 Gradient

The analytical gradient has been implemented for the RHF variant of the DLPNO-MP2 method.[686, 687] It is
a complete derivative of all components in the DLPNO-MP2 energy, and the results are therefore expected to
coincide with numerical derivatives of DLPNO-MP2 (minus the noise). General remarks:

• No gradient is presently implemented for the UHF-DLPNO-MP2 variant.

• Spin-component scaled MP2 is supported by the gradient.

• Double-hybrid density functionals are supported by the gradient.

• Only Foster-Boys localization is presently supported. The default converger is AHFB with a convergence
tolerance that is automatically bound by a constant factor to the SCF orbital gradient tolerance. Using a
different converger is possible, but discouraged, as the orbital localization needs to be sufficiently tightly
converged.

• When calculating properties without the full nuclear gradient, the relaxed MP2 density should be requested.

A number of points regarding geometry optimizations (not all of them specific to DLPNO-MP2) are worth keeping
in mind:

• As of 2018, we expect that the DLPNO-MP2 gradient can most beneficially be used for geometry optimiza-
tions of systems containing around 70-150 atoms. It may be faster than RI-MP2 even for systems containing
50-60 atoms or less, but the timing difference is probably not going to be very large. Of course, structures
containing 200 atoms and above can (and have been) optimized, but this may take long if many geometry
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steps are required. On the other hand, single point gradient or density calculations can be performed for
systems containing many hundred atoms.

• DLPNO-MP2 is a substantially more expensive method for geometry optimizations than GGA or hybrid
DFT functionals. Therefore, it is generally a good idea to start a geometry optimization with a structure that
is already optimized at dispersion-corrected DFT level.

• RIJCOSX can be used to accelerate exchange evaluation substantially. However, great care needs to be ex-
ercised with the grid settings. Insufficiently large grids may lead, for example, to non-planar distortions of
planar molecules. The updated default grids in ORCA 5 (DefGrid2-3) should be sufficiently accurate to
optimize neutral main group compounds. We therefore recommend these grids for general use with some
careful checking in more complicated cases. Even with these grids, the calculation is a lot faster than “reg-
ular” Hartree-Fock with basis sets of triple zeta quality (or larger).

Using RIJONX is also possible.

• Sufficiently large grids should be used for the exchange-correlation functional of double hybrids. The SCF
calculation takes only a fraction of the time that is needed for DLPNO-MP2, and sacrificing quality because
of an insufficiently accurate grid is a waste of computer time.

• Optimization of large structures is often a challenge for the geometry optimizer. It may help to change the
trust radius settings, to modify the settings of the AddExtraBonds feature, or to change other settings of the
geometry optimizer. Sometimes it may be beneficial to check the geometry optimizer settings with a less
demanding electronic structure method.

• Finally, problems with a geometry optimization may in some cases indeed be caused by the DLPNO ap-
proximations. Using LoosePNO for accurate calculations is not recommended anyway, and difficulties with
NormalPNO settings are possibly rectified by switching to TightPNO.

During the development process, a number of difficulties were encountered related to the orbital localization Z-
vector equations. Great care was taken to work around these problems and to make the procedures as robust
as possible, but a number of settings can be changed. For more information on these aspects, we recommend
consulting the full paper on the DLPNO-MP2 gradient [687].

• Several different solvers are implemented for the orbital localization Z-vector equations. The default is an
iterative conjugate gradient solver. As an alternative, the DIIS-accelerated Jacobi solver can be used, but
it tends to be inferior to the conjugate gradient solver. Moreover, a direct solver is available as a fail-safe
alternative for smaller systems. As the dimension of the linear equation system is 𝑛(𝑛−1)/2 for 𝑛 occupied
orbitals, the memory requirement and FLOP count increase as𝑂(𝑛4) and𝑂(𝑛6), respectively, and using the
direct solver becomes unfeasible for large systems.

• Settings for the CPSCF solver are specified the same way as for canonical MP2.

• Under specific circumstances, the orbital Hessian of the orbital localization function may have zero or near-
zero eigenvalues, which can lead to singular localization Z-vector equations. In particular, it is typically a
consequence of continuously degenerate localized orbitals, which may (but do not need to) appear in some
molecular symmetries.[761] A typical symptom are natural occupation number above 2 and below 0 for
systems that would be expected to have MP2 density eigenvalues between 2 and 0 without the DLPNO
approximations.

• In order to work around the aforementioned problem, a procedure has been implemented to eliminate sin-
gular or near-singular eigenvectors of the localization function orbital Hessian. Vectors with an eigenvalue
smaller than ZLoc_EThresh (or ZLoc_EThresh_core for the core orbitals) are subject to the modified pro-
cedure. If the program eliminates any eigenvectors, it might sometimes be a good idea to check if calculated
properties are reasonable (or at least to check the natural occupation numbers). Eigenvectors of the Hessian
are calculated by Davidson diagonalization by default, but direct diagonalization can be chosen for smaller
systems, instead.

• Diagonalization of the localization orbital Hessian can be switched off altogether by setting ZLoc_EThresh
to 0.

• If the “Asymmetric localization equation residual norm” exceeds the localization Z-vector equation toler-
ance (ZLoc_Tol), there are typically two plausible reasons: (1) the localized orbitals are not sufficiently
tightly converged (too large LocTol) or unconverged, or (2) the orbital localization Hessian has got small
eigenvalues that were not eliminated.
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This is an overview over the options related to the gradient:

# Settings specific to the localization equation z-solver
%mp2 ZLoc_Solver CG # Use conjugate gradient solver (default)

DIR # Use direct solver
JAC # Use DIIS-accelerated Jacobi solver

ZLoc_Tol 1.0e-3 # Residual convergence tolerance for the
# localization Z-solver
# Default: same value as Z_Tol for CPSCF

ZLoc_MaxIter 1024 # Maximum localization Z-solver iterations
ZLoc_MaxDIIS 10 # Number of DIIS vectors for the Jacobi solver
ZLoc_Shift 0.2 # Shift for the Jacobi solver

# Options for eliminating (near-)singular eigenvectors of the
# orbital Hessian of the localization function.

ZLoc_EThresh 3.0e-4 # Eigenvectors with an eigenvalue below
# this threshold are eliminated.

ZLoc_EThresh_core 3.0e-4 # Same as ZLoc_EThresh, but for the core orbitals.
# Default: identical value as ZLoc_EThresh.

# Options for determining eigenvectors of the localization orbital Hessian.
ZLoc_UseDavidson True # Use Davidson diagonalization.

# If false, use direct diagonalization.
ZLoc_DVDRoots 32 # Number of Davidson roots to be determined.
ZLoc_DVDNIter 256 # Number of Davidson iterations.
ZLoc_DVDTolE 3.0e-10 # Eigenvalue tolerance for the Davidson solver.

# Default: 1e-6 * ZLoc_EThresh
ZLoc_DVDTolR 1.0e-7 # Residual tolerance for the Davidson solver.

# Default: 0.1 * (ZLoc_Tol)^2
ZLoc_DVDMaxDim 10 # During Davidson diagonalization, the space of trial

# vectors is expanded up to MaxDim * DVDRoots.
# Choice of the PNO processing algorithm.

DLPNOGrad_Opt AUTO # Chooses automatically between RAM and DISK
# (default and recommended)

RAM # Enforce memory-based one-pass algorithm
DISK # Enforce disk-based two-pass algorithm
BUFFERED # Buffered algorithm. Usage is discouraged.

# Experimental, unpredictable I/O performance.
end

Local MP2 Response Properties

Analytical second derivatives with respect to electric and magnetic fields are implemented for closed-shell DLPNO-
MP2 (as well as double-hybrid DFT).[827] Thus, analytic dipole polarizability and NMR shielding tensors (with
our without GIAOs) are available. All considerations and options discussed in sections Local MP2 and Local MP2
Gradient apply here as well, while additional remarks specific to second derivatives are given below.

• DLPNO-MP2 response property calculations are expected to be faster than the RI-MP2 equivalents for sys-
tems larger than about 70 atoms or 300 correlated electrons.

• Using the NormalPNO default thresholds, relative errors in the calculated properties, due to the local ap-
proximations, are smaller than 0.5%, or 5–10 times smaller than the inherent inaccuracy of MP2 vs a more
accurate method like CCSD(T).

• DLPNO-MP2 second derivatives are much more sensitive to near-linear dependencies and other numerical
issues than the energy or first-order properties. We have made efforts to choose reasonable and robust de-
faults, however we encourage the user to be critical of the results and to proceed with caution, especially if
diffuse basis sets or numerical integration (DFT, COSX) are used. In the latter case, DefGrid3 is recom-
mended.

• In particular, the near-redundancy of PAO domains introduces numerical instabilities in the algorithm.
Hence, these should be truncated at PAOOverlapThresh=1e-5, which is higher than the default for the
energy and gradient. Therefore, the energy and gradient in jobs, which include response property calcula-
tions, may deviate from jobs, which do not. The difference is much smaller than the accuracy of the method
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(vs RI-MP2) but it is still advisable to use the same value of PAOOverlapThresh in all calculations, when
calculating, e.g., relative energies.

• For the same reason, if diffuse basis sets are used, it is advised to set SThresh=1e-6 in the %scf block.

• Another instability arises due to small differences between the occupation number of kept and discarded
PNOs and may result in very large errors. The smallest difference is printed during the DLPNO-MP2 relaxed
density calculation:

Smallest occupation number difference between PNOs and complementary PNOs. Absolute: 3.10e-10 Rel-
ative: 3.28e-02

We found that a relative difference under 10−3, which is not uncommon, may be cause for concern. To regu-
larize the unstable equations, a level shift is applied, which is equal to 𝑇CutPNO multiplied by 𝑇ScalePNO_LShift.
A reasonable value of TScalePNO_LShift=0.1 is set by default for response property calculations but not
for gradient (or energy) calculations, as these were not found to suffer from this issue, so the same consider-
ations as above apply.

• The option DLPNOGrad_Opt=BUFFERED is not implemented for response properties.

A summary of the additional options used for DLPNO-MP2 response properties is given below:

%mp2
PAOOverlapThresh 1e-5 # Threshold for constructing non-redundant PAOs

# Default is 1e-8 for energy/gradient calculations!
TScalePNO_LShift 0.1 # Level shift for PNO constraint equations:

# TScalePNO_LShift * TCutPNO
# Default is 0 for energy/gradient calculations!

end

An example input for a DSD-PBEP86 calculation of the NMR shielding and dipole polarizability tensors employing
DLPNO-MP2 is given below. Note that the def2-TZVP basis set is not necessarily ideal for either shielding or
polarizability.

! DLPNO-DSD-PBEP86/2013 D3BJ def2-TZVP def2-TZVP/C TightSCF NoFrozenCore
! RIJCOSX def2/J DefGrid3 # Use RIJCOSX with tighter grid settings
! NMR # Request NMR shielding
%elprop Polar 1 end # Request polarizability
%mp2 # These settings are default for response properties

Density Relaxed
PAOOverlapThresh 1e-5
TScalePNO_LShift 0.1

end
%eprnmr

GIAO_2el GIAO_2el_RIJCOSX # Also use RIJCOSX for GIAO integrals
end # (This is the default for !RIJCOSX)
*xyzfile 0 1 geometry.xyz

Numerical DLPNO-MP2 derivatives

The various truncations in local correlation methods introduce small discontinuities in the potential energy sur-
face. For example, a small displacement may change the sizes of correlation domains, leading to a slightly larger
or smaller error from the domain approximation. The default DLPNO-MP2 truncation thresholds are conserva-
tive enough, so that these discontinuities should not cause problems in geometry optimizations using analytic
gradients.[687] However, if one wishes to calculate (semi-)numerical derivatives of the DLPNO-MP2 energy,
gradient, or properties using finite differences, large errors can occur. Therefore, in these cases it is advisable
to keep the pair lists and correlation domains fixed upon displacement. Currently, this can be achieved using
the following procedure: first, the calculation at the reference geometry is carried out with the additional setting
StoreDLPNOData=true:

! DLPNO-MP2 def2-SVP def2-SVP/C VeryTightSCF
%base "calc0"

(continues on next page)
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%mp2
StoreDLPNOData true

end
*xyzfile 0 1 geom0.xyz

This will produce the additional files calc0.MapDLPNO00.tmp, calc0.MapDLPNOPre0.tmp, calc0.IJLIST.0.tmp,
calc0.IJLISTSCR.0.tmp, and calc0.IJNPNO.0.tmp, which are needed in the working directory for the next step
together with the localized orbitals in calc0.loc. The calculation at the displaced geometry is then requested as:

! DLPNO-MP2 def2-SVP def2-SVP/C VeryTightSCF
%mp2

RefBaseName "calc0"
end
*xyzfile 0 1 geom1.xyz

The program will use the orbitals from calc0.loc as a starting guess for the localization and map the reference
orbitals to the new ones based on maximal overlap. The lists of correlated and screened out pairs are read from the
files calc0.IJLIST.0.tmp and calc0.IJLISTSCR.0.tmp, while the domain information (MO-PAO, MO-Aux, etc.) is
read from calc0.MapDLPNO00.tmp and calc0.MapDLPNOPre0.tmp. The number of PNOs for a each pair (stored
in calc0.IJNPNO.0.tmp) is also kept consistent with the reference calculation: the ones with the higest occupation
numbers are kept, disregarding 𝑇CutPNO.

This procedure should improve the accuracy and numerical stability for manually calculated geometric derivatives
of various DLPNO-MP2 properties (including those that require analytic first or second derivatives at the displaced
geometries). For semi-numerical Hessian calculations (NumFreq), it is sufficient to add StoreDLPNOData=true
as shown below and ORCA will handle the rest. For the sake of numerical stability, it is also recommended to
increase PAOOverlapThresh and add a PNO level shift for the reasons described in section Local MP2 Response
Properties.

! DLPNO-MP2 def2-SVP def2-SVP/C VeryTightSCF NumFreq
%mp2

StoreDLPNOData true
PAOOverlapThresh 1e-5
TScalePNO_LShift 0.1

end
# geometry definition

Note that in case the orbital localization Hessian is (near-)singular, the mapping of orbitals from reference to
displaced geometries will likely fail. No solution is presently implemented for this problem.

Multi-Level DLPNO-MP2 calculations

With the DLPNO-MP2 method it is possible to treat the interactions among different fragments of a system with
varying accuracy, or exclude some interactions from the electron correlation treatment entirely. A more detailed
discussion in the DLPNO-CCSD(T) context is given in section Multi-Level Calculations and in ref. [812]. Here we
just present the technical capabilities of the MP2 module and the required input. Currently, multilayer calculations
are only available for closed-shell DLPNO-MP2. Multilayer gradients and response properties are also possible.
Fragments must be defined – see Fragment Specification.

! DLPNO-MP2 NoFrozenCore TightPNO
%mp2

LoosePNOFragInter {1 *} # * can be used as a wildcard for either or both indices
NormalPNOFragInter {1 1} {1 2} # multiple fragment pairs can be listed like this
TightPNOFragInter {2 3}
HFFragInter {3 1} {4 2}
CustomFragInter
FragPairs {4 4} {3 4} # pair definition is required
HFOnly false # flag to skip MP2 for these pairs - same as HFFragInter
FrozenCore false # flag to skip core correlation - requires !NoFrozenCore

(continues on next page)
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TCutPNO 1e-8 # custom value for these pairs
TCutDO 1e-2 # custom value for these pairs
TCutDOij 1e-5 # custom value for these pairs
TCutPre 1e-6 # custom value for these pairs

end
end
# geometry and fragment definition

Note that a given pair or fragments can only belong to a single layer and definitions later in the input overwrite
previous ones. This means that if the above input is used in a 4-fragment calculation, the 1-4 interfragment inter-
actions will be treated with LoosePNO thresholds, the interactions within fragment 1 and with fragment 2 – with
NormalPNO thresholds, 2-3 pairs – with TightPNO, 1-3 and 2-4 pairs will be left at the HF level, 3-4 and 4-4 pairs
will be treated with 𝑇CutPNO = 10−8 and 𝑇CutDO = 10−2 (i.e. the NormalPNO defaults), and 2-2 and 3-3 pairs will
be left at the global (TightPNO) settings.

7.14 The Single Reference Correlation Module

ORCA features a variety of single-reference correlation methods for single point energies (restricted to a RHF or
RKS determinant in the closed-shell case and a UHF or UKS determinant in the open-shell case; quasi-restricted
orbitals (QROs)[612] are also supported in the open-shell case). They are all fairly expensive but maybe be used in
order to obtain accurate results in the case that the reference determinant is a good starting point for the expansion
of the many-body wavefunction. The module is called orca_mdci for “matrix driven configuration interaction”.
This is a rather technical term to emphasize that if one wants to implement these methods (CCSD, QCISD etc.)
efficiently, one needs to write them in terms of matrix operations which pretty much every computer can drive at
peak performance. Let us first briefly describe the theoretical background of the methods that we have implemented
in ORCA.

7.14.1 Theory

We start from the full CI hierarchy in which the wavefunction is expanded as:

|Ψ⟩ = |0⟩+ |𝑆⟩+ |𝐷⟩+ |𝑇 ⟩+ |𝑄⟩+ ... (7.113)

where |0⟩ is a single-determinant reference and S, D, T, Q, . . . denote the single, double, triple quadruple and higher
excitations relative to this determinant at the spin-orbital level. As usual, labels 𝑖, 𝑗, 𝑘, 𝑙 refer to occupied orbitals
in |0⟩, 𝑎, 𝑏, 𝑐, 𝑑 to unoccupied MOs and 𝑝, 𝑞, 𝑟, 𝑠 to general MOs. The action of the second quantized excitation
operators 𝑎𝑎𝑖 = 𝑎†𝑎𝑎𝑖 on |0⟩ lead to excited determinants |Φ𝑎𝑖 ⟩ that enter |Ψ⟩ with coefficients 𝐶𝑖𝑎. The variational
equations are:

⟨Φ𝑎𝑖 |𝐻 − 𝐸0| 0 + 𝑆 +𝐷⟩ = 𝐸C𝐶
𝑖
𝑎 − ⟨Φ𝑎𝑖 |𝐻 − 𝐸0|𝑇 ⟩ (7.114)⟨︀

Φ𝑎𝑏𝑖𝑗 |𝐻 − 𝐸0| 0 + 𝑆 +𝐷
⟩︀
= 𝐸C𝐶

𝑖𝑗
𝑎𝑏 −

⟨︀
Φ𝑎𝑏𝑖𝑗 |𝐻 − 𝐸0|𝑇 +𝑄

⟩︀
(7.115)

Further equations coupling triples with singles through pentuples etc.

The total energy is the sum of the reference energy 𝐸0 = ⟨0 |𝐻| 0⟩ and the correlation energy

𝐸C = ⟨0 |𝐻|𝑆 +𝐷⟩ (7.116)

which requires the exact singles- and doubles amplitudes to be known. In order to truncate the series to singles-
and doubles one may either neglect the terms containing the higher excitations on the right hand side (leading to
CISD) or approximate their effect thereby losing the variational character of the CI method (CCSD, QCISD and
CEPA methods). Defining the one- and two-body excitation operators as 𝐶1 =

∑︀
𝑖𝑎 𝐶

𝑖
𝑎𝑎
𝑎
𝑖 , 𝐶2 = 1

4

∑︀
𝑖𝑗𝑎𝑏 𝐶

𝑖𝑗
𝑎𝑏𝑎

𝑎𝑏
𝑖𝑗

one can proceed to approximate the triples and quadruples by the disconnected terms:

|𝑇 ⟩ = 𝐶1𝐶2 |0⟩ (7.117)
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|𝑄⟩ = 1

2
𝐶2

2 |0⟩ (7.118)

As is well known, the CCSD equations contain many more disconnected contributions arising from the various
powers of the 𝐶1 operator (if one would stick to CC logics one would usually label the cluster amplitudes with
𝑡𝑖𝑎, 𝑡

𝑖𝑗
𝑎𝑏,. . . and the 𝑛-body cluster operators with 𝑇𝑛; we take a CI point of view here). In order to obtain the CEPA

type equations from ((7.114)-(7.118)), it is most transparent to relabel the singles and doubles excitations with a
compound label 𝑃 for the internal indices (𝑖) or (ij) and 𝑥 for (𝑎) or (ab). Then, the approximations are as follows:

1

2

⟨
Φ𝑥𝑃

⃒⃒⃒
(𝐻 − 𝐸0)𝐶

2
2

⃒⃒⃒
0
⟩
=

1

2

∑︁
𝑄𝑅𝑦𝑧

𝐶𝑄𝑦 𝐶
𝑅
𝑧

⟨
Φ𝑥𝑃 |𝐻 − 𝐸0|Φ𝑦𝑧𝑄𝑅

⟩
(7.119)

≈ 𝐶𝑃𝑥
∑︁
𝑄𝑦

𝐶𝑄𝑦

⟨
Φ𝑥𝑃 |𝐻|Φ

𝑥𝑦
𝑃𝑄

⟩
(7.120)

= 𝐶𝑃𝑥
∑︁
𝑄𝑦

𝐶𝑄𝑦

⟨
0 |𝐻|Φ𝑦𝑄

⟩
− 𝐶𝑃𝑥

∑︁
𝑄𝑦∪𝑃𝑥

𝐶𝑄𝑦

⟨
0 |𝐻|Φ𝑦𝑄

⟩
(7.121)

≈ 𝐶𝑃𝑥

⎛⎝𝐸C −
∑︁
𝑄∪𝑃

𝜀𝑄

⎞⎠ (7.122)

Here the second line contains the approximation that only the terms in which either Qy or Rz are equal to Px
are kept (this destroys the unitary invariance) and the fourth line contains the approximation that only “exclusion
principle violating” (EPV) terms of internal labels are considered. The notation𝑄𝑦∪𝑃𝑥means “Qy joint with Px”
(containing common orbital indices) and 𝜀𝑄 is the pair correlation energy. The EPV terms must be subtracted from
the correlation energy since they arise from double excitations that are impossible due to the fact that an excitation
out of an occupied or into an empty orbital of the reference determinant has already been performed. Inserting eq.
(7.122) into eq. (7.115) 𝐶𝑃𝑥 𝐸𝐶 cancels and effectively is replaced by the “partial correlation energy”

∑︀
𝑄∪𝑃 𝜀𝑄.

The resulting equations thus have the appearance of a diagonally shifted (“dressed”) CISD equation
⟨Φ𝑥𝑃 |𝐻 − 𝐸0 +∆| 0 + 𝑆 +𝐷⟩ = 0. If the second approximation mentioned above is avoided Malrieu’s (SC)
2-CISD arises. [38, 63, 647, 720, 912] Otherwise, one obtains CEPA/3 with the shift:

−∆𝑖𝑗
𝑎𝑏 =

∑︁
𝑘

(𝜀𝑖𝑘 + 𝜀𝑗𝑘)− 𝜀𝑖𝑗 (7.123)

CEPA/2 is obtained by −∆𝑖𝑗
𝑎𝑏 = 𝜀𝑖𝑗 and CEPA/1 is the average of the CEPA/2 and CEPA/3. As mentioned by

Ahlrichs, [11] no consensus appears to exist in the literature for the appropriate shift on the single excitations. If
one proceeds straightforwardly in the same way as above, one obtains:

⟨
Φ𝑎𝑖

⃒⃒⃒
(𝐻 − 𝐸0)𝐶1𝐶2

⃒⃒⃒
0
⟩
≈ 𝐶𝑖𝑎

(︃
𝐸C − 2

∑︁
𝑘

𝜀𝑖𝑘

)︃
(7.124)

as the appropriate effect of the disconnected triples on the singles. It has been assumed here that only the singles
|Φ𝑎𝑖 ⟩ in 𝐶1 contribute to the shift. If |0⟩ is a HF determinant, the effect of the disconnected triples in the doubles
projection vanishes under the same CEPA approximations owing to Brillouin’s theorem. Averaged CEPA models
are derived by assuming that all pair correlation energies are equal (except 𝜀𝑖𝑖 = 0). As previously discussed by
Gdanitz [291], the averaging of CEPA/1 yields 2

𝑛𝐸C and CEPA/3 𝐸C
4𝑛−6
𝑛(𝑛−1) where 𝑛 is the number of correlated

electrons. These happen to be the shifts used for the averaged coupled-pair functional (ACPF [292]) and averaged
quadratic coupled-cluster (AQCC [841]) methods respectively. However, averaging the singles shift of eq. (7.124)
gives 4

𝑛𝐸C. The latter is also the leading term in the expansion of the AQCC shift for large 𝑛. In view of the
instability of ACPF in certain situations, Gdanitz has proposed to use the AQCC shift for the singles and the
original ACPF shift for the doubles and called his new method ACPF/2 [292]. Based on what has been argued
above, we feel that it would be most consistent with the ACPF approach to simply use 4

𝑛𝐸C as the appropriate
singles shift. We refer to this as NACPF.

It is readily demonstrated that the averaged models may be obtained by a variation of the modified correlation
energy functional:

𝐸C =
⟨0 + 𝑆 +𝐷 |𝐻 − 𝐸0| 0 + 𝑆 +𝐷⟩

1 + 𝑔𝑠 ⟨𝑆|𝑆⟩+ 𝑔𝐷 ⟨𝐷|𝐷⟩
(7.125)
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with g𝑆 and g𝐷 being the statistical factors 4
𝑛 , 2

𝑛 , 4𝑛−6
𝑛(𝑛−1) , as appropriate for the given method. Thus, unlike the

CEPA models, the averaged models fulfill a stationarity principle and are unitarily invariant. However, if one thinks
about localized internal MOs, it appears evident that the approximation of equal pair energies must be one of rather
limited validity and that a more detailed treatment of the electron pairs is warranted. Maintaining a stationarity
principle while providing a treatment of the pairs that closely resembles that of the CEPA methods was achieved
by Ahlrichs and co-workers in an ingenious way with the development of the CPF method [16]. In this method,
the correlation energy functional is written as:

𝐸C = 2
∑︁
𝑃𝑥

⟨︀
Φ𝑥𝑝 |𝐻| 0

⟩︀
𝑁𝑃

+
∑︁
𝑃𝑄𝑥𝑦

⟨
Φ𝑥𝑝 |𝐻 − 𝐸0|Φ𝑦𝑄

⟩
√︀
𝑁𝑃𝑁𝑄

(7.126)

with

𝑁𝑃 = 1 +
∑︁
𝑄

𝑇𝑃𝑄
∑︁
𝑦

(𝐶𝑄𝑦 )
2

(7.127)

The topological matrix for pairs 𝑃 =(ij) and 𝑄 = (𝑘𝑙) is chosen as: [440]

𝑇𝑃𝑄 =
𝛿𝑖𝑘 + 𝛿𝑖𝑙

2𝑛𝑖
+
𝛿𝑗𝑘 + 𝛿𝑗𝑙

2𝑛𝑗
(7.128)

with 𝑛𝑖 being the number of electrons in orbital 𝑖 in the reference determinant. The singles out of orbital 𝑖 are
formally equated with 𝑃 = (𝑖𝑖). At the spin-orbital level, 𝑛𝑖 = 1, for closed shells 𝑛𝑖 = 2. Using the same
topological matrix in ∆𝑃 =

∑︀
𝑄 𝑇𝑃𝑄𝜀𝑄 one recovers the CEPA/1 shifts for the doubles in eq. (7.124). It is

straightforward to obtain the CPF equivalents of the other CEPA models by adjusting the 𝑇𝑃𝑄 matrix appropriately.
In our program, we have done so and we refer below to these methods as CPF/1, CPF/2 and CPF/3 in analogy to the
CEPA models (CPF/1 ≡CPF). In fact, as discussed by Ahlrichs and co-workers, variation of the CPF-functional
leads to equations that very closely resemble the CEPA equation and can be readily implemented along the same
lines as a simple modification of a CISD program. Ahlrichs et al. argued that the energies of CEPA/1 and CPF/1
should be very close. We have independently confirmed that in the majority of cases, the total energies predicted
by the two methods differ by less than 0.1 mEh.

An alternative to the CPF approach which is also based on variational optimization of an energy functional is
the VCEPA method [455]. The equations resulting from application of the variational principle to the VCEPA
functional are even closer to the CEPA equations than for CPF so that the resulting energies are practically indis-
tinguishable from the corresponding CEPA values. The VCEPA variants are referred to as VCEPA/1, VCEPA/2,
and VCEPA/3 in analogy to CEPA and CPF. A strictly size extensive energy functional (SEOI) which is invariant
with respect to unitary transformations within the occupied and virtual orbital subspaces is also available [456] (an
open-shell version is not implemented yet).

Again, a somewhat critical point concerns the single excitations. They do not account for a large fraction of the
correlation energy. However, large coefficients of the single excitations lead to instability and deterioration of the
results. Secondly, linear response properties are highly dependent on the effective energies of the singles and their
balanced treatment is therefore important. Since the CEPA and CPF methods amount to shifting down the diagonal
energies of the singles and doubles, instabilities are expected if the effective energy of an excitation approaches
the reference energy of even falls below it. In the CPF method this would show up as denominators 𝑁𝑃 that are
too small. The argument that the CPF denominators are too small has led Chong and Langhoff to the proposal
of the MCPF method which uses a slightly more elaborate averaging than (𝑁𝑃𝑁𝑄)1/2 [173].1 However, their
modification was solely based on numerical arguments rather than physical or mathematical reasoning. In the light
of Eq. (7.124) and the performance of the NACPF, it appears to us that for the singles one should use twice the
𝑇𝑃𝑄 proposed by Ahlrichs and co-workers. The topological matrix 𝑇𝑃𝑄 is modified in the following way for the
(very slightly) modified method to which we refer to as NCPF/1:

𝑇𝑖𝑗,𝑘𝑙 =
𝛿𝑖𝑘 + 𝛿𝑖𝑙

2𝑛𝑖
+
𝛿𝑗𝑘 + 𝛿𝑗𝑙

2𝑛𝑗
(7.129)

𝑇𝑖𝑗,𝑘 = 0 (7.130)
1 This method – although it has been rather extensively used in the past – is not implemented in ORCA. We recommend to use our NCPF/1

instead.
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𝑇𝑖,𝑘𝑙 = 2
𝛿𝑖𝑘 + 𝛿𝑖𝑙
𝑛𝑖

(7.131)

𝑇𝑖,𝑘 = 0 (7.132)

(note that 𝑇𝑃𝑄 ̸= 𝑇𝑄𝑃 for this choice). Thus, the effect of the singles on the doubles is set to zero based on the
analysis of the CEPA approximations and the effect of the singles on the singles is also set to zero. This is a sensible
choice since the product of two single excitations is a double excitation which is already included in the SD space
and thus none of them can belong to the outer space. It is straightforward to adapt this reasoning about the single
excitations to the CEPA versions as well as to NCPF/2 and NCPF/3.

The aforementioned ambiguities arising from the use of single excitations in coupled-pair methods can be avoided
by using correlation-adapted orbitals instead of Hartree-Fock orbitals thus eliminating the single excitations. There
are two alternatives: (a) Brueckner orbitals and (b) optimized orbitals obtained from the variational optimization of
the electronic energy with respect to the orbitals. Both approaches have already been used for the coupled-cluster
doubles (CCD) method [360, 777] and later been extended to coupled-pair methods [454]. In the case of CCD,
orbital optimization requires the solution of so-called Λ (or Z vector) equations [745]. There is, however, a cheaper
alternative approximating the Z vector by a simple analytical formula [457].

Furthermore, the parametrized coupled-cluster (pCCSD) method of Huntington and Nooijen [405], which com-
bines the accuracy of coupled-pair type methods for (usually superior to CCSD, at least for energies and energy
differences) with the higher stability of the coupled-cluster methods, is an attractive alternative. Comprehensive nu-
merical tests [404] indicate that particularly pCCSD(-1,1,1) (or pCCSD/1a) and pCCSD (-1.5,1,1) (or pCCSD/2a)
have great potential for accurate computational thermochemistry. These methods can be employed by adding the
“simple” keywords pCCSD/1a or pCCSD/2a to the first line of input. As mentioned in section Local Coupled Pair
and Coupled-Cluster Calculations, the LPNO variants of the pCCSD methods are also available for RHF and UHF
references via usage of the simple keywords LPNO-pCCSD/1a and LPNO-pCCSD/2a.

7.14.2 Closed-Shell Equations

Proceeding from spin-orbitals to the spatial orbitals of a closed-shell determinant leads to the actual working equa-
tions of this work. Saebo, Meyer and Pulay have exploited the generator state formalism to arrive at a set of highly
efficient equations for the CISD problem [705]. A similar set of matrix formulated equations for the CCSD and
QCISD cases has been discussed by Werner and co-workers [355] and the MOLPRO implementation is widely rec-
ognized to be particularly efficient. Equivalent explicit equations for the CISD and CCSD methods were published
by Scuseria et al. [778]2 The doubles equations for the residual “vector” 𝜎 are (𝑖 ⩽ 𝑗, all 𝑎, 𝑏):

𝜎𝑖𝑗𝑎𝑏 = 𝐾𝑖𝑗
𝑎𝑏 +𝐾

(︀
C𝑖𝑗
)︀
𝑎𝑏

+
{︀
F𝑉C𝑖𝑗 +C𝑖𝑗F𝑉

}︀
𝑎𝑏
−
∑︀
𝑘

{︁
𝐹𝑗𝑘𝐶

𝑖𝑘
𝑎𝑏 + 𝐹𝑖𝑘𝐶

𝑘𝑗
𝑎𝑏

}︁
+
∑︀
𝑘𝑙

𝐾𝑖𝑗
𝑘𝑙𝐶

𝑘𝑙
𝑎𝑏

+
∑︀
𝑘

{︀(︀
2C𝑖𝑘 −C𝑖𝑘+

)︀ (︀
K𝑘𝑗 − 1

2J
𝑘𝑗
)︀
+
(︀
K𝑖𝑘 − 1

2J
𝑖𝑘
)︀ (︀

2C𝑘𝑗 −C𝑘𝑗+
)︀}︀
𝑎𝑏

−
∑︀
𝑘

{︀
1
2C

𝑖𝑘+J𝑗𝑘+ + 1
2J

𝑖𝑘C𝑘𝑗+ + J𝑗𝑘C𝑖𝑘 +C𝑘𝑗J𝑖𝑘+
}︀
𝑎𝑏

+𝐶𝑖𝑎𝐹
𝑗
𝑏 + 𝐶𝑗𝑏𝐹

𝑖
𝑎 −

∑︀
𝑘

{︁
𝐾𝑗𝑖
𝑘𝑎𝐶

𝑘
𝑏 +𝐾𝑖𝑗

𝑘𝑏𝐶
𝑘
𝑎

}︁
+
{︀
K𝑖𝑎C𝑗 +K𝑗𝑎C𝑖

}︀
𝑏

−∆𝑖𝑗𝐶𝑖𝑗𝑎𝑏

(7.133)

The singles equations are:

𝜎𝑖𝑎 = 𝐹 𝑖𝑎 +
{︀
F𝑉C𝑖

}︀
𝑎
−
∑︀
𝑗

𝐹𝑖𝑗𝐶
𝑗
𝑎 −

∑︀
𝑗𝑘𝑏

(︁
2𝐾𝑖𝑘

𝑗𝑏 − 𝐽 𝑖𝑘𝑗𝑏
)︁
𝐶𝑘𝑗𝑏𝑎

+
∑︀
𝑗

{︀(︀
2K𝑖𝑗 − J𝑖𝑗

)︀
C𝑗 + F𝑗

(︀
2C𝑖𝑗+ −C𝑖𝑗

)︀
+
⟨︀(︀
2K𝑖𝑎 −K𝑖𝑎+

)︀
C𝑖𝑗+

⟩︀}︀
𝑎

−∆𝑖𝐶𝑖𝑎

(7.134)

The following definitions apply:

𝐾
(︀
C𝑖𝑗
)︀
𝑎𝑏

=
∑︁
𝑐𝑑

(𝑎𝑐|𝑏𝑑)𝐶𝑖𝑗𝑐𝑑 (7.135)

𝐾𝑝𝑞
𝑟𝑠 = (𝑝𝑟|𝑞𝑠) (7.136)

2 Our coupled-cluster implementation is largely based on this nice paper. The equations there have been extensively verified to be correct.
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𝐽𝑝𝑞𝑟𝑠 = (𝑝𝑞|𝑟𝑠) (7.137)

⟨AB⟩ =
∑︁
𝑝𝑞

𝐴𝑝𝑞𝐵𝑞𝑝 (7.138)

The two-electron integrals are written in (11|12) notation and F is the closed-shell Fock operator with F 𝑉 being
its virtual sub-block. We do not assume the validity of Brillouin’s theorem. The amplitudes 𝐶𝑖𝑎, 𝐶

𝑖𝑗
𝑎𝑏 have been

collected in vectorsC𝑖 and matricesC𝑖𝑗 wherever appropriate. The shifts∆𝑖 and∆𝑖𝑗 are dependent on the method
used and are defined in Table Table 7.18 for each method implemented in ORCA.

Table 7.18: Summary of the diagonal shifts used in various singles- and doubles methods discussed in this chapter.
The quantities 𝜀𝑖 and 𝜀𝑖𝑗 are the correlation energy increments brought about by the single- and the double excita-
tions respectively. The partial denominators for the CPF type methods 𝑁𝑖 and 𝑁𝑖𝑗 are specified in eq. (7.127).

Method Doubles Shift Singles Shift
CISD 𝐸C 𝐸C

CEPA/0 0 0
CEPA/1 1

2 (𝜀𝑖 + 𝜀𝑗) +
1
4

∑︀
𝑘

(𝜀𝑖𝑘 + 𝜀𝑗𝑘)
1
2𝜀𝑖𝑖 +

1
2

∑︀
𝑘

𝜀𝑖𝑘

CEPA/2 𝛿𝑖𝑗𝜀𝑖 + 𝜀𝑖𝑗 𝜀𝑖 + 𝜀𝑖𝑖
CEPA/3 (𝜀𝑖 + 𝜀𝑗)− 𝛿𝑖𝑗𝜀𝑖 − 𝜀𝑖𝑗 + 1

2

∑︀
𝑘

(𝜀𝑖𝑘 + 𝜀𝑗𝑘) 𝜀𝑖 +
∑︀
𝑘

𝜀𝑖𝑘

NCEPA/1 1
4

∑︀
𝑘

(𝜀𝑖𝑘 + 𝜀𝑗𝑘) 𝜀𝑖𝑖 +
∑︀
𝑘

𝜀𝑖𝑘

NCEPA/2 𝜀𝑖𝑗 2𝜀𝑖𝑖
NCEPA/3 −𝜀𝑖𝑗 + 1

2

∑︀
𝑘

(𝜀𝑖𝑘 + 𝜀𝑗𝑘) 2
∑︀
𝑘

𝜀𝑖𝑘

CPF/1 𝑁𝑖𝑗

{︂
1
2 (

𝜀𝑖
𝑁𝑖

+
𝜀𝑗
𝑁𝑗

) + 1
4

∑︀
𝑘

( 𝜀𝑖𝑘𝑁𝑖𝑘
+

𝜀𝑗𝑘
𝑁𝑗𝑘

)

}︂
𝑁𝑖

{︂
1
2
𝜀𝑖𝑖
𝑁𝑖𝑖

+ 1
2

∑︀
𝑘

𝜀𝑖𝑘
𝑁𝑖𝑘

}︂
CPF/2 𝑁𝑖𝑗

{︁
𝛿𝑖𝑗

𝜀𝑖
𝑁𝑖

+
𝜀𝑖𝑗
𝑁𝑖𝑗

}︁
𝑁𝑖

{︁
𝜀𝑖
𝑁𝑖

+ 𝜀𝑖𝑖
𝑁𝑖𝑖

}︁
CPF/3 𝑁𝑖𝑗

{︂
𝜀𝑖
𝑁𝑖

(1− 𝛿𝑖𝑗) + 𝜀𝑗
𝑁𝑗
− 𝜀𝑖𝑗

𝑁𝑖𝑗
+ 1

2

∑︀
𝑘

( 𝜀𝑖𝑘𝑁𝑖𝑘
+

𝜀𝑗𝑘
𝑁𝑗𝑘

)

}︂
𝑁𝑖

{︂
𝜀𝑖
𝑁𝑖

+
∑︀
𝑘

𝜀𝑖𝑘
𝑁𝑖𝑘

}︂
NCPF/1 1

4𝑁𝑖𝑗
∑︀
𝑘

( 𝜀𝑖𝑘𝑁𝑖𝑘
+

𝜀𝑗𝑘
𝑁𝑗𝑘

) 𝑁𝑖

{︂
𝜀𝑖𝑖
𝑁𝑖𝑖

+
∑︀
𝑘

𝜀𝑖𝑘
𝑁𝑖𝑘

}︂
NCPF/2 𝑁𝑖𝑗

𝜀𝑖𝑗
𝑁𝑖𝑗

2𝑁𝑖
𝜀𝑖𝑖
𝑁𝑖𝑖

NCPF/3 𝑁𝑖𝑗

{︂
− 𝜀𝑖𝑗
𝑁𝑖𝑗

+ 1
2

∑︀
𝑘

( 𝜀𝑖𝑘𝑁𝑖𝑘
+

𝜀𝑗𝑘
𝑁𝑗𝑘

)

}︂
2𝑁𝑖

∑︀
𝑘

𝜀𝑖𝑘
𝑁𝑖𝑘

ACPF 2
𝑛𝐸C

2
𝑛𝐸C

ACPF/2 2
𝑛𝐸C

[︁
1− (𝑛−3)(𝑛−2)

𝑛(𝑛−1)

]︁
𝐸C

NACPF 2
𝑛𝐸C

4
𝑛𝐸C

AQCC
[︁
1− (𝑛−3)(𝑛−2)

𝑛(𝑛−1)

]︁
𝐸C

[︁
1− (𝑛−3)(𝑛−2)

𝑛(𝑛−1)

]︁
𝐸C

The QCISD method requires some slight modifications. We found it most convenient to think about the effect of the
nonlinear terms as a “dressing” of the integrals occurring in equations (7.133) and (7.134). This attitude is close
to the recent arguments of Heully and Malrieu and may even open interesting new routes towards the calculation
of excited states and the incorporation of connected triple excitations.[391] The dressed integrals are given by:

𝐹𝑖𝑘 = 𝐹𝑖𝑘 +
∑︁
𝑙

⟨︀
C𝑖𝑙

(︀
2K𝑘𝑙 −K𝑘𝑙+

)︀⟩︀
(7.139)

𝐹𝑎𝑏 = 𝐹𝑎𝑏 −
∑︁
𝑘𝑙

{︀
C𝑘𝑙

(︀
2K𝑘𝑙 −K𝑘𝑙+

)︀}︀
𝑎𝑏 (7.140)

𝐹𝑘𝑐 = 𝐹𝑘𝑐 +
∑︁
𝑙

(︀
2K𝑘𝑙 −K𝑘𝑙+

)︀
C𝑙

(7.141)

�̄�𝑖𝑗
𝑘𝑙 = 𝐾𝑖𝑗

𝑘𝑙 +
⟨︀
K𝑘𝑙T𝑘𝑙+

⟩︀
(7.142)

�̄�𝑖𝑗
𝑎𝑏 = 𝐾𝑖𝑗

𝑎𝑏 +
∑︁
𝑘

{︂
C𝑖𝑘

(︂
K𝑘𝑗 − 1

2
K𝑗𝑘

)︂
+C𝑘𝑖K𝑘𝑗

}︂
𝑎𝑏

(7.143)
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𝐽 𝑖𝑗𝑎𝑏 = 𝐽 𝑖𝑗𝑎𝑏 +
∑︁
𝑘

{︀
C𝑘𝑖K𝑗𝑘

}︀
𝑎𝑏 (7.144)

The CCSD method can be written in a similar way but requires 15 additional terms that we do not document here.
They may be taken conveniently from our paper about the LPNO-CCSD method [617].

A somewhat subtle point concerns the definition of the shifts in making the transition from spin-orbitals to spatial
orbitals. For example, the CEPA/2 shift becomes in the generator state formalism:

−
⟨
Φ̃𝑎𝑏𝑖𝑗 |∆𝑖𝑗 |Ψ

⟩
= 𝐶𝑖𝑗𝑎𝑏

(︂
1

3
𝜀𝛼𝛼𝑖𝑗 +

2

3
𝜀𝛼𝛽𝑖𝑗

)︂
+ 𝐶𝑖𝑗𝑏𝑎

(︂
−1

3
𝜀𝛼𝛼𝑖𝑗 +

1

3
𝜀𝛼𝛽𝑖𝑗

)︂
(7.145)

(Φ̃𝑎𝑏𝑖𝑗 is a contravariant configuration state function, see Pulay et al. [745]. The parallel and antiparallel spin pair
energies are given by:

𝜀𝛼𝛼𝑖𝑗 =
1

2

∑︁
𝑎𝑏

[︁
𝐾𝑖𝑗
𝑎𝑏 −𝐾

𝑖𝑗
𝑏𝑎

]︁ (︁
𝐶𝑖𝑗𝑎𝑏 − 𝐶

𝑖𝑗
𝑏𝑎

)︁
(7.146)

𝜀𝛼𝛽𝑖𝑗 =
1

2

∑︁
𝑎𝑏

𝐾𝑖𝑗
𝑎𝑏𝐶

𝑖𝑗
𝑎𝑏 (7.147)

This formulation would maintain the exact equivalence of an orbital and a spin-orbital based code. Only in the
(unrealistic) case that the parallel and antiparallel pair correlation energies are equal the CEPA/2 shift of Table
7.18 arise. However, we have not found it possible to maintain the same equivalence for the CPF method since the
electron pairs defined by the generator state formalism are a combination of parallel and antiparallel spin pairs. In
order to maintain the maximum degree of internal consistency we have therefore decided to follow the proposal of
Ahlrichs and co-workers and use the topological matrix 𝑇𝑃𝑄 in equation (7.128) and the equivalents thereof in the
CEPA and CPF methods that we have programmed.

7.14.3 Open-Shell Equations

We have used a non-redundant set of three spin cases (𝛼𝛼, 𝛽𝛽, 𝛼𝛽) for which the doubles amplitudes are optimized
separately. The equations in the spin-unrestricted formalism are straightforwardly obtained from the corresponding
spin orbital equations by integrating out the spin. For implementing the unrestricted QCISD and CCSD method,
we applied the same strategy (dressed integrals) as in the spin-restricted case. The resulting equations are quite
cumbersome and will not be shown here explicitly [361].

Note that the definitions of the spin-unrestricted CEPA shifts differ from those of the spin-restricted formalism
described above (see Kollmar et al. [361]). Therefore, except for CEPA/1 and VCEPA/1 (and of course CEPA/0),
for which the spin-adaptation of the shift can be done in a consistent way, CEPA calculations of closed-shell
molecules yield slightly different energies for the spin-restricted and spin-unrestricted versions. Since variant 1 is
also the most accurate among the various CEPA variants [618], we recommend to use variant 1 for coupled-pair
type calculations. For the variants 2 and 3, reaction energies of reactions involving closed-shell and open-shell
molecules simultaneously should be calculated using the spin-unrestricted versions only.

A subtle point for open-shell correlation methods is the choice of the reference determinant [619]. Single reference
correlation methods only yield reliable results if the reference determinant already provides a good description of
the systems electronic structure. However, an UHF reference wavefunction suffers from spin-contamination which
can spoil the results and lead to convergence problems. This can be avoided if quasi-restricted orbitals (QROs)
are used [391, 612] since the corresponding zeroth-order wavefunction is an eigenfunction of the 𝑆2 operator and
thus, no severe spin-contamination will appear. The coupled-pair and coupled-cluster equations will be still solved
in a spin-unrestricted formalism but the energy will be slightly higher compared to the results obtained with a
spin-polarized UHF reference determinant. Furthermore, especially for more difficult systems like e.g. transition
metal complexes, it is often advantageous to use Kohn-Sham (KS) orbitals instead of HF orbitals.
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7.14.4 Local correlation

As described in previous sections of the manual, ORCA features the extremely powerful LPNO and DLPNO meth-
ods. “LPNO” stands for “local pair natural orbital” approximation and DLPNO for “domain based LPNO”. These
methods are designed to provide results as close as possible to the canonical coupled-cluster results while gaining
orders of magnitude of efficiency through a series of well-controlled approximations. In fact, typically about 99.8%
to 99.9% of the canonical correlation energy is recovered in such calculations. Even higher accuracy is achievable
but will ultimately come at much higher computational cost. The default cut-offs are set such that the vast major-
ity of chemically meaningful energy differences are reproduced to better than 1 kcal/mol relative to the canonical
results with the same basis set. Of the LPNO and DLPNO methods, the LPNO is the older one and will eventually
be discarded from ORCA. It has some higher order scaling steps (up to 𝑁5) while DLPNO is linear scaling and
of similar accuracy. Amongst the DLPNO methods, the first generation implementation of the DLPNO methods
(DLPNO2013) is only near-linear scaling, while the DLPNO implementation since ORCA 4.0 is linear scaling.

It is important to understand that the LPNO and DLPNO implementations are intimately tied to the RI approxima-
tion. Hence, in these calculations one must specify a fitting basis set. The same rules as for RI-MP2 apply: the
auxiliary basis sets optimized for MP2 are just fine for PNO calculations. You can specify several aux bases for
the same job and the program will sort it out correctly.

The theory of the LPNO methods has been thoroughly described in the literature in a number of original research
papers.[617, 623, 721, 723]

Hence, it is sufficient to only point to a few significant design principles and features of these methods:

1. The correlation energy of any molecule can be written as a sum over the correlation energies of pairs of
electrons, labelled by the internal indices (𝑖𝑗) of pairs of orbitals that are occupied in the reference deter-
minant. If the orbitals (𝑖) and (𝑗) are localized, the pair correlation energy 𝜖𝑖𝑗 falls off very quickly with
distance, quite typically by about an order of magnitude per chemical bond that is separating orbitals (𝑖) and
(𝑗). Hence, by using a suitable cut-off for a reasonable pair correlation energy estimate many electron pairs
can be removed from the high-level treatment and only a linear scaling number of electron pairs will make
a significant contribution to the correlation energy.

2. The natural estimate for the pair correlation energy comes from second order many body perturbation theory
(MP2). However, canonical MP2 is scaling with the fifth power of the molecular size and hence, is not
really attractive from a theoretical nor computational point of view. Owing to the small pre-factor RI-MP2
goes a long way to provide reasonably cheap estimates for pair correlation energies. However, if one uses
localized internal orbitals, then the MP2 energy expression must be cast in form of linear equations. On the
other hand, if one uses canonical virtual orbitals together with localized internal orbitals and neglects the
coupling terms coming from purely internal Fock matrix elements F(𝑖,𝑘) and F(𝑘,𝑗) then one ends up with
a fair approximation that is termed “semi-canonical MP2” in ORCA. It serves as a guess in the older LPNO
method. For DLPNO this method is also not attractive.

3. In DLPNO, the guess is more sophisticated. Here the virtual space is spanned by projected atomic orbitals
(PAOs) that are assigned to domains of atoms that are associated with each local internal orbital (𝑖) and
with the union of two such domains (𝑖) and (𝑗) for the electron pair (𝑖𝑗). If one applies the semi-local
approximation, one obtains an excellent approximation to the semi-canonical MP2 energy. This is called the
“semi-local” approximation and it scales linearly with respect to computational effort. If one iterates these
equations to self-consistency to eliminate the coupling terms F(𝑖,𝑘) and F(𝑘,𝑗) then one obtains the full local
MP2 method (LMP2 or L-MP2). By making the domains large enough the results approach the canonical
MP2 energy to arbitrary accuracy while still being linear scaling with respect to computational resources.
This method is the default for the DLPNO method.

4. Basically, the high-spin open-shell version of the DLPNO uses the same strategy as the closed-shell variant
to efficiently generate the open-shell PNOs in a consistent manner to the closed-shell formalism. Through the
development of the UHF-LPNO-CCSD method, we have realized that use of the unrestricted MP2 (UMP2)
approach to define the open-shell PNOs introduces a few complexities; (1) the PNOs for 𝛽 spin orbitals
cannot be defined for 𝛼-𝛼 electron pairs and vice versa, (2) the diagonal PNOs for singly occupied orbitals
cannot be properly defined, and (3) the PNO space does not become identical to that in the closed-shell
LPNO framework in the closed-shell limit. However, to program all the unrestricted CCSD terms in the
LPNO basis, those PNOs are certainly necessary. Therefore, in the UHF-LPNO-CCSD implementation,
several terms, which, in many cases, give rather minor contributions in the correlation energy are omitted.
Due to these facts, the UHF-LPNO-CCSD does not give identical results to that of RHF-LPNO-CCSD in
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the closed-shell limit. In addition, screening of the weak pairs on the basis of the semi-canonical UMP2
pair-energy results in somewhat unbalanced treatment of the closed- and open-shell states in some cases,
leading to rather larger errors in the reaction energies. To overcome those issues, in the high-spin open-
shell DLPNO-CCSD method, the PNOs are generated in the framework of semi-canonical NEVPT2 which
smoothly converges to the RHF-MP2 counterpart in the closed-shell limit. The open-shell DLPNO-CCSD,
which is made available from ORCA 4.0, includes a full set of the open-shell CCSD equations and is designed
as a natural extension to the RHF-DLPNO-CCSD.

5. Screening of the electron pairs according to a truncation parameter (in ORCA it is called 𝑇CutPairs) is not
sufficient to obtain a highly performing local electronic structure method. The original work of Pulay sug-
gested to limit excitations out of the internal orbitals (𝑖) and (𝑗) to the domain associated with the pair (𝑖𝑗).
While this works well and has been implemented to perfection by Werner, Schütz and co-workers over the
years,[755, 756, 775, 776] the pre-factor of such calculations is high, since the domains have to be chosen
large in order to recover 99.9% or more of the canonical correlation energy.

6. The ORCA developers have therefore turned to an approach that has been used with a high degree of suc-
cess in the early 1970s by Meyer, Kutzelnigg, Staemmler and their co-workers, namely the method of “pair
natural orbitals” (PNOs).[10, 583, 584, 887]
As shown by Loewdin in his seminal paper from 1955, natural orbitals (the eigenfunctions of the one-particle
density matrix) provide the fastest possible convergence of the correlated wavefunction with respect to the
number of one-particle functions included in the virtual space. It has been amply established that approxi-
mate natural orbitals are almost as succesful as the true natural orbitals (which would require the knowledge
of the exact wavefunction) in this respect. While the success of approximate correlation treatments of many
particle systems that use approximate natural orbitals of the whole systems are somewhat limited, this is not
the case for pair natural orbitals. The latter have first been suggested as a basis for correlation calculations
by England and co-workers and, at the time, were given the name “pseudonatural orbitals”, a term that was
used by Meyer throughout his pioneering work.

7. The PNOs are approximate natural orbitals of a given electron pair. In order to generate them one requires a
one particle pair density matrix 𝐷𝑖𝑗 the eigenfunctions of which are the PNOs themselves while the corre-
sponding eigenvalues are the PNO occupation numbers. While there are many creative possibilities that can
lead to slightly different PNO sets, a quite useful and natural approximation is to generate such a density from
the MP2 amplitudes as an expectation value (the “unrelaxed” MP2 density. One then uses a second thresh-
old (in ORCA𝑇CutPNO) that controls the PNOs to be included in the calculation. PNOs with an occupation
number < 𝑇CutPNO are neglected.

8. PNOs of a given electron pair form an orthonormal set. However, PNOs belonging to different electron pairs
are not orthonormal and hence they overlap. This non-orthogonality leads to surprisingly few complica-
tions because the PNOs stay orthogonal to all occupied orbitals. In practice, the equations for PNO-based
correlation calculations are hardly more complex than the canonical equations.

9. The nice feature of these pair densities is that they become small when the pair interaction becomes small.
Hence weak pairs are correlated by very few PNOs. Therefore, the PNO expansion of the wavefunction is
extremely compact and there only is a linear scaling number of significant excitation amplitudes that need to
be considered.

10. A great feature of the PNOs is that they are “self-adapting” to the correlation situation that they are supposed
to describe. Hence, they are as delocalized as required by the physics and there is no ad-hoc assumption
about their location in space. However, it is clear that the PNOs are located in the same region of space as
the internal orbitals that they correlate because otherwise they would not contribute to the correlation energy.

11. In the iterative local MP2, a set of PNOs is calculated for the MP2 calculation from the semicanonical
amplitudes first using the cutoff TCutPNO×LMP2ScaleTCutPNO. The size of the resulting PNO space should
be comparable with DLPNO-MP2. After the iterations have converged, a (smaller) set of PNOs for the
CCSD double excitation amplitudes is generated from the iterated local MP2 amplitudes in the (larger) PNO
basis. The PNOs for the single excitation amplitudes are always calculated using the semicanonical MP2
amplitudes, as they require a much more conservative PNO truncation threshold.

12. Capitalizing on this feature one can define generous domains and expand the PNOs in terms of the PAOs
and auxiliary fit functions (for the RI approximations) that are contained in these domains. In ORCA this is
controlled by the third significant truncation parameter 𝑇CutMKN. This is the basis of the DLPNO method.
In the older LPNO method, the PNOs are expanded in terms of the canonical virtual orbitals and 𝑇CutMKN
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is only used for a local fit to the PNOs. In the linear-scaling DLPNO implementation the domains expanding
the PNOs in terms of the PAOs are controlled via 𝑇CutDO.

13. PNO expansions have the amazing advantage that the PNOs converge to a well-defined set as the basis set is
approaching completeness. Hence, the increase in the number of PNOs per electron pair is very small upon
enlargement of the orbital basis. In other words, correlation calculations with large basis sets are not that
much more expensive than correlation calculations with small basis sets. Thus, the advantage of PNO over
canonical calculations increases with the size of the basis set. This is a great feature as large and flexible
basis sets are a requirement for meaningful correlation calculations.

14. In summary, DLPNO and LPNO calculations are controlled by only three cut-off parameters with well-
defined meanings: a)𝑇CutPairs, the cut-off for the electron pairs to be included in the coupled-pair or coupled-
cluster iterations, b) 𝑇CutPNO which controls how many PNOs are retained for a given electron pair and c)
𝑇CutMKN that controls how large the domains are that the PNOs expand over. For the linear-scaling DLPNO
calculations the domain sizes are controlled via 𝑇CutDO.

15. It is clear that owing to the truncations a certain amount of error is introduced in the results. However, having
the LMP2 results available, one can compensate for the errors coming from 𝑇CutPairs and 𝑇CutPNO. This
is done in ORCA and the correction is added to the final correlation energy, thus bringing it very close (to
mEh accuracy or better) to the canonical result. 𝑇CutMKN is best dealt with by making it conservative (at
1e−3 to 1e−4 the domains are about 20–30 atoms large, which is sufficient for an accurate treatment).

16. Note that the LPNO and DLPNO methods do not introduce any real space cut-offs. We refrain from doing
so and insist in our method development by making all truncations based on wavefunction or energy param-
eters. We feel that this is the most unbiased approach and it involves no element of “chemical intuition” or
“prejudice”.

17. In the DLPNO method a highly efficient screening mechanism is operative. In this method one first obtains
a (quadratically scaling) multipole estimate for the pair correlation energy that is extremely fast to compute
(a few seconds, even for entire proteins). Only if this estimate is large enough, a given electron pair is even
considered for a LMP2 treatment. Quite typically pairs with energy contributions of 1e−6 Eh and smaller
are very well described by the dipole-dipole estimate. Specifically, we drop pairs with estimated energies
< 0.01×𝑇CutPairs and add their multipole energy sum to the final correlation energy. These corrections tend
to be extremely small, even for large molecules and are insignificant for the energy. However, importantly, the
multipole estimate ensures linear scaling in the MP2 treatment. The pairs that then do not survive the pair-
prescreening are called “weak pairs” in the ORCA or DLPNO sense. They still play a role in the calculation
of the triple excitation correction.

18. The calculation of triple excitation contributions is more involved and one does not have a perturbative
estimate available since the (T) contribution is perturbative itself. While the (T) contribution is much smaller
than the CCSD correlation energy, the errors introduced by the various local and PNO approximations can
be significant. We found that one has to include triples with at least one pair being a “weak” LMP2 pair
(with its LMP2 amplitudes) in order to arrive at sufficiently accurate results.

Given these explanations the various cut-off parameters that can be controlled in LPNO and DLPNO calcula-
tions should be understandable and are listed below. We emphasize again that only the three thresholds 𝑇CutPairs,
𝑇CutPNO and 𝑇CutMKN should be touched by the user, unless very specific questions are addressed. The recom-
mended way to control the accuracy of calculations is to specify “TightPNO”, “NormalPNO” or “LoosePNO”
keywords, rather than to change numeric values of cutoffs. Individual thresholds should normally not be changed,
as the defaults are sensible and lead to good cost/performance ratios.

%mdci TCutPairs 1e-4 # cut-off for the pair truncation
TCutPNO 3.33e-7 # cut-off for the PNO truncation
TCutDO 1e-2 # cut-off for the DLPNO domain construction
TCutMKN 1e-3 # cut-off for the local fit

# for DLPNO2013: also domain construction
# remaining options, tied to the three main cut-offs,
EXPERTS ONLY!

Localize true # flag for using localized orbitals
LocMet AHFB # Localization method.

# Options: PM, FB, IAOIBO, IAOBOYS, NEWBOYS, AHFB
LocTol 1e-6 # Absolute threshold for the localization procedure

(continues on next page)
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# Automatically adjusted by default.
LocTolRel 1e-8 # Relative threshold for the localization procedure
LocMaxIter 128 # Maximum number of localization iterations
LocRandom 1 # default, take random seed for any localization

# For internal orbitals: choose best of 32 localizations
# Switched off for AHFB

0 # take constant seed for any localization (for testing)
LocNAttempts np # number of localization attempts

# default: number of processes, minimum 8, if
# randomize true
# 1, if randomize false
# any number larger or equal np, if randomize true

PNONorm MP2Norm # default, old IEPANorm can also be used
(near identical results)

NrMP2Pairs_Trip 1 # number of MP2 pairs to be included in the triples
calculation

PAOOverlapThresh 1e-8 # generation of non-redundant PAOs from redundant ones
UseFullLMP2Guess false # Use iterative full LMP2 (for DLPNO)
SinglesFockUsePNOs true # compute the Singles Fock matrix (SFM) in PNOs.

# DLPNO2013: default for SinglesFockUsePNOs is false,
# by default RIJCOSX is used for the SFM, except when
# RIJK is given. In that case the RIJK-SFM is used.

LMP2MaxIter 50 # max no of iterations in the MP2 equations
LMP2TolE 1e-7 # LMP2 energy convergence tolerance
LMP2TolR 5e-7 # LMP2 residual convergence tolerance
LMP2ScaleTCutPNO # PNO cutoff for LMP2 is: TCutPNO*LMP2ScaleTCutPNO

# Default: TCutPNO(DLPNO-MP2)/TCutPNO(DLPNO-CCSD) with
# respective TCutPNOs specific to Loose/Normal/TightPNO

LMP2FCut 1e-5 # LMP2 neglect cut-off for
off-diagonal Fock matrix elements

TCutTNO 0 # Cut-off for triples natural orbitals (0=automatic)
TCutPNOSingles -1 # -1= use 0.03*TCutPNO
TCutPreScr -1 # -1= use 0.01*TCutPairs for

multipole estimate based screening
TCutDeloc 0.1 # delocalization threshold for specification

of extended domains.
Necessary because PAOs are not strictly localized

TCutOSV 1e-6 # orbital specific virtuals used for pre-screening.
No critical

TScaleMP2Pairs 0.1
TScaleMKNStrong 10
TScaleMKNWeak 100

For larger systems and tighter thresholds the disk I/O of a DLPNO calculation may become challenging. In this
case, it might be usefull to keep some integrals in memory, if enough RAM is available. With the following flag

%mdci
StorageType Shared

end

ORCA will try to store certain much-used integrals in shared memory. If the amount of memory is not sufficient,
ORCA will fall back to on-disk storage. NOTE: This flag will only work if all processes work on the same node.

IMPORTANT NOTE REGARDING ORBITAL LOCALIZATION

• Localized orbitals for DLPNO are obtained via the Foster-Boys method with an augmented Hessian
converger (AHFB) by default.

• The localization tolerance (LocTol) is coupled to the SCF gradient tolerance (TolG) with a constant factor
by default. Selecting specific SCF convergence settings (such as TightSCF) therefore also ensures obtaining
a set of appropriately well converged localized orbitals. This can be overridden by setting a different value
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for LocTol.

• An important feature of the augmented Hessian converger is that it systematically approaches a local maxi-
mum of the localization function (even though convergence to the global maximum cannot be guaranteed).
As opposed to that, the conventional localization method (FB) may stop, for example, at a saddle point. In
bad cases, this can lead to deviations of several kJ/mol in the DLPNO energy. Likewise, it can contribute
towards lack of reproducibility of results.

• No similar procedure has been implemented for the other localization methods (such as Pipek-Mezey) yet.
The same problems as with the FB converger can occur in these cases.

• No randomization is used for the AHFB converger.

The old default orbital localization settings of ORCA 4.0 can be reproduced with the following options:

%MDCI
LocMet FB
LocTol 1.0e-6
LocRandom 1

End

Regarding the methods that employ randomization (FB, PM, IAOIBO, IAOBOYS) only, the following notes apply:

• Generally, better DLPNO results are obtained when several runs of localization are undertaken using different
initial guesses. The different initial guesses are obtained using randomization (LocRandom).

• However, randomization of the initial guess can lead to differently localized MOs in different calculations.
This can yield non-identical correlation energies, varying in the sub-kJ/mol range, for different runs on the
same machine.

• In order to yield identical correlation energy results, randomization can be switched off (LocRandom 0).
However, switching off randomization only leads to identical results on the same machine, but can still lead
to slightly different results (in the sub-kJ/mol range) on different machines.

• Reproducibility of the correlation energy is expected to increase further if LocNAttempts is set to higher
values.

The input below shows how to perform a DLPNO calculation with settings that exactly reproduce the canonical
RI-MP2 result. They are not recommended for production use, but merely to show that if the local approximations
are pushed, then the result coincides with the canonical one. If one would set 𝑇CutPNO to zero this would give
canonical RI-CCSD. However, this is an absurdly inefficient calculation and hence not done.

#
! def2-SV(P) def2/JK def2-SVP/C RI-JK DLPNO-CCSD VeryTightSCF RI-MP2

# obtain a result that only contains errors from the PNO approximation
# but no others
%mdci TCutPairs 0

TCutMKN 0
UseFullLMP2Guess true
LMP2FCut 1e-9
LMP2MaxIter 25
LMP2TolE 1e-10
LMP2TolR 1e-11
PAOOVerlapThresh 1e-9
end

! Bohrs
* xyz 0 1

C -1.505246952209632 1.048213673267046 -3.005665895986369
C 1.289678561934891 0.246429688933291 -3.259735682020124
C 2.834670835163566 1.157307360133605 -0.990383454919828
C 1.924119415395082 -0.128330938291771 1.465070676514038
C -0.931529472233802 -0.722841293992075 1.397639867298547
C -2.347670084056626 1.213332291655600 -0.217984867773136

(continues on next page)
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H 2.084955694093313 0.973408301535989 -5.037750251258102
H 1.426532559234904 -1.831017720289521 -3.371063003813707
H -1.795307501459984 2.891278294563413 -3.927855043896308
H -2.709613973668925 -0.308515546176734 -4.026627646697411
H -4.404246093821399 0.941639912907262 -0.071175054238094
H -1.962867323232915 3.122079490952855 0.528101313545138
H -1.245096579039474 -2.621186110634707 0.594784162223769
H -1.699155144887690 -0.782162821007662 3.328959985756973
H 2.347109421287126 1.104305785540561 3.087624818244846
H 2.990679065503112 -1.888017241218143 1.775287572161196
H 4.862301668284708 0.796425411350593 -1.279131939569907
H 2.634027658640572 3.226752635113244 -0.827936424652650

*

Including (semi)core orbitals in the correlation treatment

In some chemical applications some or all of the chemical (semi)core electrons must be included in the correlation
treatment. In this case, it is necessary to tighten the TCutPNO thresholds for electron pairs in which chemical
(semi)core electrons are involved. This is now the default in DLPNO calculations.

For instance, one can decide to switch off the frozen-core approximation and include all the electrons in the correla-
tion treatment. In this case, the program will use tighter thresholds by default for all electron pairs and Singles that
involve chemical core electrons. Note that, in this case, the use of properly optimized basis functions for correlating
the inner electrons is highly recommened.

! DLPNO-CCSD(T) def2-SVP def2-SVP/C NoFrozenCore
%mdci TSCALEPNO_CORE 0.01 # scaling factor for TCutPNO for electron pairs and

# Singles involving chemical core electrons
end

* xyz 0 1
Ti 0.0001595288 0.0000775041 0.0000000000
F 1.7595996122 0.0000634675 -0.0000000011
F -0.5865076471 1.6586935196 0.0000000018
F -0.5866248292 -0.8294172469 -1.4362516915
F -0.5866248311 -0.8294172443 1.4362516907

*

Another option is to choose the involved chemical core electrons by using an energy window. In this way all electron
pairs and Singles that involve chemical core electrons, which are in the defined energy window, are affected by
TScalePNO_CORE.

! DLPNO-CCSD(T) def2-SVP def2-SVP/C
%method

FrozenCore FC_EWIN
end
%mdci

EWIN -40, 10000
end
* xyz 0 1

Ti 0.0001595288 0.0000775041 0.0000000000
F 1.7595996122 0.0000634675 -0.0000000011
F -0.5865076471 1.6586935196 0.0000000018
F -0.5866248292 -0.8294172469 -1.4362516915
F -0.5866248311 -0.8294172443 1.4362516907

*

A summary with the number of electrons affected by TScalePNO_Core for the examples just discussed is shown
in Table Table 7.19.
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Table 7.19: Number of chemical core electrons included in the DLPNO calculation and affected by
TScalePNO_Core for the TiF4 examples

Keyword Chemical Core Electrons Valence Electrons

Frozen Included𝑎

FrozenCore (default) 18 0 40
NoFrozenCore 0 18 40
EWIN -40, 10000 16 2 40

𝑎 using TScalePNO_Core.

By default, ORCA provides a chemical meaningful definition for the number of electrons which belong to the
chemical core of each element. As already discussed, these default values define which pairs are affected by
TScalePNO_Core. However, the user can modify the number of chemical core electrons for a specific element via
the NewNCore keyword.

! DLPNO-CCSD(T) def2-SVP def2-SVP/C NoFrozenCore
%method

NewNCore Ti 8 end
end
* xyz 0 1

Ti 0.0001595288 0.0000775041 0.0000000000
F 1.7595996122 0.0000634675 -0.0000000011
F -0.5865076471 1.6586935196 0.0000000018
F -0.5866248292 -0.8294172469 -1.4362516915
F -0.5866248311 -0.8294172443 1.4362516907

*

In the previous example, the number of chemical core electrons for Ti has been fixed to 8.

Starting from ORCA 6.0, in DLPNO calculations, tightened TCutPNO thresholds are used by default for “semicore”
electron pairs involving the 3s and 3p orbitals of first-row transition metals.[32] This improves not only the accuracy
of the results noticeably but also the efficiency of the computations as the system size grows (ref.). To reproduce
results obtained with earlier versions, the number of semicore orbitals on first-row transition metals needs to be set
to zero (the old default) instead of eight (the current default), as done below for a Zn atom with the NewNSemiCore
keyword in the method block:

%method NewNSemiCore Zn 0 end end

NOTE

• Of course, if electrons are replaced by ECPs, they are not included in the correlation treatment.

• If ECPs are used, the number for NewNCore has to include the electrons represented by the ECPs as well.
E.g. if an element is supposed to have 60 electrons in the ECP and additional 8 electrons should be frozen
in the correlation calculation, NewNCore should be 68.

• The different sets of orbitals (chemical core electrons included in the correlation treatment and valence
electrons) are localized separately in order to avoid the mixing of core and valence orbitals.
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Multi-Level Calculations

In many applications events are investigated that are located in a relatively small region of the system of interest.
In these cases, combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have been proved to be
extremely useful, especially in the modeling of enzymatic reactions. The basic idea of any QM/MM method is to
treat a small region of the system at the QM level and to use an MM treatment for the remaining part of the system.
Alternatively, QM/QM methods, where different parts of a system are studied at various quantum mechanical
levels, are also available. Quantum mechanical methods are more computationally demanding than the molecular
mechanics treatment, and this limits the applicability of all-QM approaches. Nevertheless, QM/QM methods retain
some strong advantages over QM/MM schemes. For instance, force field parameters for the molecular mechanics
part of the calculation are not necessary, and thus there are no restrictions on the type of chemical systems that can
be treated. Moreover, problems usually caused by boundaries between QM and MM parts do not occur. Finally,
the accuracy of an all-QM calculation is expected to be higher compared to the accuracy of QM/MM approaches,
that is limited by the MM treatment.

In ORCA, the different methods that can be used in a QM/QM calculations are:

• DLPNO-CCSD(T) with TightPNO thresholds

• DLPNO-CCSD(T) with NormalPNO thresholds

• DLPNO-CCSD(T) with LoosePNO thresholds

• DLPNO-CCSD

• DLPNO-MP2

• HF

The user can define an arbitrary number of fragments in the input, the level of theory to be used for each fragment
and for the interaction between different fragments. Localized molecular orbitals are then assigned to a given
fragment on the basis of their Mulliken populations.

The following example shows the calculation of a benzene dimer, for which the individual monomers are calculated
on MP2 level, and the interaction between the two monomers is calculated on TightPNO DLPNO-CCSD(T) level.
More realistic use cases are discussed in ref. [812].

! DLPNO-CCSD(T) Def2-SVP Def2-SVP/C
%mdci

UseFullLmp2Guess True
TightPNOFragInter {1 2}
MP2FragInter {1 1} {2 2}

end

*xyz 0 1
C(1) 1.393 0.000 0.0
H(1) 2.474 0.000 0.0
C(1) 0.695 1.206 0.0
H(1) 1.238 2.143 0.0
C(1) -0.695 1.206 0.0
H(1) -1.238 2.143 0.0
C(1) -1.393 0.000 0.0
H(1) -2.474 0.000 0.0
C(1) -0.695 -1.206 0.0
H(1) -1.238 -2.143 0.0
C(1) 0.695 -1.206 0.0
H(1) 1.238 -2.143 0.0
C(2) 2.333 1.33 3.5
H(2) 3.414 1.33 3.5
C(2) 1.635 2.536 3.5
H(2) 2.178 3.473 3.5
C(2) 0.245 2.536 3.5
H(2) -0.298 3.473 3.5
C(2) -0.453 1.33 3.5

(continues on next page)
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H(2) -1.534 1.33 3.5
C(2) 0.245 0.124 3.5
H(2) -0.298 -0.813 3.5
C(2) 1.635 0.124 3.5
H(2) 2.178 -0.813 3.5
*

• For the calculation of the interaction energy, the energy of the individual benzene monomer should be cal-
culated on the accuracy level of the monomer in the dimer calculation, i.e. using MP2 with full LMP2 guess
for the above example.

All possible settings for the multi-level calculation are listed below.

# The one-keyword line defines the default method for the multi-level calculation.
# Options here are DLPNO-CCSD(T) or DLPNO-CCSD with the addition of the
# LoosePNO, NormalPNO and TightPNO keyword
!DLPNO-CCSD(T)

# The below given keywords define the changes with respect to the
# above given default method. The user should take care that each intra- or
# interfragment combination is defined only once (unlike in the example given below)

%mdci
LoosePNOFragInter {1 1} {2 2} # use LoosePNO settings for the intrafragment

# pair energies of fragments 1 and 2
NormalPNOFragInter {1 2} # use NormalPNO settings for the interfragment

# pair energies between fragment 1 and 2
TightPNOFragInter {1 3} # use TightPNO settings for the interfragment

# pair energies between fragment 1 and 3
NormalPNOTightPairFragInter {1 2} # use NormalPNO settings but with TCutPairs

# 1.e-5 for the interfragment pair energies
# between fragment 1 and 2

LoosePNOTightPairFragInter {1 3} # use LoosePNO settings but with TCutPairs 1.e-5
# for the interfragment pair energies between
# fragment 1 and 3

NoTriplesFragments 1, 2 # if all MOs of a triple are located on fragment
# 1 and / or 2, the triple is neglected

MP2FragInter {1 1} {2 2} # compute the intrafragment pair energies of
# fragments 1 and 2 on MP2 level

HFFragInter {1 1} {2 2} # compute the intrafragment energies on HF level
UseFullLmp2Guess false # default = false,

# if MP2FragInter is used: default = true

# The fragments need to be defined in the xyz section.
*xyz 0 1
C(1) 1.393 0.000 0.0
H(1) 2.474 0.000 0.0
...

Multi-Level Calculations for IP and EA-EOM-DLPNO-CCSD

The multi-layer method can be used to include the environmental effect in IP-and EA-EOM-DLPNO-CCSD
method. A typical input file for the multi-layer IP-EOM-CCSD method will look like

! IP-EOM-DLPNO-CCSD TightSCF NORMALPNO def2-SVP def2-SVP/C def2/J RIJCOSX

%mdci
nroots 4
DTOl 1e-7
NORMALPNOFragInter { 1 1}

(continues on next page)
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LOOSEPNOFragInter { 1 1}
HFFRAGMENTINTERACTION { 2 2}
end

*xyz 0 1
C(1) 2.782064 -1.456235 0.000000
C(1) 1.478695 -0.729491 0.000000
C(1) 0.274461 -1.343436 0.000000
N(1) -0.914790 -0.659079 0.000000
C(1) -0.988897 0.709718 0.000000
N(1) 0.241239 1.324758 0.000000
H(1) 0.224165 2.335424 0.000000
C(1) 1.507368 0.726274 0.000000
O(1) 2.518005 1.411594 0.000000
O(1) -2.043648 1.337449 0.000000
H(1) -1.808257 -1.143873 0.000000
H(1) 0.182931 -2.420317 0.000000
H(1) 2.626386 -2.532891 0.000000
H(1) 3.370859 -1.183830 -0.874506
H(1) 3.370859 -1.183830 0.874506
O(2) -3.661424 -0.883408 0.000000
H(2) -3.462053 0.068032 0.000000
H(2) -4.615649 -0.964529 0.000000
*

Here the example is a mono-hydrated thymine molecule, where the thymine is treated at the main fragment and
water is treated at the environment. It will result in the following output

----------------------
EOM-CCSD RESULTS (RHS)
----------------------

IROOT= 1: 0.322826 au 8.785 eV 70852.1 cm**-1
Amplitude Excitation
-0.689911 37 -> x

Percentage singles character= 96.89

IROOT= 2: 0.364959 au 9.931 eV 80099.2 cm**-1
Amplitude Excitation
-0.689956 35 -> x

Percentage singles character= 95.49

IROOT= 3: 0.378175 au 10.291 eV 82999.9 cm**-1
Amplitude Excitation
-0.691827 36 -> x

Percentage singles character= 93.93

IROOT= 4: 0.403845 au 10.989 eV 88633.7 cm**-1
Amplitude Excitation
-0.690254 34 -> x

Percentage singles character= 96.55

The result of a full a IP-EOM-DLPNO-CCSD calculation with NORMALPNO setting would have looked like

IROOT= 1: 0.322576 au 8.778 eV 70797.3 cm**-1
Amplitude Excitation
0.689734 37 -> x

Percentage singles character= 96.88

IROOT= 2: 0.364691 au 9.924 eV 80040.3 cm**-1
Amplitude Excitation

(continues on next page)
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-0.689947 35 -> x
Percentage singles character= 95.50

IROOT= 3: 0.377966 au 10.285 eV 82954.0 cm**-1
Amplitude Excitation
-0.691801 36 -> x

Percentage singles character= 93.94

IROOT= 4: 0.402497 au 10.953 eV 88337.9 cm**-1
Amplitude Excitation
-0.690138 34 -> x

Percentage singles character= 96.50

The results in multi-layer IP-EOM-DLPNO-CCSD method has been found to be in excellent agreement with stan-
dard variant. The 𝑀𝑃2𝐹𝑟𝑎𝑔𝐼𝑛𝑡𝑒𝑟 treatment is not available for the EOM method. To get a reasonable accuracy
one need to treat the fragment from where the ionization is happening (thymine in the above example) at the highest
possible level. The interaction between the main fragment (thymine) and environment (water) should be treated
at the intermediate level accuracy. The environment can safely be treated with 𝐻𝐹𝐹𝑟𝑎𝑔𝐼𝑛𝑡𝑒𝑟 for almost all the
cases. One can decide the size of the main fragment by looking at HF occupied orbitals as the Koopmans’ approx-
imation is a very good zeroth order guess for the IP values. The electron attached states are much less localized as
compared to the ionization problem. Consequently, the multi-layer EA-EOM-DLPNO-CCSD requires much more
tighter thresholds than the IP variant. An typical input file for multi-layer EA-EOM-DLPNO-CCSD will look as
follows.

! EA-EOM-DLPNO-CCSD NORMALPNO ma-def2-SVP RIJCOSX aug-cc-pVDZ/C def2/J

%mdci
NRoots 4
FollowCIS true
TCutPNOSingles 1e-12
MaxIter 2000
DTol 1e-7
NDAV 10
NormalPNOFragInter { 1 1 }
LoosePNOFragInter { 1 2 } { 2 2 }

end

* xyz 0 1
N(1) -1.114 -0.934 -3.554
C(1) -0.343 -0.202 -4.483
H(1) -0.668 -0.311 -5.520
C(1) 0.635 1.107 -2.633
O(1) 1.241 2.018 -2.013
N(1) 0.022 0.050 -1.776
H(1) -0.069 0.339 -0.800
C(1) -0.975 -0.782 -2.233
O(1) -1.697 -1.422 -1.333
C(1) 1.087 1.852 -4.986
H(1) 1.673 2.594 -4.418
H(1) 1.771 1.340 -5.697
H(1) 0.348 2.403 -5.609
H(1) -1.823 -1.635 -3.888
N(2) -4.904 -4.773 -4.958
H(2) -4.634 -3.987 -5.572
C(2) -4.875 -4.201 -3.599
C(2) -3.704 -3.226 -3.310
H(2) -5.818 -3.646 -3.423
H(2) -4.859 -5.012 -2.850
O(2) -3.026 -2.826 -4.301
H(2) -4.078 -5.386 -5.029

(continues on next page)
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O(2) -3.559 -2.899 -2.077
H(2) -2.494 -2.057 -1.754
C(2) 0.440 0.898 -4.018
end

It is a thymine-glycine complex where the thymine is treated as the main fragment and glycine as the environment.
One needs to use a more tighter value of 𝑇𝐶𝑢𝑡𝑃𝑁𝑂𝑆𝑖𝑛𝑔𝑙𝑒𝑠 for EA as in the case of standard EA-EOM-DLPNO-
CCSD. The 𝑇𝐶𝑢𝑡𝑃𝑁𝑂𝑆𝑖𝑛𝑔𝑙𝑒𝑠 for the respective fragments automatically gets adjusted based on their respective
𝑇𝐶𝑢𝑡𝑃𝑁𝑂 values. The output will be

----------------------
EOM-CCSD RESULTS (RHS)
----------------------

IROOT= 1: -0.039822 au -1.084 eV -8739.9 cm**-1
Amplitude Excitation
0.689012 x -> 53

Percentage singles character= 93.33

IROOT= 2: 0.025156 au 0.685 eV 5521.0 cm**-1
Amplitude Excitation
-0.614385 x -> 54
0.139410 x -> 55
0.297903 x -> 59

Percentage singles character= 96.86

IROOT= 3: 0.044569 au 1.213 eV 9781.7 cm**-1
Amplitude Excitation
0.116867 x -> 54
0.684240 x -> 55

Percentage singles character= 98.16

IROOT= 4: 0.053677 au 1.461 eV 11780.7 cm**-1
Amplitude Excitation
0.695211 x -> 56

Percentage singles character= 98.12

The results are in excellent agreement with the standard EA-EOM-DLPNO-CCSD method.

----------------------
EOM-CCSD RESULTS (RHS)
----------------------

IROOT= 1: -0.038862 au -1.057 eV -8529.3 cm**-1
Amplitude Excitation
-0.689412 x -> 53

Percentage singles character= 93.47

IROOT= 2: 0.025448 au 0.692 eV 5585.2 cm**-1
Amplitude Excitation
-0.654101 x -> 54
0.131404 x -> 55
0.207630 x -> 59

Percentage singles character= 97.47

IROOT= 3: 0.044651 au 1.215 eV 9799.8 cm**-1
Amplitude Excitation
0.112183 x -> 54
0.684562 x -> 55

Percentage singles character= 98.17

(continues on next page)
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IROOT= 4: 0.053780 au 1.463 eV 11803.3 cm**-1
Amplitude Excitation
0.695635 x -> 56

Percentage singles character= 98.16

To get the reasonable accuracy in multi-layer EA-EOM-CCSD one need to treat the environment and inter-fragment
interaction atleast at 𝐿𝑜𝑜𝑠𝑒𝑃𝑁𝑂𝐹𝑟𝑎𝑔𝐼𝑛𝑡𝑒𝑟 level.

7.14.5 The singles Fock term

In most MDCI calculations, there is an intermediate, which resembles closely to the SCF Fock matrix, and similar
methods are available to efficiently calculate it. In the followings, a short discussion will be given of the so-called
singles Fock term, which in the closed shell case has the form

𝐺(t1)𝑝𝑞 =
∑︁
𝑗𝑏

𝑡𝑗𝑏(2(𝑝𝑞|𝑗𝑏)− (𝑝𝑗|𝑞𝑏)) =
∑︁
𝜇𝜈

𝑐𝑝𝜇𝑐
𝑞
𝜈𝐺(t1)𝜇𝜈 ,

The singles Fock matrix can be obtained via transformation from its counterpart (𝐺(t1)𝜇𝜈) in the atomic orbital
(AO) basis

𝐺(t1)𝜇𝜈 =
∑︁
𝑗𝑏

𝑡𝑗𝑏(2(𝜇𝜈|𝑗𝑏)− (𝜇𝑗|𝜈𝑏)) =
∑︁
𝜅𝜏

𝑃 (t1)𝜅𝜏 (2(𝜇𝜈|𝜅𝜏)− (𝜇𝜅|𝜈𝜏)), (7.148)

where

𝑃 (t1)𝜅𝜏 =
∑︁
𝑗𝑏

𝑡𝑗𝑏𝑐
𝑗
𝜅𝑐
𝑏
𝜏

is the analogue of the SCF density matrix for the singles Fock case. For the singles Coulomb (𝐽(t1)𝜇𝜈) case,
the density may be symmetrized (𝑃 (t1)𝜅𝜏 = 𝑃 (t1)𝜅𝜏 + 𝑃 (t1)𝜏𝜅), and one may use the resolution of identity
approximation

𝐽(t1)𝜇𝜈 =
∑︁
𝜅𝜏

𝑃 (t1)𝜅𝜏 (𝜇𝜈|𝜅𝜏) ≈
∑︁
𝐴𝐵

∑︁
𝜅𝜏

𝑃 (t1)𝜅𝜏 (𝜇𝜈|𝑟−112 |𝐴)𝑉
−1
𝐴𝐵(𝐵|𝑟

−1
12 |𝜅𝜏),

where 𝐴,𝐵 are elements of the RI/DF auxiliary fitting basis. Note that the factor of 2 in ((7.148)) is taken care
of by symmetrization. Since we are using a symmetric density, we may use the same efficient routine to evaluate
the singles Coulomb term as in the SCF case, see Using the RI-J Approximation to the Coulomb Part and The
Split-RI-J Coulomb Approximation.

For the exchange case (𝐾(t1)𝜇𝜈), one possibility is to use the COSX approximation (see Using the RI Approxima-
tion for Hartree-Fock and Hybrid DFT (RIJCOSX))

𝐾(t1)𝜇𝜈 =
∑︁
𝜅𝜏

𝑃 (t1)𝜅𝜏 (𝜇𝜅|𝜈𝜏) ≈
∑︁
𝑔

𝑄𝜇𝑔
∑︁
𝜏

𝐴𝜈𝜏 (r𝑔)
∑︁
𝜅

𝑃 (t1)𝜅𝜏𝑋𝜅𝑔,

The COSX routine is able to deal with asymmetric densities as well, and thus, it can be used here similar to the
SCF case.

The other possibility is to use RI for exchange (RIK),

𝐾(t1)𝜇𝜈 =
∑︁
𝑗𝜅𝜏

𝑐𝑗𝜅𝐶(t1)
𝑗
𝜏 (𝜇𝜅|𝜈𝜏) ≈

∑︁
𝑗𝐴𝐵

(𝜇𝑗|𝑟−112 |𝐴)𝑉
−1
𝐴𝐵(𝐵|𝑟

−1
12 |𝜈�̃�),

where

𝐶(t1)
𝑗
𝜏 =

∑︁
𝑏

𝑡𝑗𝑏𝑐
𝑏
𝜏 ,

and the �̃� is an “orbital” transformed using 𝐶(t1).
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Using these approximations, there are two approximations for the total singles Fock term, RIJCOSX called by
the simple keyword RCSinglesFock and RIJK called by RIJKSinglesFock, see Basics. For canonical and LPNO
methods, by default the program chooses the same approximation used in the SCF calculation. DLPNO2013 uses
RIJCOSX by default, while in DLPNO, the singles Fock term is also evaluated using PNOs via SinglesFockUseP-
NOs, see Local correlation. This behavior can also be changed by keywords in the method block.

%method RIJKSinglesFock 1 # 0 false, 1 true
RCSinglesFock 0 # 0 false, 1 true

end

7.14.6 Use of the MDCI Module

The MDCI module is fairly easy to use. The flags for the “simple” input lines have been described in section
Keyword Lines. The detailed listing of options is found below:

%mdci citype CISD # CI singles+doubles
QCISD # quadratic CI (singles+doubles)
CCSD # coupled-cluster singles+doubles
CEPA_1 # coupled-electron pair approximation ''1''
CEPA_2 #
CEPA_3 #
NCEPA_1 # our slightly modified versions of CEPA
NCEPA_2 # and CPF
NCEPA_3 #
NCPF_1 #
NCPF_2 #
NCPF_3 #
ACPF # averaged coupled-pair functional
ACPF_2 # Gdanitz modification of it
NACPF # our modification of it
AQCC # Szalay + Bartlett
SEOI # a strictly size extensive energy functional

# maintaining unitary invariance (not yet
# available for UHF)

ewin -3,1e3 # orbital energy window to determine which
# MOs are included in the treatment

# (respects settings in %method block)
Singles true # include single excitations in the

# treatment (default true)
Triples 0 # (T) correction in CCSD(T)/QCISD(T)

# default is no triples
1 # Algorithm 1 (lots of memory, fast)
2 # Algorithm 2 (less memory, about 2x slower,

# not yet available for UHF)
Brueckner true # use Brueckner orbitals

# (default false)
Denmat none # no evaluation of density matrices

linearized # density matrix obtained by retaining
# only CEPA_0-like terms, i.e., those
# linear in the excitation amplitudes

unrelaxed # unrelaxed density matrices, i.e.,
# density matrices without orbital
# relaxation

orbopt # perform orbital optimization yielding
# fully relaxed density matrices (if
# citype chosen as CCSD or QCISD this option
# implies evaluation of the Z vector).
# (default: linearized)

ZSimple true # simplified evaluation of the Z vector
# in case of orbital optimized CCD

(continues on next page)
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# (citype chosen as CCSD or QCISD and
# Denmat as orbopt) by using an
# analytical formula

false # explicit solution of Z vector
# equations
# in case of orbital optimized CCD
# (default: false)

UseQROs # use of quasi-restricted orbitals
# (default false)

Localize 0 # use localized MOs. Presently very little
# use is made of locality. It may help
# for interpretations. Localization is
# incompatible with the (T) correction

PM # Use Pipek-Mezey localized MOs
FB # use Foster-Boys localized MOs

NatOrbIters 0 # Perform natural orbital iterations.
# default is none. Not possible for CCSD
# and QCISD

pCCSDAB # the three parameters for parametrized
pCCSDCD # coupled-cluster (default is 1.0 which
pCCSDEF # corresponds to normal CCSD
# this defines how the rate limiting step is handled
# MO and AOX need lots of disk and I/O but if they
# can be done they are fast
KCOpt KC_MO # Perform full 4-index transformation

KC_AOBLAS# AO direct with BLAS (preferred)
# (not yet available for UHF, switch to KC_AOX)

KC_AO # AO direct handling of 3,4 externals
# (not yet available for UHF, switch to KC_AOX)

KC_RI # RI approximation of 3,4 externals
# (not yet available for UHF)

KC_RI2 # Alternative RI (not recommended)
# (not yet available for UHF)

KC_AOX # Do it from stored AO exchange integrals
PrintLevel 2 # Control the amount of output. For 3 and

# higher things like pair correlation
# energies are printed.

MaxIter 35 # Max. number of iterations
# How the integral transformation is done.
# Note that it is fine to do AOX or AO or AOBLAS
# together with trafo_ri
TrafoType trafo_jk # Partial trafo to J+K operators

trafo_ri # RI transformation of all
# integrals up to 2-externals
# (3-ext for (T))and rest on the
# fly

trafo_full # Full four index transformation.
# Automatically chosen for
# KCOpt=KC_MO

MaxCore 350 # Memory in MB - used for integral
# trafos and batching and for storage of
# integrals and amplitudes
# don't be too generous

STol 1e-5 # Max. element of the residual vector
# for convergence check

LShift 0.3 # Level shift to be used in update of
# coefficients

MaxDIIS 7 # Max number of DIIS vectors to be stored
# this lets you control how much and what is residing
# in central memory. May speed up things. Note that
# MaxCore is not respected here

(continues on next page)
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InCore 0 # nothing in core
1 # + sigma-vector and amplitudes (default)
2 # + Jij(a,b) Kij(a,b) operators
3 # + DIIS vectors
4 # + 3-exernal integral Kia(b,c)
5 # + 4-external integrals Kab(c,d)

# this is identical to ALL
# the default is AUTO which means that incore
# is chosen based on MaxCore

end

7.15 The Complete Active Space Self-Consistent Field (CASSCF)
Module

7.15.1 General Description

The complete active space self-consistent field (CASSCF) method is a special form of a multiconfigurational SCF
method and can be thought of as an extension of the Hartree-Fock method. It is a very powerful method to study
static correlation effects and a solid basis for MR-CI and MR-PT treatments. It can be applied to the ground state
and excited states or averages thereof. The implementation in ORCA is fairly general and reasonably efficient.
However, CASSCF calculations are fairly complex and ultimately require a lot of insight from the user in order
to be successful. In addition to detailed description here, the manual explores some typical examples in section
CASSCF Natural Orbitals as Input for Coupled-Cluster Calculations. Furthermore, the manual is supplemented
with a tutorial for CASSCF that covers many practical tips on the calculation design and usage of the program.

The wavefunction. The wavefunction of a given CASSCF state is written as⃒⃒
Ψ𝑆𝐼
⟩︀
=
∑︁
𝑘

𝐶𝑘𝐼
⃒⃒
Φ𝑆𝑘
⟩︀
. (7.149)

Here,
⃒⃒
Ψ𝑆𝐼
⟩︀

is the CASSCF 𝑁 -electron wavefunction for state 𝐼 with total spin S. The set of
⃒⃒
Φ𝑆𝑘
⟩︀

is a set of
configuration state functions (for example linear combination of Slater determinants) each adapted to a total spin
𝑆. The expansion coefficients 𝐶𝑘𝐼 represent the first set of variational parameters. Each CSF is constructed from
a common set of orthonormal molecular orbitals 𝜓𝑖 (r) which are in turn expanded in basis functions 𝜓𝑖 (r) =∑︀
𝜇 𝑐𝜇𝑖𝜑𝜇 (r). The MO coefficients 𝑐𝜇𝑖 form the second set of variational parameters.

The energy. The energy of the CASSCF wavefunction is given by the Rayleigh quotient

𝐸 (c,C) =

⟨
Ψ𝑆𝐼

⃒⃒⃒
�̂�BO

⃒⃒⃒
Ψ𝑆𝐼

⟩
⟨︀
Ψ𝑆𝐼
⃒⃒
Ψ𝑆𝐼
⟩︀ , (7.150)

and represents an upper bound to the true total energy. However, CASSCF calculations are not designed to provide
values for total energy which are close to the exact energy. The purpose of a CASSCF calculation is to provide a
qualitatively correct wavefunction, which forms a good starting point for a treatment of dynamic electron correla-
tion.

The CASSCF method is fully variational in the sense that the energy is made stationary with respect to variations
in both sets of MO and CI coefficients. At convergence, the gradient of the energy with respect to the MO and CI
coefficients vanishes

𝜕𝐸 (c,C)

𝜕𝑐𝜇𝑖
= 0, (7.151)

𝜕𝐸 (c,C)

𝜕𝐶𝑘𝐼
= 0. (7.152)

Orbital spaces. In CASSCF calculations, the MO space is divided into three user defined subspaces:
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• The “inactive orbitals” are the orbitals which are doubly occupied in all configuration state functions (labels
𝑖, 𝑗, 𝑘, 𝑙).

• The “active orbitals” are the orbitals with variable occupation numbers in the various CSFs (labels 𝑡, 𝑢, 𝑣, 𝑤).

• The “external orbitals” (labels 𝑎, 𝑏, 𝑐, 𝑑)

Note that in older publications, the inactive and active orbitals are distinguished and referred to as “internal” or-
bitals.

The wavefunction and energy is invariant with respect to unitary transformations within the three subspaces. The
special feature of a CASSCF wavefunction is that a fixed number of electrons is assigned to each subspace. The
internal subspace is of course completely filled but the CSFs in the active space constitute a full-CI of 𝑛-electrons
in 𝑚-orbitals. The CSF list is constructed such, however, that a wavefunction of well defined total spin (and
potential space) symmetry results. Such a wavefunction is referred to as a CASSCF(𝑛,𝑚) wavefunction. The
CSF list grows extremely quickly with the number of active orbitals and the number of active electrons (basically
factorially). Depending on the system, the limit of feasibility is roughly around ∼14 active orbitals or about one
million CSFs in the active space. Larger active spaces are tractable with approximate CI solver such as the Iterative-
Configuration-Expansion CI (ICE-CI) described in Approximate Full CI Calculations in Subspace: ICE-CI or the
Density Matrix Renormalization Group (DMRG) discussed in Density Matrix Renormalization Group.1

Since the orbitals within the subspaces are only defined up to a unitary transformation, the program needs to make
some canonicalization choice.

In ORCA, the final orbitals by default are:

1. natural orbitals in the active space,

2. orbitals which diagonalize the CASSCF Fock matrix in the internal space and

3. orbitals which diagonalize the CASSCF Fock matrix in the external space.

State averaging. In many circumstances, it is desirable to optimize the orbitals not for a single state but for the
average of several states. In order to see what is done, the energy for state 𝐼 is re-written as:

𝐸𝐼 (c,C) =
∑︁
𝑝𝑞

Γ𝑝(𝐼)𝑞 ℎ𝑝𝑞 +
∑︁
𝑝𝑞𝑟𝑠

Γ𝑝𝑟(𝐼)𝑞𝑠 (𝑝𝑞 |𝑟𝑠 ) (7.153)

Here, Γ𝑝(𝐼)𝑞 and Γ
𝑝𝑟(𝐼)
𝑞𝑠 are the one-and two-particle reduced electron density matrices for this state (labels 𝑝, 𝑞, 𝑟, 𝑠

span the internal and active subspaces):

Γ𝑝(𝐼)𝑞 =
⟨︀
Ψ𝑆𝐼
⃒⃒
𝐸𝑝𝑞
⃒⃒
Ψ𝑆𝐼
⟩︀

(7.154)

Γ𝑝𝑟(𝐼)𝑞𝑠 =
1

2

⟨︀
Ψ𝑆𝐼
⃒⃒
𝐸𝑝𝑞𝐸

𝑟
𝑠 − 𝛿𝑞𝑟𝐸𝑝𝑠

⃒⃒
Ψ𝑆𝐼
⟩︀

(7.155)

The average energy is simply obtained from averaging the density matrices using arbitrary weights𝑤𝐼 that are user
defined but are constrained to sum to unity.

Γ𝑝(𝑎𝑣)𝑞 =
∑︁
𝐼

𝑤𝐼Γ
𝑝(𝐼)
𝑞 (7.156)

Γ𝑝𝑟(𝑎𝑣)𝑞𝑠 =
∑︁
𝐼

𝑤𝐼Γ
𝑝𝑟(𝐼)
𝑞𝑠 (7.157)∑︁

𝐼

𝑤𝐼 = 1 (7.158)

Optimization of CASSCF wavefunctions. In general, except for trivial cases, CASSCF wavefunctions are con-
siderably more difficult to optimize than RHF (or UHF) wavefunctions. The underlying reason is that variations
in c and C maybe strongly coupled and the energy functional may have many local minima in (c,C) space. Conse-
quently, the choice of starting orbitals is of really high importance and the choice which orbitals and electrons are
included in the active space has decisive influence on the success of a CASSCF study. In general, after transforma-
tion to natural orbitals, one can classify the active space orbitals by their occupation numbers which vary between
0.0 and 2.0. In general, convergence problems are almost guaranteed if orbitals with occupation numbers close

1 For approximate full CI approaches, CASSCF is neither invariant to active-active rotations nor exactly size-consistent.
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to zero or close to 2.0 are included in the active space. Occupation numbers between 0.02 and 1.98 are typically
very reasonable and should not lead to large convergence problems. The reason for the occurrence of convergence
problems is that the energy is only very weakly dependent on rotations between internal and active orbitals if the
active orbital is almost doubly occupied and similarly for the rotations between external and weakly occupied active
orbitals. However, in some cases (for example in the study of potential energy surfaces) it may not be avoidable
to include weakly or almost inactive orbitals in the active space and in these cases the use of the most powerful
convergence aids is necessary (vide infra). As in the case of single-determinant wavefunctions (RHF, UHF, RKS,
UKS) there are first and second order converging methods available. The first order CASSCF methods require the
transformed integrals (𝑡𝑢|𝑣𝑥) with 𝑥 belonging to any subspace. This is a very small subspace of the total trans-
formed integral list and is readily held in central storage even for larger calculations. On the other hand, second
order CASSCF methods require the integrals (𝑝𝑞|𝑥𝑦) and (𝑝𝑥|𝑞𝑦) (𝑝, 𝑞 = internal, active; 𝑥, 𝑦 = any orbital). This
is a fairly large set of integrals and their generation is laborious in terms of CPU time and disk storage. Second
order CASSCF calculations are therefore more limited in the size of the molecules which can be well treated. It
would be possible to basically avoid the integral transformation also in the case of second-order CASSCF calcu-
lations and proceed to fully direct calculations. Such calculations may become quite time consuming since there
may be a large number of Fock matrix builds necessary.

The augmented Hessian method (Newton-Raphson) solves the eigenvalue problem:(︂
0 g
g H

)︂(︂
1
t

)︂
= 𝜀

(︂
1
t

)︂
(7.159)

Here, g is the orbital gradient (derivative of the total energy with respect to a non-redundant rotation between two
orbitals) and H is the orbital Hessian (second derivative of the energy with respect to two non-redundant orbital
rotations). The vector t (in intermediate normalization obtained from the CI like vector) summarizes the rotation
angles. The angles are used to define the antisymmetric matrix (𝑋𝑝𝑞 = −𝑋𝑞𝑝 is thus the rotation angle between
orbitals 𝑝 and 𝑞):

X =

(︂
0 t
−t 0

)︂
, (7.160)

which is used to parametrize the unitary matrix U = exp (X) which is used to update the orbitals according to:

cnew = coldU (7.161)

(where c is an MO coefficient matrix).

Starting orbitals. You cannot be careful enough with your starting orbitals. What type of initial guess works best
depends on the system. Quite often it is not the magnitude of the initial gradient, but the similarity between initial
and final active orbitals. The CASSCF tutorial discusses a number of guess options in more detail. Generally
speaking, canonical orbitals HF orbitals from a RHF calculation are not good choice, as the identification and
selection of the active space orbitals is often difficult. Usually DFT orbitals (quasi-restricted or RKS) perform
better in this respect. Alternatively, if CASSCF orbitals from a previous run or a close-by geometry are available
this is a good choice. For coordination chemistry complexes, the guess generated with orca_mergefrag (see
the CASSCF tutorial), is probably the best choice - especially for heave metals. Natural orbitals from a simple
correlation calculation like MP2 or a calculation with the MRCI module are usually a good choice and easily
generated. For example:

#
# First job provides reasonable natural orbitals
#
! RI-MP2 SVP def2-SVP/C

%mp2 natorbs true
density unrelaxed # or relaxed (more expensive)
end

* int 0 1
C 0 0 0 0.00 0.0 0.00
O 1 0 0 1.20 0.0 0.00
H 1 2 0 1.10 120.0 0.00
H 1 2 3 1.10 120.0 180.00

*
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Now examine the occupation numbers of the natural orbitals (you will find that in the output of the MP2 part of
the calculation):

Natural Orbital Occupation Numbers:
N[ 0] = 2.00000000
N[ 1] = 2.00000000
N[ 2] = 1.98676733
N[ 3] = 1.97726840
N[ 4] = 1.97500109
N[ 5] = 1.96759239
N[ 6] = 1.96423113
N[ 7] = 1.93719340
N[ 8] = 0.05427454
N[ 9] = 0.02555886
N[ 10] = 0.02530580
N[ 11] = 0.01358500
N[ 12] = 0.01096092
N[ 13] = 0.01028129
N[ 14] = 0.00702048
N[ 15] = 0.00627820

A rule of thumb is that orbitals with occupation numbers between 1.98 and 0.02 should be in the active space.
Thus, in the present case we speculate that a 10 electrons in 8 orbitals active space would be appropriate for the
CASSCF of the ground state. Let’s try:

#
# Run a CASSCF calculation for the ground state of H2CO
#
! SVP def2-SVP/C SmallPrint
! moread
%moinp "Test-CASSCF-MP2-H2CO.mp2nat"

%casscf nel 10
norb 8
mult 1
end

* int 0 1
C 0 0 0 0.00 0.0 0.00
O 1 0 0 1.20 0.0 0.00
H 1 2 0 1.10 120.0 0.00
H 1 2 3 1.10 120.0 180.00

*

If we run that calculation, it converges and produces the following:

MACRO-ITERATION 10:
--- Inactive Energy E0 = -82.97337099 Eh
E(CAS)= -113.889438276 Eh DE= -0.000000807
--- Energy gap subspaces: Ext-Act = -0.431 Act-Int = -0.240
N(occ)= 1.99763 1.99696 1.98360 1.97923 1.94253 0.05958 0.02153 0.01894
||g|| = 0.000361782 Max(G)= 0.000189613 Rot=9,2
---- THE CAS-SCF GRADIENT HAS CONVERGED ----

--- FINALIZING ORBITALS ---
---- DOING ONE FINAL ITERATION FOR PRINTING ----
--- Forming Natural Orbitals
--- Canonicalize Internal Space
--- Canonicalize External Space

From which we see that we had two orbitals too many in the active space with occupation numbers very close to
two. The presence of barely correlated orbitals (occupation close to 0.0 or 2.0) can cause convergence problems.
Their inclusion in the active space does not significantly change the energy and it might better to omit these orbitals
from the start.
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In the present case, we re-run the CASSCF with 6 active electrons in six orbitals. The result is:

MACRO-ITERATION 2:
--- Inactive Energy E0 = -101.16144179 Eh
E(CAS)= -113.882700257 Eh DE= -0.012049926
--- Energy gap subspaces: Ext-Act = -0.411 Act-Int = -0.142
N(occ)= 1.98172 1.97921 1.94092 0.05983 0.02089 0.01743
||g|| = 0.052811635 Max(G)= 0.025065586 Rot=19,7
--- Orbital Update [SuperCI(PT)]
--- Canonicalize Internal Space
--- Canonicalize External Space
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.160674186 Max(X)(5,4) = -0.128053569
--- SFit(Active Orbitals)

MACRO-ITERATION 3:
--- Inactive Energy E0 = -100.78371592 Eh
E(CAS)= -113.885011169 Eh DE= -0.002310912
--- Energy gap subspaces: Ext-Act = -0.434 Act-Int = -0.199
N(occ)= 1.98150 1.97909 1.94143 0.05924 0.02108 0.01766
||g|| = 0.017438409 Max(G)= 0.009231446 Rot=10,4
--- Orbital Update [SuperCI(PT)]
--- Canonicalize Internal Space
--- Canonicalize External Space
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.050337699 Max(X)(6,2) = -0.033671129
--- SFit(Active Orbitals)

MACRO-ITERATION 4:
--- Inactive Energy E0 = -100.72313195 Eh
E(CAS)= -113.885258854 Eh DE= -0.000247685
--- Energy gap subspaces: Ext-Act = -0.438 Act-Int = -0.219
N(occ)= 1.98141 1.97918 1.94178 0.05886 0.02102 0.01776
||g|| = 0.009726271 Max(G)= 0.004281706 Rot=9,2
--- Orbital Update [SuperCI(PT)]
--- Canonicalize Internal Space
--- Canonicalize External Space
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.031123960 Max(X)(22,9) = 0.015789781
--- SFit(Active Orbitals)

MACRO-ITERATION 5:
--- Inactive Energy E0 = -100.65264536 Eh
E(CAS)= -113.885424851 Eh DE= -0.000165997
--- Energy gap subspaces: Ext-Act = -0.440 Act-Int = -0.238
N(occ)= 1.98140 1.97918 1.94202 0.05857 0.02105 0.01776
||g|| = 0.006606671 Max(G)= 0.003548636 Rot=9,2
--- Orbital Update [SuperCI(PT)]
--- Canonicalize Internal Space
--- Canonicalize External Space
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.019988497 Max(X)(6,2) = -0.014410848
--- SFit(Active Orbitals)

MACRO-ITERATION 6:
--- Inactive Energy E0 = -100.56070274 Eh
E(CAS)= -113.885549550 Eh DE= -0.000124699
--- Energy gap subspaces: Ext-Act = -0.440 Act-Int = -0.268
N(occ)= 1.98138 1.97925 1.94206 0.05849 0.02104 0.01778
||g|| = 0.004483296 Max(G)= 0.002939015 Rot=9,2
--- Orbital Update [SuperCI(PT)]
--- Canonicalize Internal Space
--- Canonicalize External Space
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.011383690 Max(X)(5,4) = 0.005997355
--- SFit(Active Orbitals)

MACRO-ITERATION 7:
(continues on next page)

586 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

(continued from previous page)

--- Inactive Energy E0 = -100.52522560 Eh
E(CAS)= -113.885583124 Eh DE= -0.000033574
--- Energy gap subspaces: Ext-Act = -0.437 Act-Int = -0.283
N(occ)= 1.98132 1.97929 1.94192 0.05861 0.02103 0.01783
||g|| = 0.002275031 Max(G)= -0.001215398 Rot=10,4
--- Orbital Update [SuperCI(PT)]
--- Canonicalize Internal Space
--- Canonicalize External Space
--- SX_PT (Skipped TA=0 IT=0): ||X|| = 0.002106033 Max(X)(19,10) = -0.

→˓001056121
--- SFit(Active Orbitals)

MACRO-ITERATION 8:
--- Inactive Energy E0 = -100.52457962 Eh
E(CAS)= -113.885584276 Eh DE= -0.000001152
--- Energy gap subspaces: Ext-Act = -0.438 Act-Int = -0.283
N(occ)= 1.98134 1.97931 1.94184 0.05868 0.02101 0.01781
||g|| = 0.000752012 Max(G)= -0.000357510 Rot=13,4
---- THE CAS-SCF GRADIENT HAS CONVERGED ----
--- FINALIZING ORBITALS ---
---- DOING ONE FINAL ITERATION FOR PRINTING ----
--- Forming Natural Orbitals
--- Canonicalize Internal Space
--- Canonicalize External Space

MACRO-ITERATION 9:
--- Inactive Energy E0 = -100.52457962 Eh
--- All densities will be recomputed
E(CAS)= -113.885584276 Eh DE= -0.000000000
--- Energy gap subspaces: Ext-Act = -0.858 Act-Int = -0.283
N(occ)= 1.98172 1.97932 1.94207 0.05845 0.02100 0.01743
||g|| = 0.000752012 Max(G)= -0.000327367 Rot=12,4
--------------
CASSCF RESULTS
--------------

Final CASSCF energy : -113.885584276 Eh -3098.9843 eV

The calculation converges very quickly and the occupation numbers show you that all of these orbitals are actually
needed in the active space. The omission of the two orbitals from the active space came at an increase of the energy
by ∼4 mEh which seems to be tolerable. Let’s look what we have in the active space in figure Fig. 7.4.
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(a) MO5 (b) MO6 (c) MO7

(d) MO10 (e) MO9 (f) MO8

Fig. 7.4: Orbitals of the active space for the CASSCF(6,6) calculation of H2CO.

Thus, we can see that we got a fairly nice result: our calculation has correlated the in-plane oxygen lone pair, the
C-O 𝜎 and the C-O 𝜋 bond. For each strongly occupied bonding orbital, there is an accompanying weakly occupied
antibonding orbital in the active space that is characterized by one more node. In particular, the correlating lone
pair and the C-O 𝜎* orbital would have been hard to find with any other procedure than the one chosen based on
natural orbitals. We have now done it blindly and looked at the orbitals only after the CASSCF — a better approach
is normally to look at the starting orbitals before you enter a potentially expensive CASSCF calculation. If you have
bonding/antibonding pairs in the active space plus perhaps the singly-occupied MOs of the system you probably
have chosen a reasonable active space.

We can play the game now somewhat more seriously and optimize the geometry of the molecule using a reasonable
basis set:

! def2-TZVP def2-TZVP/C SmallPrint Opt
! moread
%moinp "Test-CASSCF-MP2-H2CO.mp2nat"

%casscf nel 6
norb 6
end

* int 0 1
C 0 0 0 0.00 0.0 0.00
O 1 0 0 1.20 0.0 0.00
H 1 2 0 1.10 120.0 0.00
H 1 2 3 1.10 120.0 180.00

*

and get:
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---------------------------------------------------------------------------
Redundant Internal Coordinates

--- Optimized Parameters ---
(Angstroem and degrees)

Definition OldVal dE/dq Step FinalVal
----------------------------------------------------------------------------
1. B(O 1,C 0) 1.2101 0.000259 -0.0002 1.2100
2. B(H 2,C 0) 1.0942 -0.000029 0.0001 1.0943
3. B(H 3,C 0) 1.0942 -0.000029 0.0001 1.0943
4. A(O 1,C 0,H 3) 122.07 0.000023 -0.00 122.07
5. A(H 2,C 0,H 3) 115.85 -0.000046 0.01 115.86
6. A(O 1,C 0,H 2) 122.07 0.000023 -0.00 122.07
7. I(O 1,H 3,H 2,C 0) -0.00 -0.000000 0.00 -0.00
----------------------------------------------------------------------------

Let us compare to MP2 geometries (this job was actually run first):

! RI-MP2 def2-TZVP def2-TZVP/C Opt

%mp2 natorbs true
end

* int 0 1
C 0 0 0 0.00 0.0 0.00
O 1 0 0 1.20 0.0 0.00
H 1 2 0 1.10 120.0 0.00
H 1 2 3 1.10 120.0 180.00

*

-------------------------------------------------------------------------
Redundant Internal Coordinates

--- Optimized Parameters ---
(Angstroem and degrees)

Definition OldVal dE/dq Step FinalVal
----------------------------------------------------------------------------
1. B(O 1,C 0) 1.2127 0.000374 -0.0002 1.2125
2. B(H 2,C 0) 1.0991 -0.000031 0.0001 1.0992
3. B(H 3,C 0) 1.0991 -0.000031 0.0001 1.0992
4. A(O 1,C 0,H 3) 121.77 0.000023 -0.00 121.77
5. A(H 2,C 0,H 3) 116.45 -0.000046 0.01 116.46
6. A(O 1,C 0,H 2) 121.77 0.000023 -0.00 121.77
7. I(O 1,H 3,H 2,C 0) -0.00 -0.000000 0.00 -0.00

----------------------------------------------------------------------------

The results are actually extremely similar (better than 1 pm agreement). Compare to RHF:

---------------------------------------------------------------------------
Redundant Internal Coordinates

--- Optimized Parameters ---
(Angstroem and degrees)

Definition OldVal dE/dq Step FinalVal
----------------------------------------------------------------------------
1. B(O 1,C 0) 1.1784 -0.000164 0.0001 1.1785
2. B(H 2,C 0) 1.0921 0.000010 -0.0000 1.0921
3. B(H 3,C 0) 1.0921 0.000010 -0.0000 1.0921
4. A(O 1,C 0,H 3) 121.93 -0.000003 -0.00 121.93

(continues on next page)
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5. A(H 2,C 0,H 3) 116.13 0.000005 0.00 116.13
6. A(O 1,C 0,H 2) 121.93 -0.000003 -0.00 121.93
7. I(O 1,H 3,H 2,C 0) 0.00 0.000000 -0.00 -0.00

----------------------------------------------------------------------------

Thus, one can observe that the correlation brought in by CASSCF or MP2 has an important effect on the C=O
distance (∼4 pm), while the rest of the geometry is not much affected.

More on the technical use of the CASSCF program.

The most elementary input information which is always required for CASSCF calculations is the specification of
the number of active electrons and orbitals.

%casscf nel 4 # number of active space electrons
norb 6 # number of active orbitals
end

The CASSCF program in ORCA can average states of several multiplicities. The multiplicities are given as a list.
For each multiplicity the number of roots should be specified:

%casscf mult 1,3 # here: multiplicities singlet and triplet

nroots 4,2 # four singlets, two triplets
end

If the symmetry handling in ORCA is enabled (! UseSym) each multiplicity block must have an irreducible rep-
resentation assigned. Numbers corresponding to the “irrep” within a given symmetry are printed in the output of
ORCA.

%casscf mult 1,3 # here: multiplicities singlet and triplet
irrep 0,1 # here: irrep for each mult. block (mandatory!)
nroots 4,2 # four singlets, two triplets

Several roots and multiplicities usually imply a state average CASSCF (SA-CASSCF) calculation. Note that the
program by default chooses equal weights for the multiplicity blocks. Roots within a given block have equal weight.
Users can define a custom weighting scheme for the multiplicity blocks and roots:

%casscf mult 1,3 # here: multiplicities singlet and triplet
nroots 4,2 # four singlets, two triplets
bweight 2,1 # singlets and triplets weighted 2:1
weights[0] = 0.5,0.2,0.2,0.2 # singlet weights
weights[1] = 0.7,0.3 # triplet weights
end

The program automatically normalizes these weights such that the sum over all weights is unity. If convergence
on an excited state is desired then the weights[0] array may look like 0.0,0.0,1.0 (this would optimize the
orbitals for the third excited state. If several states cross during the orbital optimization this will ultimately cause
convergence problems.

We note passing that the converged orbitals of the state averaged procedure are a compromise for the set of states.
ORCA by default only prints the SA-CASSCF gradient norm. State-specific gradients are summarized at the end
of the calculation with the keyword PrintGState.

%casscf
...
printgstate true # optional printing of the state-specific orbital gradients

end

Orbital optimization methods. In the following we discuss the available options for orbital optimization. A num-
ber of convergence problems can be resolved changing the guess orbitals. The following keywords are optional
and should only be used facing severe convergence difficulties. Aside from the SuperCI_PT (default),[459]
several orbital optimization methods (list below) are implemented.
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# Keywords to be used as Orbstep/Switchstep
SuperCI_PT # perturbative SuperCI (first order)
SuperCI # SuperCI (first order)
DIIS # DIIS (first order)
KDIIS # KDIIS (first order)
SOSCF # approx. Newton-Raphson (first order)
NR # augmented Hessian Newton-Raphson

# unfolded two-step procedure
# - still not true second order

The different convergers have different strengths. First order method are cheap but typically require more iterations
compared to second order methods. When the gradient is far off from convergence the program uses the converger
defined as orbstep while close to convergence the switchstep is used. The actual criteria for switchstep are
defined with the keywords SwitchConv and SwitchIter.

%casscf
OrbStep SuperCI # or any other from the list above
SwitchStep DIIS # or any other from the list above

SwitchConv 0.03 # gradient at which to switch
SwitchIter 15 # iteration at which the switch takes place

# irrespective of the gradient

MaxIter 75 # Maximum number of macro-iterations
end

Picking a convergence strategy, the program has to balance speed and robustness. The default strategy uses the
SuperCI_PT as converger for orbstep and switchstep.[459] This approach determines the elements𝑋𝑝𝑞 of the
anti-Hermitean matrix used in the orbital update according to

C𝑛𝑒𝑤 = C𝑜𝑙𝑑𝑒X

from first order perturbation theory using the Dyall-Hamiltonian [238] in zeroth order and a first-order perturbed
wave function given as Ψ(1) =

∑︀
𝑝𝑞 Ψ

𝑞
𝑝𝑋𝑞𝑝 where the Ψ𝑞𝑝 represent singly excited functions obtained from the

CASSCF wave function by excitation from orbital 𝜓𝑝 to orbital 𝜓𝑞 . The SuperCI_PT is robust with respect to
orbitals that are exactly doubly occupied or empty. Rotations with orbital close to this critical occupations can
further be eliminated with the keyword DThresh (default=1e-6). However, the method is quiet aggressive in the
orbital optimization. In some cases, such as basis set projection or PATOM guess (intrinsic basis set projection), the
program might pick a step-size that is too big. Then restricting the step-size via the keyword MaxRot (default=0.2)
might be useful. The keywords DThresh and MaxRot described below are specific to SuperCI_PT. For many users,
MaxRot is less palpable than level shifting. Therefore, the present version allows level shifts as well. In contrast
to other convergers, level shifts are not needed and highly discouraged. With the exception of GradScaling
(vide infra), other damping techniques described further below do not apply to the SuperCI_PT.

MaxRot 0.05 # cap stepsize for SuperCI_PT
DThresh 1e-6 # thresh for critical occupation

In case of convergence problems with the default settings, it is recommended to try the combination of orbstep
SuperCI and switchstep DIIS, which in conjuction with a large level shift (2 Eh), which may be immediately
successful. The proposed scheme typically requires more iterations. Moreoever, in contrast to the SuperCI(PT),
the SuperCI, DIIS and KDIIS should not be used when the active orbitals have an occupation of exactly 2.0 or 0.0!
The DIIS may sometimes converge slowly or “trail” towards the end such that real convergence is never reached.
The KDIIS [452, 453] — based on perturbation theory — is an approximation to the regular DIIS procedure
avoiding redundant rotations. Both DIIS schemes avoid linear dependencies in the expansion space.

MaxDIIS 15 # max. no of DIIS vectors to keep
DIISThresh 1e-7 # overlap criteria for linear dependency

The combination of SuperCI and DIIS (switchstep) is particularly suited to protect the active space composi-
tion. Adjusting the level shift will do the job. Here, level shift is the single most important lever to control
convergence.
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# default = dynamic level-shifting based on Ext-Act, Int-Act
ShiftUp 2.0 # static up-shift the virtual orbitals
ShiftDn 2.0 # static down-shift the internal orbitals
MinShift 0.6 # minimum separation subspaces

Level-shift is particularly important if the active, inactive and virtual orbitals overlap in their orbital energies. The
energy separation of the subspaces is printed in the output. Ideally, the entries Ext-Act and Act-Int should be
positive and larger than 0.2 Eh. This will help the program to preserve your active space composition throughout
the iterations. If no shift is specified in the input, ORCA will choose a level-shift to guarantee an energy separation
between the subspaces (MinShift).

E(CAS)= -230.590325053 Eh DE= -0.000798832
--- Energy gap subspaces: Ext-Act = -0.244 Act-Int = -0.002
--- current l-shift: Up(Ext-Act) = 0.54 Dn(Act-Int) = 0.30

In difficult cases the use of the Newton-Raphson method (NR) is recommended even if each individual iteration is
considerably more expensive. It is strong towards the end but it would be a waste to start orbital optimization with
the expensive NR method since its radius of quadratic convergence is quite small. The computationally cheaper
alternative is the SOSCF procedure belonging to the family of quasi-Newton updates.

Keep in mind that the Newton-Raphson is designed for optimization on a convex surface (Hessian is semidefinite).
If the NR is switched on too early, there is a good chance that this condition is not fulfilled. In this case the program
will complain about negative eigenvalues or diagonal elements of the Hessian as can be seen in the snippet below.
The next optimization step is large and unpredictable. It is a wildcard that can get you closer to convergence or
immediate divergence of the CASSCF procedure.

||g|| = 0.771376945 Max(G)= 0.216712933 Rot=140,53
--- Orbital Update [ NR]
Warning: NEGATIVE diagonal element D(81,53)= -4.733590
Warning: NEGATIVE diagonal element D(82,53)= -4.737955
...

For larger system, the augmented Hessian equations are solved iteratively (NR iterations). The augmented Hes-
sian is considered solved when the residual norm, < 𝑟|𝑟 >, is small enough. Aside from the overall CASSCF
convergence, negative eigenvalues affect these NR iterations.

--- Orbital Update [ NR]
AugHess Tolerance (auto): Tol= 1.00e-07
AUGHESS-ITER 0: E= -0.174480747 <r|r>= 0.558679452
AUGHESS-ITER 1: E= -0.308672359 <r|r>= 0.468254671
AUGHESS-ITER 2: E= -0.434272813 <r|r>= 0.286305469
AUGHESS-ITER 3: E= -0.439149451 <r|r>= 0.286514628
AUGHESS-ITER 4: E= -0.605787445 <r|r>= 0.191691955
AUGHESS-ITER 5: E= -0.607766529 <r|r>= 0.310450670
AUGHESS-ITER 6: E= -0.611674930 <r|r>= 0.141402593
AUGHESS-ITER 7: E= -0.623145299 <r|r>= 0.394505306
AUGHESS-ITER 8: E= -0.658410333 <r|r>= 0.166915094
AUGHESS-ITER 9: E= -0.790571374 <r|r>= 4.722929453
AUGHESS-ITER 10: E= -0.790590554 <r|r>= 4.716012014
AugHess: No convergence in the Davidson procedure
...

There are a number of refined NR settings that influence the convergence behavior on a non-convex energy surface.
We mention the keywords for completeness and dis-encourage from changing the default settings. If overall conver-
gence cannot be changed due to negative eigenvalues, it is recommended to delay the NR switchstep (switchconv,
switchiter). This will require some trial and error, since the curvature of the surface is a priori not know.

%casscf
...
aughess
Solver 0 # Davidson (default)

(continues on next page)
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1 # Pople (pure NR steps)
2 # DIIS
MaxIter 35 # max. no. of CI iters.
MaxDim 35 # Davidson expansion space
MaxDIIS 12 # max. number of DIIS vectors
UseSubMatrixGuess true # diag a submatrix of the Hessian
# as an initial guess
NGuessMat 512 # size of initial guess matrix (part of
# the Hessian exactly diagonalized)
ExactDiagSwitch 512 # up to this dimension the Hessian
# is exactly diagonalized (small problems)
PrintLevel 1 # amount of output during AH iterations
Tol 1e-6 # convergence tolerance
Compress true # use compressed storage
DiagShift 0.0 # shift of the diagonal elements of the
# Hessian
UseDiagPrec true # use the diagonal in updating
SecShift 1e-4 # shift the higher roots in the Davidson
# secular equations
UpdateShift 0.5 # shift of the denominator in the
# update of the AH coefficients

end
end

In general, convergence is strongly influenced by numerical noise, especially in the final iterations. One source
of numerical noise is the incremental Fock build. Thus, it can help to enforce more frequent full Fock matrix
formation.

ResetFreq 1 # reset frequency for direct SCF

If the orbital change in the active space is small, the active Fock matrix in ORCA is approximated using the density
matrix from the previous cycle saving a second Fock matrix build. However, this approximation might also be
a source of numerical instability. The threshold “SwitchDens” can be set to zero to enable the exact build. The
program default starts with a rather large value (1e-2) and will reduce this parameter automatically when necessary.

switchdens 0.0001 # ~gtol * 0.1

In all of the implemented orbital optimization schemes the step-size correlates with the gradient-norm. A constant
damping factor can be set with the keyword GradScaling. Note, damping and level shifting techniques are not
recommended for the default converger (SuperCI_PT).

GradScaling 0.5 # constant damping in all steps

There are situations when the active space has been chosen carefully, but the initial gradient is still far off. To keep
the “good” active space, we can suppress all rotation but the inactive-external ones until the gradient-norm is small
enough to continue safely. The threshold can be set with FreezeIE keyword. Once the components of the gradient
in the inactive-external direction have a weight of less than FreezeIE, all constraints are lifted. ORCA by default
freezes active rotations if the total gradient norm is larger than 1.0 and the active rotations have a weight of less
than 5%. The feature can be turned off setting the threshold to zero.

Similarly, rotations of the almost doubly occupied orbitals with the inactive orbitals can be damped using the thresh-
old FreezeActive. Rotations of this type are damped as long as all their weight is smaller than FreezeActive.
In contrast to the ShiftDn, it damps just the “troublesome” parts of internal-active rotations. This option applies
to all of the orbital optimization schemes but the SuperCI_PT.

FreezeIE 0.4 # keep active space until int-ext rotation have
# a contribution of less than 40% to the ||g||
FreezeActive 0.03 # keep almost doubly occupied orbitals as long as
# their contribution is less than 3% to the ||g||

If the calculation starts from a converged Hartree-Fock orbitals, the core orbitals should not change dramatically
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by the CASSCF optimization. Often trailing convergence is associated to rotations with low lying orbitals. Their
contribution to the total energy is fairly small. With the keyword FreezeGrad these rotations can be omitted from
the orbital optimization procedure.

FreezeGrad 0.2 # omit hitting a gradient norm ||g|| <0.2

The affected orbitals are printed at the startup of CASSCF.

FreezeGrad ... enabled if ||g|| is below 0.02
Note Convergence can be signaled if the reduced gradient reaches GTol

Last frozen orbital ... 9
First deleted orbital ... 320
Once rotations with core and deleted orbitals are stabilized they will be damped.

By default rotations with frozencore (or deleted virtuals) are not omitted. If the option FreezeGrad is active, the
ratio with respect to the total gradient is printed.

||g|| = 0.001240414 Max(G)= -0.000431747 Rot=319,1
--- Option=FreezeGrad: ||g|| = 0.001081707
= 87.21%
Omitting frozencore elements

Using the RI Approximation.

Aside from the Fock matrices, integrals appearing in the orbital gradient and Hessian require substantial compu-
tation time. A good way to speed up the calculations at the expense of “only” obtaining approximate results is to
introduce the RI approximation. TrafStep RI approximated the aforementioned integrals. Here are sufficiently
large auxiliary basis must be provided - ideally a /JK or /C. Further acceleration can be achieved approximating the
Fock matrix construction with !RIJCOSX or !RIJK as described in section RI, RIJCOSX and RIJK approximations
for CASSCF. More details can also be found in the CASSCF tutorial. Note that with ORCA 4.1, there are three
destinct auxiliary basis slots, that need to be set if the auxiliary basis is defined via the %basis block.

TrafoStep RI # RI used in transformation
# Note: Needs an auxiliary basis for
# AuxC slot.

Exact # exact transformation (default)

Monitoring the active space

During the iterations, the active orbitals are chosen to maximize the overlap with active orbitals from the previous
iterations. Maximizing the overlap does not make any restrictions on the nature of the orbitals. Thus initially
localized orbitals will stay localized and ordered, which is sometimes a desired feature e.g. in the density matrix
renormalization group approach (DMRG). This feature is set with the keyword ActConstraints and is enabled by
default (after the first 3 macroiterations). For some orbital optimization procedures, such as the SuperCI, natural
orbitals are more advantageous. Therefore, the ActConstraints can be turned off in favor of natural orbital
construction (see below). If the keyword is not set by the user, ORCA picks the best choice for the given orbital
optimization step.

ActConstraints 0 # no checks and no changes
1 # maximize overlap of active orbitals and check sanity. (default for DIIS)
2 # make natural orbitals in every iteration (default SuperCI)
3 # make canonical orbitals in every iteration
4 # localize orbitals

In addition to maximizing the overlap, "ActConstraints 1" checks if the composition of the active space has
changed i.e. an orbital has been rotated out of the active space. In this case, ORCA aborts and stores the last valid
set of orbitals. Below is an example error message.

--- Orbital Update [ DIIS]
--- Failed to constrain active orbitals due to rotations:

(continues on next page)
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Rot( 37, 35) with OVL=0.960986
Rot( 38, 34) with OVL=0.842114
Rot( 43,104) with OVL=0.031938

In the snippet above, the active space ranges from 37-43. The program reports that orbitals 37,38 and 43 have
changed their character. The overlap of orbital 43 (active) with the previous set of active orbitals is just 3% and the
program aborts. There are a number of reasons, why this happens in the calculation. If this error occurs constantly
with the same orbitals, it is worthwhile to inspect the rotating partner orbitals (visualize). It might be sign that
the active space is not balanced and should be extended. In many instances changing the level-shift or lowering
switchconv is sufficient to protect the active space. In some cases, turning off the sanity check ("ActConstraints
0") and re-rotating orbitals will bring CASSCF closer to convergence. Some problems can be avoided by a better
design of the calculation. The CASSCF tutorial elaborates on the subject in more detail.

There are situations such as parameter scans, where “actconstraints” is counter-productive and should be disabled.
In other words, we want to allow changes in the active space composition. As an example, consider the rotation
of ethylene around its double-bond represented by a CAS(2,2). Although the active space consists of the bonding
and anti-bonding orbitals 𝜋-orbitals, their composition in terms of atomic orbitals changes from the eclipsed to the
staggered conformation. Depending on the actual input settings (orbstep and number of scan points), this might
trigger an abort.

Final orbitals options.

Once the calculation has converged, ORCA will do a final macro-iteration, where the orbital are “finalized”. For
complete active spaces (CAS), these transformations do not alter the final energy and wavefunction. Note, that
solutions from approximate CAS-CI solvers such as the ICE approach or the DMRG ansatz are affected by the
final orbital transformation. The magnitude depends on the truncation level (e.g. TGen, TVar and MaxM) of the
approximated wavefunction. The default final orbitals are canonical in the internal and external space with respect
to state-averaged Fock operator. The active orbitals are chosen as natural orbitals. Other orbital choices are equally
valid and can be selected for the individual subspaces.

#internal space
IntOrbs CanonOrbs # canonical

LocOrbs # localized
unchanged # no changes

# partner orbitals for the active space based
# on various concepts
PMOS # based on orthogonalization tails.
OSZ # based on oszillator orbital
DOI # based on differential overlap

#external space
ExtOrbs CanonOrbs # canonical

LocOrbs # localized
unchanged # no changes

# partner orbitals for the active space based
# on various concepts
PMOS # based on orthogonalization tails.
OSZ # based on oszillator orbital
DOI # based on differential overlap
DoubleShell # based on the shell and angular momentum

# of the highest active orbitals, the first few
# virtual orbitals correspond to the doubled-shell.
# All other virt. orbitals are canonicalized.
# For 3d-metal complexes, these are the 4d orbitals!
# For 4d-metal complexes, these are the 5d orbitals!
# And so on...

#active space
ActOrbs NatOrbs # natural

CanonOrbs # canonical
(continues on next page)
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LocOrbs # localized
unchanged # no changes
dOrbs # purify metal d-orbital and call the AILFT
fOrbs # purify metal f-orbital and call the AILFT
SDO # Single Determinant Orbitals: this is only possible if the

# active space has a single hole or a single electron.
# SDOs are then the unique choice of orbitals that simultaneously
# turns each CASSCF root into a single determinant.

SDOs are specific for the active orbital space.[491] The set of options (PMOS, OSZ, DOI, DoubelShell) are
specific for the inactive and external space. They aim to assist the extension of the current active space. All four
options, re-design the first NOrb (number of active orbitals) next to the active space, while the remaining orbitals
of the same subspace are canonical. The re-designed orbital are based on different concepts.

• PMOS generates the bonding / anti-bonding partner orbitals for the chosen active space. It is based on the
orthogonalization tail of the active orbitals.

• OSZ generates a single orbital for each active orbital, that maximizes the dipole-dipole interaction.

• DOI follows the same principle as OSZ, but the differential overlap is maximized instead.

• DoubleShell is specific to the external space. The highest active MO or DoubleShellMO is analyzed. A
set of orbitals with the same angular momentum but larger radial distribution is generated.

Optionally, the four options above can be supplemented with a reference MO using the keyword RefMO/
DoubleShellMO. The presence of RefMO/DoubleShellMO changes the default behavior. In case of PMOS, OSZ
and DOI, all orbitals of the given subspace are chosen to maximize a single objective function with respect to the
reference MO (must be active). This contrasts the default settings, where for each active MO an objective function
is maximized and a single “best” orbital is picked. In other words, in the default setting, each active orbital has a
corresponding “best” orbital in the selected subspace neighboring the active space.

RefMO 17 # MO with number 17 (default =-1)
DoubleShellMO 17 # MO with number 17 (default=-1)

The aforementioned options are aids and the resulting orbitals should be inspected prior extension of the active
space. In particular the PMOS option is useful in the context of transition metal complexes to find suitable Lig-
and based orbitals. There are more options (dorbs, forbs, DoubleShell), that are specifically designed for
coordination chemistry. A more detailed description is found in the CASSCF tutorial that supplements the manual.

If the active space consists of a single set of metal d-orbitals, natural orbitals may be a mixture of the d-orbitals.
The active orbitals are remixed to obtain “pure” d-orbitals (ligand field orbitals) if the actorbs is set to dorbs.
The same holds for f-orbitals and the option forbs. Furthermore, the keyword dorbs automatically triggers the
ab initio ligand field analysis (AILFT).[57, 490]The approach has been reported in a number of applications.[53,
56, 154, 169, 170, 428, 799, 837] Note that the actual representation depends on the chosen axis frame. It is
thus recommended to align the molecule properly. For more details on the AILFT approach, we refer to the AILFT
section (1- and 2-shell Abinitio Ligand Field Theory), the original paper and the CASSCF tutorial, where examples
are shown. For a few applications, a printing of the complete wavefunction is useful and can be requested.

PrintWF 0 # (default) prints only the CFGs
csf # Printing of the wavefunction in the basis of CSFs
det # Printing of the wavefunction in the basis of Determinants

The CI-step default setting is CSF based and is done in the present program by generating a partial “formula tape”
which is read in each CI iteration. The tape may become quite large beyond several hundred thousand CSFs which
limits the applicability of the CASSCF module. The accelerated CI (ACCCI) has the same limitations, but uses a
slightly different algorithm that handles multi-root calculations much more efficiently. For now, properties (spin-
orbit coupling, g-Tensor. . . ) as well as NEVPT2 corrections are not available with ACCCI. Nevertheless, it is the
recommended option to converge a CASSCF calculation with multiple roots. The resulting .gbw file may be used
in a successive run to obtain properties or NEVPT2 corrections.

Larger active spaces are tractable with the DMRG approach or the iterative configuration expansion (ICE) devel-
oped in our own group.[171, 172] DMRG and ICE return approximate full CI results. The maximum size of the
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active space depends on the system and the required accuracy. Active spaces of 10–20 orbitals should be feasible
with both approaches. The CASSCF tutorial covers examples with ACCCI and ICE as CI solvers.

%casscf
CIStep CSFCI # CSF based CI (default)
ACCCI # CSF based CI solver with faster algorithm for multi-root calculations
ICE # CSF based approximate CI -> ICE/CIPSI algorithm
DMRGCI # density matrix renormalization group approach instead of the CI

end

In the ICE approach, the computation of the coupling coefficients is time-consuming and by default repeated in
every macro-iteration. To avoid the reconstruction, it is recommended to once generate a coupling coefficient
library (cclib) and to use it for all of your ICE calculations. The details of the methodology and the cclib are
described in the ICE section Approximate Full CI Calculations in Subspace: ICE-CI .

Detailed settings for the conventional CI solvers (CSFCI, ACCCI, ICE) can be controlled in a sub-block. Not all
of the options and properties are available for CISteps apart from the default! NEVPT2, transition densities
and spin-dependent properties such as spin-orbit coupling are not yet available for ACCCI and ICE.

%casscf ci
MaxIter 64 # max. no. of CI iters.
MaxDim 10 # Davidson expansion space = MaxDim * NRoots
NGuessMat 512 # Initial guess matrix: 512x512
PrintLevel 3 # amount of output during CI iterations
ETol 1e-10 # default 0.1*ETol in CASSCF
RTol 1e-10 # default 0.1*ETol in CASSCF
TGen 1e-4 # ICE generator thresh
TVar 1e-11 # ICE selection thresh, default = TGen*1e-7
end

The CI-step DMRGCI interfaces to the BLOCK program developed in the group of G. K.-L. Chan [156, 157,
296, 789]. A detailed description of the BLOCK program, its input parameters, general information and exam-
ples on the density matrix renormalization group (DMRG) approach, are available in the section Density Matrix
Renormalization Group of the manual.

The implementation of DMRG in BLOCK is fully spin-adapted. However, spin-densities and related properties are
not available in the current version of the BLOCK code. To start a DMRG calculation add the keyword “CIStep
DMRGCI” into a regular CASSCF input. ORCA will set default parameters and generate and input for the BLOCK
program. In general, DMRG is not invariant to rotation in the active space. The program by default will run an
automatic ordering procedure (Fiedler). More and refined options can be set in the dmrg sub-block of CASSCF
— see section Density Matrix Renormalization Group for a complete list of keywords.

%casscf
nel 8
norb 6
mult 3
CIStep DMRGCI

# Detailed settings
dmrg
# more/refined options
...

end
end

It is highly recommended to start the calculation with split-localized orbitals. Any set of starting orbitals (gbw file)
can be localized using the orca_loc program. Typing orca_loc in the shell will return a small help-file with
details on how to setup an input for the localization. Examples for DMRG including the localization are in the
corresponding section of the manual Density Matrix Renormalization Group. The utility program orca_loc is
documented in section orca_loc. Split-localization refers to an independent localization of the internal and virtual
part of the desired active orbitals.

NOTE:
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• Let us stress again: it is strongly recommended to first LOOK at your orbitals and make sure that the ones
that will enter the active space are really the ones that you want to be in the active space! Many problems can
be solved by thinking about the desired physical contents of the reference space before starting a CASSCF.
A poor choice of orbitals results in poor convergence or poor accuracy of the results! Choosing the active
orbitals always requires chemical and physical insight into the molecules that you are studying!

• Please try the program with default settings before playing with the more advanced options. If you encounter
convergence problems, have a look into your output, read the warning and see how the gradient and energy
evolves. Increasing MaxIter will not help in many cases.

• Be careful with keywords such as !tightscf, !verytightscf and so on. These keywords set higher
integral thresholds, which is a good idea, but also tighten the CASSCF convergence thresholds. If you do
not need a tighter energy convergence, reset the criteria in the casscf block using ETol. For many applications
an energy convergence beyond 10−7 is unnecessary.

7.15.2 CASSCF Densities

The one-particle electron and spin density can be stored on disk using the keyword !KeepDens. ORCA stores
all densities in a container (.densities file on disk), which can be used in conjunction with orca_plot to plot the
charge and spin densities. Please check Section orca_plot for more details on the procedure. The state-specific
densities will have a name postfix that reflects the root, multiplicity and potentially irreducible representation of the
state. Densities arising from a calculation with the spin-orbit coupling, will have an additional flag in the density
container marking their origin (e.g. “cas_qdsoc” or “nev_qdsoc”).

7.15.3 CASSCF Properties

The CASSCF program is able to calculate UV transition, CD spectra, SOC, SSC, Zeeman splittings, EPR g-
matrices and A-matrices (the latter implemented in the same way as in the DCD-CAS(2) method[491]), magneti-
zation, magnetic susceptibility and MCD spectra. Note that the results for the Fermi contact contribution to A will
not be reliable if the spin density is dominated by spin polarization, which is a dynamic correlation effect. The
properties are exercised in more detail in the CASSCF tutorial. The techniques used to calculate SOC, and Zeeman
splittings are identical to those implemented into the MRCI program. Input and keywords mimic the ones in the
MRCI module described in section Properties Calculation Using the SOC Submodule. As an example, the input
file to calculate g-values and HFC constants A of CO+ is listed below:

!TZVPP Bohrs TightSCF #TightSCF for more accurate integrals
%casscf nel 9

norb 8
nroots 9
mult 2
switchstep NR
etol 1e-7 #reset energy convergence
rel

dosoc true #spin-orbit coupling (and ZFS)
gtensor true
amatrix true

end
end

* xyz 1 2
C 0 0 0.0
O 0 0 2.3504
*

In addition to pseudo-spin 1/2 A-tensors for individual Kramers doublets, the CASSCF module also features the
calculation of “intrinsic” HFC A-tensors for the whole lowest nonrelativistic spin multiplet in the effective Hamil-
tonian approach.[489]

In contrast to the MRCI module, the CASSCF module also supports the calculation of susceptibility tensors at
non-zero magnetic fields. The corresponding keywords are
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...
%casscf

...
rel
dosoc true
dosusceptibility true
susctensor_nfields 2 # number of user-defined magnetic fields
susctensor_magfields[0] = 35000,0,0 # 1st user-defined magnetic field
susctensor_magfields[1] = 70000,0,0 # 2nd user-defined magnetic field

end
end

This example input calculates the susceptibility tensor at the two (vector-valued!) magnetic fields (35000,0,0)
and (70000,0,0) (in Gauss). Note that for practical reasons it is necessary to specify the number of user-defined
magnetic fields using the keyword susctensor_nfields.

Until ORCA 4.0 it was possible to access spin-spin couplings only via running CAS-CI type calculations in MRCI.
Converged CASSCF orbitals can be read setting the following flags

!MOREAD NOITER ALLOWRHF TZVPP TightSCF Bohrs
%moinp "convergedCASSCF.gbw"

%mrci
...
TPre 0.0
citype mrci

newblock 2 *
excitations none
refs CAS(9,8) end

end

soc
DoSSC true # spin-spin coupling
DoSOC true # spin-orbit coupling
...

end
end
* xyz 1 2
C 0 0 0.0
O 0 0 2.3504
*

Starting with ORCA 4.1, spin-spin couplings are also directly accessible in the CASSCF module via the keyword
DoSSC true in the rel subblock. Note that the calculation of SSC requires the definition of an auxiliary basis
set (AuxC auxiliary basis set slot), since it is only implemented in conjunction with RI integrals. A common
way to introduce dynamical correlation for the property computation, is to replace the energies entering the quasi-
degenerate perturbation theory. If the NEVPT2 energy correction is computed in CASSCF, there will be additional
printings where CASSCF energies are replaced by the more accurate NEVPT2 values. Alternatively, these diagonal
energies can be taken from the input file similarly how it is described for the MRCI module. A more detailed
documentation is presented in the MRCI property section.

ò Note

• The program does NOT print the SOC matrix by default! To obtain SOCMEs at the
CASSCF/NEVPT2/. . . levels, please set the PrintLevel in the rel block to at least 2.
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7.15.4 1- and 2-shell Abinitio Ligand Field Theory

Starting from ORCA 5.0, ORCA features a 1- and 2-shell AILFT module. AILFT was originally developed for 1-
shell d- and f- LFT problems [57, 490]. In ORCA 5.0 an extenion to 2-shell AILFT provides access to all common
1- and 2-shell AILFT problems namely:

1. Valence LFT problems, involving the d-, f-, sp-, ds- and df-shells

2. Core LFT problems involving the sd-, pd-, sf- and pf-shells become readily accesible.

Requesting an CAS-AILFT calcultion withing the CASSCF module is provided in two ways:

1. Through the ActOrbs xOrbs keywords (e.g. xOrbs: dOrbs, fOrbs spOrbs, psOrbs, sdOrbs, dsOrbs, sfOrbs,
fsOrbs, pdOrbs, dpOrbs, pfOrbs, fpOrbs, dfOrbs, fdOrbs)

2. Through the LFTCase keyword where particular LFT problems can be requested according to the above 1-
and 2-shell combinations (e.g. LFTCase 3d, LFTCase 4f, LFTCase 1s3d, LFTCase 2p3d . . . )

Note: that the LFTCase keyword overwrites the ActOrbs keyword and as it will be discussed below provides a
particular utility that simplifies the 2-shell AILFT input.

A simple input for the Ni2+ 𝑑8 ion is provided below:

!NEVPT2 def2-SVP def2-SVP/C
%casscf
nel 8
norb 5
ActOrbs dOrbs
mult 3,1
nroots 10,15
rel
dosoc true

end
end

*xyz 2 3
Ni 0.0000000000 0.0000000000 0.0000000000
*

The programm after the CASSCF convergence will undergo few important steps and sanity checks which involve

1. an Orbital purification step

2. a Phase correction of the 1 and 2-electron integrals

It is then important from the user’s perspective to monitor that these steps have been succesfully performed. The
relevant parts of the output are provided below:

---- THE CAS-SCF GRADIENT HAS CONVERGED ----
--- FINALIZING ORBITALS ---
---- DOING ONE FINAL ITERATION FOR PRINTING ----
--- d-orbitals (depends on the molecular axis frame)
L-Center: 0 Ni [0.000, 0.000, 0.000]
--- The active space contains 5 d Orbitals : OK
Setting 9 active MO to AO dz2 (11)
Setting 10 active MO to AO dxz (12)
Setting 11 active MO to AO dyz (13)
Setting 12 active MO to AO dx2y2 (14)
Setting 13 active MO to AO dxy (15)
--- Canonicalize Internal Space
--- Canonicalize External Space

...

(continues on next page)
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=============================
AB INITIO LIGAND FIELD THEORY
d8 configuration
2 CI blocks
MOs 9 to 13
=============================

Metal/Atom center is atom 0
orbital phases = 1.0 1.0 1.0 1.0 1.0
Metal/Atom d-orbital parts of active orbitals
Shell 7
9 10 11 12 13
dz2 : 0.848522 -0.000000 0.000000 -0.000000 -0.000000
dxz : -0.000000 0.848522 0.000000 -0.000000 0.000000
dyz : 0.000000 0.000000 0.848522 -0.000000 -0.000000
dx2y2 : -0.000000 -0.000000 -0.000000 0.848522 0.000000
dxy : -0.000000 0.000000 -0.000000 0.000000 0.848522
Shell 8
9 10 11 12 13
dz2 : 0.300072 0.000000 -0.000000 0.000000 0.000000
dxz : 0.000000 0.300072 -0.000000 0.000000 -0.000000
dyz : -0.000000 -0.000000 0.300072 0.000000 0.000000
dx2y2 : 0.000000 0.000000 0.000000 0.300072 -0.000000
dxy : 0.000000 -0.000000 0.000000 -0.000000 0.300072

Adjusting phases of one-electron integrals ... done
Adjusting phases of two-electron integrals ... done

In a subsequent step the program will

1. compute the AI Hamiltonian

2. construct the parameterized LFT Hamiltonian

3. and perform the fit

The relevant output can be seen below:

Calculating ab initio Hamiltonian matrices ...
------------------------------------------------------------
NRoots (NEVPT2) for this block = 10
NEVPT2 correction for this block is calculated
Full NEVPT2 Hamiltonian constructed
Full NEVPT2 Hamiltonian diagonalized
------------------------------------------------------------
------------------------------------------------------------
NRoots (NEVPT2) for this block = 15
NEVPT2 correction for this block is calculated
Full NEVPT2 Hamiltonian constructed
Full NEVPT2 Hamiltonian diagonalized
------------------------------------------------------------
Calculating fit matrices ... done
Fitting ... done

In following the fitted 1-electron energies and SCP parameters also Racah parameters for 1-shells will be printed
at the CASSCF and NEVPT2 levels of theory

------------------------------
AILFT MATRIX ELEMENTS (CASSCF)
--------------------------------

Ligand field one-electron matrix VLFT (a.u.) :
Orbital dz2 dxz dyz dx2-y2 dxy

(continues on next page)
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dz2 -8.111733 -0.000000 -0.000000 0.000000 -0.000000
dxz -0.000000 -8.111733 -0.000000 -0.000000 0.000000
dyz -0.000000 -0.000000 -8.111733 -0.000000 0.000000
dx2-y2 0.000000 -0.000000 -0.000000 -8.111733 -0.000000
dxy -0.000000 0.000000 0.000000 -0.000000 -8.111733

-------------------------------------------------
Slater-Condon Parameters (electronic repulsion) :
-------------------------------------------------
F0dd(from 2el Ints) = 0.980960738 a.u. = 26.693 eV = 215296.0 cm**-1 (fixed)
F2dd = 0.451725025 a.u. = 12.292 eV = 99142.2 cm**-1
F4dd = 0.280604669 a.u. = 7.636 eV = 61585.6 cm**-1
-------------------
Racah Parameters :
-------------------
A(F0dd from 2el Ints) = 0.949782441 a.u. = 25.845 eV = 208453.2 cm**-1
B = 0.006037419 a.u. = 0.164 eV = 1325.1 cm**-1
C = 0.022270212 a.u. = 0.606 eV = 4887.7 cm**-1
C/B = 3.689
-------------------------------------------------------------------------------

-----------------------------------------
The ligand field one electron eigenfunctions:
-----------------------------------------
Orbital Energy (eV) Energy(cm-1) dz2 dxz dyz dx2-y2 dxy
1 0.000 0.0 -0.999978 -0.000164 -0.001934 0.005783 -0.002568
2 0.000 0.0 -0.005768 -0.000269 -0.000262 -0.999967 -0.005788
3 0.000 0.0 0.002600 0.000424 0.001046 0.005773 -0.999979
4 0.000 0.0 0.000241 -0.999246 -0.038831 0.000280 -0.000462
5 0.000 0.0 0.001930 0.038832 -0.999243 0.000246 -0.001022
Ligand field orbitals were stored in ni.3d.casscf.lft.gbw

...

------------------------------
AILFT MATRIX ELEMENTS (NEVPT2)
--------------------------------

Ligand field one-electron matrix VLFT (a.u.) :
Orbital dz2 dxz dyz dx2-y2 dxy
dz2 -8.118685 0.000000 0.000000 0.000005 -0.000000
dxz 0.000000 -8.118666 -0.000000 -0.000000 0.000000
dyz 0.000000 -0.000000 -8.118674 -0.000000 0.000000
dx2-y2 0.000005 -0.000000 -0.000000 -8.118676 0.000000
dxy -0.000000 0.000000 0.000000 0.000000 -8.118667

-------------------------------------------------
Slater-Condon Parameters (electronic repulsion) :
-------------------------------------------------
F2dd = 0.415943380 a.u. = 11.318 eV = 91289.0 cm**-1
F4dd = 0.259145554 a.u. = 7.052 eV = 56875.9 cm**-1
-------------------
Racah Parameters :
-------------------
B = 0.005550482 a.u. = 0.151 eV = 1218.2 cm**-1
C = 0.020567107 a.u. = 0.560 eV = 4514.0 cm**-1
C/B = 3.705
-------------------------------------------------------------------------------

-----------------------------------------
The ligand field one electron eigenfunctions:

(continues on next page)
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-----------------------------------------
Orbital Energy (eV) Energy(cm-1) dz2 dxz dyz dx2-y2 dxy
1 0.000 0.0 -0.927589 0.002893 0.009447 0.373452 -0.003963
2 0.000 3.0 0.337599 0.005897 0.449370 0.827017 -0.010128
3 0.000 3.0 0.160011 -0.005672 -0.893243 0.420094 0.001383
4 0.001 4.4 0.000644 0.105816 -0.006612 -0.009602 -0.994317
5 0.001 4.6 0.001541 0.994348 -0.007084 -0.002573 0.105893
Ligand field orbitals were stored in ni.3d.nevpt2.lft.gbw

Note that:

• At the CASSCF level F0 (and subsequently racah A) is computed from CASSCF 2-electron coulomb integrals

• On the other hand at the NEVPT2 level F0 is not defined hence F0 and racah A are not printed. Below an
alternative using the effective Slater exponnets will be provided.

• The LFT orbitals are saved in *.lft.gbw files which can be processed by the orca_plot to generate orbital
visualization files.

AILFT provides a Fit quality analysis (see the original paper [57, 490])

Note: That at the CASSCF level the AI matrix of free atoms and ions is exactly parameterized in the chosen LFT
parameterization scheme. As a result the RMS AI-LFT fitting errors is expected to be practically zero. This is not
the case when a correlation treatment is chosen like NEVPT2 and the errors are expected to be somewhat larger.

The above is shown below:

Calculating statistical parameters ... done

Reference energy AI-LFT = -38.134150221 au
Reference energy AI = -38.134150221 au

------------------------------------------------
COMPARISON OF AB INITIO AND LIGAND FIELD RESULTS
------------------------------------------------

Block 1
---------
AI-Root 0: E(AI)= 0.000 eV -> LF-Root 0: 0.000 eV S= 0.998 Delta= -0.000 eV
AI-Root 1: E(AI)= 0.000 eV -> LF-Root 1: 0.000 eV S= 0.981 Delta= -0.000 eV
AI-Root 2: E(AI)= 0.000 eV -> LF-Root 2: 0.000 eV S= 0.980 Delta= -0.000 eV
AI-Root 3: E(AI)= 0.000 eV -> LF-Root 3: 0.000 eV S= 0.773 Delta= 0.000 eV
AI-Root 4: E(AI)= 0.000 eV -> LF-Root 4: 0.000 eV S= 0.774 Delta= -0.000 eV
AI-Root 5: E(AI)= 0.000 eV -> LF-Root 5: 0.000 eV S= 0.985 Delta= -0.000 eV
AI-Root 6: E(AI)= 0.000 eV -> LF-Root 6: 0.000 eV S= 0.986 Delta= -0.000 eV
AI-Root 7: E(AI)= 2.464 eV -> LF-Root 7: 2.464 eV S= 0.998 Delta= -0.000 eV
AI-Root 8: E(AI)= 2.464 eV -> LF-Root 8: 2.464 eV S= 0.998 Delta= -0.000 eV
AI-Root 9: E(AI)= 2.464 eV -> LF-Root 9: 2.464 eV S= 1.000 Delta= -0.000 eV
RMS error for this block = 0.000 eV = 0.0 cm**-1

Block 2
---------
AI-Root 0: E(AI)= 2.033 eV -> LF-Root 0: 2.033 eV S= 1.000 Delta= -0.000 eV
AI-Root 1: E(AI)= 2.033 eV -> LF-Root 1: 2.033 eV S= 1.000 Delta= -0.000 eV
AI-Root 2: E(AI)= 2.033 eV -> LF-Root 2: 2.033 eV S= 0.903 Delta= -0.000 eV
AI-Root 3: E(AI)= 2.033 eV -> LF-Root 3: 2.033 eV S= 0.967 Delta= -0.000 eV
AI-Root 4: E(AI)= 2.033 eV -> LF-Root 4: 2.033 eV S= 0.935 Delta= -0.000 eV
AI-Root 5: E(AI)= 3.183 eV -> LF-Root 5: 3.183 eV S= 0.996 Delta= -0.000 eV
AI-Root 6: E(AI)= 3.183 eV -> LF-Root 6: 3.183 eV S= 0.999 Delta= -0.000 eV
AI-Root 7: E(AI)= 3.183 eV -> LF-Root 7: 3.183 eV S= 0.996 Delta= -0.000 eV
AI-Root 8: E(AI)= 3.183 eV -> LF-Root 8: 3.183 eV S= 0.999 Delta= -0.000 eV
AI-Root 9: E(AI)= 3.183 eV -> LF-Root 9: 3.183 eV S= 0.999 Delta= -0.000 eV
AI-Root 10: E(AI)= 3.183 eV -> LF-Root 10: 3.183 eV S= 0.995 Delta= -0.000 eV
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AI-Root 11: E(AI)= 3.183 eV -> LF-Root 11: 3.183 eV S= 0.992 Delta= -0.000 eV
AI-Root 12: E(AI)= 3.183 eV -> LF-Root 12: 3.183 eV S= 0.999 Delta= -0.000 eV
AI-Root 13: E(AI)= 3.183 eV -> LF-Root 13: 3.183 eV S= 0.996 Delta= -0.000 eV
AI-Root 14: E(AI)= 7.856 eV -> LF-Root 14: 7.856 eV S= 1.000 Delta= -0.000 eV
RMS error for this block = 0.000 eV = 0.0 cm**-1

Total RMS error g= 0.000 eV = 0.0 cm**-1
Note: Dropped RMS error for the reference energy.

Confidence intervals (95) computed from the square root of the
diagonal elements of the covariance matrix:
H(dz2 ,dz2 )= 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
H(dxz ,dz2 )= 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
H(dxz ,dxz )= 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
H(dyz ,dz2 )= 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
H(dyz ,dxz )= 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
H(dyz ,dyz )= 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
H(dx2-y2,dz2 )= 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
H(dx2-y2,dxz )= 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
H(dx2-y2,dyz )= 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
H(dx2-y2,dx2-y2)= 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
H(dxy ,dz2 )= 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
H(dxy ,dxz )= 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
H(dxy ,dyz )= 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
H(dxy ,dx2-y2)= 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
H(dxy ,dxy )= 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
F2dd = 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
F4dd = 0.000000000 a.u. = 0.000 eV = 0.0 cm**-1
Pearson's correlation coefficient = 1.000 (should be close to 1)

Calculating statistical parameters ... done

Reference energy AI-LFT = -38.134345028 au
Reference energy AI = -38.134150221 au

------------------------------------------------
COMPARISON OF AB INITIO AND LIGAND FIELD RESULTS
------------------------------------------------

Block 1
---------
AI-Root 0: E(AI)= -0.000 eV -> LF-Root 0: 0.000 eV S= 0.933 Delta= -0.000 eV
AI-Root 1: E(AI)= 0.000 eV -> LF-Root 1: 0.000 eV S= 0.769 Delta= -0.000 eV
AI-Root 2: E(AI)= 0.001 eV -> LF-Root 2: 0.000 eV S= 0.773 Delta= 0.000 eV
AI-Root 3: E(AI)= 0.001 eV -> LF-Root 3: 0.000 eV S= 0.742 Delta= 0.001 eV
AI-Root 4: E(AI)= 0.002 eV -> LF-Root 4: 0.000 eV S= 0.750 Delta= 0.001 eV
AI-Root 5: E(AI)= 0.003 eV -> LF-Root 5: 0.001 eV S= 0.931 Delta= 0.002 eV
AI-Root 6: E(AI)= 0.003 eV -> LF-Root 6: 0.001 eV S= 0.998 Delta= 0.003 eV
AI-Root 7: E(AI)= 2.195 eV -> LF-Root 7: 2.266 eV S= 1.000 Delta= -0.070 eV
AI-Root 8: E(AI)= 2.195 eV -> LF-Root 8: 2.266 eV S= 0.998 Delta= -0.070 eV
AI-Root 9: E(AI)= 2.195 eV -> LF-Root 9: 2.266 eV S= 0.998 Delta= -0.070 eV
RMS error for this block = 0.039 eV = 311.1 cm**-1

Block 2
---------
AI-Root 0: E(AI)= 1.812 eV -> LF-Root 0: 1.875 eV S= 0.825 Delta= -0.063 eV
AI-Root 1: E(AI)= 1.812 eV -> LF-Root 1: 1.875 eV S= 0.938 Delta= -0.063 eV
AI-Root 2: E(AI)= 1.812 eV -> LF-Root 2: 1.875 eV S= 1.000 Delta= -0.063 eV
AI-Root 3: E(AI)= 1.812 eV -> LF-Root 3: 1.875 eV S= 1.000 Delta= -0.063 eV
AI-Root 4: E(AI)= 1.812 eV -> LF-Root 4: 1.875 eV S= 0.773 Delta= -0.063 eV
AI-Root 5: E(AI)= 2.987 eV -> LF-Root 5: 2.932 eV S= 0.955 Delta= 0.056 eV
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AI-Root 6: E(AI)= 2.987 eV -> LF-Root 6: 2.932 eV S= 0.910 Delta= 0.055 eV
AI-Root 7: E(AI)= 2.988 eV -> LF-Root 7: 2.932 eV S= 0.874 Delta= 0.056 eV
AI-Root 8: E(AI)= 2.988 eV -> LF-Root 8: 2.932 eV S= 0.792 Delta= 0.056 eV
AI-Root 9: E(AI)= 2.988 eV -> LF-Root 9: 2.932 eV S= 0.796 Delta= 0.056 eV
AI-Root 10: E(AI)= 2.988 eV -> LF-Root 10: 2.932 eV S= 0.808 Delta= 0.056 eV
AI-Root 11: E(AI)= 2.988 eV -> LF-Root 11: 2.932 eV S= 0.971 Delta= 0.056 eV
AI-Root 12: E(AI)= 2.988 eV -> LF-Root 12: 2.932 eV S= 0.994 Delta= 0.056 eV
AI-Root 13: E(AI)= 2.989 eV -> LF-Root 13: 2.932 eV S= 0.994 Delta= 0.057 eV
AI-Root 14: E(AI)= 7.122 eV -> LF-Root 14: 7.241 eV S= 1.000 Delta= -0.119 eV
RMS error for this block = 0.064 eV = 519.6 cm**-1

Total RMS error g= 0.057 eV = 457.2 cm**-1
Note: Dropped RMS error for the reference energy.

Confidence intervals (95) computed from the square root of the
diagonal elements of the covariance matrix:
H(dz2 ,dz2 )= 0.000523387 a.u. = 0.014 eV = 114.9 cm**-1
H(dxz ,dz2 )= 0.000393965 a.u. = 0.011 eV = 86.5 cm**-1
H(dxz ,dxz )= 0.000523387 a.u. = 0.014 eV = 114.9 cm**-1
H(dyz ,dz2 )= 0.000393965 a.u. = 0.011 eV = 86.5 cm**-1
H(dyz ,dxz )= 0.000393965 a.u. = 0.011 eV = 86.5 cm**-1
H(dyz ,dyz )= 0.000523387 a.u. = 0.014 eV = 114.9 cm**-1
H(dx2-y2,dz2 )= 0.000393965 a.u. = 0.011 eV = 86.5 cm**-1
H(dx2-y2,dxz )= 0.000393965 a.u. = 0.011 eV = 86.5 cm**-1
H(dx2-y2,dyz )= 0.000393965 a.u. = 0.011 eV = 86.5 cm**-1
H(dx2-y2,dx2-y2)= 0.000523387 a.u. = 0.014 eV = 114.9 cm**-1
H(dxy ,dz2 )= 0.000393965 a.u. = 0.011 eV = 86.5 cm**-1
H(dxy ,dxz )= 0.000393965 a.u. = 0.011 eV = 86.5 cm**-1
H(dxy ,dyz )= 0.000393965 a.u. = 0.011 eV = 86.5 cm**-1
H(dxy ,dx2-y2)= 0.000393965 a.u. = 0.011 eV = 86.5 cm**-1
H(dxy ,dxy )= 0.000523387 a.u. = 0.014 eV = 114.9 cm**-1
F2dd = 0.002351095 a.u. = 0.064 eV = 516.0 cm**-1
F4dd = 0.003038264 a.u. = 0.083 eV = 666.8 cm**-1
Pearson's correlation coefficient = 1.000 (should be close to 1)

Several utilities are offered for more specialized tasks that provide better control of the AILFT inputs and outputs:

• Skipping orbital otimization or reading in previously computed orbitals can be requested in two ways:

1. By the !NoIter keyword in the command line

2. By the AILFT_SkipOrbOpt in the ailft block (see example below)

• Estimating F0 SCPs or Racah A from single zeta Slater Exponents can be requested from the
AILFT_EffectveSlaterExponents true keyword in the ailft block

• For the above task the knowledge of the principle quantum numbers is required. This can be specidied in
two ways:

1. By the AILFT_PQN x keyword in the ailft block (x=3 for 3d)

2. By the LFTCase x keyword (LFTCase 3d, ommiting in this way the ActOrbs dOrbs keyword)

Let us see how all the above translates in the above example of the Ni2+ 𝑑8 ion

!NoIter NEVPT2 def2-SVP def2-SVP/C

%casscf
nel 8
norb 5
LFTCase 3d
mult 3,1
nroots 10,15
ailft
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#AILFT_SkipOrbOpt true (An alternative to NoIter)
#AILFT_PQNs 3 (Works together with ActOrbs dOrbs as an alternative to LFTCase 3d)
AILFT_SlaterExponents true

end
rel
dosoc true

end
end

*xyz 2 3
Ni 0.0000000000 0.0000000000 0.0000000000
*

By running the above input the fitted 1-electron energies and SCP parameters also Racah parameters for 1-shells
will be printed at the CASSCF and NEVPT2 levels of theory, including F0s and Racah A as estimated from single
zeta effective Slater exponents from the fitted F2dd SCPs.

------------------------------
AILFT MATRIX ELEMENTS (CASSCF)
--------------------------------

Ligand field one-electron matrix VLFT (a.u.) :
Orbital dz2 dxz dyz dx2-y2 dxy
dz2 -7.974440 0.000000 -0.000000 0.000000 -0.000000
dxz 0.000000 -7.974440 -0.000000 -0.000000 0.000000
dyz -0.000000 -0.000000 -7.974440 -0.000000 0.000000
dx2-y2 0.000000 -0.000000 -0.000000 -7.974440 0.000000
dxy -0.000000 0.000000 0.000000 0.000000 -7.974440

-------------------------------------------------
Slater-Condon Parameters (electronic repulsion) :
-------------------------------------------------
-------------------------------------------------------------------------------
Computed Single Zeta Slater Effective Exponents ...
-------------------------------------------------------------------------------
kd(SZ)(from F2dd) = 3.134434893 a.u.
-------------------------------------------------------------------------------
Computed F0s from Single Zeta Slater Effective Exponents ...
-------------------------------------------------------------------------------
F0dd(from F2dd kd(SZ)) = 0.809116820 a.u. = 22.017 eV = 177580.6 cm**-1
F2dd = 0.427107567 a.u. = 11.622 eV = 93739.3 cm**-1
F4dd = 0.264174069 a.u. = 7.189 eV = 57979.5 cm**-1
-------------------------------------------------------------------------------
-------------------
Racah Parameters :
-------------------
A(from F2dd kd(SZ)) = 0.779764145 a.u. = 21.218 eV = 171138.4 cm**-1
B = 0.005721310 a.u. = 0.156 eV = 1255.7 cm**-1
C = 0.020966196 a.u. = 0.571 eV = 4601.5 cm**-1
C/B = 3.665
-------------------------------------------------------------------------------

-----------------------------------------
The ligand field one electron eigenfunctions:
-----------------------------------------
Orbital Energy (eV) Energy(cm-1) dz2 dxz dyz dx2-y2 dxy
1 0.000 0.0 -0.999981 0.000787 -0.001735 0.004390 -0.003810
2 0.000 0.0 0.003811 0.000493 0.000955 0.000497 -0.999992
3 0.000 0.0 0.004388 0.000169 0.000080 0.999990 0.000514
4 0.000 0.0 -0.000750 -0.999810 -0.019460 0.000174 -0.000514
5 0.000 0.0 -0.001754 -0.019459 0.999809 -0.000069 0.000939

(continues on next page)
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Ligand field orbitals were stored in ni.3d.casscf.lft.gbw

...

------------------------------
AILFT MATRIX ELEMENTS (NEVPT2)
--------------------------------

Ligand field one-electron matrix VLFT (a.u.) :
Orbital dz2 dxz dyz dx2-y2 dxy
dz2 -7.974812 -0.000000 -0.000000 0.000002 -0.000000
dxz -0.000000 -7.974860 0.000000 0.000000 0.000000
dyz -0.000000 0.000000 -7.974856 -0.000000 0.000000
dx2-y2 0.000002 0.000000 -0.000000 -7.974837 0.000000
dxy -0.000000 0.000000 0.000000 0.000000 -7.974837

-------------------------------------------------
Slater-Condon Parameters (electronic repulsion) :
-------------------------------------------------
-------------------------------------------------------------------------------
Computed Single Zeta Slater Effective Exponents ...
-------------------------------------------------------------------------------
kd(SZ)(from F2dd) = 3.126330433 a.u.
-------------------------------------------------------------------------------
Computed F0s from Single Zeta Slater Effective Exponents ...
-------------------------------------------------------------------------------
F0dd(from F2dd kd(SZ)) = 0.807024751 a.u. = 21.960 eV = 177121.5 cm**-1
F2dd = 0.426003229 a.u. = 11.592 eV = 93496.9 cm**-1
F4dd = 0.262001371 a.u. = 7.129 eV = 57502.7 cm**-1
-------------------------------------------------------------------------------
-------------------
Racah Parameters :
-------------------
A(from F2dd kd(SZ)) = 0.777913487 a.u. = 21.168 eV = 170732.3 cm**-1
B = 0.005723406 a.u. = 0.156 eV = 1256.1 cm**-1
C = 0.020793760 a.u. = 0.566 eV = 4563.7 cm**-1
C/B = 3.633
-------------------------------------------------------------------------------

-----------------------------------------
The ligand field one electron eigenfunctions:
-----------------------------------------
Orbital Energy (eV) Energy(cm-1) dz2 dxz dyz dx2-y2 dxy
1 0.000 0.0 -0.000608 -0.999795 0.017518 0.010019 0.001244
2 0.000 0.9 0.000003 -0.017532 -0.999696 -0.003661 0.016920
3 0.001 4.9 0.065092 -0.009854 0.004898 -0.995782 0.063719
4 0.001 5.0 -0.004126 0.002173 0.016617 0.063640 0.997824
5 0.001 10.5 0.997871 0.000042 -0.000237 0.065225 -0.000030
Ligand field orbitals were stored in ni.3d.nevpt2.lft.gbw

It is also possible to treat only the High Spin states in the d- and f- 1-shell AILFT. Note that not all the cases can be
treated as this renters the different SCP parameters undefined. In the beggining, AILFT will check whether such
case is detected and will drop a warning message

For example in the case of the Fe2+ 𝑑6 ion with an input like the following:

!NoIter def2-SVP def2-SVP/C

%casscf
nel 6

(continues on next page)
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norb 5
mult 5
nroots 5
LFTCase 3d
end

*xyz 2 3
Fe 0.0000000000 0.0000000000 0.0000000000
*

the following Warning will be printed in the beggining of the calculation

WARNING: In AILFT F2dd remains undefined when considering only the HS Multiplicity block
Be Careful with the results!
TIP: If possible use in addition a LS Multiplicity Block

Spin orbit coupling effects (SOC) can be introduced by parametrizing the effective SOC constant 𝜁. As long as
SOC is requested in the rel CASSCF block the respective requested shell effective SOC constant 𝜁 will be computed
at the end of every AILFT calculation

Hence in the above examples one gets:

----------------------------------------------
SPIN ORBIT COUPLING (based on CASSCF orbitals)
----------------------------------------------

AI-SOC-X integrals (cm-1)
0 1 2 3 4
0 0.000000 0.000000 1078.568273 -0.000000 -0.000000
1 -0.000000 0.000000 -0.000000 -0.000000 622.711683
2 -1078.568273 0.000000 0.000000 -622.711683 0.000000
3 0.000000 0.000000 622.711683 0.000000 -0.000000
4 0.000000 -622.711683 -0.000000 0.000000 0.000000
AI-SOC-Y integrals (cm-1)
0 1 2 3 4
0 -0.000000 -1078.568273 -0.000000 0.000000 0.000000
1 1078.568273 0.000000 -0.000000 -622.711683 -0.000000
2 0.000000 0.000000 0.000000 -0.000000 -622.711683
3 -0.000000 622.711683 0.000000 0.000000 -0.000000
4 -0.000000 0.000000 622.711683 0.000000 0.000000
AI-SOC-Z integrals (cm-1)
0 1 2 3 4
0 0.000000 -0.000000 0.000000 -0.000000 0.000000
1 0.000000 -0.000000 -622.711683 -0.000000 0.000000
2 -0.000000 622.711683 0.000000 -0.000000 -0.000000
3 0.000000 0.000000 0.000000 -0.000000 -1245.423365
4 -0.000000 -0.000000 0.000000 1245.423365 0.000000

Fit to the SOC matrix elements
a = 15.000000
b = 1.158 eV = 9340.7 cm**-1
SOC constant zeta = 0.077 eV = 622.7 cm**-1

LF-SOC-X integrals (cm-1)
0 1 2 3 4
0 0.000000 -0.000000 1078.568273 -0.000000 -0.000000
1 0.000000 0.000000 -0.000000 -0.000000 622.711683
2 -1078.568273 0.000000 0.000000 -622.711683 -0.000000
3 0.000000 0.000000 622.711683 0.000000 -0.000000
4 0.000000 -622.711683 0.000000 0.000000 0.000000
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LF-SOC-Y integrals (cm-1)
0 1 2 3 4
0 0.000000 -1078.568273 -0.000000 -0.000000 -0.000000
1 1078.568273 0.000000 -0.000000 -622.711683 -0.000000
2 0.000000 0.000000 0.000000 -0.000000 -622.711683
3 0.000000 622.711683 0.000000 0.000000 -0.000000
4 0.000000 0.000000 622.711683 0.000000 0.000000
LF-SOC-Z integrals (cm-1)
0 1 2 3 4
0 0.000000 -0.000000 -0.000000 -0.000000 -0.000000
1 0.000000 0.000000 -622.711683 -0.000000 -0.000000
2 0.000000 622.711683 0.000000 -0.000000 -0.000000
3 0.000000 0.000000 0.000000 0.000000 -1245.423365
4 0.000000 0.000000 0.000000 1245.423365 0.000000

RMS error of nonzero matrix elements = 0.0 cm**-1

-----SOC-CONSTANTS-----
---All Values in cm-1---
ZETA_D = 622.71
------------------------

Starting fron ORCA 5.0 it is also possible in addition to CASSCF and NEVPT2 to employ DCDCAS(2) and
Hermitian QD-NEVPT2 Abinitio Hamiltonians in AILFT Example inputs are provided below for DCDCAS(2):

!def2-SVP def2-SVP/C

%casscf
nel 8
norb 5
actorbs dorbs
mult 3,1
nroots 10,15
dcdcas true
corrorder 2
rel
dosoc true

end
end

*xyz 2 3
Ni 0.0000000000 0.0000000000 0.0000000000
*

and Hermitian QD-NEVPT2:

!def2-SVP def2-SVP/C

%casscf
nel 8
norb 5
actorbs dorbs
mult 3,1
nroots 10,15
PTMethod sc_nevpt2
PTSettings

QDType QD_VanVleck
end
rel
dosoc true

(continues on next page)
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end
end

*xyz 2 3
Ni 0.0000000000 0.0000000000 0.0000000000
*

Running the above inputs the respective DCDCAS(2) and Hermitian QD-NEVPT2 Hamiltonians will be processed:

Calculating ab initio Hamiltonian matrices ...
------------------------------------------------------------
DCDCAS correction for this block/order is calculated
DCDCAS Hamiltonian of block = 0 and order = 0 is passed
DCDCAS Hamiltonian diagonalized
------------------------------------------------------------
------------------------------------------------------------
DCDCAS correction for this block/order is calculated
DCDCAS Hamiltonian of block = 0 and order = 1 is passed
DCDCAS Hamiltonian diagonalized
------------------------------------------------------------
------------------------------------------------------------
DCDCAS correction for this block/order is calculated
DCDCAS Hamiltonian of block = 0 and order = 2 is passed
DCDCAS Hamiltonian diagonalized
------------------------------------------------------------
------------------------------------------------------------
DCDCAS correction for this block/order is calculated
DCDCAS Hamiltonian of block = 1 and order = 0 is passed
DCDCAS Hamiltonian diagonalized
------------------------------------------------------------
------------------------------------------------------------
DCDCAS correction for this block/order is calculated
DCDCAS Hamiltonian of block = 1 and order = 1 is passed
DCDCAS Hamiltonian diagonalized
------------------------------------------------------------
------------------------------------------------------------
DCDCAS correction for this block/order is calculated
DCDCAS Hamiltonian of block = 1 and order = 2 is passed
DCDCAS Hamiltonian diagonalized
------------------------------------------------------------

...

Calculating ab initio Hamiltonian matrices ...
------------------------------------------------------------
Hermitian QD-NEVPT2 correction for this block is calculated
Hermitian QD-NEVPT2 Hamiltonian of block = 0 is passed
Hermitian QD-NEVPT2 Hamiltonian diagonalized
------------------------------------------------------------
------------------------------------------------------------
Hermitian QD-NEVPT2 correction for this block is calculated
Hermitian QD-NEVPT2 Hamiltonian of block = 1 is passed
Hermitian QD-NEVPT2 Hamiltonian diagonalized
------------------------------------------------------------

It should be noted that NEVPT2 and Hermitian QD-NEVPT2 AILFT require a complete saturation of the excitation
space. This implies that if less roots than the required are requested the AILFT analyis will be skipped in these cases.
This is on the contrary not the case in CASSCF or DCDCAS(2) in which AILFT can operate under incomplete
saturation of the excitation space.
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Calculating ab initio Hamiltonian matrices ...
WARNING: Number of NEVPT2 roots for block 0 (5) is not equal to the number of CASCI CSFs (10)!
Skipping AILFT analysis with NEVPT2 energies!

WARNING: Number of NEVPT2 roots for block 1 (2) is not equal to the number of CASCI CSFs (15)!
Skipping AILFT analysis with NEVPT2 energies!

In a similar fashion one can request a 2-shell AILFT calulation.

For this purpose the recomended steps are the following:

• In a first step the valence active space orbitals are optimized in the framework of SA-CASSCF calculation.e.g.
the 3d MOs in a core 1s3d or 2p3d AILFT calculation, or the f MOs in an 4f5d AILFT calculation)

• In a second step the relevant core or virtual orbitals are rotated into the active space and the cho-
sen CASCI/AILFT problem is solved by saturating the excitation space with all the involved excita-
tions/multiplicity.

• In the most of the cases the excitation space of two multiplicities the High-Spin one and the subsequent
Low-Spin one are enouph for a succesfull fitting of the parameters

It should be noted that 2-shell AILFT ivolves a 2-step fitting process following a bottom up shell angular momentum
approach :

1. At first when possible an intra-shell fitting is performed

2. In following the respective effective Slater exponents are derived

3. In a last step an inter-shell fitting is performed and all the computed/fitted parameters are printed

This implies that:

• the flag of computing effective Slater exponents is always on by default in 2-shell AILFT

• the desired LFT problem is best requested by the LFTCase keywords (e.g. LFTCase 1s3d)

Let look at the case of 1s3d LFT problem of the Ni2+ 𝑑8 ion. A relevant input is provided below:

!NoIter NEVPT2 def2-SVP def2-SVP/C

%method
frozencore fc_none
end

%scf
rotate
{0,8,90}

end
end

%casscf
nel 10
norb 6
mult 3,1
nroots 100,100
LFTCase 1s3d
rel
dosoc true

end
end

*xyz 2 3
Ni 0.0000000000 0.0000000000 0.0000000000
*
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Like in 1-shell AILFT, 2-shells AILFT starts with a sanity check

---- THE CAS-SCF GRADIENT HAS CONVERGED ----
--- FINALIZING ORBITALS ---
---- DOING ONE FINAL ITERATION FOR PRINTING ----
--- sd-orbitals (depends on the molecular axis frame)
L-Center: 0 Ni [0.000, 0.000, 0.000]
L-Center: 0 Ni Active Orbital 0 is the s orbital ; l = 0 ; active shell = 0
L-Center: 0 Ni Active Orbital 1 is one d orbital ; l = 2 ; active shell = 7
L-Center: 0 Ni Active Orbital 2 is one d orbital ; l = 2 ; active shell = 7
L-Center: 0 Ni Active Orbital 3 is one d orbital ; l = 2 ; active shell = 7
L-Center: 0 Ni Active Orbital 4 is one d orbital ; l = 2 ; active shell = 7
L-Center: 0 Ni Active Orbital 5 is one d orbital ; l = 2 ; active shell = 7
--- The active space contains 1 s orbitals and 5 d orbitals : OK
Setting 8 active MO to AO s (0)
Setting 9 active MO to AO dz2 (11)
Setting 10 active MO to AO dxz (12)
Setting 11 active MO to AO dyz (13)
Setting 12 active MO to AO dx2y2 (14)
Setting 13 active MO to AO dxy (15)
--- Canonicalize Internal Space
--- Canonicalize External Space

In following the AI-LFT Hamiltonians are constructed and the LFT parameters are fitted at the CASSCF and at the
NEVPT2 levels of theory

------------------------------
AILFT MATRIX ELEMENTS (CASSCF)
--------------------------------

Ligand field one-electron matrix VLFT (a.u.) with V(0,0) fixed :
0 1 2 3 4 5
0 -334.652557 -0.000000 0.000000 -0.000000 -0.000000 -0.000000
1 -0.000000 -10.085777 0.000000 0.000000 -0.000000 -0.000000
2 0.000000 0.000000 -10.085777 -0.000000 -0.000000 -0.000000
3 -0.000000 0.000000 -0.000000 -10.085777 0.000000 0.000000
4 -0.000000 -0.000000 -0.000000 0.000000 -10.085777 -0.000000
5 -0.000000 -0.000000 -0.000000 0.000000 -0.000000 -10.085777

-------------------------------------------------
Slater-Condon Parameters (electronic repulsion) :
-------------------------------------------------
F0ss = 17.137989284 a.u. = 466.348 eV = 3761353.9 cm**-1
F0dd = 0.809116820 a.u. = 22.017 eV = 177580.6 cm**-1
F2dd = 0.427107567 a.u. = 11.622 eV = 93739.3 cm**-1
F4dd = 0.278548413 a.u. = 7.580 eV = 61134.3 cm**-1
F0sd = 1.285327742 a.u. = 34.976 eV = 282096.8 cm**-1
G2sd = 0.001928559 a.u. = 0.052 eV = 423.3 cm**-1
R2sddd = 0.003748289 a.u. = 0.102 eV = 822.7 cm**-1

-----------------------------------------
The ligand field one electron eigenfunctions:
-----------------------------------------
Orbital Energy (eV) Energy(cm-1) s dz2 dxz dyz dx2-y2 ␣
→˓ dxz
1 0.000 0.0 -1.000000 -0.000000 0.000000 -0.000000 -0.000000 0.
→˓000000
2 8831.911 71234174.2 0.000000 -0.006282 0.006583 -0.271975 0.962261 ␣
→˓0.000000
3 8831.911 71234174.2 0.000000 0.000000 0.000000 0.000000 0.000000 ␣
→˓1.000000
4 8831.911 71234174.2 0.000000 -0.075508 -0.016185 -0.959327 -0.271528 ␣
→˓0.000000

(continues on next page)
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5 8831.911 71234174.2 -0.000000 0.071391 -0.997365 0.008467 0.009682 ␣
→˓0.000000
6 8831.911 71234174.2 -0.000000 0.994566 0.070404 -0.075159 -0.015232 -
→˓0.000000
Ligand field orbitals were stored ni.1s3d.casscf.lft.gbw

...

------------------------------
AILFT MATRIX ELEMENTS (NEVPT2)
--------------------------------

Ligand field one-electron matrix VLFT (a.u.) with V(0,0) fixed :
0 1 2 3 4 5
0 -334.652557 -0.000000 0.000000 0.000000 0.000000 0.000000
1 -0.000000 -10.298799 0.000008 0.000006 -0.000002 -0.000002
2 0.000000 0.000008 -10.293700 -0.000042 -0.000008 -0.000006
3 0.000000 0.000006 -0.000042 -10.293839 -0.000001 0.000008
4 0.000000 -0.000002 -0.000008 -0.000001 -10.293927 -0.000033
5 0.000000 -0.000002 -0.000006 0.000008 -0.000033 -10.293511

-------------------------------------------------
Slater-Condon Parameters (electronic repulsion) :
-------------------------------------------------
F0ss = 16.677683435 a.u. = 453.823 eV = 3660328.4 cm**-1
F0dd = 0.806859685 a.u. = 21.956 eV = 177085.2 cm**-1
F2dd = 0.425916096 a.u. = 11.590 eV = 93477.8 cm**-1
F4dd = 0.277771367 a.u. = 7.559 eV = 60963.8 cm**-1
F0sd = 1.424742585 a.u. = 38.769 eV = 312694.9 cm**-1
G2sd = 0.025339297 a.u. = 0.690 eV = 5561.3 cm**-1
R2sddd = 0.003739506 a.u. = 0.102 eV = 820.7 cm**-1

-----------------------------------------
The ligand field one electron eigenfunctions:
-----------------------------------------
Orbital Energy (eV) Energy(cm-1) s dz2 dxz dyz dx2-y2 ␣
→˓ dxz
1 0.000 0.0 1.000000 0.000000 -0.000000 -0.000000 -0.000000 -0.
→˓000000
2 8826.114 71187421.2 -0.000000 0.999998 -0.001607 -0.001229 0.000405 ␣
→˓0.000329
3 8826.247 71188489.9 -0.000000 0.000330 -0.040203 -0.027545 -0.995773 -
→˓0.077852
4 8826.249 71188507.4 -0.000000 0.001631 0.264542 0.963492 -0.035726 -
→˓0.020544
5 8826.254 71188542.9 0.000000 -0.001223 -0.962932 0.264866 0.034492 -
→˓0.037635
6 8826.258 71188582.5 0.000000 -0.000317 -0.034070 0.027728 -0.077265 ␣
→˓0.996042
Ligand field orbitals were stored in ni.1s3d.nevpt2.lft.gbw

As discussed above saturation of the excitation space is a requirement also in the case of 2-shell AILFT. It is usually
enough to specify a large number of roots for two multiplicites (e.g. 100 singlets and triplets in the above example)
The exact number of roots will be automatically detected.

Multiplicity ... 3
#(Configurations) ... 15
#(CSFs) ... 15
#(Roots) ... 100
WARNING (ORCA_CASSCF): NRoots > NCSFs. Adjusting to maximum number of roots. Please check the␣
→˓output carefully!

(continues on next page)
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#(Roots) ... 15
ROOT=0 WEIGHT= 0.033333
ROOT=1 WEIGHT= 0.033333
ROOT=2 WEIGHT= 0.033333
ROOT=3 WEIGHT= 0.033333
ROOT=4 WEIGHT= 0.033333
ROOT=5 WEIGHT= 0.033333
ROOT=6 WEIGHT= 0.033333
ROOT=7 WEIGHT= 0.033333
ROOT=8 WEIGHT= 0.033333
ROOT=9 WEIGHT= 0.033333
ROOT=10 WEIGHT= 0.033333
ROOT=11 WEIGHT= 0.033333
ROOT=12 WEIGHT= 0.033333
ROOT=13 WEIGHT= 0.033333
ROOT=14 WEIGHT= 0.033333

BLOCK 2 WEIGHT= 0.5000
Multiplicity ... 1
#(Configurations) ... 21
#(CSFs) ... 21
#(Roots) ... 100
WARNING (ORCA_CASSCF): NRoots > NCSFs. Adjusting to maximum number of roots. Please check the␣
→˓output carefully!
#(Roots) ... 21
ROOT=0 WEIGHT= 0.023810
ROOT=1 WEIGHT= 0.023810
ROOT=2 WEIGHT= 0.023810
ROOT=3 WEIGHT= 0.023810
ROOT=4 WEIGHT= 0.023810
ROOT=5 WEIGHT= 0.023810
ROOT=6 WEIGHT= 0.023810
ROOT=7 WEIGHT= 0.023810
ROOT=8 WEIGHT= 0.023810
ROOT=9 WEIGHT= 0.023810
ROOT=10 WEIGHT= 0.023810
ROOT=11 WEIGHT= 0.023810
ROOT=12 WEIGHT= 0.023810
ROOT=13 WEIGHT= 0.023810
ROOT=14 WEIGHT= 0.023810
ROOT=15 WEIGHT= 0.023810
ROOT=16 WEIGHT= 0.023810
ROOT=17 WEIGHT= 0.023810
ROOT=18 WEIGHT= 0.023810
ROOT=19 WEIGHT= 0.023810
ROOT=20 WEIGHT= 0.023810

However very often the required number of states to be computed in the framework of NEVPT2 type of calculations
are quite large. In these cases a Hamiltonian reduction process on the basis of the Restrictive Active Space (RAS)
is required. In fact all LFT parameters can be determined by considering up to double excitations from the donor-
shell.

Let us consider the 2p3d case of the Fe2+ 𝑑6 ion. Saturation of the active space requires to consider 70 triplet and
378 singlet states. Restriction of the active space to only up to double excitations from the 2p-shell results in 65
quintet and 330 triplet states. The Hamiltonian reduction can be requested in the ailft block:

ailft
AILFT_Dimension 2 # Up to double excitations from the donor shell

Other options:
1 Up to single excitations from the donor shell
0 No excitations from the donor shell

(continues on next page)
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end

Hence the relevant input can be now formulated as:

!NoIter MOREAD DKH2 DKH-def2-TZVP def2-TZVP/C NEVPT2

%moinp "fe.3d.gbw"

%pal
nprocs 16
end

%method
frozencore fc_none
end

%scf
rotate
{2,6,90}
{3,7,90}
{4,8,90}

end
end

%casscf
nel 12
norb 8
mult 5,3
nroots 65,330
LFTCase 2p3d
ailft
AILFT_Dimension 2

end
rel
dosoc true
GTensor false
DoDTensor false

end
end

*xyz 2 5
Fe 0.0000000000 0.0000000000 0.0000000000
*

Note that before running the above calculation:

• An initial SA-CASSCF calculation has been performed on the valence states of Fe in the 3d active space.
These orbitals (fe.3d.gbw) are read in

• The computation of the g- and D- tensors is switched off. This is recomended if the magnetism analysis is
not required

• As core spectroscopy is targeted the frozen core is switched off

At the NEVPT2 part the reduced AI and LFT Hamiltonians will be constructed

Calculating ab initio Hamiltonian matrices ...
------------------------------------------------------------
NRoots (NEVPT2) for this block = 65
NEVPT2 correction for this block is calculated
Full NEVPT2 Hamiltonian constructed
Full NEVPT2 Hamiltonian diagonalized

(continues on next page)
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------------------------------------------------------------
------------------------------------------------------------
NRoots (NEVPT2) for this block = 330
NEVPT2 correction for this block is calculated
Full NEVPT2 Hamiltonian constructed
Full NEVPT2 Hamiltonian diagonalized
------------------------------------------------------------

As a result the CASSCF and NEVPT2 LFT parameters will be determined in the requested reduced basis

------------------------------
AILFT MATRIX ELEMENTS (CASSCF)
--------------------------------

-------------------------------------------------
Slater-Condon Parameters (electronic repulsion) :
-------------------------------------------------
F0pp = 3.889665545 a.u. = 105.843 eV = 853682.9 cm**-1
F2pp = 1.832901835 a.u. = 49.876 eV = 402275.5 cm**-1
F0dd = 0.767706319 a.u. = 20.890 eV = 168492.1 cm**-1
F2dd = 0.405248254 a.u. = 11.027 eV = 88941.7 cm**-1
F4dd = 0.264292339 a.u. = 7.192 eV = 58005.5 cm**-1
F0pd = 1.174187892 a.u. = 31.951 eV = 257704.5 cm**-1
F2pd = 0.220959621 a.u. = 6.013 eV = 48495.0 cm**-1
G1pd = 0.157243007 a.u. = 4.279 eV = 34510.9 cm**-1
G3pd = 0.089473762 a.u. = 2.435 eV = 19637.2 cm**-1

...

------------------------------
AILFT MATRIX ELEMENTS (NEVPT2)
--------------------------------

-------------------------------------------------
Slater-Condon Parameters (electronic repulsion) :
-------------------------------------------------
F0pp = 3.527444471 a.u. = 95.987 eV = 774184.6 cm**-1
F2pp = 1.906123325 a.u. = 51.868 eV = 418345.7 cm**-1
F0dd = 0.808248242 a.u. = 21.994 eV = 177390.0 cm**-1
F2dd = 0.426649072 a.u. = 11.610 eV = 93638.6 cm**-1
F4dd = 0.278249395 a.u. = 7.572 eV = 61068.7 cm**-1
F0pd = 1.657417509 a.u. = 45.101 eV = 363761.1 cm**-1
F2pd = 0.198646995 a.u. = 5.405 eV = 43598.0 cm**-1
G1pd = 0.206111579 a.u. = 5.609 eV = 45236.3 cm**-1
G3pd = 0.128174221 a.u. = 3.488 eV = 28131.0 cm**-1

...

In the above example inclusion of SOC will result in the computation of the effective SOC 𝜁 constants of both p
and d shells:

-----SOC-CONSTANTS-----
---All Values in cm-1---
ZETA_P = 65018.19
ZETA_D = 453.53
------------------------

One important feature of 1- and in particular of the 2-shell AILFT is that it is connected to the standalone orca_lft
multiplet program. Hence every succesfull AILFT calculation will automatically construct relevant inputs for the
orca_lft.

For example in the avove 2p3d case of the Fe2+ 𝑑6 ion the following inputs will be constructed
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fe.2p3d.casscf.lft.inp
fe.2p3d.nevpt2.lft.inp

with the NEVPT2 one looking like this:

%lft

#-----Parameters------
NEl= 12
Shell_PQN= 0, 2, 3, 0
Mult= 5, 3
NRoots= 65, 330
#--------------------

#---Slater-Condon Parameters---
#---All Values in eV---
PARAMETERS
F0pp = 95.9866
F2pp = 51.8683
F0dd = 21.9936
F2dd = 11.6097
F4dd = 7.5716
F0pd = 45.1006
F2pd = 5.4055
G1pd = 5.6086
G3pd = 3.4878
end
#--------------------

#---LFT-Matrix Elelemnts---
#---All Values in eV---
FUNCTIONS
0 0 " 0.0000"
1 0 " -0.0146"
1 1 " 0.0947"
2 0 " 0.0210"
2 1 " 0.0061"
2 2 " 0.1155"
3 0 " 0.0000"
3 1 " -0.0000"
3 2 " -0.0000"
3 3 "1086.2398"
4 0 " 0.0000"
4 1 " -0.0000"
4 2 " -0.0000"
4 3 " 0.0323"
4 4 "1086.2181"
5 0 " -0.0000"
5 1 " 0.0000"
5 2 " 0.0000"
5 3 " -0.0356"
5 4 " -0.0154"
5 5 "1086.1183"
6 0 " 0.0000"
6 1 " -0.0000"
6 2 " -0.0000"
6 3 " -0.0767"
6 4 " -0.0080"
6 5 " 0.0341"
6 6 "1086.1219"

(continues on next page)
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7 0 " -0.0000"
7 1 " 0.0000"
7 2 " 0.0000"
7 3 " 0.0050"
7 4 " -0.0023"
7 5 " 0.0026"
7 6 " -0.0038"
7 7 "1086.0688"
end
#--------------------

#---SOC-CONSTANTS---
#---All Values in eV---
PARAMETERS
ZETA_P = 8.06
ZETA_D = 0.06
end
#--------------------

#---SPECTRA/PROPERTIES---
DoABS true
#------------------------
end

*xyz Charge Multiplicity
Atom 0.00 0.00 0.00
*

Further details regardin orca_lft can be found in the orca_lft section (orca_lft) and the orca_lft tutorial.

7.15.5 Core excited states with (C/R)ASCI/NEVPT2

Starting from ORCA 4.1, a CASCI/NEVPT2 protocol can be used to compute core excited spectra, namely X-
ray absorption (XAS) and resonant inelastic scattering (RIXS) spectra. RASCI calculations can also be easily
specified.

The XAS/RIXS spectra calculations requires two steps:

• In a first step one needs to optimize the valence active space orbitals in the framework of SA-CASSCF
calculations, e.g. including valence excited states in the range between 6 to 15 eV.

• In a second step the relevant core orbitals are rotated into the active space and the (C/R)ASCI/NEVPT2
problem is solved by saturating the excitation space with singly core-excited electronic configurations using
the previously optimized sets of orbitals

Further information can be found in reference[163]

A relevant input for Fe L-edge XAS calculation of a Fe(III) complex like Fe(acac)3 is given below for
CASCI/NEVPT2:

%moinp "Fe_acac3_casscf.gbw"

%scf
rotate
{4,89,90,0,0}
{3,88,90,0,0}
{2,87,90,0,0}
end

(continues on next page)
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end

%rel
picturechange true
FiniteNuc true
end

%method FrozenCore FC_NONE
end

# CASSCF/NEVPT2 on the valence and L-edge excited states
%casscf
nel 11
norb 8
mult 6,4
nroots 16,173
maxiter 1
# account for spin-orbit coupling
rel

DoSOC true
end
# adding the dynamical correlation with NEVPT2
PTMethod SC\_NEVPT2
end

* xyz 0 6
...
*

For RASCI/NEVPT2 calculations the valence d AS is set to RAS2. The RAS3 space is usually set empty. The
RAS1 space contains the previously rotated core orbitals. To generate a single core hole, the number of maximum
holes in the RAS1 space must be set to 1. Accordingly, the maximum number of particles in the RAS3 space must
be 0. The RASCI input should thus look the following

%casscf
nel 11
norb 8
...
refs
ras(11:3 1/5/0 0) # (Nel: NRAS1 MaxHoles / NRAS2 / NRAS3 MaxParticles)

end
...
end

As it is explicitly described in the respective ROCIS section RIXS spectra can be requested by the following key-
words:

RIXS true # Request RIXS calculation (NoSOC)
RIXSSOC true # Request RIXS calculation (with SOC)
Elastic true # Request RIXS calculation (Elastic)

Please consult section Resonant Inelastic Scattering Spectroscopy for processing and analyzing the generated spec-
tra.
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7.15.6 CASCI-XES

Starting from ORCA 5.0 likewise to RASCI-XES (see section X-ray Spectroscopy) orca features a CASCI-XES
protocol.

Likewise to the RASCI-XES the CASCI-XES calculations requires two steps:

• In a first step one needs to optimize the valence active space orbitals in the framework of SA-CASSCF
calculations, e.g. including valence excited states in the range between 6 to 15 eV.

• In a second step the relevant core orbitals e.g metal 1s and 3p are rotated into the active space and the
CASCI problem is solved for the ionized system by saturating the excitation space with singly core-excited
electronic configurations using the previously optimized sets of orbitals. In CASCI-XES this can be acheived
by defining reference configurations. or via the RAS functionality.

The XESSOC calculation is called by speciyfing the following keywords in the rel block:

rel
XESSOC true
XASMOs Number of the rotated 1s MO
end

Following a SA-CASSCF calculation:

! def2-SVP def2-SVP/C ZORA CPCM PAL8
! NormalPrint
! NoLoewdin NoMulliken

%casscf
nel 5
norb 5
nroots 1, 24
mult 6, 4
#rel
#dosoc true
#end
end

* xyz -3 6
Fe 0 0 0
Cl 2.40 0 0
Cl -2.40 0 0
Cl 0 2.40 0
Cl 0 -2.40 0
Cl 0 0 2.40
Cl 0 0 -2.40
*

A relevant input for Fe XES calculation of a Fe(III) complex like FeCl6 is given below:

! def2-SVP def2-SVP/C ZORA CPCM PAL8
! NormalPrint
! MOREAD
! NoLoewdin NoMulliken

%moinp "FeCl6_casscf.gbw"

%scf
#Rotate the 1s and 3p orbitals below the SOMOs by using the rotate option
rotate {0,59,90} {36,60,90} {37,61,90} {38,62,90} end
end

(continues on next page)
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%casscf
nel 12
norb 9
nroots 1000, 1000
mult 7, 5
maxiter 1
refs

1 2 2 2 0 0 1 2 2
1 2 2 2 0 0 2 1 2
1 2 2 2 0 0 2 2 1
1 2 2 2 0 1 0 2 2
1 2 2 2 0 1 1 1 2
1 2 2 2 0 1 1 2 1
1 2 2 2 0 1 2 0 2

...
2 2 2 2 2 0 0 2 0
2 2 2 2 2 0 1 0 1
2 2 2 2 2 0 1 1 0
2 2 2 2 2 0 2 0 0
2 2 2 2 2 1 0 0 1
2 2 2 2 2 1 0 1 0
2 2 2 2 2 1 1 0 0
2 2 2 2 2 2 0 0 0

end
DoDipoleVelocity true
DoHigherMoments true
rel
dosoc true
XESSOC true
XASMOs 59
DoDTensor false
DoVelocity true
end
end

%method
SpecialGridAtoms 26 #Increase the radial integration accuracy on Fe
SpecialGridIntAcc 7 #Requested radial integration accuracy values
end

* xyz -2 5
Fe 0 0 0
Cl 2.40 0 0
Cl -2.40 0 0
Cl 0 2.40 0
Cl 0 -2.40 0
Cl 0 0 2.40
Cl 0 0 -2.40
*

In ORCA 6 all these inputs between like MRCI, CASSCF and LFT have been unified so like in X-ray Spectroscopy
one can also specify the respective RAS excitation space as following:

%casscf
nel 12
norb 9
nroots 1000, 1000
mult 7, 5
maxiter 1

(continues on next page)
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refs ras(12:4 1/5/ 0 0) end
DoDipoleVelocity true
DoHigherMoments true
rel
dosoc true
XESSOC true
XASMOs 59
DoDTensor false
DoVelocity true
end
end

In the above inputs one notes that the exact knowledge of the states to saturate the excitations space is not required.
One only need to specify a large number (e.g. 1000) and the program will automatically detect the required 19
septet and 270 quintet states:

BLOCK 1 WEIGHT= 0.5000
Multiplicity ... 7
#(Configurations) ... 4
#(CSFs) ... 4
#(Roots) ... 1000
WARNING (ORCA_CASSCF): NRoots > NCSFs. Adjusting to maximum number of roots. Please check the␣
→˓output carefully!
#(Roots) ... 4

...

BLOCK 2 WEIGHT= 0.5000
Multiplicity ... 5
#(Configurations) ... 89
#(CSFs) ... 105
#(Roots) ... 1000
WARNING (ORCA_CASSCF): NRoots > NCSFs. Adjusting to maximum number of roots. Please check the␣
→˓output carefully!
#(Roots) ... 105

By now running the above input for the 4 septet and the 81 quintet states the following output is generated

------------------------------

Printing the XES spectrum ...

------------------------------

-------------------------------------------------------------------------------------
SPIN-ORBIT X-RAY EMISSION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-------------------------------------------------------------------------------------
Transition Energy INT TX TY TZ
1 421 -> 5 7231.106 0.000000000000 0.00000 0.00000 0.00000
2 422 -> 5 7231.106 0.000000000000 0.00000 0.00000 0.00000
3 423 -> 5 7231.106 0.000000000000 0.00000 0.00000 0.00000
4 424 -> 5 7231.106 0.000000000000 0.00000 0.00000 0.00000
5 425 -> 5 7231.106 0.000000000000 0.00000 0.00000 0.00000
6 426 -> 5 7231.106 0.000000000000 0.00000 0.00000 0.00000
7 427 -> 5 7231.106 0.000000000000 0.00000 0.00000 0.00000

...

2641 421 -> 25 7179.464 0.003027813485 0.00003 0.00001 0.00415
2642 422 -> 25 7179.464 0.003027769731 0.00114 0.00399 0.00001
2643 423 -> 25 7179.464 0.003027770766 0.00399 0.00114 0.00003

(continues on next page)
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2644 424 -> 25 7179.464 0.000000000035 0.00000 0.00000 0.00000
2645 425 -> 25 7179.464 0.000000000000 0.00000 0.00000 0.00000
2646 426 -> 25 7179.464 0.000000000063 0.00000 0.00000 0.00000
2647 427 -> 25 7179.464 0.000000000001 0.00000 0.00000 0.00000
2648 428 -> 25 7179.520 0.000000000000 0.00000 0.00000 0.00000
2649 429 -> 25 7179.520 0.000000000000 0.00000 0.00000 0.00000
2650 430 -> 25 7179.520 0.000000000000 0.00000 0.00000 0.00000
2651 431 -> 25 7179.520 0.000000000000 0.00000 0.00000 0.00000
2652 432 -> 25 7179.520 0.000000000000 0.00000 0.00000 0.00000
2653 433 -> 25 7181.156 0.000000887886 0.00000 0.00000 0.00007
2654 434 -> 25 7181.156 0.000000887873 0.00001 0.00007 0.00000
2655 435 -> 25 7181.156 0.000000887873 0.00007 0.00001 0.00000
...

54898 538 -> 420 7164.167 0.000077338518 0.00000 0.00000 0.00066
54899 539 -> 420 7164.167 0.000077338538 0.00047 0.00047 0.00000
54900 540 -> 420 7164.167 0.000077338525 0.00047 0.00047 0.00000
54901 541 -> 420 7164.186 0.000000000000 0.00000 0.00000 0.00000
54902 542 -> 420 7164.186 0.000000000000 0.00000 0.00000 0.00000
54903 543 -> 420 7164.186 0.000000000000 0.00000 0.00000 0.00000
54904 544 -> 420 7164.186 0.000000000000 0.00000 0.00000 0.00000
54905 545 -> 420 7164.186 0.000000000000 0.00000 0.00000 0.00000
54906 546 -> 420 7164.214 0.000000000000 0.00000 0.00000 0.00000
54907 547 -> 420 7164.214 0.000000000000 0.00000 0.00000 0.00000
54908 548 -> 420 7164.214 0.000000000000 0.00000 0.00000 0.00000
54909 549 -> 420 7164.214 0.000000000000 0.00000 0.00000 0.00000
54910 550 -> 420 7164.214 0.000050793492 0.00000 0.00000 0.00054
54911 551 -> 420 7164.214 0.000050793481 0.00020 0.00050 0.00000
54912 552 -> 420 7164.214 0.000050793480 0.00050 0.00020 0.00000

All Done
-------------------------------------------------------------------------------------

Finally by processing the .out file with orca_mapspc:

orca_mapspc fecl6_xes.out XESSOC -x07140 -x17190 -w4.0 -eV -n10000

and by plotting the resulted XES spectrum one will get the respective RASCI-XES spectrum presented in Fig. 7.42

Since Orca 6.0 the computed transition moments in the presence of SOC can be taken beyond the dipole approxi-
mation by using the OPS tool, check section (One Photon Spectroscopy) for details.

All the possible approximations can be requested with the following commands:

#Non-Relativistic/Relativistic treatment

%casscf
DoDipoleLength true
DoDipoleVelocity true
DoHigherMoments true
DecomposeFoscLength true
DecomposeFoscVelocity true
DoFullSemiclassical true
end

This wil generate a list of tables which for the case of XESSOC will look like the following:

----------------------------------------------------------------------------------------------
SOC COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE X-RAY EMISSION SPECTRUM
----------------------------------------------------------------------------------------------

INT (fosc)
---------------------------------------------------------

(continues on next page)
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Transition Energy D2 m2 Q2 D2+m2+Q2 D2/TOT m2/TOT Q2/TOT
(eV) (*1e6) (*1e6)

----------------------------------------------------------------------------------------------
...

----------------------------------------------------------------------------------------------
SOC COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE X-RAY EMISSION SPECTRUM

(Origin Adjusted)
----------------------------------------------------------------------------------------------

INT (fosc)
---------------------------------------------------------
Transition Energy D2 m2 Q2 D2+m2+Q2 D2/TOT m2/TOT Q2/TOT

(eV) (*1e6) (*1e6)
-----------------------------------------------------------------------------------------------

...

-----------------------------------------------------------------------------------------------
SOC COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE X-RAY EMISSION SPECTRUM

(Origin Independent, Velocity)
-----------------------------------------------------------------------------------------------

INT (fosc)
--------------------------------------------------------
Transition Energy D2 m2 Q2 D2+m2+Q2+DM+DO D2/TOT m2/TOT Q2/TOT

(eV) (*1e6) (*1e6)
-----------------------------------------------------------------------------------------------

...

-----------------------------------------------------------------------------------------------
SOC COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE X-RAY EMISSION SPECTRUM

(Exact Formulation, Velocity)
-----------------------------------------------------------------------------------------------
→˓-

INT (fosc)
---------------------------------------------------------------------------
Transition Energy D2 m2 Q2 Exact Osc. Str. D2/TOT m2/TOT Q2/TOT

(eV) (*1e6) (*1e6)
-----------------------------------------------------------------------------------------------
→˓-

Orca_mapspc can process all these files. The list of the relevant keywords is:

ABSQ #This will process non relativistic Origin Adjusted Absortion like spectra
ABSOI #This will process the non relativistic Exact, Velocity Absortion like spectra
SOCABSQ #This will process the SOC corrected Origin Adjusted Absortion like spectra
SOCABSOI #This will process the SOC corrected Exact Velocity Absortion like spectra
XESSOCQ #This will process the SOC corrected Origin Adjusted X-ray Emission spectra
XESSOCOI #This will process the SOC corrected Exact Velocity X-ray Emission spectra

A more complete list can be found in (orca_mapspc)
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7.16 CASSCF Linear Response

Similar to the SCF linear response (see CP-SCF Options), second-derivative properties can be calculated at the
CASSCF level by solving the coupled perturbed (CP-)CASSCF equations for the linear response of the wavefunc-
tion parameters to a perturbation. These linear response equations are expressed as

𝜕2𝐸

𝜕𝜆2

𝜕𝜆

𝜕R
= − 𝜕2𝐸

𝜕𝜆𝜕R

where 𝜆 are the CASSCF wavefunction parameters and R are the perturbations for which the response equations
are being solved [378, 861]. The property gradient on the right-hand side (RHS) is a known perturbation-dependent
quantity, but the left-hand side (LHS) depends on the solution of the response of the wavefunction parameters to
R. Therefore, the response to the perturbation must be solved for iteratively, which is done using the trial vectors
X. This leads to the LHS being computed as a sigma-vector, which is reassembled at every iteration. The linear
response equation for perturbation 𝑅𝑖 can then be written as

𝜎 = HX(𝑅𝑖) = G(𝑅𝑖)

where H is the perturbation-independent Hessian matrix and G is the perturbation-specific RHS matrix. Once the
linear equation converges, the solution vector of the response parameters can then be contracted with the electron-
and spin-density matrices to yield the AO response density matrices,

[︀
P𝛼±𝛽]︀(R). The response densities can

then be contracted with appropriate AO 1-electron property integrals to compute the second-order contributions to
second-derivative properties.

In ORCA these equations are solved by the orca_casscfresp program and the underlying solver is BHP22, a
Davidson-type linear equation solver. The RHS is built from the property integrals calculated in the orca_propint
program. After the solution converges and the response densities are made and stored, the orca_prop program is
called, wherein the appropriate densities and response densities are contracted with the necessary property integrals
(also from orca_propint). This use of densities keeps the response property calculations in orca_prop generally
applicable to all methods as the densities house the method-specific information.

7.16.1 Input Block

The input block %casresp is available for requesting the following options (given below with their default values):

%casresp
TolR 1.e-5 # Convergence tolerance for the residual norm

# Note: TolR not affected by global keywords (TightSCF, etc.)
MaxIter 64 # Maximum number of iterations
MaxRed 24 # Maximum size of the reduced space per RHS

PrintRHSVec false # Print significant contributions to the RHS vector
PrintRspVec false # Print significant contributions to the response vector
PrintWF CFG # print CI part in (CFG (default), CSF, or DET basis)
TolPrintVec 1.e-2 # Threshold to print a contribution to the RHS/response vector

# Minimum value of the SQUARE of a vector element to print

PreCondType diag # (default) Use diagonal preconditioner (requires auxiliary basis!)
none # Do not use a preconditioner

PreCondMaxRed 400 # Hessian precondition subset size
end

Note that the solver-related options in the %elprop and %eprnmr blocks do not affect the solution of the CP-
CASSCF equations.

7.16. CASSCF Linear Response 625



ORCA Manual, Release 6.0

7.16.2 Technical Notes

It should be noted that CASSCF linear response uses the optimized CASSCF wavefunction as a starting point. Thus,
a %casscf block with the appropriate inputs (see Complete Active Space Self-Consistent Field Method) must be
provided in the input. State-specific (SS-)CASSCF response is run on SS (NRoots 1) CASSCF wavefunctions. If
the CASSCF wavefunction is state-averaged (SA), the response is run over the averaged manifold of states and not
on a specific root. In this case, one should analyze the output carefully. It is wise to only average states which are
(nearly-)degenerate.

By default, a CASSCF calculation will be run from scratch before running the CASSCF Response. Alternatively,
orbitals from a previously converged CASSCF calculation may be used with !MOREAD NoIter and supplying the
appropriate .gbw file via %moinp. In this case, be sure that the input in the %casscf block matches that from the
same input block of the previously converged calculation and be sure to check the orbitals well!

The appropriate property flags in the %elprop and %eprnmr blocks must be set to calculate the properties that
are wanted (see Electric Properties, EPR and NMR properties, and Calculation of Properties). While all first-
derivative properties work with CASSCF, not all second-derivative properties are currently available with CASSCF.
The static properties currently available (sorted by perturbation taken for the response) include:

• Electric (E) Field

– Dipole/dipole Polarizability

– Dipole/quadrupole Polarizability

• Quadrupole (Q) Field

– Quadrupole/Quadrupole Polarizability

• Magnetic (B) Field (without GIAOs)

– EPR g-Tensor

– NMR Chemical Shieldings

• Velocity (v)

– Velocity Polarizability

The magnetic properties are currently implemented without gauge-including atomic orbitals (GIAOs). Thus, an
appropriate gauge-origin must be provided in the %eprnmr block! For the EPR g-tensor, using a large basis set with
a chemically relevant gauge origin is recommended. However, one should in general be wary of NMR chemical
shieldings without GIAOs. GIAOs for CASSCF linear response are coming soon to ORCA!

7.16.3 Notes on Printing

The information on the types of property integrals computed can be found in the ORCA PROPERTY INTEGRAL
CALCULATIONS section of the output file. The orca_casscfresp output begins with the header ORCA CASSCF
RESPONSE CALCULATION. After information about the types and number of perturbations, the calculation splits
into the major types of perturbations: real and imaginary. All response equations of the same type can be solved
simultaneously.

Each of these types has its own section in the output file. These sections begin with information on the orbital
ranges and the CI space, then go into the iterative solution of the equations. The printout here gives an overview
of the iteration number, the residual norm of each response equation, and if that response equation has met the
convergence criteria. The following is an example of this output (with iterations 3–7 removed for simplicity):

--------------------------------------------------------------------------------------------

LINSOL Davidson-type linear equation solver

Iter. ||Error||_2 Conv. (TolR = 1.000e-08)
--------------------------------------------------------------------------------------------

0 (rhs 0) 1.645417e-01 No

(continues on next page)
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(continued from previous page)

(rhs 1) 1.826041e-01 No
(rhs 2) 2.047543e-01 No

1 (rhs 0) 7.069575e-02 No
(rhs 1) 3.363295e-02 No
(rhs 2) 7.229274e-02 No

2 (rhs 0) 9.183136e-03 No
(rhs 1) 3.922435e-03 No
(rhs 2) 7.152764e-03 No

(...)
8 (rhs 0) 4.070240e-09 Yes

(rhs 1) 1.186846e-09 Yes
(rhs 2) 4.407666e-09 Yes

Before going on to the necessary property modules, the significant contributions to the RHS and/or response vectors
will be outputted if they were requested (via PrintRHSVec and PrintRspVec). Here, outputs such as the following
can be seen.

---------------------------------
CASSCF Response Vector Analysis
---------------------------------
square of coefficients of particle-hole and CAS-CI excitations are printed if larger than␣

→˓1.0e-02

IPERT: 0

(-) I 9 ( 9) -> V 0 ( 17) : 0.07167 (c= -0.26772137)
(...)

(-) A 1 ( 14) -> V 13 ( 30) : 0.07323 (c= 0.27061481)
(...)

(-) I 4 ( 4) -> A 0 ( 13) : 0.02915 (c= 0.17074032)
(...)

(-) CI 1.65592 [ 7]: 1201
(...)

The majority of the output has been removed for the sake of simplicity. Here, the significant contributions to
the response vector are printed if the square of the vector element is larger than 1.0e-02 (the default value for
TolPrintVec). Each line begins with either a (+) or (-), which denote the Hermiticity of the excitation operator.
With static CASSCF linear response, (+) always denotes an imaginary perturbation and (-) a real perturbation.
For the first vector (i.e. IPERT: 0), four contributions have been listed here.

The first three are from particle-hole excitations going from the left size of the arrow to the right. On each side of
the arrow has three things: a letter designating if it is an inactive (I), active (A), or virtual (V) orbital; a number
designating the index within that orbital subblock, and a number in parentheses designating the overall orbital
number. Further to the right, the coefficient (i.e. the vector element) is given in parentheses and the square of that
value is given to the left of it. This is how the relative contributions of each excitation can be analyzed.

The final contribution shown is from a CI excitation. Its weight is listed, followed by the index in brackets and the
corresponding configuration of the active electrons among the active orbitals.
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7.16.4 Troubleshooting

If the %casresp block is specified and the calculation does not run through the CASSCF Response section, then
the properties requested are not second-derivatives and therefore do not require linear response equations to be
solved. If, however, the job aborts, watch for these possibilities:

• At least one of the second-derivative properties requested is not available at the CASSCF level (see list above
of those currently implemented)

• MaxIter may need to be increased or TolR decreased

• A magnetic property is requested without setting the gauge-origin in the %eprnmr block

• An appropriate auxiliary basis (or the !AutoAux keyword) may be required, especially for:

– The diagonal preconditioner (which is on by default)

– TrafoStep RI in the %casscf block

– RIJCOSX, RIJONX

• RIJK was specified (this is NOT supported)

7.16.5 Minimal Input File

The following is an overview of the blocks required for a property calculation with

! def2-TZVP AutoAux # (or other appropriate basis & auxiliary)

%casscf
...

end

%casresp # only required to change solver, printing, or preconditioner options
...

end

%elprop # only required if electric property requested
...

end

%eprnmr # only required if magnetic property requested
...
ORI ...

end

* xyzfile ...

7.17 Interface to SINGLE_ANISO module

7.17.1 General description

The SINGLE_ANISO program allows the non-perturbative calculation of effective spin (pseudospin) Hamiltonians
and static magnetic properties of mononuclear complexes and fragments on the basis of an ab initio, including the
spin-orbit interaction. As a starting point it uses the results of a CASSCF/NEVPT2/SOC calculation for the ground
and several excited spin-orbit multiplets.

The following quantities can be computed:

• Parameters of pseudospin magnetic Hamiltonians (the methodology is described in [168]) :
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1. First order (linear after pseudospin) Zeeman splitting tensor (𝑔 tensor), including the determination of
the sign of the product 𝑔𝑋 · 𝑔𝑌 · 𝑔𝑍 .

2. Second order (bilinear after pseudospin) zero-field splitting tensor (𝐷 tensor).

3. Higher order zero-field splitting tensors (𝐷2, 𝐷4, 𝐷6, ..., 𝑒𝑡𝑐.)

4. Higher order Zeeman splitting tensors (𝐺1, 𝐺3, 𝐺5, ..., 𝑒𝑡𝑐.)

• Crystal-Field parameters for the ground atomic 𝐽 multiplet for lanthanides. [414, 859]

• Crystal-Field parameters for the ground atomic �̃� term for lanthanides and transition metals.

• Static magnetic properties [857, 858]:

1. Van Vleck susceptibility tensor 𝜒𝛼𝛽(𝑇 ).

2. Powder magnetic susceptibility function 𝜒(𝑇 ).

3. Magnetisation vector �⃗�(�⃗�) for specified directions of the applied magnetic field �⃗� .

4. Powder magnetisation 𝑀𝑚𝑜𝑙(𝐻,𝑇 ).

5. Magnetisation torque function �⃗�𝑚𝑜𝑙(𝐻,𝑇 ).

The magnetic Hamiltonians are defined for a desired group of 𝑁 low-lying electronic states obtained in CASSCF/
SOC calculation to which a pseudospin 𝑆 is subscribed according to the relation 𝑁 = 2𝑆 + 1. The pseudospin 𝑆
reduces to a true spin 𝑆 in the absence of spin-orbit coupling. For instance, the two wave functions of a Kramers
doublet correspond to the pseudospin 𝑆 = 1/2. The implementation is done for 𝑎𝑛𝑦 dimension of the pseudospin
𝑆, and controlled by the keyword MLTP.

The calculation of magnetic properties takes into account the contribution of excited states (the ligand-field and
charge transfer states of the complex or mononuclear fragment which were included in the CASSCF/CASPT2 cal-
culation) via their thermal population and Zeeman admixture. The effect of intermolecular exchange interaction
between magnetic molecules on the resulting magnetic properties in a crystal is described by a phenomenological
parameter 𝑧𝐽 specified by the user.

7.17.2 Running SINGLE_ANISO calculations

The SINGLE_ANISO is, in principle, a stand-alone utility (otool_single_aniso) that can be called directly from
the shell with its own input file, provided that the ab initio datafile is available:

bash:$
bash:$ $ORCA/x86_64/otool_single_aniso < single_aniso.input > single_aniso.output
bash:$

However, this usage may not be so convenient, as the file single_aniso.input must include the true name of
the datafile. For the user’s convenience, a deeper integration between SINGLE_ANISO and CASSCF program in
ORCA was implemented, as described below.

As a prerequisite for using the SINGLE_ANISO module to calculate the magnetic properties of the investigated
compound, spin-orbit coupling and other relativistic effects are already taken fully into account at the stage
of quantum chemistry calculation of the investigated compound. The necessary information of the ab initio
calculation is provided in a form of a “datafile”: energy spectra, angular momentum integrals, etc. The interface
with ORCA generates the required datafile automatically. The following naming conventions were adopted for
the datafile in function of the employed computational method:

• CASSCF+SOC+SINGLE_ANISO => "$orca_input_name.CASSCF.anisofile"

• CASSCF+QD-NEVPT2+SOC+SINGLE_ANISO => "$orca_input_name.NEVPT2.anisofile"

Note that if the CASSCF+QD-NEVPT2+SOC+SINGLE_ANISO calculation is requested, then the SINGLE_ANISO will
be executed twice, and the above two datafiles will be generated. The interface will generate the SINGLE_ANISO in-
put file with the keywords information provided in the CASSCF/aniso subblock. These filename of the datafile
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is included automatically in the input file for the SINGLE_ANISO utility (keyword DATA), also generated auto-
matically by the interface. The naming convention for the generated input files for the SINGLE_ANISO utility is
“$orca_input_name.anisofile”.

All keywords of the SINGLE_ANISO program are possible to be specified within the CASSCF/ANISO subblock.
They are referenced in Section Reference list of CASSCF/ANISO keywords. Optionally, a working SINGLE_ANISO
input file can be passed directly to the CASSCF module setting the filename with keyword InputNameOnDisk in
the ANISO subblock.

An example of the full ORCA input for performing magnetic properties calculations within the CASSCF/SOC/
SINGLE_ANISO methodology for a hypothetical Co(II) compound is provided below:

! 6-31G TightSCF # basis set and other global ORCA settings

%maxcore 2000

%casscf nel 7
norb 5 # 7 electrons in 5 orbitals (3d shell)
mult 4, 2
nroots 10, 40 # 10 quartet and 40 doublet states

rel
dosoc true # include spin-orbit coupling
end

ANISO
doaniso true # generate datafile/input and call

# the SINGLE_ANISO module
MLTP 2,2,2,2 # group of spin-orbit states for which the pseudospin

# Hamiltonian is computed: 4 low-lying spin-orbit doublet states.

TINT 0, 300, 301 # 301 steps in the temperature interval [0-300]
# for magnetic susceptibility (in Kelvin)

HINT 0, 7.0, 71 # 71 steps in the field interval [0-7]
# for molar magnetisation (in Tesla)

TMAG 1.0,1.2,1.8,2.5,3.6 # temperature points for which molar magnetisation
# is computed

CRYS_element "Co"
CRYS_charge 2
PLOT true # requires the ANISO to produce gnuplot scripts,

# datafiles and plots of various quantities

# Alternative to the snippet above. Provide separate input file:
# InputFile "$orca_input_name.anisoinput"

end
end

*xyz 0 4 # charge is 0 for this neutral compound
Co -2.80118000 9.91634000 19.40386000
O -3.59660000 12.00284000 20.51731000
O -5.12835000 10.85934000 19.53431000
O -5.70975000 12.39302000 20.99406000
O -1.30202341 11.67611386 19.17300658
O -3.84191000 9.45315000 21.48634000
O -1.27500262 8.12582233 19.18634310
O -3.94611990 9.65426823 17.48476360
N -4.85020000 11.78071000 20.36823000
H -1.23636310 12.09677337 18.41017549
H -1.07910455 7.59540828 19.85227241
H -3.30514987 9.28034259 22.26327382
H -4.79957696 9.43862752 21.55163236
H -4.64801074 9.00163025 17.42987361
H -3.73273676 10.19508893 16.72083912

(continues on next page)
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H -0.75470916 11.94100908 19.91589125
*

The input above utilises the following keywords: MLTP keyword requires the computation of the 𝑔 tensor for 4
groups of spin-orbit states, the dimensionality of each group being 2 (Kramers or Ising doublets). TINT requires
computation of the magnetic susceptibility in the temperature interval 0 K - 300 K distributed equally in 300 tem-
perature intervals. TMAG requires computation of powder molar magnetisation at 6 temperature points, in Kelvin
(K): 1.0 K, 1.2 K, 1.8 K, 2.5 K, 2.9 K and 3.6 K. HINT defines the range for the magnetic field strength, in Tesla.
PLOT keyword invokes the plotting function of the module. CRYS_element + CRYS_charge request for the com-
putation of the crystal field parameters for the ground term of the Co2+ ion. For more information about the
keywords in SINGLE_ANISO module, you can refer to section Reference list of CASSCF/ANISO keywords.

Please always check the obtained orbitals after CASSCF calculation. In this particular case, the active orbitals
(45-49) are localised on the Co site and display dominant 3𝑑 character.

45 46 47 48 49
-0.37264 -0.36672 -0.36520 -0.36153 -0.35018
1.40513 1.40270 1.39998 1.39823 1.39395
-------- -------- -------- -------- --------

0 Co s 0.0 0.0 0.0 0.0 0.2
0 Co pz 0.1 0.1 0.1 0.0 0.0
0 Co px 0.0 0.2 0.0 0.0 0.1
0 Co py 0.1 0.1 0.0 0.0 0.1
0 Co dz2 23.6 39.5 10.0 2.0 23.5
0 Co dxz 12.8 30.8 48.6 4.4 2.2
0 Co dyz 46.5 10.4 19.3 20.8 2.4
0 Co dx2y2 6.9 0.3 21.2 69.2 1.6
0 Co dxy 9.5 17.6 0.2 2.8 68.0

We see that in the above output section, the five active orbitals have dominant contribution from the Co-3𝑑 basis
functions. This is OK and is expected for common transition metal compounds. For lanthanide compounds, the
seven active orbitals should have dominant contribution from the 4𝑓 shell. Larger active spaces must be carefully
inspected and analysed. We refer here to the respective section of this manual describing the CASSCF method and
how to achieve convergence The Complete Active Space Self-Consistent Field (CASSCF) Module.

The results calculated by using SINGLE_ANISO module are placed after the SOC section in ORCA output. Here is
the explanation for these results.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CALCULATION OF PSEUDOSPIN HAMILTONIAN TENSORS FOR THE MULTIPLET 1 ( effective S = 1/2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The pseudospin is defined in the basis of the following spin-orbit states:
spin-orbit state 1. energy(1) = 0.000 cm-1.
spin-orbit state 2. energy(2) = 0.000 cm-1.

g TENSOR:
|--------------------------------------------------------|
| MAIN VALUES | MAIN MAGNETIC AXES | x , y , z -- initial Cartesian␣
→˓axes
|-------------------|----|----- x ------- y ------- z ---| Xm, Ym, Zm -- main magnetic axes
| gX = 0.09871069 | Xm | -0.456536 -0.363638 0.811998 |
| gY = 0.11729280 | Ym | 0.643532 0.495246 0.583605 |
| gZ = 11.21949040 | Zm | -0.614361 0.788985 0.007914 |
|--------------------------------------------------------|
The sign of the product gX * gY * gZ for multiplet 1: < 0.

The section above shows the 𝑔 tensor for the ground Kramers doublet. Since the 𝑔𝑋 and 𝑔𝑌 are much smaller
than the 𝑔𝑍 component, the 𝑍𝑚 axis is denoted as the 𝑚𝑎𝑖𝑛𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐𝑎𝑥𝑖𝑠 of the computed molecule. The “Zm
| -0.614361 0.788985 0.007914 |” denotes the Cartesian components of the 𝑍𝑚 vector.

In the case the computation of the parameters of the crystal field is requested by CRYS_element and CRYS_charge,
the following section will be found in the output:
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CALCULATION OF CRYSTAL-FIELD PARAMETERS OF THE GROUND ATOMIC TERM, L = 3.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The parameters of the Crystal Field matrix are written in the coordinate system:
(Xm, Ym, Zm) -- the main magnetic axes of the ground pseudo-L = | 3> orbital multiplet.
Rotation matrix from the initial coordinate system to the employed coordinate system is:
-------------------------------------------------------------------|
x , y , z -- initial Cartesian axes |
Xm, Ym, Zm -- main magnetic axes |

x y z |
| Xm | -0.61155332461133 -0.79120321735748 0.00000000001900 |

R = | Ym | 0.79120321735748 -0.61155332461133 -0.00000000000264 |
| Zm | 0.00000000001371 0.00000000001342 1.00000000000000 |

-------------------------------------------------------------------|
Quantization axis is Zm.

----------------------------------------------------------------------------------------------|
Ab Initio Crystal-Field Splitting Matrix written in the basis of Pseudo-L Eigenfunctions |

----------------------------------------------------------------------------------------------|
| | -3 > | | -2 > |

----------|---------- REAL ----------- IMAGINARY ---|---------- REAL ----------- IMAGINARY ---|
< -3 | | -777.2218617165776 0.0000000000000 | -0.0000000454613 0.0000000351393 |
< -2 | | -0.0000000454613 -0.0000000351393 | 285.4563720817839 0.0000000000000 |
< -1 | | 0.0285952366255 -0.0055088548681 | 0.0000000002580 -0.0000000024089 |
< 0 | | -0.0000000160911 0.0000000604843 | 0.0001933353720 -0.0013498718536 |
< 1 | | 0.0116130821579 -0.0096419531309 | -0.0000000005651 -0.0000000026613 |
< 2 | | 0.0000000070279 -0.0000000332291 | 0.0141002831881 -0.0117070160056 |
< 3 | | -0.0000002782243 0.0000001745761 | -0.0000000070278 0.0000000332291 |

----------------------------------------------------------------------------------------------|
----------------------------------------------------------------------------------------------|

| | -1 > | | 0 > |
----------|---------- REAL ----------- IMAGINARY ---|---------- REAL ----------- IMAGINARY ---|

< -3 | | 0.0285952366255 0.0055088548681 | -0.0000000160911 -0.0000000604843 |
< -2 | | 0.0000000002580 0.0000000024089 | 0.0001933353720 0.0013498718536 |
< -1 | | 347.8121781289439 -0.0000000000000 | 0.0000000069613 -0.0000000861891 |
< 0 | | 0.0000000069613 0.0000000861891 | 287.9066230116981 0.0000000000000 |
< 1 | | -0.0106576508828 0.0003303251251 | -0.0000000069613 -0.0000000861891 |
< 2 | | 0.0000000005651 0.0000000026613 | 0.0001933353720 -0.0013498718536 |
< 3 | | 0.0116130821579 -0.0096419531309 | 0.0000000160911 -0.0000000604843 |

----------------------------------------------------------------------------------------------|
----------------------------------------------------------------------------------------------|

| | 1 > | | 2 > |
----------|---------- REAL ----------- IMAGINARY ---|---------- REAL ----------- IMAGINARY ---|

< -3 | | 0.0116130821579 0.0096419531309 | 0.0000000070279 0.0000000332291 |
< -2 | | -0.0000000005651 0.0000000026613 | 0.0141002831881 0.0117070160056 |
< -1 | | -0.0106576508828 -0.0003303251251 | 0.0000000005651 -0.0000000026613 |
< 0 | | -0.0000000069613 0.0000000861891 | 0.0001933353720 0.0013498718536 |
< 1 | | 347.8121781289439 -0.0000000000000 | -0.0000000002580 -0.0000000024089 |
< 2 | | -0.0000000002580 0.0000000024089 | 285.4563720817837 0.0000000000000 |
< 3 | | 0.0285952366255 -0.0055088548681 | 0.0000000454613 0.0000000351392 |

----------------------------------------------------------------------------------------------|
----------------------------------------------------|

| | 3 > |
----------|---------- REAL ----------- IMAGINARY ---|

< -3 | | -0.0000002782241 -0.0000001745761 |
< -2 | | -0.0000000070278 -0.0000000332291 |
< -1 | | 0.0116130821579 0.0096419531309 |
< 0 | | 0.0000000160911 0.0000000604843 |
< 1 | | 0.0285952366255 0.0055088548681 |
< 2 | | 0.0000000454613 -0.0000000351392 |

(continues on next page)
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< 3 | | -777.2218617165773 0.0000000000000 |
----------------------------------------------------|

In the above section, the low-lying CASSCF states of the Co2+ site originating from the free ion 4F term are
transformed towards the eigenstates of the (�̃� = 3), and the low-lying CASSCF diagonal 7 × 7 energy matrix
is re-written in this basis. The non-diagonal “Ab Initio Crystal-Field Splitting Matrix” is printed in the above
section. In the subsequent output sections, the obtained crystal field matrix is decomposed in a linear combination
of Irreducible Tensorial Operators (ITOs) and the obtained expansion coefficients are listed in the output.

�̂�𝐶𝐹 =

2𝐿∑︁
𝑘

−𝑘,+𝑘∑︁
𝑞

𝐵𝑞𝑘�̂�
𝑞
𝑘(�̃�)

The parameters are given for several sets of ITOs.

********************************************************************************
The Crystal-Field Hamiltonian:

Hcf = SUM_{k,q} * [ B(k,q) * O(k,q) ];
where:

O(k,q) = Extended Stevens Operators (ESO)as defined in:
1. Rudowicz, C.; J.Phys.C: Solid State Phys.,18(1985) 1415-1430.
2. Implemented in the "EasySpin" function in MATLAB, www.easyspin.org.

k - the rank of the ITO, = 2, 4, 6, 8, 10, 12.
q - the component of the ITO, = -k, -k+1, ... 0, 1, ... k;

Knm are proportionality coefficients between the ESO and operators defined in
J. Chem. Phys., 137, 064112 (2012).
------------------------------------------------|

k | q | (K)^2 | B(k,q) |
----|-----|-------------|-----------------------|

2 | -2 | 1.50 | 0.44029016547734E-03 |
2 | -1 | 6.00 | 0.24547763681975E-08 |
2 | 0 | 1.00 | -0.43693326103120E+02 |
2 | 1 | 6.00 | -0.84162317914775E-08 |
2 | 2 | 1.50 | 0.12672200639220E-02 |

----|-----|-------------|-----------------------|
4 | -4 | 17.50 | 0.20185049671189E-03 |
4 | -3 | 140.00 | -0.24080325997038E-08 |
4 | -2 | 10.00 | 0.53646717565242E-04 |
4 | -1 | 20.00 | 0.99248109880376E-09 |
4 | 0 | 1.00 | -0.67496280141952E+00 |
4 | 1 | 20.00 | -0.53708624488205E-09 |
4 | 2 | 10.00 | 0.33333801678482E-03 |
4 | 3 | 140.00 | -0.66502585057483E-09 |
4 | 4 | 17.50 | 0.24311509626065E-03 |

----|-----|-------------|-----------------------|
6 | -6 | 57.75 | -0.48493356946616E-09 |
6 | -5 | 693.00 | 0.45219078679397E-09 |
6 | -4 | 31.50 | 0.11222605476277E-05 |
6 | -3 | 105.00 | -0.14936428088413E-09 |
6 | -2 | 26.25 | 0.68538037767693E-06 |
6 | -1 | 42.00 | -0.24067665895440E-09 |
6 | 0 | 1.00 | -0.18259217459128E-02 |
6 | 1 | 42.00 | 0.11394843516111E-11 |
6 | 2 | 26.25 | 0.48314159464149E-05 |
6 | 3 | 105.00 | -0.33636623245296E-10 |
6 | 4 | 31.50 | 0.13517294099051E-05 |
6 | 5 | 693.00 | 0.95637007025194E-10 |
6 | 6 | 57.75 | -0.77284500243776E-09 |

------------------------------------------------|

In the sections below, the weight of various expansion terms on the total energy splitting of the corresponding term
or multiplet is analysed.
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CUMULATIVE WEIGHT OF INDIVIDUAL-RANK OPERATORS ON THE CRYSTAL FIELD SPLITTING:
O2 :------------------------------------------: 70.094642 %.
O2 + O4 :-------------------------------------: 99.417093 %.
O2 + O4 + O6 :--------------------------------: 100.000000 %.

ENERGY SPLITTING INDUCED BY CUMULATIVE INDIVIDUAL-RANK OPERATORS (in cm-1).
----------|---------------|---------------|---------------|---------------|

L = 3 | RASSCF | ONLY | ONLY | ONLY |
| INITIAL | O2 | O2+O4 | O2+O4+O6 |

----------|---------------|---------------|---------------|---------------|
w.f. 1 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 |
w.f. 2 | 0.00000220 | 0.00000000 | 0.00000149 | 0.00000220 |
w.f. 3 | 1062.65990786 | 655.39989137 | 1058.22649805 | 1062.65990786 |
w.f. 4 | 1062.69656233 | 655.39989157 | 1060.35861560 | 1062.69656233 |
w.f. 5 | 1065.12848829 | 1048.63177735 | 1060.39653667 | 1065.12848829 |
w.f. 6 | 1125.02338078 | 1048.64787570 | 1129.62295551 | 1125.02338078 |
w.f. 7 | 1125.04470493 | 1179.71980502 | 1129.64777494 | 1125.04470493 |
----------|---------------|---------------|---------------|---------------|

WEIGHT OF INDIVIDUAL-RANK OPERATORS ON THE CRYSTAL FIELD SPLITTING:
O2 :-----------------------------------------: 70.094642 %.
O4 :-----------------------------------------: 29.322451 %.
O6 :-----------------------------------------: 0.582907 %.

ENERGY SPLITTING INDUCED BY INDIVIDUAL-RANK OPERATORS (in cm-1).
----------|---------------|---------------|---------------|---------------|

L = 3 | RASSCF | ONLY | ONLY | ONLY |
| INITIAL | O2 | O4 | O6 |

----------|---------------|---------------|---------------|---------------|
w.f. 1 | 0.00000000 | 0.00000000 | 0.00000000 | 0.00000000 |
w.f. 2 | 0.00000220 | 0.00000000 | 121.49328633 | 0.00351330 |
w.f. 3 | 1062.65990786 | 655.39989137 | 121.49330341 | 4.60307936 |
w.f. 4 | 1062.69656233 | 655.39989157 | 202.46860036 | 4.60307986 |
w.f. 5 | 1065.12848829 | 1048.63177735 | 202.50909974 | 6.90310777 |
w.f. 6 | 1125.02338078 | 1048.64787570 | 526.45202593 | 6.90437338 |
w.f. 7 | 1125.04470493 | 1179.71980502 | 526.48994463 | 11.50506445 |
----------|---------------|---------------|---------------|---------------|

WEIGHT OF INDIVIDUAL CRYSTAL FIELD PARAMETERS ON THE CRYSTAL FIELD SPLITTING: (in descending␣
→˓order):
CFP are given in ITO used in J. Chem. Phys. 137, 064112 (2012).
-------------------------------------------------------|

k | q | B(k,q) | Weight (in %) |
----|-----|-----------------------|--------------------|
2 | 0 | -0.43693326103120E+02 | 70.08577012260780 |
4 | 0 | -0.67496280141952E+00 | 29.31873954450217 |
6 | 0 | -0.18259217459128E-02 | 0.58283348856981 |
4 | 2 | 0.10541073637635E-03 | 0.00457878555457 |
4 | 4 | 0.58115623682363E-04 | 0.00252440109385 |
4 | -4 | 0.48251497695683E-04 | 0.00209592749496 |
2 | 2 | 0.10346808494753E-02 | 0.00165966774870 |
4 | -2 | 0.16964581649793E-04 | 0.00073690009261 |
2 | -2 | 0.35949541472835E-03 | 0.00057664442705 |
6 | 2 | 0.94299583491020E-06 | 0.00030100389209 |
6 | 4 | 0.24084325388052E-06 | 0.00007687706999 |
6 | -4 | 0.19995783180553E-06 | 0.00006382645967 |
6 | -2 | 0.13377255211448E-06 | 0.00004270014495 |
6 | 6 | -0.10169893585902E-09 | 0.00000003246226 |
6 | -6 | -0.63812572794630E-10 | 0.00000002036895 |

(continues on next page)
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6 | -1 | -0.37137214734348E-10 | 0.00000001185418 |
4 | -1 | 0.22192552033089E-09 | 0.00000000963990 |
4 | -3 | -0.20351589971646E-09 | 0.00000000884023 |
2 | 1 | -0.34359122410183E-08 | 0.00000000551133 |
6 | -5 | 0.17177307577593E-10 | 0.00000000548299 |
4 | 1 | -0.12009613533364E-09 | 0.00000000521668 |
6 | -3 | -0.14576461261073E-10 | 0.00000000465280 |
4 | 3 | -0.56204942711777E-10 | 0.00000000244141 |
2 | -1 | 0.10021582557877E-08 | 0.00000000160750 |
6 | 5 | 0.36329494838219E-11 | 0.00000000115964 |
6 | 3 | -0.32825983078827E-11 | 0.00000000104780 |
6 | 1 | 0.17582625268298E-12 | 0.00000000005612 |
----|-----|-----------------------|--------------------|

In the case of lanthanide compounds, the same keywords (CRYS_element and CRYS_charge) trigger the energy
decomposition of the lowest energy matrix corresponding to the ground 𝐽− multiplet of the respective lanthanide
ion.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CALCULATION OF THE MAGNETIC SUSCEPTIBILITY
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Temperature dependence of the magnetic susceptibility will be calculated in 301 points,
equally distributed in temperature range 0.0 --- 300.0 K.

|----------------------------------------------------------------------------------------|
| | T | STATISTICAL | X*T | X*T | X | 1/X |
| | | SUM (Z) | (zJ=0) | | | |
|-----|----------------------------------------------------------------------------------|
|Units| Kelvin | --- | cm3*K/mol | cm3*K/mol | cm3/mol | mol/cm3 |
|-----|----------------------------------------------------------------------------------|
| | 0.000100 | 0.20000E+01 | 3.93592010 | 3.93592010 | 0.39359E+05 | 0.25407E-04 |
| | 1.000000 | 0.20000E+01 | 3.94046247 | 3.94046247 | 0.39405E+01 | 0.25378E+00 |
| | 2.000000 | 0.20000E+01 | 3.94500530 | 3.94500530 | 0.19725E+01 | 0.50697E+00 |
| | 3.000000 | 0.20000E+01 | 3.94954814 | 3.94954814 | 0.13165E+01 | 0.75958E+00 |
| | 4.000000 | 0.20000E+01 | 3.95409097 | 3.95409097 | 0.98852E+00 | 0.10116E+01 |
| | 5.000000 | 0.20000E+01 | 3.95863380 | 3.95863380 | 0.79173E+00 | 0.12631E+01 |
| | 6.000000 | 0.20000E+01 | 3.96317663 | 3.96317663 | 0.66053E+00 | 0.15139E+01 |
| | 7.000000 | 0.20000E+01 | 3.96771946 | 3.96771946 | 0.56682E+00 | 0.17642E+01 |
| | 8.000000 | 0.20000E+01 | 3.97226229 | 3.97226229 | 0.49653E+00 | 0.20140E+01 |
| | 9.000000 | 0.20000E+01 | 3.97680512 | 3.97680512 | 0.44187E+00 | 0.22631E+01 |
| | 10.000000 | 0.20000E+01 | 3.98134795 | 3.98134795 | 0.39813E+00 | 0.25117E+01 |
...

This section shows the computed magnetic susceptibility. The formula used for this calculation assumes the zero-
field limit, 𝑖.𝑒.𝐻 = 0.0 Tesla. A picture called “XT_no_field.png” using the above data will be created in the
working directory whenever the PLOT keyword is included in the SINGLE_ANISO input. The picture shows the
temperature dependence of the magnetic susceptibility.

|----------------------------------------------------------------------------------------------
→˓--------|
| VAN VLECK SUSCEPTIBILITY TENSOR FOR zJ = 0, in cm3*K/mol ␣
→˓ |
|----------------------------------------------------------------------------------------------
→˓--------|
| T(K) | | SUSCEPTIBILITY TENSOR | MAIN VALUES | MAIN AXES ␣
→˓ |
|----------|-|----- x --------- y --------- z ---|---------------|------ x --------- y --------
→˓- z ----|
| |x| 4.456611 -5.721848 -0.057261 | X: 0.000914 | 0.45654560 0.36364537 -0.
→˓81199025 |

(continues on next page)
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| 0.000100 |y| -5.721848 7.349367 0.073827 | Y: 0.001291 | 0.64352653 0.49524178 0.
→˓58361733 |
| |z| -0.057261 0.073827 0.001782 | Z: 11.805555 | -0.61436123 0.78898519 0.
→˓00791499 |
|----------|-|----- x --------- y --------- z ---|---------------|------ x --------- y --------
→˓- z ----|
| |x| 4.461142 -5.718873 -0.057275 | X: 0.007129 | 0.48578721 0.38619740 -0.
→˓78413160 |
| 1.000000 |y| -5.718873 7.351927 0.074460 | Y: 0.008275 | 0.62173382 0.47788368 0.
→˓62054351 |
| |z| -0.057275 0.074460 0.008319 | Z: 11.805983 | -0.61437598 0.78897323 0.
→˓00796220 |
|----------|-|----- x --------- y --------- z ---|---------------|------ x --------- y --------
→˓- z ----|
| |x| 4.465674 -5.715898 -0.057290 | X: 0.013344 | -0.49137357 -0.39055217 0.
→˓77847352 |
| 2.000000 |y| -5.715898 7.354486 0.075093 | Y: 0.015261 | 0.61731357 0.47435127 0.
→˓62762635 |
| |z| -0.057290 0.075093 0.014856 | Z: 11.806411 | -0.61439073 0.78896126 0.
→˓00800947 |
...

The section above shows how the main axes of the susceptibility tensor evolves with temperature.

HIGH-FIELD POWDER MAGNETIZATION
(Units: Bohr magneton)

|-----------|---------------|---------------|---------------|---------------|---------------|
| H(T) |STATISTICAL SUM| 1.000 K. | 1.200 K. | 1.800 K. | 2.500 K. |
|-----------|---------------|---------------|---------------|---------------|---------------|
| 0.000100 | 1.9995371 | 0.0007055560 | 0.0005880989 | 0.0003923371 | 0.0002827105 |
| 0.100000 | 1.6293687 | 0.6863212310 | 0.5768343572 | 0.3889480349 | 0.2814379254 |
| 0.200000 | 1.3961049 | 1.2730827904 | 1.0928431358 | 0.7585259147 | 0.5554332924 |
| 0.300000 | 1.2492960 | 1.7176941099 | 1.5137449727 | 1.0936561795 | 0.8154486026 |
| 0.400000 | 1.1568991 | 2.0312460704 | 1.8358752195 | 1.3858429640 | 1.0565149122 |
| 0.500000 | 1.0987474 | 2.2456644189 | 2.0736324473 | 1.6329635867 | 1.2755212118 |
| 0.600000 | 1.0621485 | 2.3917509695 | 2.2464760254 | 1.8374994655 | 1.4711430994 |
| 0.700000 | 1.0391143 | 2.4924803644 | 2.3720174309 | 2.0044495622 | 1.6435265950 |
| 0.800000 | 1.0246173 | 2.5633469179 | 2.4639356325 | 2.1396808073 | 1.7938697856 |
| 0.900000 | 1.0154934 | 2.6144012337 | 2.5321303741 | 2.2489088878 | 1.9240150206 |
| 1.000000 | 1.0097510 | 2.6521008670 | 2.5835380488 | 2.3371993536 | 2.0361143785 |
| 1.100000 | 1.0061370 | 2.6806180412 | 2.6229602467 | 2.4088035375 | 2.1323879997 |
| 1.200000 | 1.0038624 | 2.7026854246 | 2.6537186141 | 2.4671744880 | 2.2149684436 |
| 1.300000 | 1.0024309 | 2.7201250266 | 2.6781249799 | 2.5150622492 | 2.2858129074 |
| 1.400000 | 1.0015299 | 2.7341759016 | 2.6978046065 | 2.5546323752 | 2.3466634357 |
...

This section shows the field dependence of the powder molar magnetisation. A picture named “MH.png” can be
created by using the PLOT keyword in the SINGLE_ANISO input file.

Running CASSCF calculations on lanthanides compounds in ORCA might be a bit more cumbersome compared to
transition metal compounds, due to the convergence of this method. However, following the instructions in the The
Complete Active Space Self-Consistent Field (CASSCF) Module section and the related tips in this manual and on
the Forum, the calculations could be performed. From our experience, the main reason for the poor convergence of
CASSCF calculation originates from the wrong orbitals occupying the active space. This issue can be overcame by
performing a proper rotation of the molecular orbitals such that the seven orbitals with dominant 4𝑓 contribution
are placed in the active space. As soon as the active orbitals acquire the dominant 4𝑓 weight, the convergence is
quite straightforward.

Below we describe the calculation on a lanthanide fragment [Ce(COT) 2]− (COT=(C8H8) 2−) as an example:

636 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

!DKH DKH-DEF2-SVP slowconv KDIIS BP

%basis
newgto Ce "SARC2-DKH-QZVP" end
end

%scf
MaxIter 500
end

*xyz -1 2
Ce 5.97600100 5.09133100 13.17268800
C 5.47882500 2.98632700 11.42941100
C 4.38424700 3.88677900 11.27367600
H 4.21867900 4.06431900 10.35453600
C 3.47138800 4.59373300 12.09958800
H 2.87027600 5.12178400 11.58692300
C 3.21937800 4.72005000 13.49499100
C 3.84198900 4.08874200 14.61728000
H 3.46926600 4.38472800 15.43857500
C 4.86395700 3.14327700 14.81900800
H 4.97094200 2.92197400 15.73690500
C 5.77247800 2.44085400 13.98883400
H 6.34594800 1.86846400 14.48498500
C 6.03182900 2.38537000 12.60408600
H 6.75450600 1.80396200 12.40022700
C 6.40698800 7.65195200 12.14877700
C 6.11546300 7.83965300 13.53689900
H 5.47247100 8.52635500 13.66635300
C 6.52698400 7.27593700 14.77461400
H 6.07344100 7.67704500 15.50605500
C 7.44425200 6.26569500 15.21837900
C 8.37896000 5.47470700 14.49350900
H 8.88315100 4.90771300 15.06566300
C 8.74883600 5.31701900 13.13468700
H 9.45277500 4.68873000 13.02529900
C 8.32602800 5.86701900 11.90372100
H 8.81295200 5.51473700 11.16784000
C 7.36115600 6.80638600 11.50204100
H 7.33662500 6.90506000 10.55697400
H 5.93270067 2.68976505 10.50694264
H 5.83417492 8.22959522 11.45371334
H 2.43475960 5.39234559 13.77300645
H 7.40021961 6.07954201 16.27114118
*

This is the first step of the calculation. For heavier elements like lanthanides, we must consider relativistic effect by
using DKH keyword. We explicitly use KDIIS in the calculation to smoothen out convergence. The orbital file called
“CeCOT2_1.gbw” will be generated after this step. We further use this gbw file to do the CASSCF calculation.

!DKH DKH-DEF2-SVP TightSCF conv Moread

%moinp "CeCOT2_1.gbw"

%basis
newgto Ce "SARC2-DKH-QZVP" end
end

%casscf nel 1
norb 7 # 1 electrons in 7 f orbitals
mult 2
nroots 7 # 7 doublet states

(continues on next page)
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rel
dosoc true # include spin-orbit coupling

end
end

*xyz -1 2
......
*

We need to check the orbitals after the CASSCF step with the orbital file named “CeCOT2_2.gbw” obtained.

85 86 87 88 89 90 91
0.45543 0.45310 0.27655 0.45085 0.45251 0.45760 0.45713
0.14286 0.14286 0.14286 0.14286 0.14286 0.14286 0.14286
-------- -------- -------- -------- -------- -------- --------

0 Ce f0 26.2 0.9 0.0 1.3 3.3 0.5 6.6
0 Ce f+1 5.4 20.2 0.0 24.0 3.4 5.6 39.1
0 Ce f-1 0.4 30.4 0.0 52.8 10.7 0.6 3.9
0 Ce f+2 3.8 0.2 0.7 1.4 4.7 76.7 10.7
0 Ce f-2 50.7 0.7 0.0 2.1 4.2 4.0 1.3
0 Ce f+3 8.2 22.0 0.0 1.2 55.8 0.0 11.6
0 Ce f-3 4.7 25.3 0.0 16.5 17.1 10.1 25.2

Orbitals 85, 86, 88-91 and 130 are occupied and strongly metal based 4𝑓 -orbitals. For comparison, the converged
CASSCF orbitals are pure 4𝑓 -orbitals (99% metal-based). The orbitals need to be rotated in order to fit the active
space (85-91). Then we can use the results of CASSCF/SOC calculation to call for the SINGLE_ANISO program.

!DKH DKH-DEF2-SVP TightSCF conv Moread
%moinp "CeCOT2_2.gbw"

%basis
newgto Ce "SARC2-DKH-QZVP" end
end

%scf rotate {87,130,90} end
end

%casscf nel 1
norb 7
mult 2
nroots 7

rel
dosoc true
end

ANISO
doaniso true
MLTP 2,2,2 # 3 Kramers doublets, J=5/2
MAVE 1, 12 # nsym=1, Lebedev grid number 12
XFIE 0.1 # the applied magnetic field is 0.1 T
CRYS_element "Ce"
CRYS_charge 3
NCUT 14
ABCC_abc 11.0735, 12.6738, 22.4854, 84.436, 86.690, 83.969
ABCC_center 0.82682, 0.31234, 0.78619
ZJPR -0.120
HEXP_temp 2.0, 3.0
HEXP_H 0.0, 1.0, 2.0, 3.0, 4.0
HEXP_M[0]= 0.0, 2.46, 2.86, 2.95, 2.98

(continues on next page)
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HEXP_M[1]= 0.0, 2.04, 2.68, 2.87, 2.94
TEXP_temp 0.0, 10.0, 20.0, 30.0, 40.0, 50.0
TEXP_chiT 4.5, 4.5, 4.58, 4.62, 4.66, 4.70
UBAR true
PLOT true
ZEEM[0]=1.0, 0.0, 0.0
ZEEM[1]=0.0, 0.0, 1.0
ZEEM[2]=0.0, 1.0, 0.0
ZEEM[3]=0.75, 0.0, 0.25

end
end

*xyz -1 2
......
*

The order of the keywords listed in the CASSCF/ANISO subblock does not matter.

7.17.3 Reference list of CASSCF/ANISO keywords

The only required keyword for SINGLE_ANISO is the DATA, specifying the name of the datafile containing the ab
initio information. The ORCA interface includes this keyword automatically and therefore it is not referenced here.
All other keywords are extra and allow various customisation of the execution. For the computation of the EPR
𝑔-tensor, the only unknown variable for SINGLE_ANISO is the dimension (multiplicity) of the pseudospin(s). This
information can be provided by the MLTP keyword. For example, in cases where spin-orbit coupling is weak, the
multiplicity of the effective spin Hamiltonian is usually the same as the multiplicity of the lowest term (e.g. high spin
𝐹𝑒3+: 𝑆 = 𝑆 = 5/2), while in the cases with strong anisotropy (lanthanide, actinide complexes,𝐶𝑜2+ complexes,
cases with near-orbital degeneracy, etc.) the lowest energy levels form a group of states which may differ drastically
from the spins of the lowest term. In these cases the user should specify the multiplicity corresponding to a chosen
value of pseudospin (2𝑆+1). For instance, in𝐷𝑦3+ the spin of the ground state term is 𝑆 = 5/2, but in most of real
compounds only the ground Kramers doublet is considered. In such case, the multiplicity of the pseudospin equals
to 2 (see MLTP keyword). For the calculation of the parameters of the crystal field corresponding to the ground
atomic multiplet 𝐽 for lanthanides should be requested with the keywords CRYS_element and CRYS_charge.
Similarly, the parameters of the crystal field corresponding to the ground atomic term 𝐿 for lanthanides and tran-
sition metals compounds can be requested with same keywords: CRYS_element and CRYS_charge.

Note that the keywords/syntax in the ORCA CASSCF/ANISO block are slightly different from the genuine
SINGLE_ANISO input, where some of the keywords are grouped together. We aimed at keeping the control key-
words as close as possible.

Optional general keywords to control the input within the ORCA interface (CASSCF/ANISO subblock):

InputNameOnDisk
This keyword reads the name of the input file for SINGLE_ANISO, a string given between quotations. Exam-
ple:

InputNameOnDisk "my_input_for_aniso.inp"

The interface with ORCA will add the DATA keyword with specific name of the datafile for the performed
calculation. All the other keywords provided inside this file must follow their original names, as in MOLCAS.

MLTP
The number of molecular multiplets (𝑖.𝑒. groups of spin-orbital eigenstates) for which 𝑔,𝐷 and higher mag-
netic tensors will be calculated (default MLTP=1). With MLTP an comma separated list of numbers specifying
the dimension of each multiplet is passed. The default is to select one multiplet which has the dimension
equal to the multiplicity of the ground term. In cases of strong spin-orbit coupling the usage of this keyword
is mandatory. Example:

MLTP 4, 4, 2, 2
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SINGLE_ANISO will compute the 𝑔 tensor for 4 groups of states: 2 groups having the effective spin 𝑆 =
|3/2 >, and other 2 groups of states being Kramers doublets.

TINT
Specifies the temperature points for the evaluation of the magnetic susceptibility. The program will read
three numbers: 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, and 𝑛𝑇 .

• 𝑇𝑚𝑖𝑛 - the minimal temperature (Default 0.0K)

• 𝑇𝑚𝑎𝑥 - the maximal temperature (Default 300.0K)

• 𝑛𝑇 - number of temperature points (Default 101)

Example:

TINT 0.0, 330.0, 331

SINGLE_ANISO will compute temperature dependence of the magnetic susceptibility in 331 points evenly
distributed in temperature interval: 0.0K - 330.0K.

HINT
Specifies the field points for the evaluation of the magnetisation in a certain direction. The program will read
three numbers: 𝐻𝑚𝑖𝑛, 𝐻𝑚𝑎𝑥 and 𝑛𝐻 .

• 𝐻𝑚𝑖𝑛 - the minimal field (Default 0.0T)

• 𝐻𝑚𝑎𝑥 - the maximal filed (Default 10.0T)

• 𝑛𝐻 - number of field points (Default 101)

Example:

HINT 0.0, 20.0, 201

SINGLE_ANISO will compute the molar magnetisation in 201 points evenly distributed in field interval: 0.0T
- 20.0T.

TMAG
Specifies the temperature(s) at which the field-dependent magnetisation is calculated. The program will read
the temperatures (in Kelvin) at which magnetisation is to be computed. Default is to compute magnetisation
at one temperature point (2.0 K). Example:

TMAG 1.8, 2.0, 3.0, 4.0, 5.0

SINGLE_ANISO will compute the molar magnetisation at 5 temperature points (1.8 K, 2.0 K, 3.4 K, 4.0 K,
and 5.0 K).

ENCU
The keyword expects to read two integer numbers. The two parameters (NK and MG) are used to define the cut-
off energy for the lowest states for which Zeeman interaction is taken into account exactly. The contribution
to the magnetisation coming from states that are higher in energy than 𝐸 (see below) is done by second
order perturbation theory. The program will read two integer numbers: 𝑁𝐾 and 𝑀𝐺. Default values are:
𝑁𝐾 = 100,𝑀𝐺 = 100.

𝐸 = 𝑁𝐾 · 𝑘𝐵𝑜𝑙𝑡𝑧 · TMAG𝑚𝑎𝑥 +𝑀𝐺 · 𝜇𝐵𝑜ℎ𝑟 ·𝐻𝑚𝑎𝑥

The field-dependent magnetisation is calculated at the maximal temperature value given by TMAG keyword.
Example:

ENCU 250, 150

If 𝐻𝑚𝑎𝑥 = 10 T and TMAG = 1.8 K, then the cut-off energy is: $𝐸 = 250 · 𝑘𝐵𝑜𝑙𝑡𝑧 · 1.8 + 150 · 𝜇𝐵𝑜ℎ𝑟 · 10 =
1013.06258(𝑐𝑚−1)$

This means that the magnetisation arising from all spin-orbit states with energy lower than 𝐸 =
1013.06258(𝑐𝑚−1) will be computed exactly (i.e. are included in the exact Zeeman diagonalisation) The
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keywords NCUT, ERAT and ENCU have similar purpose. If two of them are used at the same time, the following
priority is defined: NCUT > ENCU > ERAT.

NCUT
This flag is used to define the cut-off energy for the low-lying spin-orbit states for which Zeeman interaction is
taken into account exactly. The contribution to the magnetisation arising from states that are higher in energy
than lowest 𝑁𝐶𝑈𝑇 states, is done by second-order perturbation theory. The program will read one integer
number. In case the number is larger than the total number of spin-orbit states(𝑁𝑆𝑆 , then the𝑁𝐶𝑈𝑇 is set to
𝑁𝑆𝑆 (which means that the molar magnetisation will be computed exactly, using full Zeeman diagonalisation
for all field points). The field-dependent magnetisation is calculated at the temperature value(s) defined by
TMAG. Example:

NCUT 32

The keywords NCUT, ERAT and ENCU have similar purpose. If two of them are used at the same time, the
following priority is defined: NCUT > ENCU > ERAT.

ERAT
This flag is used to define the cut-off energy for the low-lying spin-orbit states for which Zeeman interaction
is taken into account exactly. The program will read one single real number specifying the ratio of the energy
states which are included in the exact Zeeman Hamiltonian. As example, a value of 0.5 means that the lowest
half of the energy states included in the spin-orbit calculation are used for exact Zeeman diagonalisation.

Example:

ERAT 0.333

The keywords NCUT, ERAT and ENCU have similar purpose. If two of them are used at the same time, the
following priority is defined: NCUT > ENCU > ERAT.

MVEC_x MVEC_y MVEC_z
MVEC_x, MVEC_y and MVEC_z define a number of directions for which the magnetisation vector will be
computed. The directions are given as unitary vectors specifying the direction i of the applied magnetic
field).

Example:

MVEC_x 0.00, 1.57, 1.57, 0.425
MVEC_y 0.00, 0.00, 1.57, 0.418
MVEC_z 0.00, 0.00, 1.57, 0.418

ZEEM
This keyword allows to compute Zeeman splitting spectra along certain directions of applied field. Directions
of applied field are given as three real number for each direction, specifying the projections along each
direction: Example:

ZEEM[0] 1.0, 0.0, 0.0
ZEEM[1] 0.0, 1.0, 0.0
ZEEM[2] 0.0, 0.0, 1.0
ZEEM[3] 0.0, 1.0, 1.0
ZEEM[4] 1.0, 0.0, 1.0
ZEEM[5] 1.0, 1.0, 0.0

The above input will request computation of the Zeeman spectra along six directions: Cartesian axes X,
Y, Z (directions 1,2 and 3), and between any two Cartesian axes: YZ, XZ and XY, respectively. The pro-
gram will re-normalise the input vectors according to unity length. In combination with PLOT keyword, the
corresponding zeeman_energy_xxx.png images will be produced.

MAVE
The keyword requires two integer numbers, denoted MAVE_nsym and MAVE_ngrid. The parameters
MAVE_nsym and MAVE_ngrid specify the grid density in the computation of powder molar magnetisation.
The program uses Lebedev-Laikov distribution of points on the unit sphere. The parameters are integer
numbers: 𝑛𝑠𝑦𝑚 and 𝑛𝑔𝑟𝑖𝑑. The 𝑛𝑠𝑦𝑚 defines which part of the sphere is used for averaging. It takes one of
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the three values: 1 (half-sphere), 2 (a quarter of a sphere) or 3 (an octant of the sphere). 𝑛𝑔𝑟𝑖𝑑 takes values
from 1 (the smallest grid) till 32 (the largest grid, i.e. the densest). The default is to consider integration
over a half-sphere (since 𝑀(𝐻) = −𝑀(−𝐻)): 𝑛𝑠𝑦𝑚 = 1 and 𝑛𝑠𝑦𝑚 = 15 (i.e 185 points distributed over
half-sphere). In case of symmetric compounds, powder magnetisation may be averaged over a smaller part
of the sphere, reducing thus the number of points for the integration. The user is responsible to choose the
appropriate integration scheme. Note that the program’s default is rather conservative.

Example:

MAVE 1, 8

TEXP_temp TEXP_chiT
The parameters TEXP_temp and TEXP_chiT allow the computation of the magnetic susceptibility 𝜒𝑇 (𝑇 ) at
experimental points. The experimental temperature (in 𝐾) and the experimental magnetic susceptibility (in
𝑐𝑚3𝐾𝑚𝑜𝑙−1 ) are read as comma separated list. In the case both TEXP and TINT keywords are given, the
TEXP will be used while the TINT input will be ignored.

Example:

TEXP_temp 0.0, 10.0, 20.0, 30.0, 40.0, 50.0
TEXP_chiT 4.5, 4.5, 4.58, 4.62, 4.66, 4.70

HEXP_temp HEXP_H HEXP_M
The three keywords HEXP_temp, HEXP_H and HEXP_M enable the computation of the molar magnetisation
𝑀𝑚𝑜𝑙(𝐻) at experimental points. The experimental field strength (in Tesla) and the experimental magneti-
sation (in 𝜇𝐵𝑜ℎ𝑟) are read as a comma separated list. In the case both HEXP and HINT keywords are given, the
HEXP will be used while the HINT input will be ignored. The magnetisation routine will print the standard
deviation from the experiment. Example:

HEXP_temp 2.0, 3.0
HEXP_H 0.0, 1.0, 2.0, 3.0, 4.0
HEXP_M[0]= 0.0, 2.46, 2.86, 2.95, 2.98 # exp. M at T=2.0 K
HEXP_M[1]= 0.0, 2.04, 2.68, 2.87, 2.94 # exp. M at T=3.0 K

ZJPR
This keyword specifies the value (in 𝑐𝑚−1) of a phenomenological parameter of a mean molecular field
acting on the spin of the complex (the average intermolecular exchange constant). It is used in the calculation
of all magnetic properties (not for spin Hamiltonians) (Default is 0.0).

ZJPR -0.02

TORQ
This keyword specifies the number of angular points for the computation of the magnetisation torque func-
tion, �⃗�𝛼 as function of the temperature, field strength and field orientation.

TORQ 55

The torque is computed at all temperature given by TMAG or HEXP_temp inputs. Three rotations around
Cartesian axes X, Y and Z are performed.

PrintLevel
This keyword controls the print level.

• 2 - normal. (Default)

• 3 or larger (debug)

CRYS_element CRYS_charge
The keywords CRYS_element and CRYS_charge request the computation of all 27 Crystal-Field parameters
acting on the ground atomic multiplet of a lanthanide. With CRYS_element the chemical symbol of the
lanthanide is set. Note that the element symbol must be enclosed in quotation marks. The charge is
defined with CRYS_charge. By default the program will not compute the parameters of the Crystal-Field.

Example:
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CRYS_element "Dy" CRYS_charge 3

QUAX
This keyword controls the quantisation axis for the computation of the Crystal-Field parameters acting on
the ground atomic multiplet of a lanthanide. On the next line, the program will read one of the three values:
1, 2 or 3.

• 1 - quantisation axis is the main magnetic axis 𝑍𝑚 of the ground pseudospin multiplet, whose size is
specified within the MLTP keyword. (Default)

• 2 - quantisation axis is the main magnetic axis 𝑍𝑚 of the entire atomic multiplet |𝐽,𝑀𝐽 >.

• 3 - quantisation axis is the original Cartesian Z axis. Rotation matrix is unity.

Example:

QUAX 3

UBAR
With UBAR set to “true”, the blocking barrier of a single-molecule magnet is estimated. The default is not to
compute it. The method prints transition matrix elements of the magnetic moment according to the Figure
below:

In this figure, a qualitative performance picture of the investigated single-molecular magnet is estimated
by the strengths of the transition matrix elements of the magnetic moment connecting states with opposite
magnetisaskytions (𝑛+ → 𝑛−). The height of the barrier is qualitatively estimated by the energy at which
the matrix element (𝑛+ → 𝑛−) is large enough to induce significant tunnelling splitting at usual magnetic
fields (internal) present in the magnetic crystals (0.01-0.1 Tesla). For the above example, the blocking barrier
closes at the state (8+→ 8−).

All transition matrix elements of the magnetic moment are given as ((|𝜇𝑋 |+ |𝜇𝑌 |+ |𝜇𝑍 |)/3). The data is
given in Bohr magnetons (𝜇𝐵𝑜ℎ𝑟).
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Example:

UBAR true

ABCC_abc ABCC_center
The keywords ABCC_abc and ABCC_center set the computation of magnetic and anisotropy axes in the
crystallographic 𝑎𝑏𝑐 system. With ABCC_abc, the program reads six real values, namely 𝑎, 𝑏, 𝑐, 𝛼, 𝛽, and 𝛾,
defining the crystal lattice. The values must be separated by a comma. With ABCC_center, the program
reads the fractional coordinates of the magnetic center (from the CIF file) - again separated by comma. It is
assumed that the XYZ coordinates used for the ab initio calculations did not rotate or translate the molecule
from its crystallographic position. This input will ensure that all tensors computed by SINGLE_ANISO are
given also in the 𝑎𝑏𝑐 system. The computed values in the output correspond to the crystallographic position
of three “dummy atoms” located on the corresponding anisotropy axes, at the distance of 1.0 𝐴 from the
metal site. Example:

ABCC_abc 12.977, 12.977, 16.573, 90, 90, 120
ABCC_center 0.666667, 0.333333, 0.20413

XFIE
This keyword specifies the value (in T) of applied magnetic field for the computation of magnetic suscep-
tibility by 𝑑𝑀/𝑑𝐻 and 𝑀/𝐻 formulas. A comparison with the usual formula (in the limit of zero applied
field) is provided. (Default is 0.0). Example:

XFIE 0.35

This keyword together with the keyword PLOT will enable the generation of two additional plots:
XT_with_field_dM_over_dH.png and XT_with_field_M_over_H.png, one for each of the two above
formula used, alongside with respective gnuplot scripts and gnuplot datafiles.

PLOT
Set to “true”, the program generates a few plots (png or eps format) via an interface to the linux program
gnuplot. The interface generates a datafile, a gnuplot script and attempts execution of the script for gen-
eration of the image. The plots are generated only if the respective function is invoked. The magnetic
susceptibility, molar magnetisation and blocking barrier (UBAR) plots are generated. The files are named:
XT_no_field.dat, XT_no_field.plt, XT_no_field.png, MH.dat, MH.plt, MH.png, BARRIER_TME.
dat, BARRIER_ENE.dat, BARRIER.plt and BARRIER.png, zeeman_energy_xxx.png etc. All files pro-
duced by SINGLE_ANISO are referenced in the corresponding output section. Example:

PLOT true

7.17.4 How to cite

We would appreciate if you cite the following papers in publications resulting from the use of SINGLE_ANISO:

• Chibotaru, L. F.; Ungur, L. J. Chem. Phys., 2012, 137, 064112.

• Ungur, L. Chibotaru, L. F. Chem. Eur. J., 2017, 23, 3708-3718.

In addition, useful information like the definition of pseudospin Hamiltonians and their derivation can be found in
this paper.
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7.18 Interface to POLY_ANISO module

7.18.1 General description

The POLY_ANISO is a stand-alone utility allowing for a semi-ab initio description of the (low-lying) electronic
structure and magnetic properties of polynuclear compounds. The model behind it is based on the localised na-
ture of the magnetic orbitals (i.e. the 𝑑 and 𝑓 orbitals containing unpaired electrons). For many compounds of
interest, the localised character of the magnetic orbitals leads to very weak character of the exchange interaction
between magnetic centers. Due to this weakness of the inter-site interaction, the molecular orbitals and corre-
sponding localised ground and excited states may be optimized in the absence of the magnetic interaction at all.
For this purpose, various fragmentation models may be applied. The most commonly used fragmentation model
is exemplified in Fig. 7.5:

Fig. 7.5: Fragmentation model of a polynuclear compound.

The upper scheme shows a schematic overview of a tri-nuclear compound and the resulting three mononuclear
fragments obtained by diamagnetic atom substitution method. By this scheme, the neighbouring magnetic centers,
containing unpaired electrons are computationally replaced by their diamagnetic equivalents. As example, tran-
sition metal (TM) sites are best described by either a diamagnetic Zn(II) or Sc(III), in function of which one is
the closest (in terms of charge and atomic radius). For lanthanides (LN), the same principle is applicable, La(III),
Lu(III) or Y(III) are best suited to replace a given magnetic lanthanide. Individual mononuclear metal fragments
are then investigated by the common CASSCF+SOC/NEVPT2+ SOC/SINGLE_ANISO computational method. A sin-
gle datafile for each magnetic site, produced by the SINGLE_ANISO run, is needed by the POLY_ANISO code as
input.

Magnetic interaction between metal sites is very important for accurate description of low-lying states and their
properties. While the full exchange interaction is quite complex (e.g. requiring a multipolar description employing
a large set of parameters [413, 871]), in a simplified model it can be viewed as a sum of various interaction mech-
anisms: magnetic exchange, dipole-dipole interaction, antisymmetric exchange, etc. In the POLY_ANISO code we
have implemented several mechanisms, which can be invoked simultaneously for each interacting pair.

The description of the magnetic exchange interaction is done within the Lines model[527]. This model is exact in
three cases:

1. interaction between two isotropic spins (Heisenberg),

2. interaction between one Ising spin (only S𝑍 component) and one isotropic (i.e. usual) spin, and

3. interaction between two Ising spins.

In all other cases when magnetic sites have intermediate anisotropy (i.e. when the spin-orbit coupling and crystal
field effects are of comparable strengths), the Lines model represents an approximation. However, it was success-
fully applied for a wide variety of polynuclear compounds so far.

In addition to the magnetic exchange, magnetic dipole-dipole interaction can be accounted exactly, by using the ab
initio computed magnetic moment for each metal site (as available inside the datafile). In the case of strongly
anisotropic lanthanide compounds (like Ho3+ or Dy3+), the magnetic dipole-dipole interaction is usually the dom-
inant one. For example, a system containing two magnetic dipoles �⃗�1 and �⃗�2, separated by distance r⃗ have a total

7.18. Interface to POLY_ANISO module 645



ORCA Manual, Release 6.0

energy:

𝐸𝑑𝑖𝑝 =
𝜇2
𝐵𝑜ℎ𝑟

𝑟3
[�⃗�1 · �⃗�2 − 3(�⃗�1�⃗�1,2) · (�⃗�2�⃗�1,2)],

where �⃗�1,2 are the magnetic moments of sites 1 and 2, respectively; 𝑟 is the distance between the two magnetic
dipoles, �⃗�1,2 is the directional vector connecting the two magnetic dipoles (of unit length). 𝜇2

𝐵𝑜ℎ𝑟 is the square of
the Bohr magneton; with an approximate value of 0.43297 in 𝑐𝑚−1/T. As inferred from the above Equation, the
dipolar magnetic interaction depends on the distance and on the angle between the magnetic moments on magnetic
centers. Therefore, the Cartesian coordinates of all non-equivalent magnetic centers must be provided in the input.

In brief, the POLY_ANISO is performing the following operations:

1. read the input and information from the datafiles

2. build the exchange coupled basis

3. compute the magnetic exchange, magnetic dipole-dipole, and other magnetic Hamiltonians using the ab
initio-computed spin and orbital momenta of individual magnetic sites and the input parameters

4. sum up all the magnetic interaction Hamiltonians and diagonalise the total interaction Hamiltonian

5. rewrite the spin and magnetic moment in the exchange-coupled eigenstates basis

6. use the obtained spin and magnetic momenta for the computation of the magnetic properties of entire poly-
nuclear compound

The actual values of the inter-site magnetic exchange could be derived from e.g. broken-symmetry DFT calcula-
tions. Alternatively, they could be regarded as fitting parameters, while their approximate values could be extracted
by minimising the standard deviation between measured and calculated magnetic data.

7.18.2 Files

POLY_ANISO is called independently of ORCA for now. In the future versions of ORCA we will aim for a deeper
integration, for a better experience.

bash:$
bash:$ $ORCA/x86_64/otool_poly_aniso < poly_aniso.input > poly_aniso.output
bash:$

The actual names of the poly_aniso.input and poly_aniso.output are not hard coded, and can take any
names. A bash script for a more convenient usage of POLY_ANISO can be provided upon request or made available
on the Forum.

Input files

The program POLY_ANISO needs the following files:

aniso_i.input
This is an ASCII text file generated by the CASSCF/SOC/ SINGLE_ANISO run. It should be provided for
POLY_ANISO as aniso_i.input (i=1,2,3, etc.): one file for each magnetic center. In cases when the entire
polynuclear cluster or molecule has exact point group symmetry, only aniso_i.input files for crystallo-
graphically non-equivalent centers should be given. This saves computational time since equivalent metal
sites do not need to be computed ab initio.

poly_aniso.input
The standard input file defining the computed system and various input parameters. This file can take any
name.
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Output files

7.18.3 List of keywords

This section describes the keywords used to control the POLY_ANISO input file. Only two keywords NNEQ, PAIR
(and SYMM if the polynuclear cluster has symmetry) are mandatory for a minimal execution of the program, while
the other keywords allow customisation of the execution of the POLY_ANISO.

The format of the “poly_aniso.input” file resembles to a certain extent the input file for SINGLE_ANISO program.
The input file must start with “&POLY_ANISO” text.

Mandatory keywords defining the calculation

Keywords defining the polynuclear cluster:

NNEQ This keyword defines several important parameters of the calculation. On the first line after the keyword the
program reads 2 values: 1) the number of types of different magnetic centers (NON-EQ) of the cluster and 2) a
letter T or F in the second position of the same line. The number of NON-EQ is the total number of magnetic
centers of the cluster which cannot be related by point group symmetry. In the second position the answer to the
question: “Have all NON-EQ centers been computed ab initio?” is given: T for True and F for False. On the
following line the program will read NON-EQ values specifying the number of equivalent centers of each type. On
the following line the program will read NON-EQ integer numbers specifying the number of low-lying spin-orbit
functions from each center forming the local exchange basis.

Some examples valid for situations where all sites have been computed ab initio (case T, True):

NNEQ
2 T
1 2
2 2

There are two kinds of magnetic centers in the cluster; both have been computed ab initio; the cluster consists of
3 magnetic centers: one center of the first kind and two centers of the second kind. From each center we take
into the exchange coupling only the ground doublet. As a result, the 𝑁𝑒𝑥𝑐ℎ = 21 × 22 = 8, and the two datafiles
aniso_1.input (for-type 1) and aniso_2.input (for-type 2) files must be present.

NNEQ
3 T
2 1 1
4 2 3

There are three kinds of magnetic centers in the cluster; all three have been computed ab initio; the cluster consists
of four magnetic centers: two centers of the first kind, one center of the second kind and one center of the third
kind. From each of the centers of the first kind we take into exchange coupling four spin-orbit states, two states
from the second kind and three states from the third center. As a result the 𝑁𝑒𝑥𝑐ℎ = 42 × 21 × 31 = 96. Three
files aniso_i.input for each center (𝑖 = 1, 2, 3) must be present.

NNEQ
6 T
1 1 1 1 1 1
2 4 3 5 2 2

There are six kinds of magnetic centers in the cluster; all six have been computed ab initio; the cluster consists of
6 magnetic centers: one center of each kind. From the center of the first kind we take into exchange coupling two
spin-orbit states, four states from the second center, three states from the third center, five states from the fourth
center and two states from the fifth and sixth centers. As a result the𝑁𝑒𝑥𝑐ℎ = 21× 41× 31× 51× 21× 21 = 480.
Six files aniso_i.input for each center (𝑖 = 1, 2, ..., 6) must be present.

Only in cases when some centers have NOT been computed ab initio (i.e. for which no aniso_i.input file exists),
the program will read an additional line consisting of NON-EQ letters (𝐴 or 𝐵) specifying the type of each of the
NON-EQ centers: 𝐴 - the center is computed ab initio and𝐵 - the center is considered isotropic. On the following
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number-of-B-centers line(s) the isotropic 𝑔 factors of the center(s) defined as𝐵 are read. The spin of the B center(s)
is defined: 𝑆 = (𝑁 − 1)/2, where𝑁 is the corresponding number of states to be taken into the exchange coupling
for this particular center. Some examples valid for mixed situations: the system consists of centers computed ab
initio and isotropic centers (case 𝐹 , False):

NNEQ
2 F
1 2
2 2
A B
2.3 2.3 2.3

There are two kinds of magnetic centers in the cluster; the center of the first type has been computed ab initio,
while the centers of the second type are considered isotropic with 𝑔𝑋 = 𝑔𝑌 = 𝑔𝑍=2.3; the cluster consists of
three magnetic centers: one center of the first kind and two centers of the second kind. Only the ground doublet
state from each center is considered for the exchange coupling. As a result the 𝑁𝑒𝑥𝑐ℎ = 21 × 22 = 8. File
aniso_i.input (for-type 1) must be present.

NNEQ
3 F
2 1 1
4 2 3
A B B
2.3 2.3 2.0
2.0 2.0 2.5

There are three kinds of magnetic centers in the cluster; the first center type has been computed ab initio, while the
centers of the second and third types are considered empirically with 𝑔𝑋 = 𝑔𝑌 =2.3; 𝑔𝑍=2.0 (second type) and
𝑔𝑋 = 𝑔𝑌 =2.0; 𝑔𝑍=2.5 (third type); the cluster consists of four magnetic centers: two centers of the first kind, one
center of the second kind and one center of the third kind. From each of the centers of the first kind, four spin-orbit
states are considered for the exchange coupling, two states from the second kind and three states from the center
of the third kind. As a result the 𝑁𝑒𝑥𝑐ℎ = 42 × 21 × 31 = 96. The file aniso_i.input must be present.

NNEQ
6 T
1 1 1 1 1 1
2 4 3 5 2 2
B B A A B A
2.12 2.12 2.12
2.43 2.43 2.43
2.00 2.00 2.00

There are six kinds of magnetic centers in the cluster; only three centers have been computed ab initio, while the
other three centers are considered isotropic; the 𝑔 factors of the first center is 2.12 (S=1/2); of the second center
2.43 (S=3/2); of the fifth center 2.00 (S=1/2); the entire cluster consists of six magnetic centers: one center of each
kind. From the center of the first kind, two spin-orbit states are considered in the exchange coupling, four states
from the second center, three states from the third center, five states from the fourth center and two states from the
fifth and sixth centers. As a result the 𝑁𝑒𝑥𝑐ℎ = 21 × 41 × 31 × 51 × 21 × 21 = 480. Three files aniso_3.input
and aniso_4.input and aniso_6.input must be present.

There is no maximal value for NNEQ, although the calculation becomes quite heavy in case the number of exchange
functions is large.

SYMM Specifies rotation matrices to symmetry equivalent sites. This keyword is mandatory in the case more centers
of a given type are present in the calculation. This keyword is mandatory when the calculated polynuclear com-
pound has exact crystallographic point group symmetry. In other words, when the number of equivalent centers
of any kind 𝑖 is larger than 1, this keyword must be employed. Here the rotation matrices from the one center to
all the other of the same type are declared. On the following line the program will read the number 1 followed on
the next lines by as many 3 × 3 rotation matrices as the total number of equivalent centers of type 1. Then the
rotation matrices of centers of type 2, 3 and so on, follow in the same format. When the rotation matrices contain
irrational numbers (e.g. sin 𝜋

6 =
√
3
2 ), then more digits than presented in the examples below are advised to be
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given:
√
3
2 = 0.8660254. Examples:

NNEQ
2 F
1 2
2 2
A B
2.3 2.3 2.3
SYMM
1
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
2
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

-1.0 0.0 0.0
0.0 -1.0 0.0
0.0 0.0 -1.0

The cluster computed here is a tri-nuclear compound, with one center computed ab initio, while the other two
centers, related to each other by inversion, are considered isotropic with 𝑔𝑋 = 𝑔𝑌 = 𝑔𝑍 = 2.3. The rotation
matrix for the first center is 𝐼 (identity, unity) since the center is unique. For the centers of type 2, there are two
matrices 3× 3 since we have two centers in the cluster. The rotation matrix of the first center of type 2 is Identity
while the rotation matrix for the equivalent center of type 2 is the inversion matrix.

NNEQ
3 F
2 1 1
4 2 3
A B B
2.1 2.1 2.1
2.0 2.0 2.0
SYMM
1
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
0.0 -1.0 0.0
-1.0 0.0 0.0
0.0 0.0 1.0
2
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
3
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

In this input a tetranuclear compound is defined, all centers are computed ab initio. There are two centers of
type “1”, related one to each other by 𝐶2 symmetry around the Cartesian Z axis. Therefore the SYMM keyword is
mandatory. There are two matrices for centers of type 1, and one matrix (identity) for the centers of type 2 and
type 3.

NNEQ
6 F
1 1 1 1 1 1
2 4 3 5 2 2
B B A A B A
2.12 2.12 2.12

(continues on next page)
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2.43 2.43 2.43
2.00 2.00 2.00

In this case the computed system has no symmetry. Therefore, the SYMM keyword is not required. End of Input
Specifies the end of the input file. No keywords after this one will be processed.

Keywords defining the magnetic exchange interactions

This section defines the keywords used to set up the interacting pairs of magnetic centers and the corresponding
exchange interactions.

A few words about the numbering of the magnetic centers of the cluster in the POLY_ANISO. First all equivalent
centers of the type 1 are numbered, then all equivalent centers of the type 2, etc. These labels of the magnetic
centers are used further for the declaration of the magnetic coupling.

PAIR or LIN1
This keyword defines the interacting pairs of magnetic centers and the corresponding exchange interaction. A
few words about the numbering of the magnetic centers of the cluster in the POLY_ANISO. First all equivalent
centers of the type 1 are numbered, then all equivalent centers of the type 2, etc. These labels of the magnetic
centers are used now for the declaration of the magnetic coupling. Interaction Hamiltonian is:

�̂�𝐿𝑖𝑛𝑒𝑠 = −
𝑁𝑝𝑎𝑖𝑟𝑠∑︁
𝑝=1

𝐽𝑝𝑠𝑖𝑠𝑗 ,

where 𝑖 an 𝑗 are the indices of the metal sites of the interacting pair 𝑝; 𝐽𝑝 is the user-defined magnetic
exchange interaction between the corresponding metal sites; 𝑠𝑖 and 𝑠𝑗 are the ab initio spin operators for
the low-lying exchange eigenstates.

PAIR
3
1 2 -0.2
1 3 -0.2
2 3 0.4

The input above is applicable for a tri-nuclear molecule. Two interactions are antiferromagnetic while ferro-
magnetic interaction is given for the last interacting pair.

LIN3
This keyword defines a more involved exchange interaction, where the user is allowed to define 3 parameters
for each interacting pair. The interaction Hamiltonian is given by:

�̂�𝐿𝑖𝑛𝑒𝑠 = −
𝑁𝑝𝑎𝑖𝑟𝑠∑︁
𝑝=1

∑︁
𝛼

𝐽𝑝,𝛼𝑠𝑖,𝛼𝑠𝑗,𝛼,

where the 𝛼 defines the Cartesian axis 𝑥, 𝑦, 𝑧.

LIN3
1
1 2 -0.2 -0.4 -0.6 # i, j, Jx, Jy, Jz

The input above is applicable for a mononuclear molecule.

LIN9
This keyword defines a more involved exchange interaction, where the user is allowed to define 9 parameters
for each interacting pair. The interaction Hamiltonian is given by:

�̂�𝐿𝑖𝑛𝑒𝑠 = −
𝑁𝑝𝑎𝑖𝑟𝑠∑︁
𝑝=1

∑︁
𝛼,𝛽

𝐽𝑝,𝛼,𝛽𝑠𝑖,𝛼𝑠𝑗,𝛽 ,

where the 𝛼 and 𝛽 defines the Cartesian axis 𝑥, 𝑦, 𝑧.

650 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

LIN9
1
1 2 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9
# i,j,Jxx,Jxy,Jxz,Jyx,Jyy,Jyz,Jzx,Jzy,Jzz

The input above is applicable for a mononuclear molecule.

COOR
The COOR keyword turns ON the computation of the dipolar coupling for those interacting pairs which were
declared under PAIR, LIN3 or LIN9 keywords. On the NON-EQ lines following the keyword the program will
read the symmetrised Cartesian coordinates of NON-EQ magnetic centers: one set of symmetrised Cartesian
coordinates for each type of magnetic centers of the system. The symmetrized Cartesian coordinates are
obtained by translating the original coordinates to the origin of Coordinate system, such that by applying the
corresponding SYMM rotation matrix onto the input COOR data, the position of all other sites are generated.

COOR
6.489149 3.745763 1.669546
5.372478 5.225861 0.505625

The magnetic dipole-dipole Hamiltonian is computed as follows:

�̂�𝑑𝑖𝑝 = 𝜇2
𝐵𝑜ℎ𝑟

𝑁𝑝𝑎𝑖𝑟𝑠∑︁
𝑝=1

�̂�𝑖�̂�𝑗 − 3(�̂�𝑖�⃗�𝑖,𝑗)(�̂�𝑗 �⃗�𝑖,𝑗)

𝑟3𝑖,𝑗

and is added to �̂�𝑒𝑥𝑐ℎ computed using other models. The �̂�𝑑𝑖𝑝 is added for all magnetic pairs.

Optional general keywords to control the input

Normally POLY_ANISO runs without specifying any of the following keywords. However, some properties are only
computed if it is requested by the respective keyword. Argument(s) to the keyword are always supplied on the next
line of the input file.

MLTP
The number of molecular multiplets (i.e. groups of spin-orbital eigenstates) for which 𝑔, 𝐷 and higher
magnetic tensors will be calculated (default MLTP=1). The program reads two lines: the first is the number
of multiplets (𝑁𝑀𝑈𝐿𝑇 ) and the second the array of𝑁𝑀𝑈𝐿𝑇 numbers specifying the dimension (multiplicity)
of each multiplet. Example:

MLTP
10
2 4 4 2 2 2 2 2 2 2

POLY_ANISO will compute the EPR 𝑔 and 𝐷- tensors for 10 groups of states. The groups 1 and 4-10 are
doublets (𝑆 = |1/2⟩), while the groups 2 and 3 are quadruplets, having the effective spin 𝑆 = |3/2⟩. For the
latter cases, the ZFS (D-) tensors will be computed. We note here that large degeneracies are quite common
for exchange coupled systems, and the data for this keyword can only be rendered after the inspection of the
exchange spectra.

TINT
Specifies the temperature points for the evaluation of the magnetic susceptibility. The program will read
three numbers: 𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥, and 𝑛𝑇 .

• 𝑇𝑚𝑖𝑛 - the minimal temperature (Default 0.0 K)

• 𝑇𝑚𝑎𝑥 - the maximal temperature (Default 300.0 K)

• 𝑛𝑇 - number of temperature points (Default 301)

Example:
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TINT
0.0 300.0 331

POLY_ANISO will compute temperature dependence of the magnetic susceptibility in 331 points evenly dis-
tributed in temperature interval: 0.0 K - 330.0 K.

HINT
Specifies the field points for the evaluation of the molar magnetisation. The program will read three numbers:
𝐻𝑚𝑖𝑛, 𝐻𝑚𝑎𝑥, 𝑛𝐻 .

• 𝐻𝑚𝑖𝑛 - the minimal field (Default 0.0 T)

• 𝐻𝑚𝑎𝑥 - the maximal filed (Default 10.0 T)

• 𝑛𝐻 - number of field points (Default 101)

Example:

HINT
0.0 20.0 201

POLY_ANISO will compute the molar magnetisation in 201 points evenly distributed in field interval: 0.0 T
- 20.0 T.

TMAG
Specifies the temperature(s) at which the field-dependent magnetisation is calculated. Default is one tem-
perature point, T = 2.0 K.

Example:

TMAG
6 1.8 2.0 2.4 2.8 3.2 4.5

ENCU
The keyword expects to read two integer numbers. The two parameters (NK and MG) are used to define the cut-
off energy for the lowest states for which Zeeman interaction is taken into account exactly. The contribution
to the magnetisation coming from states that are higher in energy than 𝐸 (see below) is done by second
order perturbation theory. The program will read two integer numbers: 𝑁𝐾 and 𝑀𝐺. Default values are:
𝑁𝐾 = 100,𝑀𝐺 = 100.

𝐸 = 𝑁𝐾 · 𝑘𝐵𝑜𝑙𝑡𝑧 · TMAG𝑚𝑎𝑥 +𝑀𝐺 · 𝜇𝐵𝑜ℎ𝑟 ·𝐻𝑚𝑎𝑥

The field-dependent magnetisation is calculated at the maximal temperature value given by TMAG keyword.
Example:

ENCU
250 150

If 𝐻𝑚𝑎𝑥 = 10 T and TMAG = 1.8 K, then the cut-off energy is:

𝐸 = 250 · 𝑘𝐵𝑜𝑙𝑡𝑧 · 1.8 + 150 · 𝜇𝐵𝑜ℎ𝑟 · 10 = 1013.06258(𝑐𝑚−1)

This means that the magnetisation arising from all exchange states with energy lower than 𝐸 =
1013.06258(𝑐𝑚−1) will be computed exactly (i.e. are included in the exact Zeeman diagonalisation) The
keywords NCUT, ERAT and ENCU have similar purpose. If two of them are used at the same time, the following
priority is defined: NCUT > ENCU > ERAT.

UBAR
With UBAR set to “true”, the blocking barrier of a single-molecule magnet is estimated. The default is not to
compute it. The method prints transition matrix elements of the magnetic moment according to the Figure
below:
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In this figure, a qualitative performance picture of the investigated single-molecular magnet is estimated
by the strengths of the transition matrix elements of the magnetic moment connecting states with opposite
magnetisations (𝑛+ → 𝑛−). The height of the barrier is qualitatively estimated by the energy at which
the matrix element (𝑛+ → 𝑛−) is large enough to induce significant tunnelling splitting at usual magnetic
fields (internal) present in the magnetic crystals (0.01-0.1 Tesla). For the above example, the blocking barrier
closes at the state (8+→ 8−). All transition matrix elements of the magnetic moment are given as ((|𝜇𝑋 |+
|𝜇𝑌 |+ |𝜇𝑍 |)/3). The data is given in Bohr magnetons (𝜇𝐵𝑜ℎ𝑟). Example:

UBAR

ERAT
This flag is used to define the cut-off energy for the low-lying exchange-coupled states for which Zeeman
interaction is taken into account exactly. The program will read one single real number specifying the ratio
of the energy states which are included in the exact Zeeman Hamiltonian. As example, a value of 0.5 means
that the lowest half of the energy states included in the spin-orbit calculation are used for exact Zeeman
diagonalisation. Example:

ERAT
0.333

The keywords NCUT, ERAT and ENCU have similar purpose. If two of them are used at the same time, the
following priority is defined: NCUT > ENCU > ERAT.

NCUT
This flag is used to define the cut-off energy for the low-lying exchange states for which Zeeman interaction is
taken into account exactly. The contribution to the magnetisation arising from states that are higher in energy
than lowest 𝑁𝐶𝑈𝑇 states, is done by second-order perturbation theory. The program will read one integer
number. In case the number is larger than the total number of exchange states(𝑁𝑒𝑥𝑐ℎ, then the𝑁𝐶𝑈𝑇 is set to
𝑁𝑆𝑆 (which means that the molar magnetisation will be computed exactly, using full Zeeman diagonalisation
for all field points). The field-dependent magnetisation is calculated at the temperature value(s) defined by
TMAG. Example:
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NCUT
32

The keywords NCUT, ERAT and ENCU have similar purpose. If two of them are used at the same time, the
following priority is defined: NCUT > ENCU > ERAT.

MVEC
MVEC, define a number of directions for which the magnetisation vector will be computed. The directions
are given as vectors specifying the direction i of the applied magnetic field).

Example:

MVEC
4 # number of directions
1.0 0.0 0.0 # px, py, pz of each direction
0.0 1.0 0.0
0.0 0.0 1.0
1.0 1.0 1.0

ZEEM
This keyword allows to compute Zeeman splitting spectra along certain directions of applied field. Directions
of applied field are given as three real number for each direction, specifying the projections along each
direction: Example:

ZEEM
6
1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0
0.0 1.0 1.0
1.0 0.0 1.0
1.0 1.0 0.0

The above input will request computation of the Zeeman spectra along six directions: Cartesian axes X,
Y, Z (directions 1,2 and 3), and between any two Cartesian axes: YZ, XZ and XY, respectively. The pro-
gram will re-normalise the input vectors according to unity length. In combination with PLOT keyword, the
corresponding zeeman_energy_xxx.png images will be produced.

MAVE
The keyword requires two integer numbers, denoted MAVE_nsym and MAVE_ngrid. The parameters
MAVE_nsym and MAVE_ngrid specify the grid density in the computation of powder molar magnetisation.
The program uses Lebedev-Laikov distribution of points on the unit sphere. The parameters are integer
numbers: 𝑛𝑠𝑦𝑚 and 𝑛𝑔𝑟𝑖𝑑. The 𝑛𝑠𝑦𝑚 defines which part of the sphere is used for averaging. It takes one of
the three values: 1 (half-sphere), 2 (a quarter of a sphere) or 3 (an octant of the sphere). 𝑛𝑔𝑟𝑖𝑑 takes values
from 1 (the smallest grid) till 32 (the largest grid, i.e. the densest). The default is to consider integration
over a half-sphere (since 𝑀(𝐻) = −𝑀(−𝐻)): 𝑛𝑠𝑦𝑚 = 1 and 𝑛𝑠𝑦𝑚 = 15 (i.e 185 points distributed over
half-sphere). In case of symmetric compounds, powder magnetisation may be averaged over a smaller part
of the sphere, reducing thus the number of points for the integration. The user is responsible to choose the
appropriate integration scheme. Note that the program’s default is rather conservative.

Example:

MAVE
1 8

TEXP
This keyword allows computation of the magnetic susceptibility 𝜒𝑇 (𝑇 ) at experimental points. On the line
below the keyword, the number of experimental points𝑁𝑇 is defined, and on the next𝑁𝑇 lines the program
reads the experimental temperature (in K) and the experimental magnetic susceptibility (in 𝑐𝑚3𝐾𝑚𝑜𝑙−1).
The magnetic susceptibility routine will also print the standard deviation from the experiment.
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TEXP
54
299.9901 55.27433
290.4001 55.45209
279.7746 55.43682
269.6922 55.41198
259.7195 55.39274
249.7031 55.34379
239.735 55.29292
229.7646 55.23266
219.7354 55.15352
209.7544 55.06556
...

HEXP
This keyword allows computation of the molar magnetisation 𝑀𝑚𝑜𝑙(𝐻) at experimental points. On the
line below the keyword, the number of experimental points 𝑁𝐻 is defined, and on the next 𝑁𝐻 lines the
program reads the experimental field intensity (in Tesla) and the experimental magnetisation (in 𝜇𝐵𝑜ℎ𝑟).
The magnetisation routine will print the standard deviation from the experiment.

HEXP
3 1.0 5.3 2.4 # temperature values
10 # numer of field points
0.30 4.17 1.26 2.51 # H(T) and M for each temperature
1.00 5.47 3.57 4.82
1.88 5.79 4.54 5.30
2.67 5.92 4.96 5.54
3.46 5.97 5.20 5.70
4.24 6.00 5.36 5.81
5.03 6.01 5.48 5.88
5.82 6.02 5.57 5.93
6.61 6.02 5.65 5.97
7.40 6.03 5.72 5.99

ZJPR
This keyword specifies the value (in 𝑐𝑚−1) of a phenomenological parameter of a mean molecular field
acting on the spin of the complex (the average intermolecular exchange constant). It is used in the calculation
of all magnetic properties (not for spin Hamiltonians) (Default is 0.0).

ZJPR
-0.02

XFIE
This keyword specifies the value (in T) of applied magnetic field for the computation of magnetic suscep-
tibility by 𝑑𝑀/𝑑𝐻 and 𝑀/𝐻 formulas. A comparison with the usual formula (in the limit of zero applied
field) is provided. (Default is 0.0). Example:

XFIE
0.35

This keyword together with the keyword PLOT will enable the generation of two additional plots:
XT_with_field_dM_over_dH.png and XT_with_field_M_over_H.png, one for each of the two above
formula used, alongside with respective gnuplot scripts and gnuplot datafiles.

TORQ
This keyword specifies the number of angular points for the computation of the magnetisation torque func-
tion, �⃗�𝛼 as function of the temperature, field strength and field orientation.

TORQ
55
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The torque is computed at all temperature given by TMAG or HEXP_temp inputs. Three rotations around
Cartesian axes X, Y and Z are performed.

PRLV
This keyword controls the print level.

• 2 - normal. (Default)

• 3 or larger (debug)

PLOT
Set to “true”, the program generates a few plots (png or eps format) via an interface to the linux program
gnuplot. The interface generates a datafile, a gnuplot script and attempts execution of the script for gen-
eration of the image. The plots are generated only if the respective function is invoked. The magnetic
susceptibility, molar magnetisation and blocking barrier (UBAR) plots are generated. The files are named:
XT_no_field.dat, XT_no_field.plt, XT_no_field.png, MH.dat, MH.plt, MH.png, BARRIER_TME.
dat, BARRIER_ENE.dat, BARRIER.plt and BARRIER.png, zeeman_energy_xxx.png etc. All files pro-
duced by SINGLE_ANISO are referenced in the corresponding output section. Example:

PLOT

7.19 N-Electron Valence State Pertubation Theory

CASPT2 and NEVPT2 belongs to the family of internally contracted perturbation theories with CASCI reference
wavefunctions. Several studies indicate that CASPT2 and NEVPT2 produce energies of similar quality.[366, 757]
The NEVPT2 methodology developed by Angeli et al exists in two formulations namely the strongly-contracted
NEVPT2 (SC-NEVPT2) and the partially contracted NEVPT2 (PC-NEVPT2). [44, 45, 46] Irrespective of the
name “partially contracted” coined by Angeli et al, the latter approach employs a fully internally contracted wave-
function (FIC). Hence, we use the term “FIC-NEVPT2” in place of PC-NEVPT2. ORCA features the fully inter-
nally contracted and the strongly contracted NEVPT2. The latter employs strongly contracted CSFs, which form a
more compact and orthogonal basis making it computationally slightly more attractive. Hence, the SC-NEVPT2
has been our work horse a for long time. NEVPT2 has many desirable properties - among them:

• It is intruder state free due to the choice of the Dyall Hamiltonian [238] as the 0th order Hamiltonian.

• The 0th order Hamiltonian is diagonal in the perturber space. Therefore no linear equation system needs
to be solved.

• It is strictly size consistent. The total energy of two non-interacting systems is equal to the sum of two
isolated systems.

• It is invariant under unitary transformations within the active subspaces.

• “strongly contracted”: Perturber functions only interact via their active part. Different subspaces are or-
thogonal and hence no time is wasted on orthogonalization issues.

• “fully internally contracted”: Invariant to rotations of the inactive and virtual subspaces.

As described in Section N-Electron Valence State Perturbation Theory (NEVPT2) of the manual, NEVPT2 requires
a single keyword on top of a working CASSCF input. The methods are called within the CASSCF block and detailed
settings can be adjusted in the PTSettings subblock.

We will go through some of the detailed setting in the next few subsections. For historical reasons, a few features,
such as the quasi-degenerate NEVPT2, are only available for the strongly contracted NEVPT2. As shown else-
where, the strong contraction is not a good starting point for linear scaling approaches.[806] Thus newer additions
such as the DLPNO and the F12 correction rely on the FIC variant. [338, 344, 345] Note that ORCA by default em-
ploys the frozencore approximation, which can be disabled with the simple keyword !NoFrozenCore. A complete
description of the frozecore settings can be found in section Frozen Core Options.

%casscf
...
MULT 1,3 # multiplicity block

(continues on next page)
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(continued from previous page)

NRoots 2,2 # number of roots for the MULT blocks

CIStep DMRGCI # optional to run DMRG-NEVPT2.
# default: CSFCI (recommended)

trafostep ri # RI approximation for CASSCF and NEVPT2

# calling the PT2 method of choice
PTMethod SC_NEVPT2 # strongly contracted NEVPT2

FIC_NEVPT2 # fully internally contracted / partially contracted NEVPT2
DLPNO_NEVPT2 # FIC-NEVPT2 using the DLPNO framework for large molecules

# detailed settings (optional) for the PT2 approaches
PTSettings
NThresh 1e-6 # FIC-NEVPT2 cut off for linear dependencies
D4Step Fly # 4-pdm is constructed on the fly
D4Tpre 1e-10 # truncation of the 4-pdm
D3Tpre 1e-14 # trunaction of the 3-pdm
EWIN -3,1000 # Energy window for the frozencore setting fc_ewin
TSMallDenom 1e-2 # printing thresh for small denominators

# option to skip the PT2 correction for a selected multiplicity block and root
# (same input structure as weights in %casscf)
selectedRoots[0]=0,1 # skip the first roots of MULT=1
selectedRoots[1]=0,0 # skip MULT=3 roots

# SC-NEVPT2 specific features
CanonStep 1 # default (exact):canonical orbitals for each state
QDType QD_VANVLECK # QD-SC-NEVPT2: Van Vleck (recommended)

# FIC-NEVPT2 specific features
F12 true # F12-Correction
Density unrelaxed # unrelaxed density generated for each state.
NatOrbs true # Computes the natural orbitals

# DLPNO specific settings
TCutPNO 1e-8 # controls the accuracy (default 1e-8)

end

end

NEVPT2 can also be set using the simple keywords on top of any valid CASSCF input.

!SC-NEVPT2 # for the strongly contracted NEVPT2
!FIC-NEVPT2 # for the fully internally contracted NEVPT2
!DLPNO-NEVPT2 # for the DLPNO variant of the FIC-NEVPT2
! ...
%casscf ...

The two computationally most demanding steps of the NEVPT2 calculation are the initial integral transformation
involving the two-external labels and the formation of the fourth order density matrix (D4). Efficient approxima-
tions to both issues are available in ORCA.

If not otherwise specified (keyword CIStep), CASSCF and consequently NEVPT2 use a conventional CSF based
solver for the CAS-CI problem. In principle, the NEVPT2 approach can be combined with approximate CI solution
such as the DMRG approach described in section Density Matrix Renormalization Group. Starting with ORCA
4.0 it is possible to run NEVPT2-DMRG calculations for the FIC and SC type ansatz using the methodology de-
veloped by the Chan group.[336] Aside from the usual DMRG input, the program requires an additional parameter
(nevpt2_MaxM) in the DMRG block. However, some of the features will be restricted to the default CIStep.
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%casscf
cistep DMRGCI
%dmrg
...
nevpt2_MaxM 2000 # (see Note below)

end
PTMethod SC_NEVPT2 # or FIC_NEVPT2

end

For the value nevpt2_MaxM 2000 cf [336].

Using the RI approximation, large molecules with actives spaces of up to 20 orbitals should be computable. The
DMRG extension can be combined with DLPNO and F12 variants. Future version might also support the CIStep
ACCCI and CIStep ICE.

7.19.1 RI, RIJK and RIJCOSX Approximation

Setting the RI approximation on the CASSCF level, will set the RI options for NEVPT2 respectively. The three
index integrals are computed and partially stored on disk. Three index integral with two internal labels are kept in
main memory. The two-electron integrals are assembled on the fly. The auxiliary basis must be large enough to fit
the integrals appearing in the CASSCF orbital gradient/Hessian and the NEVPT2 part. The auxiliary basis set of
the type /J does not suffice here.

%casscf
...
TrafoStep RI # enable RI approximation in CASSCF and NEVPT2
PTMethod SC_NEVPT2 # or the NEVPT2 approach or your choice

end

Additional speedups can be obtained if the Fock operator formation is approximated using the !RIJCOSX or !RIJK
techniques. In case of RIJCOSX, an additional auxiliary basis must be provided for the AuxJ auxiliary basis slot.
For more information on the basis set slots see section Built-in Basis Sets.

#RIJCOSX one-liner
! def2-svp def2/J RIJCOSX def2-svp/C

# Commented out: Alternative definition via %basis block
#%basis
#auxJ "def2/J" # or for example "AutoAux"
#auxC "def2-svp/C" # or for example "AutoAux"
#end

Whereas the RIJK requires a single auxiliary basis set (AuxJK slot), that is large enough to fit integrals in the Fock-
matrix construction, orbital gradient/Hessian and the correlation part. In contrast to COSX, the calculation can
also be carried out in conv mode (storing the AO integrals on disk).

#RIJK one-liner, conv is mandatory for RIJK in CASSCF
! def2-svp def2/JK RIJK

# Commented out: Alternative definition via %basis block
#%basis
#auxJK "def2/JK" # or "AutoAux"
#end

The described methodology allows the computation of systems with up to 2000 basis functions. Even larger
molecules are accessible in the framework of DLPNO-NEVPT2 described in the next subsection. Several ex-
amples can be found in the CASSCF tutorial.
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7.19.2 Beyond the RI approximation: DLPNO-NEVPT2

For systems with more than 80 atoms, we recommend the recently developed DLPNO-NEVPT2.[344] It is a suc-
cessful combination of DLPNO strategy with the FIC-NEVPT2 method. As its single reference counterparts,
DLPNO-NEVPT2 recovers 99.9% of the FIC-NEVPT2 correlation energies even for large system. The input
structure is similar to the parenting FIC-NEVPT2 method. Below you find an input example for the Fe(II)-complex
depicted in Fig. 7.6, where the active space consists of the metal-3d orbitals. The example takes about 9 hour (in-
cluding 3 hour for one CASSCF iteration) using 8 cores (2.60GHz Intel E5-2670 CPU) for the calculation to finish.
A detailed description of the DLPNO-NEVPT2 methodology can be found in our article.[344].

# DLPNO-NEVPT2 calculation for quintet state of FeC72N2H100
!PAL8 def2-TZVP def2/JK
!moread noiter
%moinp "FeC72N2H100.gbw-CASSCF"
%MaxCore 8000
%casscf

nel 6
norb 5
mult 5
TrafoStep RI # RI approximation is mandatory for DLPNO-NEVPT2

PTMethod DLPNO_NEVPT2
# detailed settings (optional)
PTSettings
TCutPNO 1e-8 # most important parameter controlling the accuracy (default 1e-8)
MaxIter 20 # maximum for residual iterations
MaxDIIS 7 # DIIS dimension

end
end
*xyz 0 5 FeC72N2H100.xyz

Just like RI-NEVPT2, the calculations requires an auxiliary basis. The aux-basis should be of /C or /JK type (more
accurate). Aside from the paper of Guo et al,[344] a concise report of the accuracy can be found in the CASSCF
tutorial, where we compute exchange coupling parameters. Note that in the snippet above, we have repeated some
of the default setting in the NEVPT sub-block. This is not mandatory and should be avoided to keep the input as
simple as possible.

As mentioned earlier, the CASSCF step can be accelerated with the RIJK or RIJCOSX approximation. Both
options are equally valid for the DLPNO-NEVPT2. The RIJK variant typically produces more accurate results
than RIJCOSX. The input file is almost the same as before, except for the keyword line:

# The combination of RIJK with DLPNO-NEVPT2
!PAL8 def2-TZVP def2/JK conv RIJK
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Fig. 7.6: Structure of the FeC72N2H100

7.19.3 Explicitly correlated NEVPT2: NEVPT2-F12 and DLPNO-NEVPT2-F12

Like in the single-reference MP2 theory, the NEVPT2 correlation energy converges slowly with the basis set. Aside
from basis set extrapolation, the R12/F12 method are popular methods to reach the basis set limit. For comparison
of F12 and extrapolation techniques, we refer to the study of Liakos et al.[521] ORCA features an F12 correction
for the FIC-NEVPT2 wavefunction using the RI approximation.[345] The RI approximation is mandatory as the
involved integrals are expensive. In complete analogy to the single reference MP2-F12, the input requires an F12
basis, an F12-cabs basis and a sufficiently large RI basis (/JK or /C).

# aug-cc-pvdz/C used as RI basis
! cc-pvdz-F12 aug-cc-pvdz/C cc-pvdz-f12-cabs
%casscf nel 8

norb 6
mult 3,1

TrafoStep RI #RI approximation must be on for F12
PTMethod FIC_NEVPT2 # FIC-NEVPT2 or DLPNO_NEVPT2
# detailed settings
PTSettings
F12 true # Request the F12 correction
end

end
*xyz 0 3
O 0.0 0.0 0.0
O 0.0 0.0 1.207

*

A linear scaling version of NEVPT2-F12, the DLPNO-NEVPT2-F12, allows to tackle systems with several thou-
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sand of basis functions.[338] With the exception of the DLPNO_NEVPT2 keyword, the input structure is otherwise
identical to NEVPT2-F12 method.

# aug-cc-pvdz/C used as RI basis
! cc-pvdz-F12 aug-cc-pvdz/C cc-pvdz-f12-cabs
%casscf nel 8

norb 6
mult 3,1

TrafoStep RI #RI approximation must be on for F12
PTMethod DLPNO_NEVPT2

# detailed settings
PTSettings
F12 true #Do the F12 correction
end

end
*xyz 0 3
O 0.0 0.0 0.0
O 0.0 0.0 1.207
*

Note that the DLPNO-NEVPT2-F12 algorithm is unitary invariant with respect to subspace rotation of inactive and
active orbitals. By tightening the DLPNO truncation thresholds, the canonical NEVPT2-F12 can be reproduced,
even with localized internal and active molecular orbitals.

# aug-cc-pvdz/C used as RI basis
! cc-pvdz-F12 aug-cc-pvdz/C cc-pvdz-f12-cabs
%casscf nel 8

norb 6
mult 3,1
gtol 1e-6
etol 1e-14

TrafoStep RI #RI approximation must be on for F12
nevpt2 3 #DLPNO-NEVPT2
actorbs locorbs #use localized active MOs.
intorbs locorbs #use localized internal MOs.
# detailed settings
PTSettings
F12 true #Do the F12 correction
TCutPNO 0.0
TCutDO 0.0
TCutCMO 0.0
TCutDOij 0.0
end

end
*xyz 0 3
O 0.0 0.0 0.0
O 0.0 0.0 1.207
*
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7.19.4 Tackling large active CASSCF spaces

Large active spaces (CAS(10,10) and more) require special attention as the standard implementation involves the
fourth order reduced density matrix (4-RDM).[46] The storage of the latter can easily reach several gigabytes and
thus cannot be kept in core memory. ORCA thus by default constructs and contracts the 4-RDM on the fly (D4Step
fly). Note that the program can be forced to keep the 4-RDM on disk (D4Step disk) or in memory (D4Step
core).

Aside from the storage, the formation of the 4-RDM itself becomes the time dominating step of the NEVPT2 cal-
culation for large active spaces. There are two set of approximations to tackle the challenge. The prescreening (PS)
or the extended prescreening (EPS) approximation and the cumulant expansion.[343]
In addition, a reformulation of the canonical NEVPT2 is available, that avoids the 4-RDM.[458] The basic idea
of the latter is similar to the recent development reported by Sokolov and coworkers.[162] In ORCA the reformu-
lated “efficient” implementation is combined with the PS approximation. Note that the reformulation is presently
restricted to the canonical NEVPT2 ansatz. An extension to the DLPNO variant will be available in the future.
The new code is called setting “D4Step efficient”. Irrespective of the formulation, ORCA by default truncates
the CASSCF wave function prior computation of the fourth order reduced density matrix using the PS approxima-
tion.[342, 343] Only configurations with a weight larger than a given parameter D4TPre are taken into account. The
same reduction is available for the third order density matrix using the keyword D3TPre. Both of the parameters
can be adjusted within the PTSettings sub-block of the CASSCF module.

%casscf
...
PTMethod FIC_NEVPT2 # or SC_NEVPT2

# detailed settings (optional)
PTSettings
D4Step efficient # calling the new NEVPT2 code.

# "fly" for the standard code
D4TPre 1e-12 # default truncation 4-RDM
D4TPre 1e-14 # default truncation 3-RDM
imaginary 0.0 # imaginary shift (only for FIC-NEVPT2)

end

These approximations naturally affect the “configuration RI” as well. In this context, it should be noted that a
configuration corresponds to a set of configuration state functions (CSF) with identical orbital occupation. For
each state the dimension of the CI and and RI space is printed.

D3 Build ... CI space truncated: 141 -> 82 CFGs
... RI space truncated: 141 -> 141 CFGs
D4 Build ... CI space truncated: 141 -> 82 CFGs
... RI space truncated: 141 -> 141 CFGs

The default values usually produce errors of less than 1 mEh. However, the error introduced by the D4TPre is
system dependent and should be double checked. The exact NEVPT2 energy is recovered with the parameters
set to zero. The approximation is available for all variants of NEVPT2 (SC, FIC and DPLNO-FIC). For crude
cut-offs, the approximation may lead to so called false intruder states.[342, 343, 913] The behavior shows up as
unreasonably large correlation energy contributions of the 1h (V_i) or 1p (V_a) excitations class e.g. positive or
large correlation energies compared to the 2h-2p (V_ijab) excitation class. This is a system specific issue, which is
avoided with tighter thresholds (D4TPre=1e-14). The default settings is chosen conservative and rarely produces
artifacts. As last resort, an imaginary shift can be added to mitigate intruder states. Note that imaginary shifts
(default=0.0 )are restricted the canonical FIC-NEVPT2 - not DLPNO.

The PS approximation completely neglects CFGs with a small weight. This is contrasted by the EPS approximation,
where the small weights (up to thresh D4TQuad) are still accounted for (first order correction).[343]. The results
are more robust but also more expensive compared to the PS approximation.

PTSettings
D4Step D4PT # running the standard code withthe EPS approximation
D4TPre 1e-12 # default truncation 4-RDM

(continues on next page)
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D4TQuad 1e-14 # selects CFGs for the first order correction.
end

Huge computational savings can be achieved with the cumulant expansion, which have been recently re-
evaluated.[343]. The results should be treated with care as false intruder states can emerge.[913] In these cases,
the imaginary level shift is the only mitigation tool. Note that the imaginary shift is implemented only for FIC-
NEVPT2.

PTSettings
D4Step Cu4 # 4-RDM approximated with cumulants

# "Cu34" to approximate 3-RDM and 4-RDM
imaginary 0.0 # imaginary shift (only for FIC-NEVPT2)

end

7.19.5 Selecting or Specific States for NEVPT2

ORCA by default computes all states defined in the CASSCF block input with the NEVPT2 approach. There are
cases, where this is not desired and the user wants to skip some of these states. The input mask of SelectedRoots
is equivalent to the weights keyword in the %casscf block: The enumeration SelectedRoots[0] refers to the
numbering of the multiplicity blocks and the respective roots defined in CASSCF.

!NEVPT2 ...
%casscf

...
MULT 1,3 # multiplicity block
NRoots 2,2 # number of roots for the MULT blocks

# detailed settings (optional) for the PT2 approaches
PTSettings

# option to skip the PT2 correction for a selected multiplicity block and root
# (same input structure as weights in %casscf)
selectedRoots[0]=0,1 # skip the first roots of MULT=1
selectedRoots[1]=0,0 # skip MULT=3 roots

end
end

7.19.6 Unrelaxed Densities and Natural Orbitals

With the FIC-NEVPT2 ansatz, it is possible to request state-specific unrelaxed densities

𝛾(𝑝, 𝑞) =< Ψ𝐼 |𝐸𝑝𝑞 |Ψ𝐼 >,

where Ψ𝐼 refers to NEVPT2 wave function of the I’th state. The code is implemented using the ORCA AGE
tool-chains.[474] In its present form the code runs serial. Note that the density can be used to generate natural
orbitals.

%casscf
...
PTMethod FIC_NEVPT2

# detailed settings (optional)
PTSettings
# densities are disabled by default
Density Unrelaxed # unrelaxed density <0+1|E(p,q)|0+1>

Cu4 # cumulant 4-rdm approximated unrel. density

(continues on next page)
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Cu34 # cumulant 3/4-rdm approximated unrel. density
FirstOrder # approximate unrel. density <0|E(p,q)|1>

NatOrbs True # off by default
end

end

The density as well the natural orbitals are state-specific. Thus, ORCA repeats the population analysis for each
state. With the added keyword !KeepDens the NEVPT2 density is stored in the density container (.densities file
on disk). The latter can be used to create density plots interactively (see Section orca_plot). Natural orbitals are
stored in the gbw file-format as .nat file with a prefix corresponding to the jobname, multiplicity and root. The
density can be used to generate natural orbitals.

A typical output takes the following form:

Unrelaxed Density ...
Incorizing ADC ... done in 0.6 sec
Norm <Psi|Psi> ... done in 0.1 sec (NORM= 1.064186836)
RDM1 <Psi|E|Psi> ... done in 0.7 sec
Reference Weight ... 0.939684618
Trace RDM1 ... 20.000000000 (prior correction)

*** Repeating the population analysis with unrelaxed density.
Orbital energies/occupations assumed diagonal. ***
(Note: Temporarily storing unrelaxed densities as cas.scfp)
------------------------------------------------------------------------------
ORCA POPULATION ANALYSIS
------------------------------------------------------------------------------

...
Natural Orbital Occupation Numbers:
...
N[ 4] = 1.98812992
N[ 5] = 1.98308480
N[ 6] = 1.93858508
N[ 7] = 1.49303660
N[ 8] = 1.49303660
N[ 9] = 1.48519842
N[ 10] = 1.48519842
N[ 11] = 0.05922342
N[ 12] = 0.00921465
N[ 13] = 0.00921465
N[ 14] = 0.00794869
N[ 15] = 0.00620254
...
===============================================================
NEVPT2 Results
===============================================================
...

NEVPT2 natural orbital can be used to do natural orbital iterations (!MORead NoIter). They might also be a
useful tool to find suitable orbital to extend the active space.[443]
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7.19.7 State-averaged NEVPT2

In the definition of the Dyall Hamiltonian [238] the CASSCF orbitals are chosen to diagonalize the Fock operator
(pseudo-canonicalized). Therefore, using a state-averaged CASSCF wave function, the NEVPT2 procedure in-
volves the construction and diagonalization of the “state-specific” Fock operators and is thus resulting in a unique
set of orbitals for each state. This becomes quickly inefficient for large number of states or large molecular systems
since each orbital set implies an integral-transformation. This is the default setting for NEVPT2 and is printed in
the output

NEVPT2-SETTINGS:
Orbitals ... canonical for each state

Other orbital options can be set using the keyword canonstep.

%casscf
...
# detailed settings (optional)
PTSettings
canonstep 0 # state-averaged orbitals and specific orbital energies

1 # canonical for each state
2 # state-averaged orbitals and orbital energies
3 # 1-step orbital relaxation
# and canonical for each state (partially relaxed)

end
end

The final orbitals of the state-averaged CASSCF diagonalize the state-averaged Fock operator. Large computational
savings can be made if these orbitals are employed for all of the states. canonstep 0 chooses orbital energies as
diagonal elements of the state-specific Fock operators. In release version ORCA 3.0 and older, this has been
the default setting. These options work best if the averaged states are similar in nature. For SC-NEVPT2, we
have implemented two more canonsteps, which trade accuracy for speed and vice versa. canonstep 2 is more
approximate and employs orbital energies from the state-averaged calculation. Thus there is no contribution to
excitation energies from the perturber class 𝑉 𝑎𝑏𝑖𝑗 at this level of approximation.

If the states under consideration are substantially different, these approximations will be of poor quality and should
be turned off. Better results can be achieved, if the state-averaged orbitals are partially relaxed for each state
before the actual SC-NEVPT2 calculation. [224] Often it is not possible to optimize the excited states separately.
Thus canonstep 3 will try a single steepest descent step for each state before running the actual SC-NEVPT2
calculation with canonicalized orbitals. Optionally, instead of a steepest descent using an approximate diagonal
Hessian, a single Newton-Raphson step can be made.

%casscf
...
PTMethod SC_NEVPT2
# detailed settings (optional)
PTSettings
gstep SOSCF true # steepest descent step
NR false # Newton-Raphson step
end

end

Despite a converged state-averaged calculation, the gradient for the individual states can be surprisingly large. As
a consequence, the orbital relaxation might fail as both methods might be outside their convergence radius. ORCA
will retry the relaxation with an increased damping. If the orbital update still fails, the program will stick with the
initial orbitals. Setting an overall damping manually, might help the relaxation procedure.

PTMethod SC_NEVPT2
PTSettings

gscaling 0.5 # damp gradient with a pre-factor
end
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7.19.8 Quasi-Degenerate SC-NEVPT2

NEVPT2 as it is presented in the previous subsections follows the recipe of “diagonalize and perturb”. The 0th
order wavefunction is determined by the diagonalization of the CAS-CI matrix. The space spanned by the CAS-CI
vectors is often referred to as “model space”. The subsequent perturbation theory is constructed based on the as-
sumption that the states under consideration are well described within the model space. Consequently, the first order
correction to the wavefunction Ψ

(1)
𝐼 does not affect the composition of the reference state |𝐼⟩. Corrections to the

wavefunction and energy arise from the interaction of the reference state with the functions |𝑘⟩ of the contributing
first order interacting space

Ψ
(1)
𝐼 =

∑︁
𝑘

𝐶𝑘 |𝑘⟩

𝐸
(2)
𝐼 =

∑︁
𝑘

⟨𝐼 |𝐻| 𝑘⟩ ⟨𝑘 |𝐻| 𝐼⟩
𝐸

(0)
𝐼 − 𝐸𝑘

This is problematic, when the interaction/mixing of states are falsely described at the CASSCF level. A typical
example is the dissociation of lithium fluoride.

!def2-tzvp nevpt2 nofrozencore
%casscf

nel 2
norb 2 #Li(2s), F(2pz)
mult 1
nroots 2

end
%paras
r = 3,7,200
end
*xyz 0 1
Li 0 0 0
F 0 0 {r}
*

Here, the ground and first excited state of Σ+ should not cross. However, at the NEVPT2 level, an erratic double
crossing is observed instead.
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Fig. 7.7: SC-NEVPT2 and QD-SC-NEVPT2 Li-F dissociation curves of the ground and first excited states for a
CAS(2,2) reference

A re-organizing of the reference states can be introduced in the framework of quasi-degenerate perturbation theory.
In practice, an effective Hamiltonian is constructed allowing “off-diagonal” corrections to the second order energy

𝐻𝐼𝐽 = 𝛿𝐼𝐽𝐸
(0)
𝐼 +

∑︁
𝑘

⟨𝐼 |𝐻| 𝑘⟩ ⟨𝑘 |𝐻| 𝐽⟩
𝐸

(0)
𝐼 − 𝐸𝑘

Diagonalization of this eff. Hamiltonian yields improved energies and rotation matrix (right eigenvectors) that
introduces the desired re-mixing of the reference states. The quasi-degenerate extension to SC-NEVPT2 [43] can
be switched on with the keyword QDType.

%casscf
...
PTMethod SC_NEVPT2 # Must be SC_NEVPT2
PTSettings
QDType 0 # disabled (default)

QD_VanVleck # Hermitian eff. Hamiltonian (recommended)
QD_Bloch # non-Hermitian eff. Hamiltonian
QD_Cloiszeaux # Hermitian eff. Hamiltonian

end
end

ORCA will print the eff. Hamiltonian matrix and its eigenvectors at the end of the calculation.

===============================================================
QD-NEVPT2 Results

===============================================================
*********************

(continues on next page)
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MULT 1,
*********************

Total Hamiltonian to be diagonalized
0 1

0 -107.074594 -0.012574
1 -0.011748-107.003810

Right Eigenvectors
0 1

0 -0.987232 0.170171
1 -0.159292 -0.985414

--------------------------
ROOT = 0

--------------------------
Total Energy Correction : dE = -0.25309172934720
Zero Order Energy : E0 = -106.82353108218946
Total Energy (E0+dE) : E = -107.07662281153667

--------------------------
ROOT = 1

--------------------------
Total Energy Correction : dE = -0.23103459727281
Zero Order Energy : E0 = -106.77074682157986
Total Energy (E0+dE) : E = -107.00178141885267

By construction the Hamiltonian is non-Hermitian (QDType QD_Bloch). Hence the computation of properties with
the revised wave function e.g. expectation values require left- and right eigenvectors. A single set of eigenvectors
(“right”) can be constructed using the Des Cloizeaux scheme (QDType QD_Cloiszeaux) leading to an Hermitian
effective Hamiltonian.[204] The transformation does not change the energies but affects the mixing of states. Note
that actual eff. Hamiltonian is printed with a PrintLevel larger 4 in the PTSettings subblock. The diagonalization
of the general matrices appearing in both formulations may occasionally lead to complex eigenpairs - an undesired
artifact. Although, the eigenvalues have typically only a small imaginary component, the results are not reliable
and ORCA prints a warning.

--- complex eigenvalues and eigenvectors
WARNING! QD-Matrix has eigenvalues with imaginary component! iE(0)=-0.000016
WARNING! QD-Matrix has eigenvalues with imaginary component! iE(1)=0.000016

The QD_VanVleck option avoids the general eigenvalue decomposition. The equations are derived from second
order Van Vleck perturbation theory, which results in a Hermitian eff. Hamiltonian.[493] The methodology is
equivalent to the symmetrization of the Bloch Hamiltonian. The solution is always real and properties are easily
accessible. Thus, QD_VanVleck is the recommended approach in ORCA. For a more detailed comparison of
the different eff. Hamiltonian theories, we refer to the literature.[123, 790]
In all three formulations, the energy denominator in the quasi-degenerate NEVPT2 is very sensitive to approx-
imations. The canonicalization options with averaged orbitals and orbitals energies (canonstep 0/2) have the
tendency to lessen the energy-denominator. To avoid artifacts, the calculation is restricted to canonstep 1 —
each state has its own orbitals.

If properties are requested within the casscf module i.e. zero-field splitting, there will be an additional printing
with the “improved” CI vectors and energies. For technical reasons, properties that are not computed in CASSCF
such as the Mössbauer parameters do not benefit from the QD-NEVPT2 correction.
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7.20 Complete Active Space Peturbation Theory : CASPT2 and
CASPT2-K

The fully internally contracted CASPT2 (FIC-CASPT2) approach is available with real, imaginary and IPEA
shifts.[40, 270, 732]. The ORCA implementation employs a reformulation of the CASPT2, that completely avoids
the fourth order reduced density matrix, that would appear in the canonical implementation.[458] Some concepts
are shared by a recent development reported by Sokolov and coworkers.[162] The modification allows calculations
with large active spaces without approximating the results e.g. with the cumulant expansion.

It should be noted that the IPEA shift in OpenMOLCAS slightly deviates from ORCA.[253]. Here, the IPEA shift,
𝜆, is added to the matrix elements of the internally contracted CSFs Φ𝑝𝑟𝑞𝑠 = 𝐸𝑝𝑞𝐸

𝑟
𝑠 |Ψ0 > with the generalized Fock

operator

< Φ𝑝
′𝑟′

𝑞′𝑠′ |𝐹 |Φ
𝑝𝑟
𝑞𝑠 > + =< Φ𝑝

′𝑟′

𝑞′𝑠′ |Φ
𝑝𝑟
𝑞𝑠 > ·

𝜆

2
· (4 + 𝛾𝑝𝑝 − 𝛾𝑞𝑞 + 𝛾𝑟𝑟 − 𝛾𝑠𝑠),

where 𝛾𝑝𝑞 =< Ψ0|𝐸𝑝𝑞 |Ψ0 > is the expectation value of the spin-traced excitation operator.[441] The labels p,q,r,s
refer to general molecular orbitals (inactive, active and virtual). Irrespective of the ORCA implementation, the
validity of the IPEA shift in general remains questionable and is thus by default disabled.[922] ORCA features
an alternative formulation, named CASPT2-K, that revises the zeroth order Hamiltonian itself.[460] Here, two
additional Fock matrices are introduced for excitation classes that add or remove electrons from the active space.
The new Fock matrices are derived from the generalized Koopmans’ matrices corresponding to electron ionization
and attachment processes. The resulting method is less prone to intruder states and the same time more accurate
compared to the canonical CASPT2 approach. For more a detailed discussion, we refer to the paper by Kollmar et
al.[460]

The CASPT2 and CASPT2-K approaches are called in complete analogy to the FIC-NEVPT2 approach. Note that
the methodology can be combined with the RI approximation. A detailed example with comments on the output is
given in Section Complete Active Space Perturbation Theory: CASPT2 and CASPT2-K . Below is concise list with
the accessible options.

%casscf
...

MULT 1,3 # multiplicity block
NRoots 2,2 # number of roots for the MULT blocks

TrafoStep RI # optional for RI approximation for CASSCF and CASPT2
PTMethod FIC_CASPT2 # canonical CASPT2 approach

FIC_CASPT2K # CASPT2-K with revised H0

# Detailed settings (this is optional)
PTSettings
CASPT2_ishift 0.0 # imaginary level-shift
CASPT2_rshift 0.0 # real level-shift
CASPT2_IPEAshift 0.0 # IPEA shift.
MaxIter 20 # Maximum for the CASPT2 iterations
TSmallDenom 1e-2 # printing thresh for small denominators

# general settings
NThresh 1e-6 # FIC-CASPT2 cut off for linear dependencies
D4Tpre 1e-12 # truncation of the 4-pdm
D3Tpre 1e-14 # trunaction of the 3-pdm
EWIN -3,1000 # Energy window for the frozencore setting fc_ewin

# Option to skip the PT2 correction for a selected multiplicity blocks and roots
# (same input structure as weights in %casscf)
selectedRoots[0]=0,1 # skip the first roots of MULT=1
selectedRoots[1]=0,0 # skip MULT=3 roots

#CASPT2-K specific options

(continues on next page)
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TReg 1e-2 # default for the Tikhonov reguralization
end

end

CASPT2 can also be set using the simple keywords on top of any valid CASSCF input.

!CASPT2 # FIC-CASPT2
!CASPT2K # FIC-CASPT2-K
!RI-CASPT2 # FIC-CASPT2 with RI approximation
!RI-CASPT2-K # FIC-CASPT2-K with RI approximation
%casscf ...

7.21 Dynamic Correlation Dressed CAS

DCD-CAS(2) is a post-CASSCF MRPT method of the perturb-then-diagonalize kind, i.e. it can modify the CAS
wavefunction compared to the previous CASSCF.[653] In cases where CASSCF already provides a good 0th order
wavefunction, DCD-CAS(2) energies are comparable to NEVPT2.

7.21.1 Theory of Nonrelativistic DCD-CAS(2)

The DCD-CAS(2) method is based on solving the eigenvalue problem of an effective Hamiltonian of the form

𝐻DCD,𝑆
𝐼𝐽 = ⟨Φ𝑆𝑆𝐼 |𝐻|Φ𝑆𝑆𝐽 ⟩ −

∑︁
𝐾∈FOIS

⟨Φ𝑆𝑆𝐼 |𝐻|Φ̃𝑆𝑆𝐾 ⟩⟨Φ̃𝑆𝑆𝐾 |𝐻|Φ𝑆𝑆𝐽 ⟩
𝐸𝑆𝐾 − 𝐸𝑆0

for each total spin 𝑆 separately. The 0th order energies 𝐸𝑆𝐾 of the perturbers |Φ̃𝑆𝑆𝐾 ⟩ are obtained by diagonalizing
the Dyall’s Hamiltonian in the first-order interacting space (FOIS). The effective Hamiltonian has the form of a
CASCI Hamiltonian that is dressed with the effect of dynamic correlation (dynamic correlation dressed, DCD),
hence the name for the method. 𝐸𝑆0 is chosen to be the ground state CASSCF energy for the respective total spin
𝑆. Since this choice is worse for excited states than for the ground state, excitation energies suffer from a “ground
state bias”.

For the contribution coming from perturbers in which electrons are excited from two inactive (𝑖𝑗) to two virtual
(𝑎𝑏) orbitals, we use (when writing the DCD Hamiltonian in a basis of CASCI states) the alternative expression

⟨Ψ𝑆𝑆𝐼 |𝐻DCD(𝑖𝑗 → 𝑎𝑏)|Ψ𝑆𝑆𝐽 ⟩ = −𝛿𝐼𝐽𝐸MP2

𝐸MP2 =
∑︁
𝑖𝑗𝑎𝑏

(𝑖𝑏|𝑗𝑎)2 − (𝑖𝑏|𝑗𝑎)(𝑖𝑎|𝑗𝑏) + (𝑖𝑎|𝑗𝑏)2

𝜖𝑎 + 𝜖𝑏 − 𝜖𝑖 − 𝜖𝑗

Since in this version the 𝑖𝑗 → 𝑎𝑏 perturber class does not contribute at all to excitation energies (like it is assumed
in the difference-dedicated configuration interaction method), we call this the difference-dedicated DCD-CAS(2)
method. Since the 𝑖𝑗 → 𝑎𝑏 class contributes the largest part of the dynamic correlation energy, this also removes
the largest part of the ground state bias. This option is used as default in DCD-CAS(2) calculations. In order to
also remove the ground state bias from the other perturber classes, we furthermore apply a perturbative correction
to the final energies. At first order (which is chosen as default), it takes the form

∆𝐸𝐼 = −∆𝐼

∑︁
𝐾∈FOIS

⟨Ψ̃𝐼 |𝐻|Φ̃𝐾⟩⟨Φ̃𝐾 |𝐻|Ψ̃𝐼⟩
(𝐸𝐾 − 𝐸0)2

∆𝐼 = ⟨Ψ̃𝐼 |𝐻|Ψ̃𝐼⟩ − 𝐸0

for the correction ∆𝐸𝐼 to the total energy of the 𝐼th DCD-CAS(2) root |Ψ̃𝐼⟩.
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7.21.2 Treatment of spin-dependent effects

The theory so far is valid for a nonrelativistic or scalar-relativistic Hamiltonian𝐻 . If we modify it to a Hamiltonian
𝐻+𝑉 , where 𝑉 contains effects that are possibly spin-dependent, this leads us to a theory [491] which has a similar
form as QDPT with all CAS roots included. The form of the spin-dependent DCD-CAS(2) effective Hamiltonian
is

⟨Φ𝑆𝑀𝐼 |𝐻DCD|Φ𝑆
′𝑀 ′

𝐽 ⟩ = 𝛿𝑆𝑆′𝛿𝑀𝑀 ′𝐻DCD,𝑆,corr
𝐼𝐽 + ⟨Φ𝑆𝑀𝐼 |𝑉 |Φ𝑆

′𝑀 ′

𝐽 ⟩.

HDCD,𝑆,corr = CDCDE(CDCD)𝑇 .

In order to construct it, we first need to solve the scalar-relativistic DCD-CAS(2) problem to construct the matrix
HDCD,𝑆,corr from the bias corrected energies E and DCD-CAS(2) CI coefficients C and then calculate the matrix
elements of the operators contributing to V in the basis of CSFs |Φ𝑆𝑀𝐼 ⟩.

Zero field splitting D tensors are extracted using the effective Hamiltonian technique, i.e. fitting the model Hamil-
tonian to a des-Cloiseaux effective Hamiltonian that is constructed from the relativistic states and energies by
projection onto the nonrelativistic multiplet (see section Zero-Field Splitting and the reference [566]). There are
limitations to this approach if spin orbit coupling becomes so strong that the relativistic states cannot uniquely be
assigned to a single nonrelativistic spin multiplet.

Hyperfine A-matrices and Zeeman g-matrices for individual Kramers doublets consisting of states |Φ⟩, |Φ⟩ are
extracted by comparing the spin Hamiltonians

𝐻Zeeman = 𝜇𝐵�⃗� · 𝑔 · �⃗�

𝐻HFC =
∑︁
𝐴

𝐼𝐴 ·𝐴𝐴 · �⃗�

to the matrix representation of the many-electron Zeeman and HFC operators in the basis of the Kramers doublet.
This yields [491]

𝑔𝑘1 = 2ℜ⟨Φ|𝐿𝑘 + 𝑔𝑒𝑆𝑘|Φ⟩
𝑔𝑘2 = 2ℑ⟨Φ|𝐿𝑘 + 𝑔𝑒𝑆𝑘|Φ⟩
𝑔𝑘3 = 2⟨Φ|𝐿𝑘 + 𝑔𝑒𝑆𝑘|Φ⟩

𝐴𝑘1 = −2𝛾𝐴ℜ⟨Φ|𝐵HFC
𝑘 (�⃗�𝐴)|Φ⟩

𝐴𝑘2 = −2𝛾𝐴ℑ⟨Φ|𝐵HFC
𝑘 (�⃗�𝐴)|Φ⟩

𝐴𝑘3 = −2𝛾𝐴⟨Φ|𝐵HFC
𝑘 (�⃗�𝐴)|Φ⟩

where 𝐵HFC
𝑘 (�⃗�𝐴) is the 𝑘th component of the magnetic hyperfine field vector at the position of nucleus 𝐴 and 𝛾𝐴

is the gyromagnetic ratio.

7.21.3 List of keywords

The following keywords can be used in conjunction with the DCD-CAS(2) method:

%casscf
dcdcas true # Do a DCD-CAS(2) calculation
diffded true # Use difference-dedicated DCD-CAS(2) for the

# ij->ab class
corrorder 1 # Maximum order for the perturbative bias correction

# (lower orders come for free)
dcd_ritrafo false # Use RI approximation for electron repulsion integrals

dcd_soc false # Relativistic DCD-CAS(2) with spin orbit coupling
dcd_ssc false # Relativistic DCD-CAS(2) with direct electronic

# spin-spin coupling
dcd_domagfield 0 # Number of user-specified finite magnetic fields

(continues on next page)
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dcd_dtensor false # Calculate an effective Hamiltonian D-tensor
dcd_nmultd 1 # The number of nonrelativistic multiplets for which the

# D-tensor is calculated
dcd_gmatrix false # Calculate an effective Kramers pair Zeeman g-matrix
dcd_amatrix false # Calculate an effective Kramers pair Hyperfine A-matrix
dcd_kramerspairs 1 # The number of Kramers pairs for which g and/or A

# is calculated
dcd_magnetization false # Calculate the magnetization of the molecule in an

# external magnetic field

dcd_cascimode false # Run relativistic calculation in CASCI mode, i.e.
# without the dynamic correlation dressing

dcd_natorbs false # Calculate natural orbitals for each state and write
# them to disk

dcd_populations false # Perform population analysis on the DCD-CAS(2) states
end

Note that the calculation of SSC requires the definition of an auxiliary basis set, since it is only implemented
in conjunction with RI integrals. If dcd_magnetization is requested, the values for magnetic flux density
and temperature to be used can be specified via the keywords MAGTemperatureMIN, MAGTemperatureMAX,
MAGTemperatureNPoints, MAGFieldMIN, MAGFieldMAX, MAGNpoints of the rel subblock of the %casscf
block (see section Magnetization and Magnetic Susceptibility). If the keyword dcd_domagfield is set to a num-
ber different than 0, the magnetic fields can be entered as a matrix of xyz coordinates (in Gauss), e.g.

%casscf
dcdcas true
...
dcd_domagfield 2
dcd_magneticfields[0] = 10000, 0, 0
dcd_magneticfields[1] = 0, 10000, 0

end

Furthermore, there is the keyword DCD_EDIAG that when running the DCD-CAS(2) code in CASCI mode works
analogously to the keyword EDiag in the soc subblock of the %mrci block (see section Zero-Field Splitting). The
energies should be entered in atomic units, e.g.

%casscf
...
dcdcas true
dcd_cascimode true
dcd_soc true
DCD_EDIAG[0] -2220.920028
DCD_EDIAG[1] -2220.834377
DCD_EDIAG[2] -2220.835871
DCD_EDIAG[3] -2220.810290
DCD_EDIAG[4] -2220.812293
DCD_EDIAG[5] -2220.756732

end
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7.22 Density Matrix Renormalization Group

The BLOCK code in ORCA is only available on the Linux platform!

BLOCK is an implementation of the density matrix renormalization group (DMRG) algorithm from the Chan group.
[156, 157, 158, 296, 789] The references given should be cited when using this part of the program.

The DMRG is a variational wavefunction method. It can be viewed as (i) an efficient method for strong correlation
in large complete active spaces, (ii) a brute force method to systematically approach FCI for a large number of
electrons and orbitals, (iii) a polynomial cost route to exact correlation in pseudo-one-dimensional molecules, such
as chains and rings.

Although the algorithm is somewhat complicated compared to many quantum chemistry methods, significant effort
has been devoted in BLOCK to ensure that it can be run in a simple black-box fashion. In most cases, only a single
keyword needs to be specified.

To provide an idea of how the DMRG can be used, here are some examples. The timings will vary depending on
your computational setup, but the following are calculations that run in a few hours to a day, on a single 12-core
Xeon Westmere cluster node:

• Complete active space (CAS) CI calculations for active spaces with up to 30 electrons in 30 active orbitals,
targetting up to 1–10 states, e.g. Jacobsen’s catalyst in a 32 electron, 25 orbital active space,

• One-dimensional chain molecules, with “widths” of up to 4 orbitals, and about 100 orbitals in total, e.g. the
𝜋-active space of a 4×25 graphene nanoribbon,

• FCI benchmark solutions in molecules with fewer than 20 electrons, and up to 100 orbitals, e.g. C2 in a
cc-pVTZ basis, D2h symmetry (12 electrons in 60 orbitals),

• Accuracies in energy differences or total energies of about 1 kcal/mol.

The following are calculations which are possible with the BLOCK code, but which are challenging, and require
large memory (e.g. up to 8 GB per core) and computational time (e.g. from a day to more than a week on up to 6
12-core Xeon Westmere nodes),

• Complete active space (CAS) CI calculations in active spaces with around 40 electrons in 40 active orbitals,
targetting a few states, for example, an Fe(II)-porphine (40 electrons in 38 orbitals) with an active space of Fe
3d, 4d and all porphine 𝜋 and 𝜎 donor orbitals, or an Fe 3d, S 3p active space calculation for [Fe4S4(SCH3)
4]2−,

• One-dimensional chain molecules, with “widths” of up to 6 orbitals, and about 100 total orbitals,

• Champion FCI benchmark solutions in small molecules, such as butadiene in a cc-pVDZ basis (22 electrons
in 82 orbitals),

• Accuracies in energy differences or total energies of about 1 kcal/mol.

If any these calculations interest you, then you might want to try a DMRG calculation with BLOCK!

7.22.1 Technical capabilities

Currently, BLOCK implements the following

• An efficient DMRG algorithm for quantum chemistry Hamiltonians

• Full spin-adaptation (SU(2) symmetry) and Abelian point-group symmetries

• State-averaged excited states

Note that the standalone version of BLOCK may provide more capabilities than are available through the external
interface. See the BLOCK website for details [155].
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7.22.2 How to cite

We would appreciate if you cite the following papers in publications resulting from the use of BLOCK :

• G. K.-L. Chan and M. Head-Gordon, J. Chem. Phys. 116, 4462 (2002),

• G. K.-L. Chan, J. Chem. Phys. 120, 3172 (2004),

• D. Ghosh, J. Hachmann, T. Yanai, and G. K.-L. Chan, J. Chem. Phys., 128, 144117 (2008),

• S. Sharma and G. K-.L. Chan, J. Chem. Phys. 136, 124121 (2012).

In addition, useful DMRG references relevant to quantum chemistry can be found in the review below by Chan and
Sharma.

• G. K-.L. Chan and S. Sharma, Ann. Rev. Phys. Chem. 62, 465 (2011),

7.22.3 Overview of BLOCK input and calculations

Within ORCA, the BLOCK program is accessed as part of the CASSCF module. BLOCK can be run in two modes:
CASCI mode (no orbital optimization) or CASSCF mode. To enable CASCI mode, set maxiter 1.

%casscf
maxiter 1 # remove if doing CASSCF
CIStep DMRGCI
...
end

For small molecule CASCI it may be possible to correlate all orbitals. In general, similar to a standard CASSCF
calculation, it is necessary to select a sensible active space to correlate. (See Section Orbital optimization on
CASSCF). This is the responsibility of the user.

7.22.4 Standard commands

Once the orbitals to correlate have been chosen, and the wavefunction symmetries and quantum numbers are speci-
fied, the accuracy of the DMRG calculation is governed by two parameters: the maximum number of renormalized
states 𝑀 ; and, the order and localization of the orbitals.

The most important parameter in the DMRG calculation is 𝑀 , the number of renormalized states. This defines
the maximum size of the wave-function expansion, which is 𝑂(𝑀2) in length in the renormalized basis. As 𝑀 is
increased, the DMRG energy converges to the exact (FCI or CASCI) limit.

The DMRG maps orbitals onto a 1D lattice, thus the best results are achieved if strongly interacting orbitals are
placed next to each other. For this reason, the DMRG energy is not generally invariant to orbital rotations within the
active space, and orbital rotation and ordering can improve the DMRG energy for a given 𝑀 . As 𝑀 is increased,
the DMRG energy becomes less and less sensitive to the orbital ordering and localization.

To minimize the number of wavefunction optimization steps, it is often advantageous to perform DMRG calcula-
tions at small 𝑀 , then increase 𝑀 to the final maximum value. This sequence of optimizations is governed by the
sweep schedule, which specifies how many optimization steps (sweeps) to perform at each intermediate value of
𝑀 .

The above may seem to make running a DMRG calculation more complicated than a usual quantum chemistry
calculation, however, BLOCK provides a set of default settings which eliminate the need to specify the above pa-
rameters by hand. We highly recommend that you first learn to use the BLOCK program with these default settings.
In the default mode, the orbitals are ordered automatically (Fiedler vector method [58, 72, 259, 260]) and a default
sweep schedule is set.

An example of a default CASCI calculation on the C~2~ molecule correlating all electrons in a VTZ basis, is given
here:

674 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

!cc-pvtz pal4
%MaxCore 16000
%casscf

nel 8
norb 58
nroots 1
mult 1
maxiter 1
CIStep DMRGCI
DMRG

maxM 5000
end

end

* xyz 0 1
C 0 0 -0.621265
C 0 0 0.621265
*

Once you are familiar with the default mode, we recommend exploring the localization of orbitals. In general,
DMRG benefits from the use of localized orbitals, and these should be used unless the high-symmetry of the
molecule (e.g., D2ℎ symmetry) provides compensating computational benefits. We recommend using “split-
localized” orbitals, which correspond to localizing the occupied and virtual orbitals separately. An example of
a split-localized default DMRG calculation on the porphine molecule, correlating the full 𝜋-space (26 electrons in
24 orbitals), in a cc-pVDZ basis is given in Sec. Appendix: Porphine \pi-active space calculation.

For a given maxM, it can take a long time to tightly converge DMRG calculations (e.g. to the default 1e-9 tolerance).
To decrease computation time, you may wish to loosen the default tight sweep tolerance or control the maximum
number of sweep iterations with the commands sweeptol and maxIter.

Orbital optimization

Orbital optimization (mixing the external/internal space with the active space, not to be confused with orbital
rotation and ordering in the active space) in DMRG calculation can be performed by using the BLOCK program
as the “CIStep” within a CASSCF calculation, as described above. For the moment, spin-densities and related
properties are not available for this CIStep.

During the optimization iterations it is important that the active orbitals maintain their overlap and ordering with
previous iterations. This is done using actConstrains. This flag is set by default.

%casscf
ActConstrains 1 # maintain shape and ordering of active orbitals
...
end

In general, performing a DMRG calculation with orbital optimization is quite expensive. Therefore, it is often best
to carry out the orbital optimization using a small value of maxM (enabled by the default parameters maxM=25 and
the resulting sweep schedule), and to carry out a final single-point calculation using a larger value of maxM.
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Advanced options

There may be times when one wants finer control of the DMRG calculation. All keywords are shown in the complete
set of BLOCK options Complete set of BLOCK options below. The startM command allows to change the starting
number of states in DMRG calculations. It is also possible to specify the entire sweep schedule manually. A sweep
schedule example follows:

%casscf
...
dmrg

MaxIter 14
switch_rst 1e-3
TwoDot_to_oneDot 12
NSchedule 3
sche_iteration 0, 4, 8
sche_M 50, 100, 500
sche_sweeptol 1e-4, 1e-6, 1e-9
sche_noise 1e-8, 1e-11, 0.0

end
end

The commands above are:

• MaxIter, corresponds to the maximum number of sweeps done by DMRG;

• NSchedule, specifies the total number of schedule parameters we will specify;

• Sche_iteration, details the sweep number at which to change the parameters of the calculation. Notice
count begins at 0;

• Sche_M, is the number of renormalized states at each sweep;

• Sche_sweeptol, is the tolerance of the Davidson algorithm;

• Sche_noise, is the amount of perturbative noise we add each sweep;

• Twodot_to_onedot, specifies the sweep at which the switch is made from a twodot to a onedot algorithm.
The recommended choice is to start with twodot algorithm and then switch to onedot algorithm a few sweeps
after the maximum𝑀 has been reached. To do a calculation entirely with the twodot or the onedot algorithm,
replace the twodot_to_onedot line with twodot 1 or onedot 1;

• switch_rst, defines the switching threshold of orbital gradient below which DMRG turns to onedot algo-
rithm and restarts from previous operators and wavefunction. This is essential to avoid oscillation of energy
values in the orbital optimization.

The default DMRG sweep schedule is selected automatically according to the choice of computational mode. By
default two different sets of predefined schedules are supported for CASCI and CASSCF computations, respec-
tively.

In CASCI mode, the default schedule corresponds to the following: starting from a given startM (where the
default is 250 and 8 sweeps), increase to a value of 1000 (8 sweeps) and increment by 1000 every 4 iterations until
maxM is reached. The algorithm switches from twodot to onedot two sweeps after the maxM has been reached.

In CASSCF mode, the orbital optimization requires much fewer renormalized states to converge the wavefunction
with respect to orbital rotations. The default schedule therefore starts with startM (where the default is 25 and 2
sweeps), and increments by a factor of 2 every 2 sweeps util maxM is reached. The algorithm continues the sweep
at maxM by decreasing the Davison tolerance sche_sweeptol and noise level sche_noise every 2 cycles by a
factor of 10, until sche_sweeptol becomes smaller than sweeptol.

For better control of the orbital ordering, we also provide a genetic algorithm minimization method of a weighted
exchange matrix. The genetic algorithm usually provides a superior orbital ordering to the default ordering, but
can itself take some time to run for large numbers of orbitals. The genetic algorithm can be enabled by
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%casscf
...
DMRG

auto_ordering GAOPT
end

end

within the %casscf input.

Troubleshooting

The two most common problems with DMRG calculations are that (i) convergence with maxM is slower than desired,
or (ii) the DMRG sweeps get stuck in a local minimum. (i) is governed by the orbital ordering / choice of orbitals.
To improve convergence, turn on the genetic algorithm orbital ordering.

If you suspect (ii) is occurring, the simplest thing to do is to increase the starting number of states with the startM
(e.g. from 500 to 1000 states). Local minima can also sometimes be avoided by increasing the noise in the DMRG
schedule, e.g. by a factor of 10. To check that you are stuck in a local minimum, you can carry out a DMRG
extrapolation (see extended Manual in the BLOCK website).

Note that the present DMRG-SCF establishes the input order of active space orbitals according to their Hartree-Fock
occupancy, even if these orbitals are ultimately canonical or split-localized canonical in nature. This is specified by
hf_occ in which the Hartree-Fock occupancy is derived by default from the one-electron integrals. Other options
for obtaining the occupancy are available (see Complete set of BLOCK options).

Somet times the energy values produced from one SCF cycle to another may oscillate. Such a nonlinear numerical
behaviour may occur typically by the last few iterations, most likely caused by the loss of a certain distribution of
quantum numbers (eg, particle number, irrep symmetry and spin) in the blocking and decimation procedure due
to incomplete many-body basis. On the other hand, the loss of quantum numbers is the main source of energy
discontinuities on potential energy curves calculated by DMRG-SCF using a small number of renormalized states.

In the current release of DMRG-SCF implementation, the number of quantum states is locked to avoid these prob-
lems. The locking mechanism is turned on when the orbital gradient falls below a certain threshold defined by the
keyword switch_rst (default: 0.001). The DMRG calculation then starts from previous operators and wavefunc-
tion in which a perturbative noise is not added. Locking quantum states and restaring DMRG wavefunction not
only ensures a smooth convergence towards the final energy but also minimizes the number of iterations. Note that
the locking procedure introduces an arbitrariness to the final energy, when a very small 𝑀 is used, since the final
digits of energy depend on where the locking begins. It is therefore not recommended to start locking too early in
iterations which could trap the orbital solution in a local mimimum. Finally the quality of resulting orbitals can
be checked by carrying out a DMRG calculation with sufficient renormalized states. Using the default value of
switch_rst DMRG-SCF usually results in the orbitals that are good enough to reproduce the CASSCF energy.

Complete set of BLOCK options

%casscf
...
dmrg

startM 25 # CASSCF mode: number of re-normalized states for a singlee root
250 # CASCI mode: number of re-normalized states for a single root

maxM 25 # CASSCF mode: number of re-normalized states for a singlee root
250 # CASCI mode: number of re-normalized states for a single root

DryRun false # just create an input for Block
SweepTol 1e-9 # energy tolerance for the sweeps
auto_ordering NOREORDER # auto_ordering is an int. If set to 0

# or the alias NOREORDER, the reordering is skipped.
FIEDLER # (default) let Block optimize the active orbital ordering
GAOPT # let Block optimize the active orbital ordering

# using genetic algorithm

(continues on next page)
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hf_occ 0 # user-defined initial Hartree-Fock occupancy manually
1 # default: initial Hartree-Fock occupancy based on the values of

the one-electron integrals
2 # initial Hartree-Fock occupancy based on the energy ordering

of canonical orbitals

TwoDot_to_OneDot 1 # Switch from two-dot expressions to one-dot
OneDot 0 # Only one-dot expressions. %In CASCI mode only.
TwoDot 0 # Only two-dot expressions. %In CASCI mode only.
switch_rst 1e-3 # Specify the threshold of orbital gradient below which DMRG

swithches to one-dot expression by reading previous wavefunction.
warmup 1 # wilson warm-up type

2, 3 or 4 # n=3 is the default option.
The full configuration space of the n sites next to the system
constitutes the environment states in the warm-up.
The remaining sites use the Hartree-Fock guess occupation

nonspinadapted 0 # default: spin-adapted DMRG
1 # non-spin-adatped DMRG in which the spin-density calculation

is available

# Define a schedule for DMRG
MaxIter 14 # Specify maximum number of iterations
NSchedule -1 # default sweep schedule in CASSCF mode

0 # default sweep schedule in CASCI mode
>0 # Number of manual sweep schedule parameters

# All schedule parameters must be set if this flag is set manually!
sche_iteration 0, 4, 8 # vector with sweep-number to execute changes

# (schedule parameter)

sche_M 50,100,500 # vector with corresponding M values (schedule parameter)
sche_sweeptol 1e-4,1e-6,1e-9 # vector with sweep tolerances (schedule parameter)
sche_noise 1e-8, 1e-11,0.0 # vector with the noise level (schedule parameter)

# Define a separate maxM for DMRG-NEVPT2
nevpt2_maxm 25 # set maximum number of renormalized states

for DMRG-NEVPT2 calculation (default: MaxM)

end
end

7.22.5 Appendix: Porphine 𝜋-active space calculation

We provide a step-by-step basis on localizing the 𝜋-orbitals of the porphine molecules and running a CASSCF-
DMRG calculation on this system. It will be important to obtain an initial set of orbitals, rotate the orbitals which
are going to be localized, localize them, and finally run the CASSCF calculation. We will abbreviate the coordinates
as [. . . ] after showing the coordinates in the first input file, but please note they always need to be included.

1. First obtain RHF orbitals:

# To obtain RHF orbitals
!cc-pvdz
* xyz 0 1
N 2.10524 -0.00000 0.00000
N -0.00114 1.95475 -0.00000
N -2.14882 0.00000 -0.00000
N -0.00114 -1.95475 0.00000
C 2.85587 -1.13749 -0.00000
C 2.85587 1.13749 0.00000
C 1.02499 2.75869 -0.00000

(continues on next page)
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(continued from previous page)

C -1.10180 2.78036 0.00000
C -2.93934 1.13019 -0.00000
C -2.93934 -1.13019 0.00000
C -1.10180 -2.78036 -0.00000
C 1.02499 -2.75869 0.00000
C 4.23561 -0.67410 -0.00000
C 4.23561 0.67410 0.00000
C 0.69482 4.18829 -0.00000
C -0.63686 4.14584 -0.00000
C -4.25427 0.70589 -0.00000
C -4.25427 -0.70589 0.00000
C -0.63686 -4.14584 0.00000
C 0.69482 -4.18829 0.00000
H 5.10469 -1.31153 0.00000
H 5.10469 1.31153 -0.00000
H 1.36066 5.02946 0.00000
H -1.28917 5.00543 0.00000
H -5.12454 1.34852 0.00000
H -5.12454 -1.34852 -0.00000
H -1.28917 -5.00543 -0.00000
H 1.36066 -5.02946 -0.00000
C 2.46219 2.41307 0.00000
C -2.39783 2.44193 0.00000
C -2.39783 -2.44193 -0.00000
C 2.46219 -2.41307 -0.00000
H 3.18114 3.22163 -0.00000
H -3.13041 3.24594 -0.00000
H -3.13041 -3.24594 0.00000
H 3.18114 -3.22163 0.00000
H 1.08819 0.00000 -0.00000
H -1.13385 -0.00000 0.00000
*

2. We then swap orbitals with 𝜋-character so they are adjacent to each other in the active space. (𝜋 orbitals are
identified by looking at the MO coefficients). When they are adjacent in the active space, they can be easily
localized in the next step.

#To rotate the orbitals (so that we can localize them in the next step)
!cc-pvdz moread noiter
%moinp "porphine.gbw"
%scf

rotate
# Swap orbitals
{70, 72}
{65, 71}
{61, 70}
{59, 69}
{56, 68}
{88, 84}
{92, 85}
{93, 86}
{96, 87}
{99, 88}
{102, 89}
{103, 90}
{104, 91}
end

end
* xyz 0 1
[...]
*
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3. After rotating the orbitals, we localize the 13 occupied 𝜋-orbitals. This is performed using the orca_loc
code. The input file follows.

porphine_rot.gbw
porphine_loc.gbw
0
68
80
120
1e-3
0.9
0.9
1

4. After localizing the occuppied orbitals, we localize the 11 virtual 𝜋-orbitals using the orca_loc code once
again. The input file follows.

porphine_loc.gbw
porphine_loc2.gbw
0
81
91
120
1e-3
0.9
0.9
1

5. After these steps are complete, we run a CASSCF-DMRG calculation. The standard input file is shown
below

!cc-pvdz moread pal4
%moinp "porphine_loc2.gbw"
%MaxCore 16000

%casscf nel 26
norb 24
nroots 1
CIStep DMRGCI
end
* xyz 0 1
[...]
*

7.23 Relativistic Options

The relativistic methods in ORCA are implemented in a fairly straightforward way but do require some caution
from the user. The options are controlled through the %rel block which features the following variables:

%rel
#----------------------------------------------------
# Basic scalar relativistic method
#----------------------------------------------------
method DKH # Douglas-Kroll-Hess

ZORA # ZORA (numerical integration)
IORA # IORA (numerical integration)
IORAmm # IORA with van Wuellens

# modified metric
X2C # Exact two-component

# ---------------------------------------------------
(continues on next page)
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(continued from previous page)

# Choice of the model potential for ALL methods
# ---------------------------------------------------
ModelPot VeN, VC, VXa, VLDA, VPC

# Flags for terms in the model potential
# =0 not included =1 included
# WARNING: default is currently 1,1,1,1 for ZORA and IORA and
# VeN = nuclear attraction term
# VC = model Coulomb potential (ZORA/IORA only)
# VXa = model Xalpha potential (ZORA/IORA only)
# VLDA= VWN-5 local correlation model pot. (ZORA/IORA only)
# VPC = external point charges (X2C only)

Xalpha 0.7 # default value for the X-Alpha potential,
# only has an effect when VXa is part of the model potential

# --------------------------------------------------
# This variable determines the type of fitted atomic
# density that enters the Coulomb potential part of the
# model potential (has no effect when using DKH):
# --------------------------------------------------
ModelDens rhoDKH # DKH4 model densities (default)

rhoZORA # ZORA model densities
rhoHF # Hartree-Fock model densities

# --------------------------------------------------
# This flag controls whether only one center terms
# are retained. If this is true an approximate treat-
# ment of relativistic effects is the result, but
# geometry optimizations CAN BE PERFORMED WITH ALL
# METHODS AND MODEL POTENTIALS
# In addition one gets NO gauge noninvariance
# errors in ZORA or IORA
# --------------------------------------------------
OneCenter false # default value
# --------------------------------------------------
# Flag for the diagonal approximation to the unitary
# decoupling matrix (DLU) in X2C. Mutually exclusive
# with OneCenter. See section "DLU approximation".
# --------------------------------------------------
DLU false # default value
# --------------------------------------------------
# Specify the speed of light used in relativistic
# calculations
# --------------------------------------------------
C 137.0359895 # speed of light used (137.0359895 is the default value)

# synonyms for C are VELIT, VELOCITY
# --------------------------------------------------
# Picture change for properties
# ---------------------------------------------------
PictureChange 0 # (or false): no picturechange (default)

1 # (or true): include picturechange
2 # for DKH: use second-order DKH transformation
# (see section "Picture-Change Effects")

2 # for X2C: include the response of the unitary
# decoupling transformation (see section
# "Exact Two-Component Theory")

# ---------------------------------------------------
# Order of DKH treatment (this has no effect on ZORA calculations)
# ---------------------------------------------------
order 1 # first-order DKH Hamiltonian

2 # second-order DKH Hamiltonian
# ---------------------------------------------------
# Kind of Foldy-Wouthuysen transformation for picturechange effects
# in g tensors (see section "Picture-Change Effects")

(continues on next page)
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(continued from previous page)

# ---------------------------------------------------
fpFWtrafo true # do not include vector potential into momentum (default)

false # include vector potential
# ---------------------------------------------------
# Finite Nucleus Model: (see section "Finite Nucleus Model")
# ---------------------------------------------------
FiniteNuc false # Use point-charge nuclei (default)

true # Use finite nucleus model
# ---------------------------------------------------
# X2C intermediate storage level: (see section "X2C derivatives and properties")
# ---------------------------------------------------
StorageLevel 0-5 # default: 2
end

ò Note

It is important to recognize that in the one-center approximation (OneCenter true) ALL methods can be
used for geometry optimization. Several papers in the literature show that this approximation is fairly accurate
for the calculation of structural parameters and vibrational frequencies. Since this approximation is associated
with negligible computational effort relative to the nonrelativistic calculation it is a recommended procedure.

7.23.1 Approximate Relativistic Hamiltonians

In the relativistic domain, calculations are based on the one-electron, stationary Dirac equation in atomic units (rest
mass subtracted)

ℎ𝐷Ψ =
(︀
(𝛽 − 1) 𝑐2 + 𝑐𝛼 · 𝑝+ 𝑉

)︀
Ψ = 𝐸Ψ. (7.162)

The spinor Ψ can be decomposed in its so-called large and small components

Ψ =

(︂
Ψ𝐿
Ψ𝑆

)︂
(7.163)

These are obviously coupled through the Dirac equation. More precisely, upon solving for Ψ𝑆 , the following
relation is obtained:

Ψ𝑆 =
1

2𝑐

(︂
1 +

𝐸 − 𝑉
2𝑐2

)︂−1
𝜎 · 𝑝Ψ𝐿 = 𝑅Ψ𝐿 (7.164)

Through the unitary transformation

𝑈 =

(︂
Ω+ −𝑅+Ω
𝑅Ω+ Ω−

)︂
with Ω+ = 1√

1+𝑅+𝑅
,Ω− = 1√

1+𝑅𝑅+
,

the Hamiltonian can be brought into block-diagonal form

𝑈+ℎ𝐷𝑈 =

(︂
ℎ̃++ 0

0 ℎ̃−−

)︂
(7.165)

The (electronic) large component thus has to satisfy the following relation

ℎ++Ψ𝐿 = Ω+

(︀
ℎ++ + ℎ±𝑅+𝑅+ (ℎ∓ + ℎ−−𝑅)

)︀
Ω+Ψ𝐿 = 𝐸+Ψ𝐿. (7.166)

The approximate relativistic schemes implemented in ORCA use different methods to substitute the exact relation
(7.166) with approximate ones.

Two approximation schemes are available in ORCA: the regular approximation and the Douglas-Kroll-Hess (DKH)
approach.
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7.23.2 The Regular Approximation

In the regular approximation, (7.166) is approximated by

𝑅 =
𝑐

2𝑐2 − 𝑉
𝜎 · 𝑝. (7.167)

At the zeroth-order level (ZORA), Ω± = 1, so that the ZORA transformation is simply

𝑈ZORA =

(︂
1 −𝑅+

𝑅 1

)︂
(7.168)

and the corresponding Hamiltonian given by

ℎ̃ZORA
++ = 𝑉 + 𝑐𝜎 · 𝑝 1

2𝑐2 − 𝑉
𝑐𝜎 · 𝑝. (7.169)

At the infinite-order level (IORA), Ω±is taken into account, so that

𝑈IORA = 𝑈ZORA

(︂
Ω+ 0
0 Ω−

)︂
(7.170)

and

ℎ̃IORA
++ = Ω+

(︂
𝑉 + 𝑐𝜎 · 𝑝 1

2𝑐2 − 𝑉
𝑐𝜎 · 𝑝

)︂
Ω+ (7.171)

is the corresponding Hamiltonian. Note that despite the name – infinite-order regular approximation – this is still
not exact.

In ORCA, the spin-free (scalar-relativistic) variant of ZORA and IORA are implemented. These are obtained from
those above through the replacement

𝜎 · 𝑝 1

2𝑐2 − 𝑉
𝜎 · 𝑝→ 𝑝

1

2𝑐2 − 𝑉
𝑝. (7.172)

The regular Hamiltonians contain only part of the Darwin term and no mass-velocity term. A problem with re-
lations (7.171) and (7.169) is that due to the non-linear dependence of the resulting regular Hamiltonians on 𝑉 ,
a constant change of 𝑉 , which in the Dirac and Schrödinger equations will result in a corresponding change of
energy

𝐸 → 𝐸 + const

does not so in the regular approximation. Several attempts have been made to circumvent this problem. The scaled
ZORA variant is one such procedure. Another one is given through the introduction of model potentials replacing
𝑉 . Both approaches are available in ORCA.

The scaled ZORA variant

This variant goes back to van Lenthe et al. [865]. The central observation is that the Hamiltonian

ℎscaledZORA =
ℎZORA

1 +
⟨
Ψ𝐿

⃒⃒⃒
𝑐𝜎 · 𝑝 1

(2𝑐2−𝑉 )2
𝑐𝜎 · 𝑝

⃒⃒⃒
Ψ𝐿

⟩ (7.173)

produces constant energy-shifts 𝐸 → 𝐸 + const when the potential 𝑉 is changed by a constant – for hydrogenic
ions. For many-electron systems, the scaled-ZORA Hamiltonian still does not yield simple, constant energy shift
for 𝑉 → 𝑉 + const. But it produces the exact Dirac energy for hydrogen-like atoms and performs better than the
first-order regular approximation for atomic ionization energies.
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The regular approximation with model potential

The idea of this approach goes back to Van Wüllen [867], who suggested the procedure for DFT. However we also
use it for other methods. The scalar relativistic ZORA self-consistent field equation is in our implementation (in
atomic units): [︂

p
𝑐2

2𝑐2 − 𝑉
p+ 𝑉eff

]︂
𝜓𝑖 = 𝜀𝑖𝜓𝑖 (7.174)

where 𝑐 is the speed of light. It looks like the normal nonrelativistic Kohn–Sham equation with the KS potential
𝑉eff :

𝑉eff (r) = −
∑︁
𝐴

𝑍𝐴
|r−R𝐴|

+

∫︁
𝜌 (r′)

|r− r′|
𝑑r′ + 𝑉xc [𝜌] (r) (7.175)

(𝑍𝐴 is the charge of nucleus 𝐴 and 𝑅𝐴 is its position; 𝜌(𝑟) is the total electron density and 𝑉𝑥𝑐 [𝜌] the exchange-
correlation potential – the functional derivative of the exchange-correlation energy with respect to the density).
The kinetic energy operator 𝑇 = − 1

2∇
2 of the nonrelativistic treatment is simply replaced by the ZORA kinetic

energy operator:

𝑇ZORA = p
𝑐2

2𝑐2 − 𝑉
p (7.176)

Clearly, in the regions where the potential 𝑉 is small compared to 𝑐2, this operator reduces to the nonrelativistic
kinetic energy. 𝑉 could be the actual KS potential. However, this would require to solve the ZORA equations
in a special way which demands recalculation of the kinetic energy in every SCF cycle. This becomes expensive
and is also undesirable since the ZORA method is not gauge invariant and one obtains fairly large errors from
such a procedure unless special precaution is taken. Van Wüllen [867] has therefore argued that it is a reasonable
approximation to replace the potential 𝑉 with a model potential 𝑉model which is constructed as follows:

𝑉model = −
∑︁
𝐴

𝑍𝐴
|r−R𝐴|

+

∫︁
𝜌model (r

′)

|r− r′|
𝑑r′ + 𝑉 LDA

xc
[︀
𝜌model

]︀
(r) (7.177)

The model density is constructed as a sum over spherically symmetric (neutral) atomic densities:

𝜌model (r) =
∑︁
𝐴

𝜌𝐴 (r) (7.178)

Thus, this density neither has the correct number of electrons (for charged species) nor any spin polarization. Yet,
in the regions close to the nucleus, where the relativistic effects matter, it is a reasonable approximation. The
atomic density is expanded in a sum of s-type Gaussian functions like:

𝜌𝐴 (r) =
∑︁
𝑖

𝑑𝑖 exp
(︁
−𝛼𝑖 |r−R𝐴|2

)︁
(7.179)

The fit coefficients were determined in three different ways by near basis set limit scalar relativistic atomic HF
calculations and are stored as a library in the program. The fitting densities are available for elements up to Rn,
as well as the actinoids. Through the variable ModelDens (vide supra) the user can choose between these fits
and study the dependence of the results in this choice (it should be fairly small except, perhaps, with the heavier
elements and the HF densities which are not recommended). The individual components of the model potential
(eq. (7.177)) can be turned on or off through the use of the variable ModelPot (vide supra).

Van Wüllen has also shown that the calculation of analytical gradients with this approximation becomes close to
trivial and therefore scalar relativistic all electron geometry optimizations become easily feasible within the ZORA
approach. However, since 𝑇ZORA is constructed by numerical integration it is very important that the user takes
appropriate precaution in the use of a suitable integration grid and also the use of appropriate basis sets! In the
case of OneCenter true the numerical integration is done accurately along the radial coordinate and analytically
along the angular variables such that too large grids are not necessary unless your basis set is highly decontracted
and contains very steep functions.

684 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

7.23.3 The Douglas-Kroll-Hess Method

The Douglas-Kroll-Hess (DKH) method expands the exact relation (7.166) in the external potential V. In ORCA
the first- and second-order DKH methods are implemented. The first-order DKH Hamiltonian is given by

ℎ̃
(1)
++ = 𝐸𝑝 +𝐴𝑝𝑉 𝐴𝑝 +𝐵𝑝𝑉

(𝑝)𝐵𝑝, (7.180)

with

𝐸𝑃 =
√︀
𝑐4 + 𝑐2𝑝2, 𝐴𝑝 =

√︃
𝐸𝑝 + 𝑐2

2𝐸𝑝
, 𝐵𝑝 =

𝑐√︀
2𝐸𝑝(𝐸𝑝 + 𝑐2)

(7.181)

At second order, it reads

ℎ̃
(2)
++ = ℎ̃

(1)
++ +

1

2
[𝑊𝑝, 𝑂] (7.182)

where

{𝑊𝑝, 𝐸𝑝} = 𝛽𝑂, 𝑂 = 𝐴𝑝 [𝑅𝑝, 𝑉 ]𝐴𝑝, 𝑅𝑝 =
𝑐𝜎𝑝

𝐸𝑝 + 𝑐2
(7.183)

define the second-order contribution. In ORCA, the spin-free part of ℎ̃(2)++ is implemented.

The occurrence of the relativistic kinetic energy, 𝐸𝑃 , which is not well-defined in position space, makes a trans-
formation to the 𝑝2-eigenspace necessary. Thus any DKH calculation will start with a decontraction of the basis
set, to ensure a good resolution of the identity. Then the non-relativistic kinetic energy is diagonalized and the
𝐸𝑃 -dependent operators calculated in that space. The potential 𝑉 and 𝑉 (𝑝) are transformed to 𝑝2-eigenspace.
After all contributions are multiplied to yield the (first- or second-order) Hamiltonian, the transformation back to
AO space is carried out and the basis is recontracted.

The (spin-free) DKH-Hamiltonians contain all spin-free, relativistic correction terms, e.g. the mass-velocity and
Darwin terms. As the potential enters linearly, no scaling or model potential is necessary to introduce the correct
behaviour of the energy under a change

𝑉 → 𝑉 + const.

In all these respects the DKH Hamiltonians are much cleaner than the regular Hamiltonians.

7.23.4 Picture-Change Effects

Irrespective of which Hamiltonian has been used in the determination of the wave function, the calculation of
properties requires some special care. This can be understood in two ways: First of all, we changed from the
ordinary Schrödinger Hamiltonian to a more complicated Hamiltonian. As properties are defined as derivatives of
the energy, it is clear that a new Hamiltonian will yield a new expression for the energy and thus a new and different
expression for the property in question. Another way of seeing this is that through the transformation𝑈 , we changed
not only the Hamiltonian but also the wave function. To obtain the property at hand as the expectation value of
the property operator with the wave function, we have to make sure that property operator and wave function are
actually given in the same space. This is done through a transformation of either the property operator or the wave
function.

In any case, the difference between the non-relativistic and (quasi) relativistic property operator evaluated between
the (quasi) relativistic wave function is called the picture-change effect. From what was said above, this is clearly
not a physical effect. It describes how consistent the quasi relativistic calculation is carried out. A fully consistent
calculation requires the determination of the wave function on the (quasi) relativistic level as well as the use of the
(quasi) relativistic property operator. This is obtained through the choice

%rel PictureChange 1 end # or 2 - see below

7.23. Relativistic Options 685



ORCA Manual, Release 6.0

in the %rel block. It may be that the (quasi) relativistic and non-relativistic property operator do produce similar
results. In this case, a calculation with picture-change turned off (PictureChange=0) may be a good approxi-
mation. This is, however, not the rule and cannot be predicted before carrying out the calculation. It is therefore
highly recommended to turn on picture-change in all (quasi) relativistic property calculations!

For DKH2, the fully consistent picture-change effects are obtained using the same transformation order for the
property operator as for the one-electron Hamiltonian, i.e. setting

%rel PictureChange 2 end

while with PictureChange=1 only first-order changes on the property operators are taken into account, which
reduces the computational cost. However, since this is in no way a significant reduction, this choice is not recom-
mended. A similar argument applies to X2C (see X2C derivatives and properties).

For magnetic properties, the DKH transformation and consequently the DKH Hamiltonian and the correspond-
ing property operators are not unique. Depending on whether the magnetic field is included in the free-particle
Foldy–Wouthuysen (fpFW) transformation carried out in the first step of the DKH protocol or not, two different
Hamiltonians result. If the magnetic field is included in the fpFW transformation, the resulting Hamiltonian is a
function of the gauge invariant momentum

𝜋 = p + A.

It is therefore gauge invariant under gauge transformations of the magnetic vector potential A and thus are the
property operators derived from it. This is referred to as f𝜋FW DKH Hamiltonian. If the magnetic field is not
included in the FW transformation, the resulting Hamiltonian is a function of the kinetic momentum p only and
thus is not gauge invariant. The latter Hamiltonian is referred to as fpFW DKH Hamiltonian. A comparison of
both Hamiltonians is given in Table Table 7.20.

Table 7.20: Comparison of the properties of the fpFW and fπFW DKH Hamiltonians. For details see Ref. [746].

Criterion fpFW Hamiltonian fπFW Hamiltonian
Convergence of Eigenvalues to Dirac Eigenvalues ? yes
1st order is bounded no yes
Reproduces Pauli Hamiltonian no yes
Gauge invariance no yes
Lorentz invariance no no

From this Table, it becomes clear that the f𝜋FW DKH Hamiltonian is clearly preferred over the fpFW Hamiltonian.
To obtain the property operators, it is however necessary to take the derivatives of these Hamiltonians. It turns out
that in the case of the hyperfine-coupling tensor, the necessary derivatives produce divergent property operators in
the case of the f𝜋FW DKH Hamiltonian. This may be due to the unphysical assumption of a point-dipole as a source
of the magnetic field of the nucleus. As a physical description of the magnetization distribution of the nucleus is not
available due to a lack of experimental data, the magnetization distribution is assumed to be the same as the charge
distribution of the nucleus, see Section Finite Nucleus Model. This is unphysical as the magnetization is caused by
the one unpaired nucleon in the nucleus whereas the charge distribution is generated by the protons in the nucleus.
So, physically, the magnetization should occupy a larger volume in space than the charge. This might also be the
reason why the resulting finite-nucleus model is insufficient to remedy the divergences in the f𝜋FW hyperfine-
coupling tensor. Consequently, the hyperfine-coupling tensor is only implemented in the version resulting from
the fpFW DKH Hamiltonian. In the case of the g-tensor both versions are implemented and accessible via the
keyword

%rel fpFWtrafo true/false end

By default, this keyword is set to true. A detailed form of the property operators used for the g-tensor and
hyperfine-tensors can be found in Ref. [746].

686 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

7.23.5 Finite Nucleus Model

Composite particles like nuclei have, as opposed to elementary particles, a certain spatial extent. While the point-
charge approximation for nuclei is in general very good in nonrelativistic calculations, in relativistic calculations it
might lead to non-negligible errors. A finite-nucleus model is available for all calculations in the ORCA program
package. It is accessible from the %rel block via

%rel FiniteNuc true/false end

By default, this keyword is set to false. If the keyword is set to true, finite-nucleus effects are considered in the
following integrals:

• nucleus potential V

• DKH-integral 𝑉 (𝑝)

• one-electron spin-orbit integrals SOC (also in one-electron part of SOMF)

• electric-field gradient EFG (and thus, as a consequence in the Fermi-contact and spin-dipole terms of the
HFC tensor)

• nucleus-orbit integral NUC

• angular-momentum integral l

The finite-nucleus model implemented in ORCA is the Gaussian nucleus model of Ref. [872].

7.23.6 Exact Two-Component Theory (X2C)

The X2C implementation in ORCA closely follows that of Franzke, Weigend, and their coworkers, described in the
references: [659] (energy), [274] (gradient), [276] (EPR hyperfine coupling), [273] (NMR spin–spin coupling),
[272] (NMR shielding). These are also consistent with the work of Gauss and coworkers in refs: [165] (gradient,
electric properties), [166] (Hessian), [167] (NMR shielding). However, despite the name, only a scalar relativistic
(spin-free) version is available at present, resulting effectively in a one-component method (more aptly called “SF-
X2C-1e”), very similar to the DKH and ZORA approaches described above. The main difference to the latter
two is that the decoupling of the one-electron Dirac Hamiltonian is exact, rather than approximate. SF-X2C-1e
is implemented in ORCA for energies, gradients, and various properties (see below) with both a point- and finite
nucleus model.

We briefly describe the working equations here, using the notation of the aforementioned references, which differs
somewhat from that in the previous sections. The one-electron Dirac equation is solved directly:

DC = MCE, C =

(︂
CL

+ CL
−

CS
+ CS

−

)︂
(7.184)

to obtain the unitary transformation matrix:

U =

(︂
U++ U+−
U−+ U−−

)︂
=

(︂
1 −X†
X 1

)︂(︂
R 0
0 R′

)︂
X = CS

+

(︀
CL

+

)︀−1
R = S−

1
2

(︁
S−

1
2 S̃S−

1
2

)︁− 1
2

S
1
2

S̃ = S+
1

2𝑐2
X†TX

which exactly block-diagonalizes the Hamiltonian:

U†DU =

(︂
h+ 0
0 h−

)︂
(7.185)

h+ = R†LR (7.186)
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L = V +TX+X†T+X†
(︂

1

4𝑐2
W −T

)︂
X (7.187)

where V, T, S, and W are the potential, kinetic, overlap, and relativistic potential (𝑝 𝑉 𝑝) integral matrices. h+ is
thus the matrix form of the relativistically-corrected one-electron Hamiltonian used for the rest of the calculation.

Note that the potential operator 𝑉 used in the above equations only includes the electron–nuclear Coulomb in-
teraction. External point charges may optionally be included via %rel ModelPot[4]=1 (default 0). This option
affects energy and NMR shielding calculations but it is presently not available for gradients or Hessians.

DLU approximation

The diagonal local approximation to the unitary transformation matrix (DLU), as introduced by Peng and Rei-
her,[660] reduces the computational cost of the X2C transformation by approximating U (i.e., R and X) as an
atomic-block-diagonal matrix.

R ≈
⨁︁
𝐴

R𝐴 X ≈
⨁︁
𝐴

X𝐴

where
⨁︀

𝐴 denotes a direct sum of atomic diagonal blocks. Eqs (7.184)–(7.187) can then be solved independently
for diagonal atomic blocks h+

𝐴𝐴. Off-diagonal blocks h+
𝐴𝐵 are obtained as:

h+
𝐴𝐵 = R†𝐴L𝐴𝐵R𝐵

L𝐴𝐵 = V𝐴𝐵 +T𝐴𝐵X𝐵 +X†𝐴T𝐴𝐵 +X†𝐴

(︂
1

4𝑐2
W𝐴𝐵 −T𝐴𝐵

)︂
X𝐵

It is also possible to approximate light atoms 𝑎, 𝑏 (below a certain atomic number) as non-relativistic:

X𝑎 = R𝑎 = I

W𝑎𝑏 = W𝑎𝐵 = 0

h+
𝑎𝑏 = V𝑎𝑏 +T𝑎𝑏

h+
𝑎𝐵 = (V𝑎𝐵 +T𝑎𝐵X𝐵)R𝐵

Unlike the one center approximation (which is also available for X2C), all nuclei are included in the potential
operator 𝑉 . Use of the DLU approximation is controlled via:

%rel
DLU false # default - not used

true # turn DLU on
LightAtomThresh 0 # (default) highest atomic number treated as non-relativistic

end

X2C derivatives and properties

As discussed in section Picture-Change Effects, when computing properties with relativistic methods, derivatives
need to be taken of the correct Hamiltonian, namely h+ (eq (7.186)) in the X2C case. These include contributions
due to the derivatives of R and X, which are often small. Therefore, it is possible to neglect them and save some
computational time via the following option:

%rel
PictureChange 2 # compute the full relativistic Hamiltonian derivative

1 # neglect derivatives of R and X
0 # (default) use the non-relativistic operator

end

The same setting is applied to all properties for which the X2C correction is implemented. Currently, these are:
geometric gradients, electric dipoles, quadrupoles, and polarizabilities, electric field gradients, EPR hyperfine cou-
plings, and NMR shieldings and spin–spin couplings. For the Hessian, the X2C correction is implemented in a
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semi-numeric fashion. The DLU approximation is applied throughout, if requested, and reduces the computa-
tional effort dramatically. Note that for magnetic properties, the restricted magnetic balance (RMB) for the small
component basis functions is used whenever GIAOs are requested (e.g. NMR shielding), while the restricted ki-
netic balance (RKB) is used otherwise (e.g. NMR coupling). The spin–orbit coupling integrals used for various
properties only include a relativistic correction to the one-electron term, as is the case for DKH.

For second derivative properties whose number is proportional to the number of atoms, e.g. the DSO term of NMR
couplings, first derivatives of various intermediate quantities required for the full X2C second derivative are stored
on disk. The storage requirements can be reduced via the StorageLevel keyword and the missing intermediates
will be recomputed on-the-fly, which of course increases the computation time.

%rel
StorageLevel 0 # do not store anything - not always available

1 # store integral derivatives
2 # 1 + derivatives of R and X (default, minimum for DLU)
3 # 2 + derivatives of L
4 # 3 + derivatives of S-tilde
5 # 4 + derivatives of D and M

end

7.23.7 Basis Sets in Relativistic Calculations

For relativistic calculations, special basis sets have been designed, both as DKH and ZORA recontractions of
the non-relativistic Ahlrichs basis sets (in their all-electron versions) for elements up to Kr, and as purpose-built
segmented all-electron relativistically contracted (SARC) basis sets for elements beyond Kr [62, 641, 642, 643, 644,
729]. Their names are “ZORA-” or “DKH-” followed by the conventional basis set name. For X2C calculations, the
“x2c-XVPall” basis sets and their variants are available.[275, 690] See section Choice of Basis Set for a complete
list of basis sets.

7.24 Approximate Full CI Calculations in Subspace: ICE-CI

7.24.1 Introduction

In many circumstances, one would like to generate a wavefunction that is as close as possible to the full-CI result,
but Full CI itself is out of the question for computational reasons. Situations in which that may be desirable include
a) one wants to generate highly accurate energies for small molecules or b) one wants to sort out a number of low-
lying states or c) one wants to run CASSCF calculations with larger active spaces than the about fourteen orbitals
that have been the state of the art for a long time.

ORCA features a method that has been termed Iterative-Configuration Expansion Configuration Interaction (ICE-
CI).[171, 172] It is based on much older ideas brought forward by Jean-Paul Malrieu and his co-workers in the
framework of the CIPSI (an abbreviation for a method with a rather bulky name Configuration Interaction by Per-
turbation with multiconfigurational zeroth-order wave functions Selected by Iterative process) in the early 1970s.

The goal of the ICE-CI is to provide compact wavefunction(s) (e.g. one or several states) close to the full-CI limit
at a small fraction of the computational cost. However, ICE-CI itself is not designed to deal with hundreds of atoms
or thousands of basis functions. Thus, unlike, say DLPNO-CCSD(T) which is a high accuracy method for treating
large sytems, ICE-CI is either a highly robust high accuracy method for very small systems or a “building block”
for large systems. By itself it can treat a few dozen electrons and orbitals – e.g. much more than full CI – but it
cannot do wonders. Its scope is similar to the density matrix renormalization group (DMRG) or Quantum Monte
Carlo Full CI (QMCFCI) procedures.

ICE-CI should be viewed as a multireference approach. It is self-adaptive and robust, even in the presence of near
or perfect degeneracies. It yields orthogonal states (when applied to several states) and spin eigenfunctions. It also
yields a density and a spin density.
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7.24.2 The ICE-CI and CIPSI Algorithms

The general idea of ICE-CI is straightforward: Consider a many-particle state that has at least a sizeable contribution
from a given configuration n0 (this is a set of occupation numbers for the active orbitals that are 𝑛0𝑝 = 0, 1 𝑜𝑟 2
(𝑝 = any active orbital). By nature of the non-relativisitic Hamiltonian only configurations that differ by at
most two orbital occupations from n0 will interact with it. We can use perturbation theory to select the subset
of singles and doubles that interact most strongly with n0 and then solve the variational problem. We can then
analyze the CI vector for configurations that make a dominant contribution to the ground state. Say, we single out
the configurations with 𝐶2

𝐼 > 𝑇gen. This defines the “generator” set of configurations. The other configurations
are called “variational” configurations. They are treated to infinite order by the variational principle, but are not
important enough to bring in their single and double excitations. In the next iteration, we perform singles and
doubles relative to these general configurations and select according to their interaction with the dominant part
of the previous CI vector (truncated to the generators). This procedure can be repeated until no new important
configurations are found and the total energy converges (See Fig. 7.8).

Fig. 7.8: Flowchart of the ICE-CI procedure.

The described procedure is very similar to Malrieu’s three level CIPSI procedure. One major technical difference,
is that ICE is centered around configurations and configuration state functions rather than determinants. A config-
uration is a set of occupation numbers 0, 1 or 2 that describes how the electrons are distributed among the available
spatial orbitals. A configuration state function (CSF) is created by coupling the unpaired spins in a given config-
uration to a given total spin 𝑆. In general there are several, if not many ways to construct a linearly independent
set of CSFs. CSFs on the other hand can be expanded in terms of Slater determinants, but there are more Slater
determinants to a given configuration than CSFs. For example for a CAS(14,18) calculation one has about 109
determinants, but only about 3x108 CSFs and 3x107 configurations. In the configuration based ICE (CFG-ICE)
all logic happens at the level of configurations. That is, it is the relationship between two configurations that deter-
mines whether and if yes, by which integrals the CSFs or determinants of two given configurations interact. Since
the configuration space is so much more compact than the determinant space substantial computational benefit can
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be realized by organizing the calculation around the concept of a configuration. In general, in CFG-ICE all CSFs
that belong to a given configuration are included and all selection quantities are summed over all CSFs of a given
configuration before it is decided whether this CSFs is included or not. In the configuration state functions based
ICE (CSF-ICE) the logic of generation and selection occurs at the level of individual CSFs and therefore we get
rid of the requirement to carry around all the CSFs for a given configuration. This provides substantial gains in
the case of molecules containing a large number of transition metal atoms, where each atom contains a high-spin
center. In such cases only a few CSFs of a the dominant CFG play a dominant role and other show negligible
contribution to the wavefunction. Finally, in some cases the original determinant based CIPSI procedure could be
preferred. Such cases can be handled by the determinant based ICE termed DET-ICE. The three variants of ICE
therefore cover all the possible types of multi-reference systems that one encounters in quantum chemistry.

It should be noted that although the procedure contains a perturbative element, the final energy is strongly dom-
inated by the variational energy and hence, for all intents and purposes, the ICE-CI procedure is variational (but
not rigorously size consistent – size consistency errors are on the same order of magnitude as the error in absolute
energy).

7.24.3 A Simple Example Calculation

Let us look at a simple calculation on the water molecule:

#
# Check the ICECI implementation
#

! SV

%ice nel 10 # number of active electrons
norb 13 # number of active orbitals
nroots 1 # number of requested roots
integrals exact # exact 4-index transformation

# can be set to RI to avoid bottlenecks

icetype CFGs # The configuration based ICE-CI
CSFs # The CSF based ICE-CI
DETs # The determinnat based ICE-CI

Tgen 1e-04 # value for Tgen. Default is 1e-4
Tvar 1e-11 # value for Tvar. Default is 1e-11 (1e-7*Tgen)

etol 1e-06 # energy convergence tolerance
end

* int 0 1
O 0 0 0 0.0 0.000 0.000
H 1 0 0 1.0 0.000 0.000
H 1 2 0 1.0 104.060 0.000
*

Let us look at the output:

------------------------------------------------------------------------------
ORCA Iterative Configuration Expansion

- a configuration driven CIPSI type approach -
------------------------------------------------------------------------------

(some startup information)

Making an initial 'Aufbau' configuration ... done
Performing S+D excitations from 1 configs ... done ( 0.0 sec) NCFG=581
Performing perturbative selection ... done ( 0.0 sec)
# of configurations before selection ... 581

(continues on next page)
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(continued from previous page)

# of configurations after selection ... 191
'rest' energy (probably not very physical) ... -3.736391e-10

******************************
* ICECI MACROITERATION 1 *
******************************

# of active configurations = 191
Now calling CI solver (269 CSFs)

(...)
CI SOLUTION :
STATE 0 MULT= 1: E= -76.0463127108 Eh W= 1.0000 DE= 0.000 eV 0.0 cm**-1

0.95752 : 2222200000000
Selecting new configurations ... done ( 0.0 sec)
# of selected configurations ... 191
# of generator configurations ... 69
Performing single and double excitations relative to generators ... done ( 0.0 sec)
# of configurations after S+D ... 13174
Selecting from the generated configurations ... done ( 0.1 sec)
# of configurations after Selection ... 3827
Root 0: -76.046312711 -0.000000063 -76.046312773

(...)
******************************
* ICECI MACROITERATION 3 *
******************************

# of active configurations = 3866
Now calling CI solver (9606 CSFs)

CI SOLUTION :
STATE 0 MULT= 1: E= -76.0539542296 Eh W= 1.0000 DE= 0.000 eV 0.0 cm**-1

0.95097 : 2222200000000
(...)

********* ICECI IS CONVERGED *********
(one final CI)

********************************************
** ICECI Problem solved in 2.6 sec **
********************************************

FINAL CIPSI ENERGIES
Final CIPSI Energy Root 0: -76.053954291 EH

From the output the individual steps in the calculation are readily appreciated. The program keeps cycling between
variational solution of the CI problem, generation of new configurations and perturbative selection until conver-
gence of the energy is achieved. Normally, this occurs rapidly and rarely requires more than five iterations. The
result will be close to the Full CI result.

Let us look at a H2O/cc-pVDZ calculation in a bit more detail (See Fig. 7.9). The calculation starts out with a
single Hartree-Fock configuration. The first iteration of ICE-CI creates the singles and doubles and altogether 544
configurations are selected. These singles and doubles bring in about half of the correlation energy. Already the
second iteration, which leads to 73000 selected CSFs provides a result close to the full CI. At this point up to
quadruple excitations from the Hartree-Fock reference have been included. It is well known that such quadruple
excitations are important for the correct behavior of the CI procedure (near size consistency will come from the
part of the quadruple excitations that are products of doubles). However, only a very small fraction of quadruples
will be necessary for achieving the desired accuracy. In the first iteration the procedure is already converged and
provides 99.8% of the correlation energy, using 0.5% of the CSFs in the full CI space and at less than 0.2% the
calculation time required for solving the full CI problem. Hence, it is clear that near exact results can be obtained
while realizing spectacular savings.
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Fig. 7.9: An ICE-CI calculation on the water molecule in the cc-pVDZ basis (1s frozen)

7.24.4 Accuracy

The accuracy of the procedure is controlled by two parameters Tgen and Tvar Since we have found that Tvar =
10−7 Tgen always provides converged results, this choice is the default. However, Tvar can be set manually. It can
be reduced considerably in order to speed up the calculations at the expense of some accuracy. Our default values
are Tgen = 10−4 and Tvar = 10−11. This provides results within about 1 mEh of the full CI results (roughly
speaking, a bit better than CCSDT for genuine closed-shell systems).

During the development of ICE-CI systematic test calculations have been performed using a reference set of 21
full CI energies on small molecules. The convergence pattern of the mean absolute error is shown in Fig. 7.10.
It is evident from the figure that the convergence of ICE-CI towards the FCI result is very smooth and that high
accuracy can be obtained. In fact, the default settings lead to an accuracy of <1 mEh deviation to the full-CI result.
𝜇Eh accuracy can be achieved by further tightening. The achieved accuracy relative to accurate coupled-cluster
results shows that the accuracy of even CCSDTQ can be surpassed by ICE-CI. The achievable accuracy is only
limited by the value of Tgen and much less so by the value of Tvar. Hence, it is advisable to use a value for Tvar

that is essentially converged and control the accuracy of the procedure by Tgen.
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Fig. 7.10: Convergence of the ICE-CI procedure towards the full CI results for a test set of 21 full CI energy. Shown
is the RMS error relative to the Full CI results. The corresponding errors for various coupled-cluster variants is
shown by broken horizontal lines.

7.24.5 Scaling behavior

ICE-CI will break the factorial scaling of the full CI problem and scale polynomially. The actual order of the
polynomial scaling is system dependent and accuracy dependent. In order to provide some impression, consider
some calculations on linear polyene chains.

Fig. 7.11: Polyene chains used for scaling calculations.

The results are displayed in the Fig. 7.12. It is evident from Fig. 7.12 that ICE-CI breaks the factorial scaling of the
full CI problem. In fact, for a thresholds of Tgen =10−4, 10−3 and 10−2 the observed scalings are approximately
𝑂(N8), 𝑂(N7) and 𝑂(N6) respectively. These numbers will obviously be very system dependent but should serve
as a rough guide. The calculations become quickly much more expensive if Tgen is tightened. A rule of thumb
is that each order of magnitude tightening of Tgen increases the computation time by a factor of 10. The above
calculations have been performed on a simple desktop computer and it was already possible to solve a CAS(30,30)
problem in less than one day of elapsed time using the default thresholds. Large active spaces will require either
loosening of the tresholds or large, more powerful machines.
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Fig. 7.12: Scaling behavior of ICE-CI for linear polyene chains (Full 𝜋-electron active space) as a functions of
system size for different generator thresholds.

7.24.6 Accuracy of the Wavefunction

The accuracy of the many particle wavefunction is not straightforward to check. A reasonable measure, however,
is how well it converges towards the exact result for one-electron expectation values. Since every expectation value
can be written in terms of natural orbitals of the one-particle density as:⟨

�̂�
⟩
=
⟨
Ψ
⃒⃒⃒∑︁

𝑜
𝑜(x𝑖)

⃒⃒⃒
Ψ
⟩
=
∑︁
𝑝𝑞

𝐷𝑝𝑞 ⟨𝜓𝑝|𝑜|𝜓𝑞⟩ =
∑︁
𝑝

𝑛𝑝

⟨
𝜓𝑝|𝑜|𝜓𝑝

⟩
where 𝑜(x𝑖) is an arbitrary one-particle operator, 𝐷𝑝𝑞 is the density matrix of the ICE-CI wavefunction, 𝜓𝑝 are
the natural orbitals of the ICE-CI wavefunction and 𝑛𝑝 are their occupations numbers. It is reasonable to take the
deviation of the natural orbital occupation numbers as a measure for wavefunction convergence.

For example, we treat the H2O/cc-pVDZ problem again. From the results in Fig. 7.13 it becomes evident that
the ICE-CI wavefunction is fairly accurate. At the default threshold the occupation numbers agree to within 10−3
with the full CI reference numbers, which means that expectation values will be of similar accuracy. Interestingly,
the largest errors occur in the region of the HOMO-LUMO gap, where apparently all approximate wavefunction
approaches tend to depopulate the high lying orbitals too much and put too much electron density in the low lying
empty orbitals. From comparison, it is seen, that the CCSD natural occupation numbers for this problem are
significantly less accurate. Hence, this is evidence that the ICE-CI wavefunction is properly converging to the right
result.
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Fig. 7.13: Convergence of the ICE-CI natural orbital occupation numbers. The upper panel is showing the Full CI
occupation numbers, the lower panel the deviation of the ICE-CI values from these exact values. For comparison,
the CCSD natural orbital occupation numbers are also provided.

7.24.7 Potential Energy Surfaces

You can use ICE-CI to scan entire potential energy surfaces. In general, the non-parallelity error along a potential
energy surface is very small. Thus, ICE-CI yields consistent quality throughout the surface.

For example, let us look at the potential energy surface of the N2 molecule (Fig. 7.14) – a common test case
for quantum chemical methods. There are not too many methods that would disscociate the triple bond of N2

correctly – ICE-CI is one of them. The potential energy surface is entirely smooth and also correctly behaves in
the dissociation limit. Near the minimum it is very close to high-level coupled-cluster methods that, however, all
fail badly as the bond is stretched.
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Fig. 7.14: Potential energy surface of the N2 molecule in the SV basis. For comparison higher level coupled-cluster
results are also shown.

It is interesting to observe the variations of the ICE-CI wavefunction along the dissociation potential energy surface.
As an example, we look at the dissociation curve of H2O where both O-H bonds are simultaneously stretched (Fig.
7.15). It is seen that the ICE-CI method is extremely parallel to the full CI curve at all distances. Hence, the
description of the bond remains consistent, even when Hartree-Fock becomes a bad approximation. The agreement
is particularly good if MP2 natural orbitals are used in the ICE-CI procedure. With the default value of Tgen =
10−4 and MP2 natural orbitals the error is consistently below 0.2 mEh. For tighter thresholds, the error is below
0.05 mEh. By contrast, the CCSD(T) method shows relatively large deviations from the full CI results and also
behaves very non-parallel as a function of O-H distance.
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Fig. 7.15: Non-parallelity error of ICE-CI for the H2O molecule in the SV basis. Shown is the deviation from the
full CI value as a function of O-H distance (both bonds stretched). For comparison, the CCSD(T) curve is also
shown

It is instructive to analyze the ICE-CI wavefunction along the dissociation pathway (Fig. 7.16). It becomes apparent
that the wavefunctions stays compact along the entire surface, even in the dissociation limit, where the weight of
the Hartree-Fock wavefunction drops to less than 25%. Even in this drastic limit, the ICE-CI wavefunction consists
of only about 60000 CSFs, which is very similar to the size of the wavefunction at equilibrium geometry. As the
wavefunction becomes more multiconfigurational, the number of generator configurations goes slightly up from
the equilibrium value of 77 to a maximum of 118 and finally 112 at dissociation. It is also interesting to note that
along the entire dissociation pathway no configuration with more than 8 open shells is generated, which means that
no more than quadruple excitations are contained in the ICE-CI wavefucntion. The number of iterations required in
the ICE-CI procedure also stays constant along the surface at 4 iterations, which impressively shows that a dominant
configuration is not necessary for a successful ICE-CI calculation.
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Fig. 7.16: Analysis of the ICE-CI wavefunction along the O-H dissociation pathway.

7.24.8 Excited States

ICE-CI can be used to obtain some insight into excited states starting from no knowledge at all. Of course, the best
was to start an excited state calculation is to have some idea which configurations are important for the low-lying
states of the system. If this is not the case, an automated procedure is used. The program will first generate an
“Aufbau” configuration using the orbitals that are provided on input. Starting from this Aufbau configuration, single
excitations at the configuration level are performed an the Hamiltonian is diagonalized for the required number of
roots. These roots are then analyzed for the leading configurations and the regular ICE-CI procedure is started
from those configurations. For example, look at a calculation on the CN radical. In this case, we know the relevant
orbitals and leading configurations for the lowest four roots (a doublet Σ ground state, a doublet Π excited state
and a doublet Σ excited state) and hence can provide them in the input file as shown below.

#
! cc-pVDZ VeryTightSCF

%maxcore 4096

%casscf nel 7
norb 4
nroots 4
mult 2
end

%ice nel 9
norb 26
nroots 4
cimode 3
tvar 1e-11
tgen 1e-4

(continues on next page)
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(continued from previous page)

refs { 2 2 2 2 1 }
{ 2 2 2 1 2 }
{ 2 2 1 2 2 }
{ 2 1 2 2 2 }
end

end

* xyz 0 2
C 0 0 0
N 0 0 1.07
*

The result is shown below. The excitation energies are reasonable but not highly accurate due to the limitations of
the basis set (experimentally the doublet Π state is at 1.32 eV and the doublet Σ state at 3.22 eV). There is a very
slight symmetry breaking In the doublet Π state that arises from the selection procedure. It should be noted that
the state averaged CASSCF excitation energies are 0.25 eV and 3.18 eV.

STATE 0 MULT= 2: E= -92.4542949092 Eh W= 0.2500 DE= 0.000 eV 0.0 cm**-1
0.67408 : 22221000000000000000000000

STATE 1 MULT= 2: E= -92.3777338429 Eh W= 0.2500 DE= 2.083 eV 16803.2 cm**-1
0.65997 : 22212000000000000000000000
0.12092 : 22122000000000000000000000
0.11545 : 22221000000000000000000000

STATE 2 MULT= 2: E= -92.3776916150 Eh W= 0.2500 DE= 2.084 eV 16812.5 cm**-1
0.69860 : 21222000000000000000000000
0.16565 : 22122000000000000000000000

STATE 3 MULT= 2: E= -92.3412510872 Eh W= 0.2500 DE= 3.076 eV 24810.3 cm**-1
0.51251 : 22122000000000000000000000
0.16825 : 22212000000000000000000000
0.11151 : 21222000000000000000000000

Below, it is described how to do ICE-CI calculations on excited states if the dominant configurations are not known.

7.24.9 Tips and Tricks

ICE-CI can be used very fruitfully together with, say, MP2 natural orbitals. This usually results in results that are
closer to full CI results and at the same lead to more compact wavefunctions (it may be called nICE). The use of
MP2 natural orbitals is requested by choosing UseMP2nat true inside the %ice block. Alternatively, improved
virtual orbitals can be used (requested by UseIVOs true). A comparison is shown in Scheme Comparison of
MP2 natural orbitals and improved virtual orbitals for the ICE-CI procedure (H2O molecule, cc-pVDZ basis,
equilibrium geometry). It is evident that the calculations based on the MP2 natural orbitals show an error relative
to full CI that is almost a factor of two smaller than the corresponding result with canonical orbitals while at the same
time the wavefunction is more compact by more than 30%. Hence, the use of MP2 natural orbitals appears to be a
very good idea in conjunction with the ICE-CI procedure. This also holds when MP2 itself is a bad approximation
(for example in the dissociation limit of the H2O molecule as shown above). On the other hand, the IVOs behave
very similar to canonical orbitals and hence, seem to offer fewer advantages.
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Fig. 7.17: Comparison of MP2 natural orbitals and improved virtual orbitals for the ICE-CI procedure (H2O
molecule, cc-pVDZ basis, equilibrium geometry)

If ICE-CI is used in conjunction with MP2 natural orbitals, there also is the possibility of letting the program
automatically choose the active space (this is called auto-ICE). The general idea is simple – we base the active
space on the MP2 natural orbitals and their occupation numbers. All orbitals between occupation number say 1.98
down to 0.02 will be included in the active space. A relevant input is shown below.

! cc-pVDZ aug-cc-pV6Z/C Auto-ICE
%ice nmin 1.99 nmax 0.01 end

%paras R= 1.0 end

* int 0 1
O 0 0 0 0 0 0
H 1 0 0 { R} 0 0
H 1 2 0 { R} 104 0
*

If we scan along the H2O dissociation surface one can see that despite changing active spaces, the dissociation
curves are smooth and remain fairly parallel to the full CI dissociation curve. Depending on the tightness of the
thresholds the active space may change from a small 6 electrons in 5 orbitals to a larger 8 electrons in 7 or 8 orbitals
upon dissociation. This is the expected behavior as the 𝜎-antibonding orbital becomes more stable along the bond
stretching coordinate. Hence, these results are encouraging in as far as in many situations the program will be able
to select a sensible active space without extended input from the user.
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Fig. 7.18: Automatic active space selection along the H2O dissociation surface. The reference curve (blue triangles)
is the ICE-CI method for the full orbital space with the default parameters.

Another place, where automatic selection comes in conveniently is in the calculation of excited states. If there are
no user supplied configurations, what happens is that the program will first choose an Aufbau “reference” configu-
ration and then perform all single excitations relative to this configuration. The program will then diagonalize the
Hamiltonian over the this set of configurations to create 0th order approximations for the chosen number of roots
of interest and then initiate the ICE-CI procedure starting from the leading configurations of these states. Here is
an example for the benzene molecule:

! RHF def2-SVPD def2-SVP/C Auto-ICE
%cclib "/Users/neese/prog_c/orca/cclib/orcacc"
%ice nroots 5

nmin 1.98
nmax 0.02
integrals ri
end

* int 0 1
C 0 0 0 0.000000 0.000 0.000
C 1 0 0 1.389437 0.000 0.000
C 2 1 0 1.389437 120.000 0.000
C 3 2 1 1.389437 120.000 0.000
C 4 3 2 1.389437 120.000 0.000
C 5 4 3 1.389437 120.000 0.000
H 1 2 3 1.082921 120.000 180.000
H 2 1 3 1.082921 120.000 180.000
H 3 2 1 1.082921 120.000 180.000
H 4 3 2 1.082921 120.000 180.000
H 5 4 3 1.082921 120.000 180.000

(continues on next page)
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H 6 5 4 1.082921 120.000 180.000
*

(The %cclib statement is explained below and is not mandatory here). The Auto-ICE procedure comes up with
as many as 24 electrons in 19 orbitals, which already is a fairly heavy calculation. The procedure converges in
five iterations and provides indeed the correct states: the gorund state, the 1B2u state at 6.4 eV, the 1B1u state at
8.9 eV and a degenerate 1E1u state at 10.0 eV. These excitation energies are still in error by about 2 eV relative to
experiment, which is mainly due to missing dynamic correlation. However, the correct states and their sequence
has been found.

The ICE-CI can be used to find the ground state if the actual ground state is not known. To this end, one simply
has to turn off the selection steps. This makes the calculations more expensive, but they will converge to the lowest
state. In the example below (again, the H2O molecule) we start from a random quintuply excited configuration –
the ICE-CI still finds the ground state after four iterations:

%ice
nel 8
norb 23
nroots 1
tvar 1e-11
tgen 1e-04
etol 1e-06

# selection
SelStart false
SelIter false
# algorithm details
useivos false
integrals exact
cimaxdim 5 #Davidson expansion space = MaxDim * NRoots
cimode 3

# spatial sym (buggy)
irrep 0
# startup (optional)
refs { 2 1 0 1 0 2 1 0 1 }

end
end

However, if one wants to converge to an excited state, one should turn on the selection. In the example below (once
more the water molecule) one can converge to the second excitated singlet state by judicious choice of the start
configuration:

%ice
nel 8
norb 23
nroots 1
tvar 1e-11
tgen 1e-04
etol 1e-06
# selection
SelStart true
SelIter true
# algorithm details
useivos false
integrals exact
cimaxdim 5
cimode 3
# spatial sym (buggy)
irrep 0
{ #} startup (optional)

(continues on next page)
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refs { 2 2 1 2 0 1 }
end

end

7.24.10 Large-scale approximate CASSCF: ICE-SCF

ICE-CI can be used as a replacement for the CI step in a CASSCF framework. In this way, much larger CASSCF
calculations than previously possible can be envisioned. In using the ICE-CI in this way, the active orbitals should
be chosen as natural orbitals in order to ensure a proper canonicalization. In general, ICE-CI results will not be
invariant with respect to the choice of orbitals. However, in practice we have not found this to be problematic. We
refer to this as ICE-SCF.

The use is simple: in the %casscf block choose:

%casscf
...
cistep ice
# optional input with refined settings

ci
tgen 1e-4 # controls accuracy (default = 1e-4)
tvar 1e-11 # default = 1e-7 * TGen
maxiter 100 # number of allowed cycles (default = 64)

end
end

The entire remaining input is the one for standard CASSCF calculations. In this way one can do CASSCF calcu-
lations with very large active space in reasonable turnaround times. We have not observed convergence problems
that are worse than in the standard CASSCF procedure. The results in Fig. 7.19 show that the deviations from reg-
ular CASSCF energies are very small. The largest deviation observed for C2H4 is on the order of 0.2 mEh, which
appears acceptable. Note that the CASSCF tutorial also covers larger examples and excitations energies computed
with the ICE-CI as CI solver. As mentioned in the CASSCF section The Complete Active Space Self-Consistent
Field (CASSCF) Module, some feature are not supported for ICE-CI e.g. magnetic properties as well NEVPT2
corrections are not yet available.
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Fig. 7.19: Deviations of ICE-SCF from CASSCF energies for a selection of molecules (standard truncation param-
eters 𝑇gen = 10−4 and 𝑇var = 10−11)

Since CASSCF is fully variational, it is possible to optimize geometries with that procedure. It is our experience so
far, that the ICE-SCF geometries are virtually indistinguishable from CASSCF geometries (an example is shown
in Fig. 7.20).

Fig. 7.20: CASSCF and ICE-SCF optimized geometries for methylene and ozone (cc-pVDZ basis set, default
parameters).
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7.24.11 The entire input block explained

For completeness, the parameters that can be specified in the input block are summarized below:

%ice
nel 8 # number of active electrons
norb 23 # number of active orbitals
nroots 1 # number of roots
mult 1 # requested multiplicity
irrep 0 # requested irrep (buggy :-()
tgen 1e-04 # generator threshold
tvar -1e-7 # negative -> 1e-7*tgen
etol 1e-06 # convergence tolerance

icetype CFGs # The configuration based ICE-CI
CSFs # The CSF based ICE-CI
DETs # The CSF determinant based ICE-CI

# algorithm details
useMP2nat false # use MP2 natural orbitals
useIVOs false # use improved virtual orbitals
useQROs false # For UHF: use quasi-restricted MOs?
integrals exact # exact or ri transformation
CIMaxIter 64 # max. number of CI iterations in the Davidson procedure
CINGuessMat 512 # size of the CI guess matrix in the Davidson procedure
CIMaxDim 10 # max. size of expansion space in the Davidson procedure
CIMode 3 # default=accelerated CI, other settings not recommended
CSFCIwithRI 1 # 1=with RI, 0=without RI, use withour RI when norb >> nel (e.g. (30e,

→˓ 120o))
CIBufferLength 10240 # Size (in elements) of the buffer list. Should be increased␣

→˓according to
# the size of RI space.

CIPSIOrbSweepWindow 1 # Use in case of large size of the S+D list and small available␣
→˓memory.

# MOs can be divided into chunks (e.g. MOblock = MO/
→˓CIPSIOrbSweepWindow)

# startup configurations(optional)
refs { 2 2 2 2 0 }

{ 2 2 2 0 2 }
end

end

# natural orbitals with the ICE ansatz
NatOrbs 1 # generates the .cipsi.nat GWB file containing the natural orbitals

7.24.12 A Technical Note: orcacclib

We should finally mention a technical aspect. The CI procedure in ICE-CI is based around the so-called one particle
coupling coefficients

𝐴𝐼𝐽𝑝𝑞 =
⟨︀
𝐼|𝐸𝑞𝑝 |𝐽

⟩︀
where 𝐴𝐼𝐽𝑝𝑞 is a coupling coefficient, 𝐼 and 𝐽 are configuration state functions (CSFs) and 𝐸𝑞𝑝 is the spin-free
excitation operator that promotes an electron from orbital 𝑝 to orbital 𝑞. The values of these coupling coefficients
only depend on the logical relationship between the CSFs 𝐼 and 𝐽 but not on the absolute values of 𝐼 , 𝐽 , 𝑝, 𝑞. In
fact, they only depend on the number of unpaired electrons in 𝐼 and the total spin 𝑆 that both CSFs refer to. Hence,
prototype coefficients can be pre-tabulated. This is normally done in a CI run at the beginning of the run. However,
in ICE-CI it may have to be repeated several dozen times and for large numbers of open shells (say 14), the process
is time and memory consuming.
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In order to ease the computational burden, we have provided a small utility program that tabulates the coupling
coefficients for a given total spin 𝑆 (rather the multiplicity 𝑀 = 2𝑆 + 1) and maximum number of open shells.
This program is called orcacclib. It is called like:

orca_cclib Mult MaxNOpen

or - if you want to speed up the generation of the cclib:

mpirun -np 4 /full_path/orca_cclib_mpi Mult MaxNOpen cclib # using 4 processes

It will produce a series of files orcacc.el.mult.nopen (electron density coupling coefficients) and or-
cacc.sp.mult.nopen (spin-density coupling coefficients) in the current directory. These files are binary files. They
can be copied to an arbitrary directory. You instruct the program to read these coefficients (rather than to recalculate
them all the time) by setting the path to this directory:

# My Job
! def2-SVP Auto-ICE
%cclib "/user/me/orca/cclib/orcacc"

The remaining part of the filename will be automatically added by the program. This option can save humongous
amounts of time. The coupling coefficient library needs to be made for the desired multiplicities only once. The
practical limit will be 14-16 open shells. If you are running the calculation on a cluster using some submit script,
you have to ensure that the provided cclib path is accessible from the compute node.

7.25 CI methods using generated code

The AUTOCI module is a replacement of the orca_mdci for cases, where manual implementation of the method
would be tedious or practically impossible. The module works with all types of reference wave function available in
ORCA, i.e., RHF, ROHF, UHF and CASSCF and offers CI and related methods. All the methods are implemented
in canonical orbital basis and storing all integrals on disk.

7.25.1 Introduction

All the theories are obtained by the means of automated programming within the ORCA-AGE (Automated Genera-
tor Environment for ORCA).[474, 500] The CI module reads in the SCF wavefunction and optimizes the coefficient
of the CI expansion. Conceptually, the module is similar to orca_mdci, therefore the input and output do have a
lot in common.

7.25.2 Input

All parameters applicable to the AUTOCI module are shown below.

%autoci
# Algorithm selection
citype # Type of the CI expansion to be applied (one of following)

CID # Configuration Interaction with double substitutions
CISD # Configuration Interaction with singles and doubles
CISDT # Configuration Interaction with singles, doubles and triples
CCD # Coupled Cluster with double substitutions
CCSD # Coupled Cluster with single and double substitutions
CCSDT # Coupled Cluster with single, double and triple substitutions
CEPA(0) # Linearized CCSD
QCISD # Quadratic CISD
CC2 # Approximate CCSD
CC3 # Approximate CCSDT
CCSD[T] # CCSD with perturbative [T] correction

(continues on next page)
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CCSD(T) # CCSD with perturbative (T) correction
CCSDT-1 # Approximate CCSDT, CCSDT-1
CCSDT-2 # Approximate CCSDT, CCSDT-2
CCSDT-3 # Approximate CCSDT, CCSDT-3
CCSDT-4 # Approximate CCSDT, CCSDT-4
FIC-MRCI # Fully internally contracted MRCI
FIC-MRCEPA(0) # Fully internally contracted CEPA(0)
FIC-MRACPF # Fully internally contracted ACPF
FIC-MRAQCC # Fully internally contracted AQCC
FIC-DDCI3 # FIC-MRCI without the IJAB excitation
FIC-MRCC # Fully internally contracted MRCC
MP2 # Second order Moeller-Plesset perturbation theory
MP3 # Third order Moeller-Plesset perturbation theory
MP4(SDQ) # MP4 without triple substitutions
MP4 # Fourth order Moeller-Plesset perturbation theory
MP5 # Fifth order Moeller-Plesset perturbation theory

# converger details
stol 1e-06 # residue convergence tolerance
maxiter 50 # maximum number of iterations
maxdiis 5 # depth of the DIIS memory
diisstartiter 2 # Apply DIIS starting at iteration 1
ExcludeHigherExcDIIS false # exclude triples and higher excitations from DIIS procedure

# CAS settings similar to the CASSCF input
nel 6 # number of active electrons (for CAS)
norb 7 # number of active orbitals (for CAS)
mult 1 # requested multiplicity block
nroots 1 # number of roots for mult block
irrep 0 # requested irrep for mult block
nthresh 1e-6 # Threshold for lin. dependencies in the IC-CSFs basis
D3TPre 1e-14 # Density truncation in D3
D4TPre 1e-14 # Density truncation in D4

# Algorithm details
printlevel 3 # Amount of printing
trafotype 0 # Type of integral transformation

0 # Full canonical
1 # Full using RI (RI basis needed)

keepints # Keep the transformed integrals on disk
useoldints # Use the transformed integrals found on disk
RunROHFasUHF # Invokes AUTOCI UHF modules with orbitals from ROHF calculation

# Property calculations
density # type of density requested

none # No density calculation
linearized # Linear part of the density
unrelaxed # Unrelaxed 1-body density matrix
relaxed # Relaxed 1-body density matrix

end

N.B. For a ROHF reference, only CISD calculations can be performed in the current version. However, it is possible
to run UHF calculations with an ROHF reference by setting the RunROHFasUHF flag to true. Note that this only
makes sense when the reference is indeed ROHF, e.g. (calculating the isotropic part of the HFC at CCSD level,
running AutoCI UHF CCSD module, with orbitals obtained from the ROHF SCF calculation):

! ROHF def2-svp tightscf pmodel AUTOCI-CCSD

%autoci

(continues on next page)
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RunROHFasUHF true
end

* xyz 0 2
Cu 0.0 0.0 0.0
*

%eprnmr nuclei = all Cu {aiso} end

If one wishes to experiment with the module itself and the reference wavefunction stays constant, it is possible to
store the transformed MO integrals on disk (keepints) and reuse them (useoldints). The program checks only
whether the dimension of the integrals on disk match the problem actually solved, i.e. the user is responsible for
valid data.

7.25.3 Available Properties

The following single-reference methods are currently implemented in the AUTOCI.

Reference Correlation Energy Gradient
RHF CID ✓ ✓
RHF CISD ✓ ✓
RHF CISDT ✓
RHF CCD ✓ ✓
RHF CCSD ✓ ✓
RHF CCSD[T] ✓ ✓
RHF CCSD(T) ✓ ✓
RHF CCSDT ✓
RHF CEPA(0) ✓ ✓
RHF CC2 ✓
RHF QCISD ✓
RHF MP2 ✓ ✓
RHF MP3 ✓ ✓
RHF MP4 ✓ ✓
RHF MP4(SDQ) ✓ ✓
UHF CID ✓ ✓
UHF CISD ✓ ✓
UHF CISDT ✓ ✓
UHF CCD ✓ ✓
UHF CCSD ✓ ✓
UHF CCSD[T] ✓ ✓
UHF CCSD(T) ✓ ✓
UHF CCSDT ✓ ✓
UHF CCSDT-1 ✓
UHF CCSDT-2 ✓
UHF CCSDT-3 ✓
UHF CCSDT-4 ✓
UHF CEPA(0) ✓ ✓
UHF CC2 ✓
UHF CC3 ✓
UHF QCISD ✓
UHF MP2 ✓ ✓
UHF MP3 ✓ ✓
UHF MP4 ✓ ✓
UHF MP4(SDQ) ✓ ✓
UHF MP5 ✓ ✓

continues on next page
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Table 7.21 – continued from previous page
Reference Correlation Energy Gradient
ROHF CISD ✓

Any AUTOCI method can be called from the simple keyword by prepending AUTOCI- to the correlation method,
for instance

! AUTOCI-CCSD

7.25.4 Analytic Nuclear Gradients with AUTOCI

Obtaining accurate geometries is crucial to computing molecular properties accurately. In order to perform geom-
etry optimisations, the nuclear gradient is necessary and while this can easily be obtained using numerical finite
difference methods, it is also quite costly. More importantly, perhaps, is the fact that numeric derivatives tend
to become unstable. Therefore, being able to evaluate analytic gradients is of vital importance. Using the AGE,
a general framework has been built that supports arbitrary-order CI, CC and MPn nuclear gradients (and other
derivatives).[500]

An example is shown below how to optimise a geometry using AUTOCI’s gradients at the CCSD level of theory

! RHF cc-pVTZ AUTOCI-CCSD VerytightSCF Opt

%maxcore 10000

*xyz 0 1
...
*

The analytic gradients can even be used to perform semi-numerical frequency calculations

! AUTOCI-CCSD NumFreq

Besides nuclear gradients, all other first-order properties available in ORCA are available for the respective meth-
ods, such as dipole/quadrupole moments, hyperfine couplings or quadrupole splittings. As discussed above,
(un)relaxed densities can be requested via

%autoci
density relaxed

end

For geometry optimisations, both the unrelaxed and relaxed densities are computed automatically and do not need
to be requested explicitly.

7.25.5 AUTOCI Response Properties via Analytic Derivatives

For single-reference methods (currently limited to CCSD and MP2), some response properties could be calculated
via taking the analytic derivative of the wavefunctions computed by AUTOCI.

The input parameters for the wavefunctions are controlled by the %autoci block, while the property-related pa-
rameters are controlled by respective property blocks, like elprop and eprnmr. Some useful options are shown
below.

%autoci
citype # only CCSD and MP2 available

CCSD
MP2

STol 1e-06 # residue convergence tolerance

(continues on next page)
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MaxIter 50 # maximum number of iterations
MaxDIIS 5 # depth of the DIIS memory
density # need at least unrelaxed density (see details below)

unrelaxed
relaxed

end

%elprop
polar true # polarizability via analytic derivative

end

%eprnmr
NMRShielding 2 # NMR shielding for all nuclei, equivalent to the 'NMR' simple input

end

N.B. For the response property calculations, the electron density and electron response density needs to be calcu-
lated. Currently for the analytic polarizability at CCSD level, only the unrelaxed density version is implemented:

! UHF AUTOCI-CCSD Def2-SVP NoFrozenCore

%elprop
polar true

end

* xyz 0 1
O 0.0000000000 0.0000000000 -0.1190150726
H 0.7685504811 0.0000000000 0.4760602904
H -0.7685504811 0.0000000000 0.4760602904
*

For MP2, both the polarizability and NMR shielding needs the relaxed densities:

! UHF AUTOCI-MP2 Def2-SVP NoFrozenCore

%elprop
polar true

end

%autoci
density relaxed

end

* xyz 0 1
O 0.0000000000 0.0000000000 -0.1190150726
H 0.7685504811 0.0000000000 0.4760602904
H -0.7685504811 0.0000000000 0.4760602904
*

! UHF AUTOCI-MP2 Def2-SVP NMR NoFrozenCore

%autoci
density relaxed

end

* xyz 0 1
O 0.0000000000 0.0000000000 -0.1190150726
H 0.7685504811 0.0000000000 0.4760602904
H -0.7685504811 0.0000000000 0.4760602904
*

Please also note that for AUTOCI NMR calculations, the GIAOs (gauge-including atomic orbitals) are necessary
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(turned on by default). Also, there is no fronzen core options implemented yet (NoFrozenCore keyword is needed).

7.25.6 Fully Internally Contracted MRCI

Starting point for any multireference approach is a reference wavefunction that consists of multiple determinants
or configurations state functions (CSFs). In many instances this is the complete active space SCF (CASSCF)
wavefunction. In the uncontracted MRCI approach, as implemented in the orca_mrci module, the wavefunction
is expanded in terms of excited CSFs that are generated by considering excitations with respect to all reference
CSFs. The methodology scales with the number of reference CSFs and hence is restricted to small reference
spaces. Moreover, the configuration driven algorithm used in orca_mrci keeps all integrals in memory, which
further limits the overall size of the molecule.

Internal contraction as proposed by Meyer and Siegbahn avoids these bottlenecks [585, 797]. Here, excited CSFs
are generated by applying the excitation operator to the reference wavefunction as whole. The fully internally
contracted MRCI presented here (FIC-MRCI) uses the same internal contraction scheme as the FIC-NEVPT2 (aka
PC-NEVPT2). The entire methodology as well as a comparison with the conventional uncontracted MRCI is
reported in our article [806]. The CEPA0, ACPF and AQCC variants are straight forward adoptions [742]. The
residue of the FIC-MRCI ansatz

𝑅𝐾 = ⟨Φ𝑝𝑟𝑞𝑠 |�̂� − 𝐸CAS − 𝜆𝐸𝑐|ΨFIC⟩ , (7.188)

is modified by the factor

𝜆 =

⎧⎪⎪⎨⎪⎪⎩
1 MRCI
0 CEPA0
2
𝑁𝑒

ACPF
1−(𝑁𝑒−3)(𝑁𝑒−2)

𝑁𝑒·(𝑁𝑒−1) AQCC

Here, 𝐸𝑐 is the correlation energy and Φ𝑝𝑟𝑞𝑠 denote the internally contracted CSF that arise from the action of the
spin-traced excitation operators on the CAS-CI reference wave function

Φ𝑝𝑟𝑞𝑠 = 𝐸𝑝𝑞𝐸
𝑟
𝑠 |ΨCAS⟩ .

In case of ACPF and AQCC the 𝜆 factor explicitly depends on the number of correlated electrons, 𝑁𝑒.

The general input structure is like that of the CASSCF module, e.g., the following example input reads an arbitrary
set of orbitals and starts the FIC-MRCI calculation. The internal contracted formalism requires CAS-CI reduced
densities up to fourth order, which can be expensive to construct. By default, the density construction is speed up
using the prescreening (PS) approximation reported in Section N-Electron Valence State Pertubation Theory.

!def2-tzvp moread allowrhf noiter nofrozencore
%moinp "start.gbw" # could be from CASSCF

%autoci
citype FIC-MRCI # Fully internally contracted MRCI (singles, doubles)

FIC-MRCEPA(0) # CEPA0 version of FIC-MRCI
FIC-MRACPF # ACPF version of FIC-MRCI
FIC-MRAQCC # AQCC version of FIC-MRCI
FIC-DDCI3 # FIC-MRCI without the IJAB excitation

# CAS-CI reference wavefunction
nel 2
norb 2
mult 1,3
nroots 3,1

nthresh 1e-6 # removal of linear dependencies in the IC-CSFs
D3TPre 1e-14 # default density truncation of the 3-RDM
D4TPre 1e-14 # default density truncation of the 4-RDM

(continues on next page)
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# Davidson correction for the FIC-MRCI
DavidsonOpt 0 # none (default)

1 # Davidson correction
end

Currently, the program is capable of computing total energies and vertical excitation energies. More features will
be available with future releases.

7.25.7 Fully Internally Contracted MRCC

Several approaches have been taken towards extending CC theory to work with genuinely multiconfigurational
reference wave functions [538], yet none of these approaches has found widespread adoption. As of 2011, the
internally contracted MRCC theory has had a revival, with a rigorous theoretical investigation of several approxi-
mations that also proved its orbital invariance [249] and a first report of a polynomial-scaling code obtained through
automatic equation generation [357].

Our implementation in ORCA is akin to the previously published formulations in Refs. [249, 357], although ev-
erything is formulated rigorously in terms of the spin-free excitation operators �̂�𝑝𝑞 = �̂�𝑝𝛼�̂�𝑞𝛼 + �̂�𝑝𝛽 �̂�𝑞𝛽 , using an
improved version of the ORCA-AGE code generator.[500] To begin with, the ansatz for the wave function is

|Ψ⟩ = e𝑇 |0⟩ , (7.189)

where |0⟩ denotes a zeroth order CASSCF reference wave function and the cluster operator can be written as
(Einstein’s summation convention implied)

𝑇 =
1

2
𝑡𝑖𝑗𝑎𝑏�̂�

𝑎
𝑖 �̂�

𝑏
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Note that we do not use normal order in the cluster operator.

Inserting the ansatz from Eq. (7.189) into the Schrödinger equation and pre-multiplying with the inverse exponen-
tial, we obtain the similarity transformed Hamiltonian and the energy expression,

�̄�|0⟩ = e−𝑇 �̂�e𝑇 |0⟩ = 𝐸|0⟩ .

In our code, the similarity-transformed Hamiltonian is truncated after the quadratic terms since that approximation
has been found to only have minor impact on the accuracy of the method [249],

�̄� ≈ �̂� + [�̂�, 𝑇 ] +
1

2
[[�̂�, 𝑇 ], 𝑇 ] .

The residual conditions are subsequently obtained by projecting with contravariant excited functions ⟨Φ̃𝑃 | onto the
Schrödinger equation,

𝑟𝑃 = ⟨Φ̃𝑃 |�̄�|0⟩ .

For a definition of the contravariant projection functions, we refer to Ref. [806] since this fic-MRCC implementation
uses the same contravariant functions as the published fic-MRCI implementation. Despite using contravariant
projection functions, this is not sufficient to remove all linear dependencies from the set of projection functions
{Φ̃𝑃 }, i.e. the metric matrix

𝑆𝑃𝑄 = ⟨Φ̃𝑃 |Φ̃𝑄⟩ ≠ 𝛿𝑃𝑄

has off-diagonal elements within excitation classes and between classes with the same number of inactive and
virtual indices (ITAU and ITUA). Hence, the set of projection functions needs to be orthonormalized, which is
achieved with Löwdin’s canonic orthogonalization in the AUTOCI module.1

1 This is similar to scheme A from Ref. [357].
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Input Example

The fic-MRCC module can be started by specifying the CIType keyword in the %autoci block or by adding
fic-MRCC to the simple input line of an ORCA input file. The following example computes the singlet ground
state energy of four hydrogen atoms arranged as a square with a side length of 2𝑎0, which is commonly known as
the H4 model [418].

! cc-pVTZ Bohrs # it is possible to add the `fic-MRCC' keyword here
# and omit the %autoci block below

%maxcore 10000

%casscf
nel 2
norb 2
mult 1
nroots 1

end

%autoci # CAS settings are automatically copied from the CASSCF block!
citype fic-mrcc

end

* int 0 1
H 0 0 0 0.0 0.0 0.0
H 1 0 0 2.0 0.0 0.0
H 2 1 0 2.0 90.0 0.0
H 1 2 3 2.0 90.0 0.0

*

In this example, ORCA will first run a state-specific CASSCF calculation, and then immediately continue with the
fic-MRCC calculation on top of the CASSCF solution from the first step. It is, however, not required to always run a
CASSCF calculation before the autoci module. Any ORCA gbw/mp2nat/... file is accepted through %moinp,
although that route requires the user to specify the active space in the autoci block. autoci will then compute a
CASCI solution with the provided input orbitals and use that information to drive the correlated calculations.

Please be aware that fic-MRCC is a very extensive theory, which leads to long run times. The computational
effort depends mainly on the number of orbitals, the number of total electrons and the size of the active space.
On modestly modern hardware, calculations of ∼ 300 orbitals with a CAS(2,2) should be readily achievable. For
larger active spaces, such as a CAS(6,6), calculations with a total of∼ 200 orbitals will also complete within a day.

7.26 Geometry Optimization

ORCA is able to calculate equilibrium structures (minima and transition states) using the quasi Newton update
procedure with the well known BFGS update [67, 241, 399, 763, 764, 765], the Powell or the Bofill update. The
optimization can be carried out in either redundant internal (recommended in most cases) or Cartesian displacement
coordinates. As initial Hessian the user can choose between a diagonal initial Hessian, several model Hessians
(Swart, Lindh, Almloef, Schlegel), an exact Hessian and a partially exact Hessian (both recommended for transition
state optimization) for both coordinate types. In redundant internal coordinates several options for the type of step
to be taken exist. The user can define constraints via two different paths. He can either define them directly (as
bond length, angle, dihedral or Cartesian constraints) or he can define several fragments and constrain the fragments
internally and with respect to other fragments. The ORCA optimizer can be used as an external optimizer, i.e.the
energy and gradient calculations done by ORCA.
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7.26.1 Input Options and General Considerations

The use of the geometry optimization module is relatively straightforward.1

%method RunTyp Opt # use geometry optimization.
#(equivalent is RunTyp=Geom)

end

# or simply "! Opt" in the keyword line

# details of the optimization are controlled here
%geom

MaxIter 50 # max. number of geometry iterations
# (default is 3N (N = number of atoms), at least 50 )

# coordinate type control
coordsys redundant # redundant internal coords (2022)

cartesian # Cartesian coordinates
# fallback option to Cartesian step if internals fail
cartfallback true
# transition state (TS) optimization
TS_search EF # Switch on TS search, EF means

# "eigenvector following"
# alternatively use "! OptTS"

TS_Mode {M 0} end # Choose the mode to follow uphill in the
# TS optimization. {M X}: eigenvector of
# the Hessian with X. lowest eigenvalue
# (start counting at zero) (default: X=0)

# Instead of a mode choose an internal coordinate strongly
# involved in the eigenmode followed uphill
TS_Mode {B 0 1} end # bond between atoms 0 and 1 or
TS_Mode {A 2 1 0} end # angle between atoms 2, 1 and 0 or
TS_Mode {D 3 2 1 0} end # dihedral of atoms 3, 2, 1 and 0
# add or remove internal coordinates from the automatically
# generated set of redundant internal coords
modify_internal

{ B 10 0 A } # add a bond between atoms 0 and 10
{ A 8 9 10 R } # remove the angle defined

# by atoms 8, 9 and 10
{ D 7 8 9 10 R } # remove the dihedral angle defined
end # by atoms 7, 8, 9 and 10

# constrain internal coordinates:
Constraints

{ B N1 N2 value C } # the bond between N1 and N2
{ A N1 N2 N1 value C } # the angle defined by N1, N2

# and N3
{ D N1 N2 N3 N4 value C } # the dihedral defined by N1,

# N2, N3 and N4
{ C N1 C } # the cartesian position of N1
{ B N1 * C} # all bonds involving N1
{ B * * C} # all bonds
{ A * N2 * C } # all angles with N2 as central atom
{ A * * * C } # all angles
{ D * N2 N3 * C } # all dihedrals with N2 and N3 as

# central atoms
{ D * * * * C } # all dihedrals

end
# scan an internal coordinate:
Scan B N1 N2 = value1, value2, N end

(continues on next page)

1 But that doesn’t mean that geometry optimization itself is straightforward! Sometimes, even when it is not expected the convergence can
be pretty bad and it may take a better starting structure to come to a stationary point. In particular floppy structures with many possible rotations
around single bonds and soft dihedral angle modes are tricky. It may sometimes be advantageous to compute a Hessian matrix at a “cheap”
level of theory and then do the optimization in Cartesian coordinates starting from the calculated Hessian.
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# perform constrained optimizations with varying N1-N2-
# distance from value1 up to value2 in N steps;
# works as well for angles (use A N1 N2 N3) and for
# dihedrals (use D N1 N2 N3 N4)

Scan B N1 N2 [value1 value2 value3 ... valueN] end
# perform constrained optimizations with N1-N2-distances
# as given in the list;
# works as well for angles (use A N1 N2 N3) and for
# dihedrals (use D N1 N2 N3 N4)

# perform a simultaneous multidimensional scan
# possible for up to 3 different scan parameters. They each must
# have an identical number of scan steps
simul_Scan true # default false
fullScan true # if !ScanTS is requested, fullScan assures

# that the relaxed surface scan is fully
# carried out before the TS optimization is
# started (Default is false)

# fragment optimization:
# 1. all atoms have to belong to a fragment
# 2. you have to connect the fragments
ConnectFragments

{1 2 C} # constrain the internal coordinates
# connecting fragments 1 and 2

{1 2 C N1 N2}# constrain the internal coordinates
# connecting fragments 1 and 2, the
# fragments are connected via atoms
# N1 and N2

{1 3 O} # optimize the internal coordinates
# connecting fragments 1 and 3

{1 3 O N1 N2}# optimize the internal coordinates
# connecting fragments 1 and 3, the
# fragments are connected via atoms
# N1 and N2

end
# 3. you can constrain the fragment internally
ConstrainFragments # constrain all internal coordinates

{ 1 } # containing only atoms of fragment 1
end
# optimize hydrogens
optimizeHydrogens true

# in the context of a normal optimization all internal
# coordinates not involving any hydrogens are constrained
# in the context of a fragment optimization all internal
# coordinates involving hydrogens are optimized (also in a
# constrained fragment)

# freeze the hydrogen positions with respect to the
# heteroatoms
freezeHydrogens true
# invert the defined constraints, i.e. optimize the
# constraints and constrain the remaining coordinates
# this only works for the redundant internal coordinates
# Cartesian coordinates are not affected by invertConstraints
invertConstraints true # step type control
Step qn # quasi-Newton step

rfo # Rational function step (Default for !Opt)
prfo # partitioned RFO step (Default for !OptTS)

# Step size control
MaxStep 0.3 # maximum step length in internal coordi-

# nates. Default is 0.3 au
Trust -0.3 # Initial trust radius. Default is -0.3 au

# Trust <0 - use fixed trust radius

(continues on next page)
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# of size -trust. I.e. -0.3 means fix
# the trust radius at 0.3
# Trust >0 - use trust radius update. I.e. 0.3
# means start with trust radius 0.3 and update
# the trust radius after each optimization step

# Convergence tolerances. Note that the calculation is
# only converged if all criteria are fullfilled. All
# values given are default values.
TolE 5e-6 # Energy change (a.u.)
TolRMSG 1e-4 # RMS gradient (a.u.)
TolMaxG 3e-4 # Max. element of gradient (a.u.)
TolRMSD 2e-3 # RMS displacement (a.u.)
TolMaxD 4e-3 # Max. displacement (a.u.)
# keyword for frequently used sets of convergence thresholds
Convergence normal # Default

loose
tight

ProjectTR false # project translation and rotation
# default is false. MUST be false for
# redundant internals

end

Keywords for the control of the Hessian (especially important for the TS optimization):

# initial Hessian control
inhess unit # unit matrix

Read # Hessian in a .hess file (e.g. from
# a previous NumFreq run), this command
# comes with the following:

InHessName "filename.hess" # filename of
# Hessian input file
# a previous .opt file
# or a previous .carthess file

# these only for redundants
Lindh # Lindh's model Hessian
Almloef # Almloef's model Hessian
Schlegel # Schlegel's model Hessian
Swart # Swart and Bickelhaupt`s model Hessian
XTB0 # GFN0-xTB Hessian
XTB1 # GFN1-xTB Hessian
XTB2 # GFN2-xTB Hessian
GFNFF # GFN-FF Hessian

# additional Hessian control for TS optimization
Calc_Hess true # calculate the Hessian numerically at the beginning
Recalc_Hess 5 # calculate the Hessian at the beginning

# and recalculate it after 5,10,.. cycles
Hybrid_Hess {0 1 5 6} end # calculates a Hybrid Hessian

# exact calculation for
# atoms 0, 1, 5 and 6; works also
# with Calc_Hess and Recalc_Hess

NumHess true # requests use of numerical Hessian
# modification of the internal Hessian
Hess_Internal

{A 3 2 1 D 2.0} # define a diagonal Hessian value of
# 2 Eh/Bohr2 for the angle between
# atoms 3 2 1. This can also be done for
# bonds, dihedrals and Cartesian
# coordinates.) The Hessian values of
# multiple coordinates can be modified

reset 5 # reset the modified internal Hessian values
# after 5 cycles

(continues on next page)
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# The following is only recommended
# after a relaxed surface scan
# in this example of the scan coordinate B 1 0;
# "basename.004.xyz" contains the optimized structure
# of the scan step with highest energy
{B 1 0 C}
XYZ1 "scanName.003.xyz" # the xyz-files of the structures
XYZ2 "ScanName.005.xyz" # next to the highest energy point
GBW1 "ScanName.003.gbw" # the gbw-files of the structures
GBW2 "ScanName.005.xyz" # next to the highest energy

# the gbw-files are optional
end
# Hessian update procedure
Update Powell

Bofill # default for TS optimization
BFGS # default for geometry optimization

# Hessian modification (only for P-RFO step)
HESS_Modification Shift_Diag # shift the diagonal elements

# (default)
EV_Reverse # reverse the

# diagonal elements
# Minimal value of Hessian eigenvalues (only P-RFO step)
HESS_MinEV 0.0001 # if an absolute Hessian eigenvalue

# is smaller than this value, it is
# set to HESS_MinEV

# Rebuilding the model Hessian after a number of cycles can
# accelerate the convergene of the optimization
NResetHess 20 # Set the number of geometry steps after which

# a new model Hessian is built (only with BFGS
# update)

NStepsInResetHess 5 # since previous steps and gradients are
# available, it is possible to include
# information about the PES in the
# newly built Hessian (via a BFGS
# update). This number should be
# smaller than NResetHess

end

As for parameter scan runs ORCA has some special options that may help to speed up the optimization:

%geom UseSOSCF false # switches the converger to SOSCF
# after the first point. SOSCF may
# converge better than DIIS if the
# starting orbitals are good.
# default = false

ReducePrint true # reduce printout after the first
# point default=true

# the initial guess can be changed after the first
# point. The default is MORead. The MOs of the pre-
# vious point will in many cases be a very good guess
# for the next point. In some cases however, you may
# want to be more conservative and use a general guess.
OptGuess = OneElec # the one electron matrix

= Hueckel # the extended Hueckel guess
= PAtom; # the PAtom guess
= Pmodel # the PModel guess
= MORead # MOs of the prev. point (default)

end

718 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

Redundant Internal Coordinates

There are three types of internal coordinates: redundant internals, old redundant internals (redundant_old) and
a new set of redundant internals (redundant_new, with improved internals for nonbonded systems). All three
sets work with the same “primitive” space of internal coordinates (stretches, bends, dihedral angles and improper
torsions). Only the redundant internals works with one more type of bends in cases where a normal bend would
have been approximately 180∘. In redundant internal coordinates the full primitive set is kept and the Hessian and
gradient are transformed into this – potentially large – space. A geometry optimization step requires, depending on
the method used for the geometry update, perhaps a diagonalization or inversion of the Hessian of dimension equal
to the number of variables in the optimization. In redundant internal coordinates this space may be 2-4 times larger
than the nonredundant subspace which is of dimension 3𝑁atoms − 6(5). Since the diagonalization or inversion
scales cubically the computational overhead over nonredundant spaces may easily reach a factor of 8–64. Thus, in
redundant internal coordinates there are many unnecessary steps which may take some real time if the number of
primitive internals is greater than 2000 or so (which is not so unusual). The timing problem may become acute in
semiempirical calculations where the energy and gradient evaluations are cheap.

We briefly outline the theoretical background which is not difficult to understand:

Suppose, we have a set of 𝑛𝐼 (redundant) primitive internal coordinates q constructed by some recipe and a set of
𝑛𝐶 = 3𝑁atoms Cartesian coordinates x. The B-matrix is defined as:

𝐵𝑖𝑗 =
𝜕𝑞𝑖
𝜕𝑥𝑗

(7.190)

This matrix is rectangular. In order to compute the internal gradient one needs to compute the “generalized inverse”
ofB. However, since the set of primitive internals is redundant the matrix is rank-deficient and one has to be careful.
In pratice one first computes the 𝑛𝐼 × 𝑛𝐼 matrix G:

G = BB𝑇 (7.191)

The generalized inverse of G is denoted G− and is defined in terms of the eigenvalues and eigenvectors of G:

G− =

(︂
U
R

)︂𝑇 (︂
Λ−1 0
0 0

)︂(︂
U
R

)︂
(7.192)

Here U are the eigenvectors belonging to the nonzero eigenvalues Λ which span the nonredundant space and R
are the eigenvectors of the redundant subspace of the primitive internal space. If the set of primitive internals is
carefully chosen, then there are exactly 3𝑁atoms− 6(5) nonzero eigenvalues of G. Using this matrix, the gradient
in internal coordinates can be readily computed from the (known) Cartesian gradient:

g𝑞 = G−Bg𝑥 (7.193)

The initial Hessian is formed directly in the redundant internal space and then itself or its inverse is updated during
the geometry optimization.

Before generating the Newton step we have to ensure that the displacements take place only in the nonredundant
part of the internal coordinate space. For this purpose a projector 𝑃 ′:

P′ = GG− = G−G (7.194)

is applied on both the gradient and the Hessian:

g̃q = P′gq (7.195)

H̃q = P′HqP
′ + 𝛼 (1−P′) (7.196)

The second term for �̃� sets the matrix elements of the redundant part of the internal coordinate space to very large
values (𝛼 = 1000).
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Coordinate steps

A Quasi-Newton (QN) step is the simplest choice to update the coordinates and is given by:

Δq = −H̃−1q g̃q (7.197)

A more sophisticated step is the rational function optimization step which proceeds by diagonalizing the augmented
Hessian: (︂

H𝑞 g𝑞
g𝑞 0

)︂(︂
∆q
1

)︂
= 𝑣

(︂
∆q
1

)︂
(7.198)

The lowest eigenvalue 𝜈0 approaches zero as the equilibrium geometry is approached and the nice side effect of
the optimization is a step size control. Towards convergence, the RFO step is approaching the quasi-Newton step
and before it leads to a damped step is taken. In any case, each individual element of ∆q is restricted to magnitude
MaxStep and the total length of the step is restricted to Trust. In the RFO case, this is achieved by minimizing
the predicted energy on the hypersphere of radius Trust which also modifies the direction of the step while in the
quasi-Newton step, the step vector is simply scaled down.

Thus, the new geometry is given by:

qnew = qold +∆q (7.199)

However, which Cartesian coordinates belong to the new redundant internal set? This is a somewhat complicated
problem since the relation between internals and Cartesians is very nonlinear and the step in internal coordinates
is not infinitesimal. Thus, an iterative procedure is taken to update the Cartesian coordinates. First of all consider
the first (linear) step:

∆x = A∆q (7.200)

with A = B𝑇G−. With the new Cartesian coordinates x𝑘+1 = x𝑘 + ∆x a trial set of internals q𝑘+1 can be
computed. This new set should ideally coincide with qnew but in fact it usually will not. Thus, one can refine the
Cartesian step by forming

∆∆q = qnew − q𝑘+1 (7.201)

which should approach zero. This leads to a new set of Cartesians ∆x′ = A∆∆q which in turn leads to a new
set of internals and the procedure is iterated until the Cartesians do not change and the output internals equal q𝑛𝑒𝑤
within a given tolerance (10−7 RMS deviation in both quantities is imposed in ORCA).

Constrained Optimization

Constraints on the redundant internal coordinates can be imposed by modifying the above projector 𝑃 ′ with a
projector for the constraints 𝐶:

P = P′ −P′C (CPC)
−1

CP′ (7.202)

𝐶 is a diagonal matrix with 1’s for the constraints and 0’s elsewhere. The gradient and the Hessian are projected
with the modified projector:

𝑔𝑞 = 𝑃𝑔𝑞 (7.203)

�̃�𝑞 = 𝑃𝐻𝑞𝑃 + 𝛼 (1− 𝑃 ) (7.204)
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Constrained Fragments Optimization

The constrained fragments option was implemented in order to provide a convenient way to handle constraints for
systems consisting of several molecules. The difference to a common optimization lies in the coordinate setup. In
a common coordinate setup the internal coordinates are built up as described in the following:

In a first step, bonds are constructed between atom pairs which fulfill certain (atom type specific) distance criteria. If
there are fragments in the system, which are not connected to each other (this is the case when there are two or more
separate molecules), an additional bond is assigned to the nearest atom pair between the nonbonded fragments. All
other internal coordinates are constructed on the basis of this set of bonds. Here, in a second step, bond angles are
constructed between the atoms of directly neighboured bonds. If such an angle reaches more than 175∘, a special
type of linear angles is constructed. In a third step, dihedral angles (and improper torsions) are constructed between
the atoms of directly neighbouring angles.

If the constrained fragments option is switched on, the set of bonds is constructed in a different way. The user
defines a number of fragments. For each fragment a full set of bonds (not seeing the atoms of the other fragments)
is constructed as described above. When using this option, the user also has to define which fragments are to be
connected. The connection between these fragments can either be user-defined or automatically chosen. If the user
defines the connecting atoms N1 and N2, then the interfragmental bond is the one between N1 and N2. If the user
does not define the interfragmental bond, it is constructed between the atom pair with nearest distance between
the two fragments. Then the angles and dihedrals are constructed upon this (different) set of bonds in the already
described fashion.

Now let us regard the definition of the fragment constraints: A fragment is constrained internally by constraining
all internal coordinates that contain only atoms of the respective fragment. The connection between two fragments
A and B is constrained by constraining specific internal coordinates that contain atoms of both fragments. For
bonds, one atom has to belong to fragment A and the other atom has to belong to fragment B. Regarding angles,
two atoms have to belong to fragment A and one to fragment B and vice versa. With respect to dihedrals, only
those are constrained where two atoms belong to fragment A and the other two belong to fragment B.

7.26.2 Transition State Optimization

As transition state finder we implemented the well-established eigenvector following algorithm using a P-RFO step
as implemented by Baker [67]. This algorithm is a quasi-Newton like algorithm.

The Taylor series of the energy, truncated after the quadratic term, is:

𝐸 = 𝐸0 + 𝑔𝑞
+∆𝑞𝑞 +

1

2
∆𝑞 +H𝑞∆𝑞 (7.205)

The Newton-Raphson step to get from the actual point to a stationary point is:

∆𝑞 = −H−1𝑞 𝑔𝑞 =
∑︁
−𝑉

+
𝑖 𝑔𝑞𝑉𝑖
𝑏𝑖

(7.206)

with 𝑉𝑖 and 𝑏𝑖 as eigenvectors and eigenvalues of the Hessian H𝑞 . This step leads to the nearest stationary point
on the PES. This stationary point can be a minimum or a saddle point, according to the curvature of the PES at the
actual point.

With a simple shift of the Hessian eigenvalues 𝑏𝑖 in this equation one can guide the step to a stationary point with
the required characteristics (Hessian with exactly one negative eigenvalue). The transition state search is separated
into two different optimization problems. The energy is maximized along one Hessian eigenmode and minimized
along the remaining 3𝑁 − 7(6) eigenmodes. We introduce two different shift parameters 𝜆𝑝 and 𝜆𝑛, where 𝜆𝑝
is the shift parameter for the eigenmode being maximized and 𝜆𝑛 shifts the Hessian eigenvalues of the modes
being minimized. This method allows us to maximize along any mode, not only the one with smallest eigenvalue.
Starting from two different RFO-matrices for the different optimization problems (see description above) we get
for 𝜆𝑝 and 𝜆𝑛:

𝜆𝑝 =
1

2
𝑏𝑘 +

1

2

√︁
𝑏2𝑘 + 4𝐹 2

𝑘 and
∑︁
𝑖 ̸=𝑘

𝐹 2
𝑖

𝜆𝑛 − 𝑏𝑖
= 𝜆𝑛 (7.207)
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whereas 𝐹𝑖 = 𝑉 +
𝑖 𝑔 is the component of 𝑔 along the Hessian eigenmode 𝑉𝑖 and 𝜆𝑛 has to get solved iteratively. The

solution for 𝜆𝑛 has to be negative and lower than 𝑏2 (or lower than 𝑏1, if not the lowest mode is being followed). If
the Hessian has more than one negative eigenvalue, these properties might not be fulfilled, and the Hessian would
have to be modified. In our implementation the Hessian diagonal elements are either shifted or reversed in such a
case.

Once the shift parameters are known the P-RFO step ℎ is calculated as follows:

∆𝑞𝑘 = − 𝐹𝑘𝑉𝑘
𝑏𝑘 − 𝜆𝑝

and ∆𝑞𝑖 = −
𝐹𝑖𝑉𝑖
𝑏𝑖 − 𝜆𝑛

with 𝑖 = 1 . . . 𝑛, 𝑖 ̸= 𝑘 (7.208)

∆𝑞 =

𝑛∑︁
𝑗=1

∆𝑞𝑗 (7.209)

ScanTS option

For TS modes of rather local nature (involving only one bond or an angle; no concerted movements over multiple
atoms) we implemented the ScanTS feature. Here the user can carry out a relaxed surface scan and a TS opti-
mization in one calculation. After the relaxed surface scan the algorithm chooses the optimized structure of the
scan with highest energy as initial guess structure and the two neighbouring structures for the calculation of the
second derivative of the scanned coordinate (e.g., if scan step number 4 gives the structure with highest energy,
then structure basename.004.xyz is the initial guess for the TS optimization; the structures basename.003.xyz
and basename.005.xyz are used for the calculation of the second derivative). Before the first step of the sub-
sequent TS optimization the energies and gradients for all three structures are calculated. The gradients are then
transformed to internal coordinates. The diagonal Hessian value of the scanned coordinate is then calculated via
finite difference of the internal gradients of the two given structures (003 and 005 in our example).

For the construction of the initial Hessian a model force field Hessian is built up (this Hessian has got only diagonal
entries and zeros as off-diagonal elements). The exactly calculated diagonal Hessian value replaces the model force
field Hessian entry for the respective internal coordinate.

If the user already performed a regular relaxed surface scan without the subsequent TS optimization, then he can
nevertheless use these structures for the same procedure. A relaxed surface scan always gives you the xyz-files and
gbw-files of the optimized structures of each scan step. A separate TS optimization can be carried out where the
structure with highest energy is the starting structure. Additionally the two files with the two adjacent structures
(as explained above) have to be provided (via the Hess_Internal keyword, see below). Furthermore, the internal
coordinate, for which the diagonal Hessian value has to be calculated, has to be given (the previously scanned
coordinate). This exact Hessian calculation is only possible for one internal coordinate:

%geom
Hess_Internal

{B 1 0 C} # previously scanned coordinate
XYZ1 "scanName.003.xyz" # the xyz-files of the structures
XYZ2 "ScanName.005.xyz" # next to the highest energy point
GBW1 "ScanName.003.gbw" # the gbw-files of the structures
GBW2 "ScanName.005.xyz" # next to the highest energy

# the gbw-files are optional
end

end

Additionally the manipulation of the diagonal Hessian values of the internal Hessian is possible for further internal
coordinates, but without an extra calculation. Here the user can just define a value (in Eh/Bohr2).

Hess_Internal
{A 3 2 1 D 2.0} # define a diagonal Hessian value of

# 2 Eh/Bohr2 for the angle between
# atoms 3 2 1

{B 1 0 D -0.5} # define a diagonal Hessian value of
# -0.5 Eh/Bohr2 for the bond between
# atoms 1 and 0

end
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The definition of such Hessian (diagonal) elements is possible for multiple internal coordinates. These just replace
the values of the force field model Hessian.

Hybrid Hessian

We implemented the calculation of a “Hybrid Hessian” as an alternative to the full Hessian calculation for TS
optimization. Here only those parts of the Hessian, that are important for the TS optimization, are calculated
exactly. For this calculation we define two kinds of atoms: atoms whose couplings with the other atoms are treated
exactly (E) and atoms whose couplings are treated approximately (A).

In a first step an Almloef model Hessian is built up in redundant internal coordinates and transformed to Cartesian
coordinates. This Hessian gives the second derivative elements for atom pairs A/A. In a second step the second
derivative elements between pairs E/E and E/A are calculated numerically as in a numerical frequency calculation:

ΔE

∆𝑖𝐵∆𝑗𝐶
=

ΔE

∆𝑗𝐶∆𝑖𝐵
=
𝑔𝑖,𝐵𝑗,𝐶 − 𝑔

𝑒𝑞.
𝑗,𝐶

𝑑𝑖𝑠𝑝𝑙.
(7.210)

with:

𝑖, 𝑗 x-, y- or z-direction
𝐵,𝐶 pairs of E/E, E/A, A/E
𝑑𝑖𝑠𝑝𝑙. magnitude of displacement
𝑔𝑒𝑞.𝑗,𝐶 force on atom 𝐶 in direction 𝑗 in current geometry
𝑔𝑖,𝐵𝑗,𝐶 force on atom 𝐶 in direction 𝑗 after displacement of atom 𝐵 in direction 𝑖

Partial Hessian Vibrational Analysis

We implemented the Partial Hessian Vibrational Analysis (PHVA), as published by Li, Jensen in [513], for the
analysis of the nature of stationary points of structures obtained with QM/MM optimizations.

# PHVA after a QM/MM optimization in the (dispersion-/PC-) field
# caused by the MM-atoms
! NumFreq
%LJCoefficients "temp.LJ" # file with the Lennard Jones

# coefficients for dispersion interaction
# obtained from last QM/MM run

%pointcharges "temp.pc" # file with the point charges for
# electrostatic interaction
# obtained from last QM/MM run

#
%freq

PARTIAL_Hess {0 1 2} # atoms which are "frozen" and which make
# the boundary to the MM-system

end
end

NOTE

• This procedure should be used for QM/MM optimized structures only to verify the nature of the stationary
point and have an estimate of the ZPE.

Here we shortly describe the procedure: In PHVA we divide the system into two parts 𝐵 (of size 𝑛 atoms) and 𝐶
(size𝑁 −𝑛). Let the atom set 𝐵 belong to the region where the chemical change is localized. The Partial Hessian
matrix is built up as follows: (︂

𝐾𝐵𝐵 0
0 𝐾𝜀

𝐶𝐶

)︂
(7.211)
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With:

𝐾𝐵𝐵 : 𝑥, 𝑦, 𝑧 direction

𝐾𝜀
𝐶𝐶 =

⎛⎜⎝𝜀 0 0

0
. . . 0

0 0 𝜀

⎞⎟⎠ , 𝜀 = 10−8 au, (7.212)

this corresponds to using near-infinite masses for the atoms in 𝐶.

With this procedure we get the following eigenvalue structure:

• Six zero eigenvalues with modes corresponding to translational and rotational motion of the entire molecule.

• 3(𝑁 − 𝑛) − 6 small (less than 1 cm−1) eigenvalues with modes corresponding mainly to internal motion
within region 𝐶.

• Three eigenvalues (typically less than 10 cm−1) with modes corresponding mainly to motion of region 𝐶
relative to region 𝐵.

• (3𝑛 − 3) eigenvalues with modes corresponding mainly to relative motion of 𝐵 and 𝐶 as well as internal
motion within region 𝐵.

7.26.3 Minimum Energy Crossing Points

The MECP optimization allows the user to optimize to structures where two different potential energy surfaces
(PES1 and PES2) cross each other. In this optimization two conditions apply: the energy𝐸1 of PES1 is minimized
while at the same time the energy difference (𝐸1 − 𝐸2)

2 of both surfaces is minimized. For the implementation
we follow in principle the suggestions of Harvey et al. in [365].

For the minimization two different gradients are constructed:

The first gradient chosen for the minimization is

f =
𝜕

𝜕𝑞
(𝐸1 − 𝐸2)

2
= 2 (𝐸1 − 𝐸2) · 𝑥1 (7.213)

where 𝑥1 is the gradient difference vector

𝑥1 =

[︂(︂
𝜕𝐸1

𝜕𝑞

)︂
−
(︂
𝜕𝐸2

𝜕𝑞

)︂]︂
(7.214)

which is orthogonal to the crossing hyperline near the MECP.

The gradient

g =

(︂
𝜕𝐸1

𝜕𝑞

)︂
− 𝑥1
|𝑥1|

[︂(︂
𝜕𝐸1

𝜕𝑞

)︂
· 𝑥1
|𝑥1|

]︂
(7.215)

is orthogonal to 𝑥1.

Both gradients are combined to yield the effective surface crossing gradient

gSC = g + f (7.216)

The crossing hyperline is defined as the 3𝑁 − 7 dimensional subspace of PES1, which is orthogonal to 𝑥1. In the
MECP optimization we want to find the point of lowest energy within this subspace.

Our calculation of normal modes and force constants for movements along the crossing hyperline differ from the
one proposed by Harvey et al. A standard frequency analysis can not be performed, but a similar procedure is
applied:

Let us regard the second-order Taylor expansion for the energy of both surfaces near the MECP for a displacement
along the crossing hyperline (orthogonal to 𝑥1):

E𝐴 = 𝐸MECP +
1

2
∆𝑞𝑇𝐻eff,𝐴∆𝑞 (7.217)
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with:

E𝐴 Energy E1 on PES1 or E2 on PES2
𝐻eff,𝐴 effective Hessian for PES1 or PES2
∆𝑞 displacement along the crossing hyperline

Diagonalization of this effective Hessian gives us the normal modes of the crossing hyperline and thus allows us
to decide whether the MECP optimization converged to a minimum in the 3𝑁 − 7 dimensional subspace of the
crossing hyperline.

The procedure for the calculation of the effective Hessian is now as follows: For each of both surfaces the second
derivative matrix is calculated. Then the 6 rotations and translations and additionally the direction of the gradient
difference vector 𝑥1 (this ensures that movement orthogonal to the crossing hyperline, for which we do NOT satisfy
the conditions of a stationary point, is excluded) are projected out from the Hessian matrix.

For MECP optimizations the following options exist:

%mecp
SurfCrossOpt true # switches on the MECP optimization

# alternatively use: ! SurfCrossOpt
SurfCrossNumFreq true # switches on the MECP effective Hessian

# calculation
# alternatively use: ! SurfCrossNumFreq

# separate MO input for the second spin state (PES2)
moinp "Myfile.gbw"# MO input for PES2

# information on the electronic structure of PES 2
Mult 3 # multiplicity of PES2
brokenSym 1,1 # broken symmetry for PES2

# CASSCF options for PES2 (also see the CASSCF chapter)
casscf_nel 6 # number of active space electrons
casscf_norb 6 # number of active orbitals
casscf_mult 1,3 # multiplicities singlet and triplet
casscf_nroots 4,2 # four singlets, two triplets
casscf_bweight 2,1 # singlets and triplets weighted 2:1
casscf_weights[0] = 0.5,0.2,0.2,0.2 # singlet weights
casscf_weights[1] = 0.7,0.3 # triplet weights

end

7.26.4 Conical Intersections

The minima in the conical intersection seam-space between two states (named here I and J) can be found by using
regular geometry optimization algorithms, except that the gradient to be optimized is [545]:

g = g′𝑑𝑖𝑓𝑓 +Pg𝑚𝑒𝑎𝑛

where g′𝑑𝑖𝑓𝑓 = 2(𝐸𝐼 − 𝐸𝐽)(𝜕𝐸𝐼/𝜕𝑞 − 𝜕𝐸𝐽/𝜕𝑞) is parallel to the gradient difference vector; g𝑚𝑒𝑎𝑛 is the
gradient mean and P is a projection matrix that projects out the gradient difference (x) and non-adiabatic coupling
(y) direction components:

P = 1− xxT − yyT

Now we have three approaches to solve this problem in ORCA, that will be explained next.

Gradient Projection: This is exactly what has been described above, and will be chosen as default whenever
NACMEs between I and J are available. It is in principle the faster and most accurate method. It can be invoked
by setting:
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%CONICAL
METHOD GRADIENT_PROJECTION #or simply GP

END

OBS.: Turning on the ETF (see Sec. NACMEs with built-in electron-translation factor) can improve the optimiza-
tion when using the full Gradient Projection method.

Gradient Projection (without NACME) : It is an approximation to the method above, that one gets by completely
neglecting the NACMEs. It is essentially equivalent to finding a surface crossing point, and will not necessarily
find minima inside the CI seam-space, although the final ∆𝐸𝐼𝐽 should be zero.

%CONICAL
METHOD GP_NONACME

END

Updated Branching Plane: Here the idea is to start from a guess NACME, which is any unit vector perpendicular
to x, and do an progressive update on it, similar to the BFGS update on the Hessian [545]. The “Branching Plane”
defined by x and y gets then iteratively more accurate until covergence is achieved. It has been shown to be quite
accurate and is the default whenever NACMEs are not available. Can be used with:

%CONICAL
METHOD UBP

END

Finally, the ∆𝐸𝐼𝐽 energy threshold for the optimization can be altered with:

%CONICAL
ETOL 1e-4 #default

END

7.26.5 Numerical Gradients

If you want to use numerical instead of analytic gradients you have to use

! NumGrad

in your input file. Additionally the settings for the numerical differentiation can be changed:

%numgrad
CentralDiff true # You should use two-sided numerical differentiation, but it

# is possible to switch to one-sided numerical differentiation.
DX 0.005 # Increment in Bohr for the differentiation.
TransInvar true # Take advantage of translation invariance

end

7.26.6 ORCA as External Optimizer

If you want to make use of ORCA’s routines for optimization, TS optimization, NEB, IRC, GOAT, etc., but not use
ORCA’s built-in electronic structure methods, you can use the keyword:

! ExtOpt

in your input file. All information that you give on the electronic structure is discarded. In each optimiza-
tion/NEB/IRC step ORCA writes an input file called basename_EXT.extinp.tmp with the following info:

basename_EXT.xyz # xyz filename: string, ending in '.xyz'
0 # charge: integer
1 # multiplicity: positive integer

(continues on next page)
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1 # NCores: positive integer
0 # do gradient: 0 or 1
pointcharges.pc # point charge filename: string (optional)

Comments from # until the end of the line should be ignored. The file basename_EXT.xyz will also be present in
the working directory. ORCA always requests the energy, but a gradient only if needed for the chosen calculation
type.

ORCA then calls:

scriptname basename_EXT.extinp.tmp [args]

where args are optional command line arguments, which can be provided in the ORCA input file (see below) and
are directly passed to the command line for the external program.

scriptname is the name of the external program or wrapper script, which is not distributed with the ORCA binaries
and must be supplied by the user in one of the following ways:

1. as a file or link named otool_external in the same directory as the ORCA executables;

2. by assigning the EXTOPTEXE environment variable to the full path to the external program;

3. via the ORCA input:

%method
ProgExt "/full/path/to/script"
Ext_Params "optional command line arguments"

end

Regardless of which option is used, the keyword Ext_Params can be used to specify the additional command line
arguments as a single string.

The external script starts the energy (and gradient) calculation and finally provides the results in a file called
basename_EXT.engrad using the same basename as the XYZ file. This file must have the following format:

#
# Number of atoms: must match the XYZ
#
3
#
# The current total energy in Eh
#
-5.504066223730
#
# The current gradient in Eh/bohr: Atom1X, Atom1Y, Atom1Z, Atom2X, etc.
#
-0.000123241583
0.000000000160
-0.000000000160
0.000215247283
-0.000000001861
0.000000001861
-0.000092005700
0.000000001701
-0.000000001701

Comments from # until the end of the line are ignored, as are any comment-only lines.

The script may also print relevant output to STDOUT and/or STDERR. STDOUT will either be printed in the ORCA
standard output, or redirected to a temporary file and removed afterwards, depending on the type of job (e.g., for
NumFreq the output for the displaced geometries is always redirected) and ORCA output settings:
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%output
Print[P_EXT_OUT] 1 # (default) print the external program output
Print[P_EXT_GRAD] 1 # (default) print the gradient from the ext. program

end

7.26.7 Gaussian as External Optimizer

To use the external optimizer from Gaussian in ORCA, the following keywords were provided in the past:

%geom
UseGaussian true # Use the external Gaussian optimizer instead

# of the ORCA optimizer.
GaussianName "GAU" # String defining the name of the Gaussian

# optimizer
GauOptFlags # String indicating the optimization flags
Gaussian Constraints # List defining the constraints for

# the Gaussian optimizer.
end

Since the ORCA team got banned by Gaussian in January 2007 we can no longer support these option flags. They
have not been removed from the code and may or may not work. If there is trouble with it we can – unfortunately
– not offer any help since we do not have access to the Gaussian code any longer.

7.27 Frequency calculations - numerical and analytical

In the ORCA program package, the calculation of frequencies through the numerical or analytical Hessian is done
via the orca_numfreq module and the combination of the orca_propint, orca_scfresp, and orca_prop
modules, respectively.

The parameters to control these frequency calculations can be specified in the %freq-block.

%freq

# Flags to switch frequencies calculation on/off

NumFreq false # numerical frequencies (available for all methods)
AnFreq false # analytical frequencies (available for HF, DFT)

# (One of these options has to be set to true,
# to request a freq calculation)

ScalFreq 1.0 # Scaling factor for frequencies (default = 1.0)
# NOTE: Scaling is applied to the frequencies after they are
# calculated. SCALED frequencies will be stored in the
# .hess file and printed in the output file.
# In the .hess file you have accesss to the frequency
# scaling factor (see below).

# Flags to control NumFreq calculation:

CentralDiff true # use central differences [f(x+h)-f(x-h)]/2h - or -
# use one-sided differences [f(x+h)-f(x)]/h

Restart false # restart a (numerical) frequency calculation
DX 0.005 # increment h
Increment 0.005 # increment h

(continues on next page)
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Hybrid_Hess {...} end # calculate (numerical) Hybrid Hessian
Partial_Hess [...] end # calculate (numerical) Partial Hessian

# Flags to control subsequent vibrational analysis:

QuasiRRHO true # Evaluate Vibrational Entropy with
# Quasi-Rigid Rotor Harmonic Oscillator

QRRHORefFreq 25 # reference frequency used in the QuasiRRHO in cm-1
# default value is 100 from original paper

CutOffFreq 1.0 # Threshold for frequencies to be considered
# in spectra, thermochemistry and printout (cm-1)

Temp 298.15 # run the thermochemistry calculations at user defined
# temperatures (max 16 temperatures, separated by ',')

T 290, 292, 295 # same as Temp

XTBVPT2 True # use XTB for the VPT2 correction of the IR
Delq 0.5 # the displacement in dimensionless coordinates used

# during the VPT2

TransInvar True # enforce translation invariance while calculating the Hessian?
ProjectTR True # project out translation and rotation degrees of freedom

# in frequency calculation and thermochemistry analysis?

end

At present, analytical Hessians can be calculated for SCF only. However, there are some additional restrictions.
Analytical Hessians cannot be performed for

- Double-Hybrid functionals
- RI-JK approximation

Here is what you would do, if you ran a frequency calculation and have a .hess file on disk and want to try different
scaling factors for the frequencies

$frequency_scale_factor
0.90 <<<---- you change this to whatever you want

orca_vib myjob_scaled_freq.hess

The program will then read the Hessian, diagonalize it and apply your scaling factor. Whatever scaling factor was
used in the actual input that generated the Hessian is irrelevant since the Hessian is re-diagonalized. To avoid
confusion, we recommend that if the goal is to play with the scaling factor, then to leave the scaling factor in the
input at 1.0. Nothing bad happens if you don’t though.
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7.27.1 Restarting Numerical Frequency calculations

To restart a numerical frequencies calculation, use:

%FREQ
restart true

END

and ORCA will look for basename.res.{} files in the same folder where the calculation is being run, check for what
already has been done and restart where it is needed.

7.28 Intrinsic Reaction Coordinate

The Intrinsic Reaction Coordinate (IRC) method finds a path connecting a transition state (TS) with its downhill-
nearest intermediates. The implementation in ORCA follows the method suggested by Morokuma and cowork-
ers.[412]

The IRC method follows the gradient of the nuclear coordinates. As the gradient is negligible at a TS, first an initial
displacement from the TS structure has to be carried out, based on the eigenmodes of the Hessian, in order to get
to a region with nonnegligible gradient. For the initial displacement the eigenvector of the eigenmode with lowest
frequency (hessMode=0) is normalized and then scaled by Scale_Displ_SD (which by default is chosen such that
an energy change of Init_Displ_DE can be expected). Two initial displacements, forward and backward, are taken
by adding the resulting displacement vector (multiplied with +1 and -1, respectively) to the initial structure. If the
user requests the downhill direction (e.g. from a previous unconverged IRC run), it is assumed that the gradient is
nonzero and thus no initial displacement is carried out.

After the initial displacement the iterations of the IRC method begin. Each iteration consists of two main steps,
which each consist again of multiple SP and gradient runs:

1. Initial steepest descent (SD) step:

1. The gradient (grad0) of the starting geometry (G0) is normalized, scaled by Scale_Displ_SD, and the
resulting displacement vector (SD1) is applied to G0.

2. Optional (if SD_ParabolicFit is true): If SD1 increases the energy, a linear search is taken along the
direction of the displacement vector:

1. The displacement vector SD1 is scaled by 0.5 (SD2 = 0.5 x SD1) and again added to G0.

2. A parabolic fit for finding the displacement vector (SD3) which leads to minimal energy is carried
out using the three SP energies (G0, geometry after SD1 and after SD2 step). SD3 has the same
direction as SD1 and SD2, but can have a different length.

3. The keyword Interpolate_only controls whether the length of SD3 has to be in between 0 and and
the length of SD1. If that is the case, the maximum length is determined by SD1, the minimum
length is zero.

3. At the resulting geometry G1 (G0+SD1 or G0+SD3) the gradient is calculated (grad1).

2. Optional (if Do_SD_Corr is true): Correction to the steepest descent step:

1. Based on grad0 and grad1 a vector is computed which represents a correction to the first SD (SD1 or
SD3) step. This correction brings the geometry closer to the IRC.

2. This vector is normalized, scaled by Scale_Displ_SD_Corr times the length of SD1 or SD3, and the
resulting displacement vector (SDC1) is applied to G1.

3. Optional (if SD_Corr_ParabolicFit is true):

1. If the energy increases after applying step SDC1, SDC1 is scaled by 0.5 (SDC2 = 0.5 x SD1), if
the energy decreases, SDC1 is scaled by 2 (SDC2 = 2 x SD1). SDC2 is then added to G1.
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2. A parabolic fit for finding the displacement vector (SDC3) which leads to minimal energy is carried
out using the three SP energies (G1, geometry after SDC1 and after SDC2 step). SDC3 has the
same direction as SDC1 and SDC2, but can have a different length.

3. The keyword Interpolate_only controls whether the length of SDC3 has to be in between 0 and and
the length of SDC1. If that is the case, the maximum length is determined by SDC1, the minimum
length is zero.

4. At the resulting geometry G2 (G1+SDC1 or G1+SDC3) the gradient is calculated (grad2).

3. The gradient at the new geometry is checked for convergence.

4. Optional (if Adapt_Scale_Displ is true):

1. If the resulting overall step size is smaller than 0.5 times Scale_Displ_SD, Scale_Displ_SD is multiplied
by 0.5.

2. If the resulting overall step size is larger than 2 times Scale_Displ_SD, Scale_Displ_SD is multiplied
by 2.

3. Scale_Displ_SD may not become smaller than 1/16 times the initial Scale_Displ_SD and not larger
than 4 times the initial Scale_Displ_SD.

The following keywords are available:

! IRC
%irc

MaxIter 20
PrintLevel 1
Direction both # both - default

# forward
# backward
# down

# Initial displacement
InitHess read # by default ORCA uses the Hessian from AnFreq or NumFreq, or

# computes a new one
# read - reads the Hessian that is defined via Hess_Filename
# calc_anfreq - computes the analytic Hessian
# calc_numfreq - computes the numeric Hessian

Hess_Filename "h2o.hess" # input Hessian for initial displacement, must be used
# together with InitHess = read

hessMode 0 # Hessian mode that is used for the initial displacement. Default 0
Init_Displ DE # DE (default) - energy difference

# length - step size
Scale_Init_Displ 0.1 # step size for initial displacement from TS. Default 0.1 a.u.
DE_Init_Displ 2.0 # energy difference that is expected for initial displacement

# based on provided Hessian (Default: 2 mEh)
# Steps

Follow_CoordType cartesian # default and only option
Scale_Displ_SD 0.15 # Scaling factor for scaling the 1st SD step
Adapt_Scale_Displ true # modify Scale_Displ_SD when the step size becomes

# smaller or larger
SD_ParabolicFit true # Do a parabolic fit for finding an optimal SD step

# length
Interpolate_only true # Only allow interpolation for parabolic fit, not

# extrapolation
Do_SD_Corr true # Apply a correction to the 1st SD step
Scale_Displ_SD_Corr 0.333 # Scaling factor for scaling the correction step to

# the SD step. It is multiplied by the length of the
# final 1st SD step

SD_Corr_ParabolicFit true # Do a parabolic fit for finding an optimal correction
# step length

# Convergence thresholds - similar to LooseOpt
TolRMSG 5.e-4 # RMS gradient (a.u.)
TolMaxG 2.e-3 # Max. element of gradient (a.u.)

(continues on next page)
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# Output options
Monitor_Internals # Up to three internal coordinates can be defined

{B 0 1} # for which the values are printed during the IRC run.
{B 1 5} # Possible are (B)onds, (A)ngles, (D)ihedrals and (I)mpropers

end
end

NOTE

• For direction=down (downhill) no initial displacement is necessary, and thus no Hessian is needed.

7.29 Nudged Elastic Band Method

The Nudged Elastic Band (NEB)[384, 416, 586] method is used to find a minimum energy path (MEP) connecting
two local energy minima on the potential energy surface (PES) and thereby an estimate of the activation energy for
the transition. The two minima are referred to as the reactant and product in the following discussion. The path can
have one or more maxima, each one corresponding to a first order saddle point on the energy surface. The NEB
method offers an advantage over eigenvector-following methods in that it is guaranteed to find saddle points that
connect the given reactant and product states. The minimum energy path is often used to represent the reaction
coordinate of the transition between the two states. The methods and implementation outlined below are discussed
further in Ref. [4].

The user needs to specify the reactant and product configurations. The reactant energy minimum is inserted into
the regular ORCA input file while the product should be in a separate .xyz file (keyword: neb_end_xyzfile). The
reactant and product configurations should be optimized a priori by relaxing to energy minima on the PES, see
section Geometry Optimizations. This can also be achieved via the ‘preopt_ends’ keyword. It is important to
carefully prepare the reactant and product such that the position (or index) of the atoms is the same in the two
configuration files, i.e. there should be one-to-one mapping between the reactant and product configurations.

The discretized path between the two minima is represented by a set of 𝑀 system configurations that are referred
to as images, i.e. R = [𝑟0, 𝑟1, ..., 𝑟𝑀−1]. The number of intermediate images between the end points (i.e. re-
actant and product) is specified by the user. The general rule of thumb is to include 𝑀 = 7 − 12, or 5 − 10
intermediate images per energy maximum in order to obtain a high enough resolution of the path and the saddle
point. However, calculations can often converge and give accurate results with fewer images but complex paths
with multiple maxima or long tails may require more images. During an NEB calculation the intermediate images
are iteratively shifted towards the MEP using the component of the atomic force that is perpendicular to the current
path as estimated from the tangent to the path at each image. While, the end point images are typically kept fixed.
In each step of the iterative process, the energy and atomic forces of each intermediate image need to be computed.
One of the main advantages of the NEB method is that the calculations of the images are carried out in parallel,
where the electronic structure computations can be distributed over multiple processors (see discussion below for
more details on the parallelization). While the CPU time is proportional to the number of images, the number of
iterations needed for convergence to the MEP can become smaller when more images are included in the discrete
representation of the path.

The tangent to the path at each image, 𝜏𝑖, can be estimated in two ways (keyword: tangent), either by the original
method [416] or by the more numerically stable improved [384] estimate (default option). In the former, the tangent
at an image is taken to be a linear combination of the two line segments that connect to image 𝑖,

𝜏𝑖 =
𝑟𝑖+1 − 𝑟𝑖
|𝑟𝑖+1 − 𝑟𝑖|

+
𝑟𝑖 − 𝑟𝑖−1
|𝑟𝑖 − 𝑟𝑖−1|

In the improved tangent estimate, the line segment from the current image to the adjacent image with higher energy
is used, i.e.

𝜏𝑖 =

{︃
𝜏+ if E𝑖+1 > E𝑖 > E𝑖−1
𝜏− if E𝑖+1 < E𝑖 < E𝑖−1
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where 𝜏+ = 𝑟𝑖+1 − 𝑟𝑖 and 𝜏− = 𝑟𝑖 − 𝑟𝑖−1. With the exception of image 𝑖 being at an energy extremum along the
path, then an energy-weighted average of the two line segments to adjacent images is used,

𝜏𝑖 =

{︃
𝜏+∆𝑉 max

𝑖 + 𝜏−∆𝑉 min
𝑖 if E𝑖+1 > E𝑖−1

𝜏+∆𝑉 min
𝑖 + 𝜏−∆𝑉 max

𝑖 if E𝑖+1 < E𝑖−1

where

∆𝑉 max
𝑖 = max(|𝐸𝑖+1 − 𝐸𝑖|, |𝐸𝑖−1 − 𝐸𝑖|)

∆𝑉 max
𝑖 = min(|𝐸𝑖+1 − 𝐸𝑖|, |𝐸𝑖−1 − 𝐸𝑖|)

Then the tangent is normalized, 𝜏𝑖 = 𝜏𝑖/|𝜏𝑖|. With an accurate estimate of the tangent, the perpendicular component
of the atom force is computed by,

𝐹⊥𝑖 = 𝐹𝑖 − (𝐹𝑖 · 𝜏𝑖) 𝜏𝑖

In the free-end NEB method, the endpoint images are optimized simultaneously along with the intermediate im-
ages, i.e. 𝑀 movable images are used. Three different variants of the free-end NEB method (keywords:free_end,
free_end_type) are included in ORCA: where (i) the endpoints are restrained to move along the same (or sepa-
rate) energy isocontour[5, 921], (ii) according to the atomic force acting perpendicular to the path and (iii) the full
atomic force. For the first variant, the ‘reactant’ and ‘product’ endpont images, can be restrained to move along
two different energy contours, 𝐸0 (given by keyword:free_end_ec) and 𝐸1 (given by keyword: free_end_ec_end),
to keep the path bounded. Then, if the images drift away from the isocontour because of curvature of the energy
surface, an harmonic restraint term is used to pull the image back to the contour.[5] The stiffness of the harmonic
restraint is given by a user-supplied parameter (keyword:free_end_kappa). It is important to carefully select the
energy values and the strength of the harmonic restraint, otherwise the path may become kinked. For the second
variant, the endpoint images are unbounded but displaced directly towards the MEP. This is typically acceptable if
the endpoint images are already in vicinity to the MEP and is less prone to kinks developing along the path. For
the third variant, the endpoint images become optimized to the reactant and product energy minimum.

7.29.1 Spring forces

In order to control the distribution of the images along the path, spring forces are included to act between adjacent
images, tangential to the path[416],

𝐹
sp,‖
𝑖 =

(︀
𝑘sp
𝑖 |𝑟𝑖+1 − 𝑟𝑖| − 𝑘sp

𝑖−1|𝑟𝑖 − 𝑟𝑖−1|
)︀
𝜏𝑖

The magnitude of the spring forces (i.e. stiffness) is controlled by spring constants, 𝑘sp. The typical values of the
spring constant (keyword: springconst) can be taken to be within the range of 0.01 Eh/Bohr2 to 1.0 Eh/Bohr2.
If the spring constants are choosen to be the same for all pairs of adjacent images, the images will be equally
distributed along the path. However, it is also possible to choose energy-weighted spring constants (keyword:
energy_weighted) so as to increase the density of images in the higher energy regions[4, 385]. In an energy-
weighted NEB calculation the spring constants are scaled according to the relative energy of the images, from a
lower-bound value (keyword:springconst) to an upper-bound value (keyword:springconst2), by

𝑘sp
𝑖 =

{︂
(1− 𝛼𝑖)𝑘u + 𝛼𝑖𝑘l, if𝐸𝑖 > 𝐸ref
𝑘𝑙, otherwise

𝛼𝑖 =
𝐸max − 𝐸𝑖
𝐸max − 𝐸ref

where 𝑘u and 𝑘l are the upper- and lower-bound values for the spring constant. 𝐸max is the current estimate of the
maximum energy along the path, 𝐸𝑖 is the higher energy image of the pair of images connected by line segment 𝑖
and 𝐸ref is the energy of the higher energy minimum. The energy-weighted springs will typically serve to improve
the tangent estimate in the barrier region and hence stabilize the calculations. The inclusion of energy-weighted
springs can be important in reactions where the energy barrier is narrow and/or the pathway is characterized by a
long ‘energy tail’, e.g., in rearrangements or dissociation reactions. The choice of spring constants will affect the
behavior of a calculation, especially the number of iterations needed to reach convergence. Other formulations for
spring forces are also available since ORCA 4.2 (keyword: springtype). These are referred to as the original[416]
and ideal[554] spring forces. The original spring forces are estimated by a spring acting on each degree of freedom
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between a pair of adjacent images. For ideal springs each image is assigned an ideal position along the path based
on a linear interpolation of the current location of the images and the individual images interact with the ideal
locations via spring forces. The ideal springs are currently not implemented to work with energy weighted spring
constants.

While only the component of the spring force parallel to the path is included in an NEB calculation (by default) the
user can choose to include a fraction of the spring force acting perpendicular to the path to stabilize calculations
(keyword: perpspring. Since, the perpendicular component of the spring force can serve to straighten out the path
and is useful for complex pathways with multiple energy extrema and low resolution of the path. The inclusion
of the perpendicular component of the spring force is always accompanied by a switching function that is used to
scale it according to (i) convergence to the MEP (the ‘tan’ function)[792] (ii) the angle between adjacent images
(the ‘cos’ function)[416] or a combination of both. The inclusion of the perpendicular spring force can help to
reduce the number of iterations and eliminate kinks on the path. However, it is important to stress that by inclusion
of the perpendicular spring forces, the images may not converge on the MEP. Alternatively, the user can choose to
use the modified DNEB method[792, 854].

7.29.2 Optimization and convergence of the NEB method

The effective force used in a standard NEB calculations is the sum of the atomic force component perpendicular
to the path and the spring force component parallel to the path,

𝐹NEB
𝑖 = 𝐹⊥𝑖 + 𝐹

sp,‖
𝑖

The path can be brought to the MEP by moving according to the effective force, as is shown in Fig. 7.21.

Fig. 7.21: Visualization of the effective force, 𝐹NEB and its two components: 𝐹⊥𝑖 and 𝐹 sp,‖
𝑖 for three images along

an intermediate path in a NEB optimization. The figure is taken from Ref. [3]

This can be achieved by using any of the three optimization methods implemented (keyword:opt_method): velocity
projection optimization (VPO)[416], fast inertial relxation engine (FIRE)[108] and L-BFGS[636]. VPO and FIRE
are more robust for regions that are far from the MEP, while L-BFGS converges faster when the images are close
to the MEP. FIRE and VPO both have a local and global implementation (keyword:local). In the local variant,
all of the images are treated individually when taking an optimization step, while in the latter the whole band is
treated as a single point. A constant ‘trust-radius’ is used for all optimization methods, where if the magnitude of
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the maximum Cartesian component of an optimization step exceeds a user-supplied threshold (keyword:maxmove),
the whole displacement is scaled down accordingly. The number of steps stored in the L-BFGS optimization for
the construction of the approximate Hessian matrix can be adjusted by the user (keyword:lbfgs_memory). For a
more conservative optimization with L-BFGS, the memory can also be erased if a large step is attempted (key-
word:lbfgs_restart_on_maxmove).

The convergence of the intermediate images is gauged from the maximum Cartesian component of the perpen-
dicular atom force as well as the root-mean-square, i.e. max(|F⊥|),RMS(F⊥). The atomic force on the images
perpendicular to the path vanishes as the images are located on the MEP. A typical value of the tolerance for the
maximum component of the atomic force perpendicular to the path is 1 · 10−3 Eh/Bohr. Typically the tolerance
for the root-mean-square value is chosen to be smaller by a factor of 1/2 or 1/3. Sometimes a tighter tolerance for
the maximum component of the force is needed, for example 5 · 10−4 Eh/Bohr or even 2 · 10−4 Eh/Bohr. The
maximum number of optimization steps allowed is set by the keyword ‘maxiter’.

The configuration of each image after each iteration is written to a ‘_trj.xyz’ file (see file:
basename_MEP_ALL_trj.xyz). This file is useful for troubleshooting non-convergent calculations.

7.29.3 Climbing image NEB

In order make the highest energy image converge more accurately to the (highest) energy maximum along the MEP,
the climbing image variant of the NEB method (CI-NEB) can be used. [385] In the CI-NEB method, the effective
force 𝐹NEB acting on the climbing image (i.e. 𝑖 = ci) is transformed to:

𝐹NEB
ci = 𝐹ci − 2 (𝐹ci · 𝜏ci) 𝜏ci

where the climbing image is pushed up-hill along the path and relaxed down-hill perpendicular to the path. That is,
the energy is maximized with respect to one degree of freedom corresponding to the direction of the tangent while
the energy is minimized with respect to all other degrees of freedom. The effective force on the climbing image
does not include any spring force and the density of images then becomes different on either side of the climbing
image. As long as the tangent estimate is accurate enough the climbing image will converge rigorously to the point
of highest energy along the path. An illustration of how the climbing image NEB method works is shown in Fig.
7.22 for a simple two-dimensional energy function.
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Fig. 7.22: Illustration of how the CI-NEB method works on a two-dimensional Müller-Brown energy surface,
𝐸(𝑥, 𝑦).[539] The calculation is started from a linear interpolation between the reactant (R) and product (P) energy
minima, using 𝑀 = 10. The images are displaced in the orthogonal direction to the path (red curves), until they
converge to the minimum energy path (white dashed curve). The climbing image accurately locates the higher
energy first order saddle point along the path (denoted by SP). The optimization profile is shown as an inset. In
such a plot the interpolated energy along the path is plotted as a function of displacement, for each (or selected)
optimization step. The figure is taken from Ref. [3]

It can be useful to start the climbing image after the magnitude of the atomic forces perpendicular to the path
drops below a given user supplied threshold (keyword: tol_turn_on_ci). Then, the highest energy image along
the current path is converted to a climbing image. It is usually most efficient to initiate the climbing image early
on or even from the start of the NEB calculation. This applies when using the VPO optimization method. For L-
BFGS it is recommended to start CI-NEB when the path has partially converged to the MEP, e.g., around 0.01-0.02
Eh/Bohr. If there are two or more maxima in the energy along the MEP it is possible that the image near the highest
maximum is not chosen as the climbing image at an early stage of the NEB calculation. Then, later on the choice
of the climbing image can be switched automatically. Also, for barrierless reactions, the climbing image is not
turned on. The atom coordinates of the climbing image (in a CI-NEB calculation) or the highest energy image (in
an NEB calculation) are written to files ‘_NEB-CI_converged.xyz’ and ‘_NEB-HEI_converged.xyz’, respectively,
when a calculation has successfully completed.

The convergence of a CI-NEB calculation can either be gauged by monitoring the forces on all images or only on
the climbing image, (keyword: convtype). The latter option may be used when the objective of the calculation
is to locate the highest energy saddle point connecting the reactant and product states and can save significant
computational effort. To gauge for convergence on the climbing image, both the root-mean-square and magnitude
of the maximum (Cartesian) component of the atom force are monitored, i.e. max(|Fci|),RMS(Fci). When gauging
the convergence of all images in a CI-NEB calculation it is typically acceptable to converge the regular images more
loosely than the climbing image. By default, the tolerance for the regular images is a factor of 10 larger than that of
the climbing image. This scaling of the tolerances is a parameter that can be set by the user (keyword: tol_scale).
Typically for an acceptable convergence to the saddle point, the tolerance threshold for the maximum magnitude
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of an atomic force component of the climbing image can be set to 5 · 10−4 Eh/Bohr.

7.29.4 Generation of the initial path

One of the most important aspects of any NEB or CI-NEB calculation is the generation of the initial path
between the reactant and product energy minima (keyword: interpolation. The recommended method is
the image-dependent pair potential (IDPP) method [808]. An alternative and simpler method is linear inter-
polation in Cartesian coordinates. In either case, the user should always inspect the initial path (see file:
basename_initial_path_trj.xyz) to make certain that it is acceptable.

By default, the endpoint structures are scanned for covalently linked fragments. If two fragments are detected
in either of the endpoint structures, the structure is automatically prepared such that the distance between the
fragments is no larger than a maximum distance defaulted to 3.5 Angstrom.

The linear interpolation in Cartesian coordinates may result in overlap of atoms leading to large, initial, atomic
forces and even divergence in the SCF cycles. The IDPP method solves these problems by interpolating pairwise
distances between neighboring atoms in the reactant and product energy minimum. Then, a path is generated to
match those distances as closely as possible. Since there are many more pairwise distances than atom coordinates,
the initial path is found by minimizing the objective function,

𝑆IDPP
𝜅 (𝑟𝑖) =

𝑀∑︁
𝐴

𝑀∑︁
𝐵>𝐴

𝑤(𝑑𝐴𝐵) (𝑑
𝜅
𝐴𝐵 − 𝑑𝐴𝐵)

2 (7.218)

where 𝑑𝐴𝐵 is the pairwise distance between atoms𝐴 and𝐵 for intermediate image 𝑖. 𝑑𝜅𝐴𝐵 is the ideal interpolated
distance between atoms 𝐴 and 𝐵 of the same image. 𝑤 is a weight-function to give shorter bond distances more
weight and make unnecessary bond-breaking unfavorable. The weight function is given as𝑤 = (𝑑AB)

−4. The IDPP
path avoids the overlap of atoms and can also generate a path that is closer to the MEP than the linear interpolation
in Cartesian coordinates[808]. The IDPP path is obtained from an NEB calculation using the IDPP objective
function starting from a linear interpolation of the Cartesian coordinates between the endpoint structures, but this
calculation requires little computational effort since it does not require any electronic structure computations. Note
that it is possible that the initial path breaks covalent bonds and that it can be far from the optimal MEP, so the user
should always inspect the initial path before starting an NEB calculation. The user can adjust the settings of the
IDPP calculations using the ‘idpp’ related keywords, but the default values should suffice for most applications.
Note that the units of the IDPP are in Ångströms instead of atomic units. The matrix of ideal interpolated distance
between the atoms 𝐴 and 𝐵 at image 𝑖, 𝑑𝜅𝐴𝐵, 𝑖 , is most simply obtained by linear interpolation as

𝑑𝜅𝐴𝐵, 𝑖 = 𝑑𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐴𝐵 + 𝑃𝑖 *
(︁
𝑑𝑓𝑖𝑛𝑎𝑙𝐴𝐵 − 𝑑𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐴𝐵

)︁
,

where 𝑃𝑖 = 𝑖
𝑛𝑖𝑚−1 is the position of image 𝑖 on the path between 0, corresponding to the initial image, and 1,

corresponding to the final image, and 𝑛𝑖𝑚 is the total number of images.

As this linear distance interpolation may not be ideal, one can alternatively choose a bilinear distance interpolation
scheme that takes atomic bonds into account. Bonds between the atoms 𝐴 and 𝐵 in the initial and final images
are identified if their distance 𝑑𝐴𝐵 < 𝑡𝑏𝑜𝑛𝑑 = 𝑡𝑐 (𝑅

𝑐𝑜𝑣
𝐴 +𝑅𝑐𝑜𝑣𝐵 ) , where 𝑡𝑐 is an input factor impacting at what

distances a bond is detected by default taken to be 1.2, and 𝑅𝑐𝑜𝑣𝑋 is the covalent radius of atom 𝑋 . If a bond is
detected in one of the endpoint structures but not the other, two linear distance interpolations are performed to
obtain 𝑑𝜅𝐴𝐵,𝑖. The first interpolates the distance between the endpoint structure in which the atoms are bonded and
𝑡𝑏𝑜𝑛𝑑, the second interpolates the distance between 𝑡𝑏𝑜𝑛𝑑 and the endpoint structure in which the bond is broken.
The two linear distance interpolations are joined at the path position 𝑃𝑗𝑜𝑖𝑛 defaulted to 0.5, corresponding to the
midpoint on the path between the endpoint images. If the atoms are bonded in the initial structure but not in the
final structure, the interpolation is

𝑑𝜅𝐴𝐵, 𝑖 =

⎧⎨⎩𝑑𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐴𝐵 +
𝑃𝑖(𝑡𝑏𝑜𝑛𝑑−𝑑𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐴𝐵 )
𝑃𝑗𝑜𝑖𝑛

, if 𝑃𝑖 < 𝑃𝑗𝑜𝑖𝑛

𝑑𝑓𝑖𝑛𝑎𝑙𝐴𝐵 − (1−𝑃𝑖)(𝑑𝑓𝑖𝑛𝑎𝑙
𝐴𝐵 −𝑡𝑏𝑜𝑛𝑑)

(1.0−𝑃𝑗𝑜𝑖𝑛)
, if 𝑃𝑖 ≥ 𝑃𝑗𝑜𝑖𝑛 .

If the atoms are bonded in the final structure but not in the initial structure, the interpolation is

𝑑𝜅𝐴𝐵, 𝑖 =

⎧⎨⎩𝑑𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐴𝐵 − 𝑃𝑖(𝑑𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝐴𝐵 −𝑡𝑏𝑜𝑛𝑑)
1−𝑃𝑗𝑜𝑖𝑛

, if 𝑃𝑖 < 1− 𝑃𝑗𝑜𝑖𝑛

𝑑𝑓𝑖𝑛𝑎𝑙𝐴𝐵 +
(1−𝑃𝑖)(𝑡𝑏𝑜𝑛𝑑−𝑑𝑓𝑖𝑛𝑎𝑙

𝐴𝐵 )
𝑃𝑗𝑜𝑖𝑛

, if 𝑃𝑖 ≥ 1− 𝑃𝑗𝑜𝑖𝑛 .
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This bilinear interpolation leads to a slower increase of the atom distance in the bonded region compared to the
non-bonded region in most cases, emphesizing the bond breaking process and thus the region where the energy is
changed most by a change in the bond distance. If the change in the bond distance in the non-bonded region is slower
than the change in the bonded region, the implementation falls back to the regular linear distance interpolation.

In challenging cases, even the IDPP NEB calculation starting from a linear interpolation of the Cartesian coordi-
nates between the endpoint structures may not provide a reasonable initial path. This may happen when the linear
interpolation path has atoms come very close to each other in intermediate images, which leads to bond breaking
even after NEB optimization using the IDPP objective function. In such cases, a reasonable initial path can of-
ten be obtained by avoiding the linear interpolation by sequentially adding images to the path starting from both
endpoint structures instead. This method is referred to as sequential IDPP (S-IDPP).[766] The two sets of images
close to each endpoint structure are separated by a larger distance than the images in each set by choosing a smaller
spring constant than between the images in each set where equal spring constants are used. The images closest to
the center are converged in an NEB calculation and an image added at an appropriate distance from the converged
image between the two images closest to the center. This process is repeated until the requested amount of images
has been added. The tangent of the images closest to the center follows the improved tangent definition and always
treats them as extrema on the path, i.e. an average of the normalized distance vectors to the adjacent images is
used. The number of images used to form the S-IDPP initial path can be different from the number of images used
in the subsequent NEB calculation involving electronic structure calculations. It can be benficial to use an even
number of images in the S-IDPP computation since no image is placed at the center of the initial path then and
moving to the requested odd number of images in an additional IDPP NEB calculation afterwards. This option is
used by default, but can be deactivated. For systems involving very heavy rotations of large groups, the method
becomes more robust when twice the amount of images is used in the S-IDPP calculation. Half the images are then
removed automatically for the subsequent NEB calculation involving electronic structure calculations. This option
is available, but not used by default.

The user may have a preconceived notion of the saddle point configuration or have an estimate of the path from
a calculation carried out at a lower level of theory. The initial path can be generated in such a way as to include
an intermediate configuration as one of the images using the ‘NEB_TS_XYZFile’ keyword. Since this image will
be optimized along with the other intermediate images during the NEB calculation the guess does not have to be
accurate.

If inspection of the initial path reveals problems, e.g., unnecessary bond breaking, it is often a good idea to insert
a reasonable configuration into the initial interpolation to avoid such problems. Moreover, if an NEB calculation
is unable to converge to the MEP (or saddle point) with the given maximum number of iterations, the user can
restart the calculation from the ‘allxyz’ file (see file: basename_MEP.allxyz) which is written to the disk after each
iteration during the optimization. Note, when starting an NEB calculation from an output from a previous CI-NEB
calculation and vice-versa the band may require a few iterations to adjust the distribution of images to achieve the
desired distribution, depending on the selected spring type and the choice of NEB method.

If the system can be modeled reasonably well using the GFN-xTB method, another possible choice is the generation
of an initial path on XTB level (keywords ‘XTB0’, ‘XTB1’ or ‘XTB2’ for GFN0-xTB[699] GFN-xTB[332] or
GFN2-xTB[70]). In this case the initial path on IDPP level is refined using an NEB calculation on the chosen XTB
level. If this NEB run is successful, the entire MEP on XTB level is used as the initial path. If the NEB run on
XTB level is not successful, the initial path on IDPP level is used instead.

Another keyword that makes use of the XTB method is the ‘XTBTS’ keyword (‘XTB0TS’, ‘XTB1TS’ or
‘XTB2TS’). In this case the initial path on IDPP level is refined using an NEB-CI calculation on XTB level.
If the NEB-CI run is successful, the resulting CI structure is chosen as TS guess structure, and the final initial path
is generated using an IDPP path from reactant to TS guess and from TS guess to product. If the NEB-CI run on
XTB level is not successful, the initial path on IDPP level is used instead.
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7.29.5 Removal of translational and rotational degrees of freedom

For NEB and CI-NEB calculations of molecular systems it is important to project out the six (or five in the case
of linear molecules) degrees of freedom corresponding to the global rotation and translation of the system. This
can be done either at the start of a calculation or for each optimization step (keyword: quatern). For the latter, the
center-of-geometry of each image is translated to origin and a rotational matrix is constructed using the quater-
nion approach[577] to minimize the root-mean-square deviation between any two adjacent images. Depending on
whether a fixed center is used (keyword: fix_center), the images are either kept in that place or transferred back to
their original position. This procedure is repeated for any pair of adjacent images in each step of the optimization.
Also, the net effective NEB force is set to zero (keyword: remove_extern_force).[434]

7.29.6 Reparametrization of the path

In some cases it may be beneficial to enable redistribution of the images along the path every 𝑁 iterations (i.e.
analogous to the string method[240]) (keyword: reparam). The path is then interpolated using either a linear
or cubic polynomial fitted to both the coordinates and the tangent to the path, and the images are redistributed
evenly along the interpolated path. Both 𝑁 and the type of interpolation are specified by the user (keyword:
reparam_type). The cubic interpolation method should be better in calculations where the resolution of the path
and hence the estimate of the tangent is good, while the linear interpolation is generally more robust as it does not
as dependent on the tangent as much.

7.29.7 Useful output

After each iteration, the energy profile along the path is obtained by making a piecewise cubic polynomial interpo-
lation using both the energy and the component of the atom force tangentinal to the path[384]. The interpolation
can reveal important information about the MEP in locations between the intermediate images. The interpolation
is written to the file ‘interp’ (see file: basename.interp) in each step of the optimization. Moreover, as NEB and
CI-NEB calculations can be quite computationally demanding and in order to properly analyze what may have
gone wrong in such a calculation, the user can inspect the ‘.log’ file, which includes information about the type of
calculation, energy, length of the path, spring forces, atomic forces etc.

7.29.8 Important warning messages

Some tests are carried out during the optimization in order to detect problems on the fly. The angle between the
two straight lines going through an image and its neighbors on each side is calculated. If the angle becomes large
e.g. exceeding 90∘ the estimate of the tangent has likely become inaccurate and a better resolution of the path is
required. If the angle is close to 180∘ the ordering of the images may have become incorrect. Especially in the latter
case, it may be a good choice of action to terminate the calculation and include a larger number of intermediate
images in the subsequent calculation. Some information from the calculation, e.g, a guess for the saddle point,
could be incorporated in the new calculation.

Another issue is the identification of an intermediate minimum along the path. If an intermediate minimum is
observed in 𝑀 subsequent iterations (𝑀 is supplied by the user) a warning is issued to the user that a possible
intermediate minimum may exist along the path. It is a good idea to check the status of the calculation, the path and
the convergence behaviour. If the calculation appears to be proceeding normally and heading for convergence, the
best course of action is to allow the calculation to finish. However, it is in general better to carry out separate NEB
calculations for segments of the MEP on either side of the intermediate minimum. Especially, if the intermediate
minimum is deep w.r.t to the reactant and product state energy minima.

In such cases, the image closest to the apparent intermediate minimum is selected and a structural minimization
carried out. The resulting configuration is then used as the initial state or final state in the subsequent CI-NEB
calculations.
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7.29.9 Parallel execution

If the number of processes (NProcs) specified in the input is larger than 1, NEB will automatically start up in
multi-processes mode:

NProcs <= NImages
NProcs processes will handle NProcs images independently with 1 process per image. Choose NProcs =
X*NImages (e.g. X = 1 or 0.5)

NProcs > NImages
NProcs processes will handle NImage images, each image being treated by (NProcs/ NImages) processes.
If you want to dedicate more than 1 process to each single image-calculation, choose NProcs = X*NImages
(e.g. X = 2, 3, 4, . . . ).

Note: If in the second case multiple compute-nodes are involved, the user will need to define the ORCA specific
environment variable RSH_COMMAND, which tells the NEB driver how to connect to the individual nodes (set
it to either ‘rsh’ or ‘ssh’). However, this may not work with all queueing systems.

If the energy and force calculations are fast (e.g. with semiempirical methods), there is no gain in using multiple
processes per image. Starting up and finalizing MPI may consume more time than the gain from parallel processing.

7.29.10 zoomNEB

A preliminary version of the Zoom-NEB (Z-NEB) method has been included this implementation, where the ob-
jective of the method is to locate a saddle point more accurately with a better resolution compared to CI-NEB
calculations. The Z-NEB method is an automatic two step procedure, where in the first step a CI-NEB calculation
is carried out to obtain a rough convergence towards the MEP. Then, the region surrounding the highest energy
maximum along the path is identified and a new set of images distributed along this region. In the second step, a
free-end CI-NEB calculation is started from this new path. In this calculation, the endpoints are optimized accord-
ing to the atom force acting perpendicular to the path. This will ensure that the endpoints of the second CI-NEB
calculation will converge to the MEP, as well. Furthermore, to maintain the parallelization of the CI-NEB method,
same number of movable images are used in the first and second CI-NEB calculations.

7.29.11 NEB-TS

Probably the most efficient saddle point search methods are obtained when double ended methods (e.g. NEB)
are combined with single ended methods (e.g., eigenvector-following). In the current implementation, a combina-
tion of EW-CI-NEB and EF P-RFO (eigenvector-following partitioned rational function optimization) methods is
presented and referred to as the NEB-TS method [4].

In NEB-TS, the EW-CI-NEB method is used to partially converge to the MEP and hence saddle point, i.e., the
optimization of the images along the MEP is halted once the climbing image is converged to a prescribed tolerance.
Then, the climbing image is used to provide a subsequent eigenvector-following calculation with an accurate initial
guess configuration, as is shown in Fig. 7.23 and the tangent at the CI is used to select the eigenvector to be followed.
The tangent estimate should already provide an accurate approximation to the unstable mode at the saddle point.
The initial Hessian matrix needed for the eigenvector-following calculation can either be computed analytically
(if available) or taken as the Almlöf empirical Hessian matrix [264]. If the Almlöf Hessian matrix is used, the
curvature at the CI is estimated by using a finite difference approximation (i.e. using the atom force acting on the
neighboring images to CI) and used to scale the corresponding eigenvalue of the selected eigenvector, allowing the
eigenvector-following calculation to be started from a Hessian matrix of correct form. The typical ‘%geom’ block
can be used to modify the settings of the eigenvector-following calculation.
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Fig. 7.23: Illustration of how the NEB-TS method works on a two-dimensional Müller-Brown energy surface,
𝐸(𝑥, 𝑦) [539]. The calculation is started from a linear interpolation between the reactant and product energy
minima, using 𝑀 = 10. The images are displaced in the orthogonal direction to the path (red curves) using the
CI-NEB algorithm, until a rough convergence to the minimum energy path (white dashed curve) is obtained. The
climbing image then provides an approximate saddle point configuration that can be used to start eigenvector-
following partitioned rational function optimization to accurately (and swiftly) identify the (higher energy) first
order saddle point. The figure is taken from Ref. [4]

7.29.12 FAST-NEB-TS and LOOSE-NEB-TS

Since our first NEB-TS implementation, we investigated a lot more settings and variants, see [4]. Based on those
findings, two new algorithms and convergence threshold settings have been implemented into ORCA. FAST-NEB-
TS corresponds to the IDPP-TS in the paper, and LOOSE-NEB-TS corresponds to the actual NEB-TS defaults,
which are defined in the paper. Both features, FAST- and LOOSE-NEB-TS, show slightly lower robustness, but
need significantly less NEB cycles.

7.29.13 NEB / NEB-TS and TD-DFT

The NEB and NEB-TS algorithm now also works in combination with TD-DFT. The input:

! NEB-TS
%neb
product "product.xyz"
end
%tddft
NRoots 1
IRoot 1
end

not only computes the MEP and TS of the first excited state, but it also prints out (after NEB convergence) the
excited state as well as ground state energies over the MEP:

-----------------------------------------
Image E0 Root 1

(continues on next page)
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-----------------------------------------
0 -67.203 0.000
1 -66.443 1.517
2 -54.382 5.774
3 -42.483 10.473
4 -32.798 14.323
5 -28.056 16.108
6 -34.102 13.915
7 -48.125 8.249
8 -64.188 2.212
9 -67.066 0.018

You can even request an NEB-TS calculation on the ground state PES, and at the same time gain information on
the excited PES via the input:

! NEB-TS
%neb
product "product.xyz"
end
%tddft
NRoots 1
IRoot 0
end

During this NEB calculation, only ground state energies and gradients are computed. Only after NEB convergence,
the additional excited state energies are computed on each image, in order to yield the ordering of the states on the
MEP:

-----------------------------------------
Image E0 Root 1
-----------------------------------------

0 0.000 121.545
1 6.281 128.198
2 21.434 143.835
3 35.437 151.581
4 43.223 155.579
5 43.235 155.501
6 35.472 151.495
7 21.498 143.715
8 6.395 128.060
9 0.166 121.425

7.29.14 Summary of Keywords

The following keywords are available:

! NEB # NEB calculation
! NEB-CI # Climbing Image NEB calculation
! NEB-TS # NEB calculation plus subsequent TS optimization
! FAST-NEB-TS # NEB calculation with one iteration only plus subsequent TS opt.
! LOOSE-NEB-TS # NEB calculation with default convergence criteria from NEB-TS paper
! TIGHT-NEB-TS # NEB calculation with tighter convergence criteria plus

# subsequent TS optimization
! ZOOM-NEB # NEB calculation plus zoomed NEB calculation
! ZOOM-NEB-CI # Climbing Image NEB plus zoomed climbing image NEB calculation
! ZOOM-NEB-TS # NEB calculation plus zoomed NEB calculation plus subsequent

# TS optimization
! NEB-IDPP # IDPP (Initial Path) NEB calculation - for estimation of path

# length

(continues on next page)
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%neb
Product "product.xyz" # product structure. Input is mandatory.
NImages 8 # default 8. Number of images without fixed endpoints,

# for free_end total number of images
PrintLevel 1 # default 1. Normal printout. Use 0 for no printout, higher

# numbers (<=4) for more detailed printout.

TS "TSGuess.xyz" # Provide guess for the TS structure. Images
# are interpolated between reactant and TS guess
# and between TS guess and product.

NEB_TS_Image 3 # default -1. Number of the image the TS guess is used for.
# If not defined (=-1), the image which gives lowest RMSD
# for all image distances is used.

# Restart option: After each iteration the NEB method stores all image
# structures in an .allxyz file. In case of an abort this file can be used
# for a restart. File should contain the structures for all images.

Restart_ALLXYZFile "NEB1.allxyz"# use the trajectory from file if filename is
# provided

# Alternatively NEB can be started on user prepared wavefunctions for each image.
# The names of of these wavefunction files should consist of a user-chosen basename
# and the extension '_imN.gbw', where N is the image number.
# The basename should be provided in the input, ORCA will add extension '_imN.gbw'
Restart_GBW_BaseName "NEB2" # use the wavefunctions from file NEB2_imN.gbw

# Check SCF convergence: If true, SCF convergence is checked for and
# calculation aborts if:
# -any of the images does not show SCF convergence in four subsequent cycles.
# -any of the images does not show SCF convergence in two subsequent cycles
# after the gradient is converged.

CheckSCFConv true # default true

# PDB file input format:
Product_PDBFile "product.pdb" # Product structure in pdb format. If this is

# given, xyz does not need to be given.
TS_PDBFile "TSGuess.pdb" # TS guess structure in pdb format. If this is

# given, xyz does not need to be given.
Free_End false # Use free-end NEB. In this case the NImages

# corresponds to the total number of images.
PreOpt false # do optimization of reactant and product in

# internal coordinates before NEB starts
NSteps_FoundIntermediate 30 # Number of steps the intermediate has to be

# present
AbortIf_FoundIntermediate false # If an intermediate is found abort the run.
NPTS_Interpol 10 # Number of abscissa in cubic polynomial

# interpolation
Interpolation IDPP # Method to generate the images based on the

# reactant, product (and potentially TS guess)
# linear
# IDPP
# XTB0TS - TS on GFN0-xTB level
# XTB0 - entire path on GFN0-xTB level
# XTB1TS - TS on GFN1-xTB level
# XTB1 - entire path on GFN1-xTB level
# XTB2TS - TS on GFN2-xTB level
# XTB2 - entire path on GFN2-xTB level

Prepare_Frags true # Analyze endpoint structures for fragments.
# If two fragments are detected in an
# endpoint structure, reduce distance to
# maximum distance given by Max_Frag_Dist

(continues on next page)
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Max_Frag_Dist 3.5 # Maximum allowed fragment distance. If they
# are farther apart, reduce the distance to
# this value (Ang.)

Bond_Cutoff 1.2 # Factor to multiply sum of covalent radii of
# two atoms by. If the distance is smaller
# than the result, the atoms are considered
# bonded.

# The formulation used to estimate the tangent to the path
Tangent improved # improved (default)

# original

# The type of the spring interaction parallel to the path. Original springs apply
# spring interaction between each degree of freedom of adjacent images, while
# 'image' springs apply a spring interaction between the images
# Spring type
SpringType image # image / distance (default)

# dof / original
# ideal

SpringConst 0.01 # The spring constant used to scale the spring
# forces parallel to the path. If energy-weighted
# springs are used. This parameter gives the
# lower bound value of the spring constant

SpringConst2 0.1 # If energy-weighted spring forces are used.
# This parameters give the value for the upper
# bound value of the spring constant.

Energy_Weighted true # Employ energy-weighted springs. When
# energy-weighted springs are used, the
# images tend to accumlate in higher energy
# regions of the path.

# The type of the spring interaction perpendicular to the path. The perpendicular
# spring is introduced via a scaling function: cos, tan, costan, which all use
# the spring component perpendicular to the path.
# DNEB is the doubly nudged elastic band method.
PerpSpring no # no (default)

# cos
# tan
# cosTan
# DNEB

LLT_Cos true # Enables the cos-type spring force
# acting perpendicular to the band.

# Translational and rotational degrees of freedom
Quatern always # no,

# startonly
# always (default)

# Fix_center specifies whether the centroid of each image should be
# constrained to the origin of the coordinate system or to the center
# of each image individually.
Fix_center True

# Fix_center specifies whether the centroid of each image should be
# constrained to the origin of the coordinate system or to the center
# of each image individually.
Remove_extern_Force True # Removes the net effective NEB force before

# translation of the path

# Options for Free-End NEB
Free_End_Type Perp # Type of optimization of endpoints in free-end

(continues on next page)
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# NEB.
# contour - constrain end points to a fixed
# contour with energy EC, see below
# perp - allow end points to move according to
# perp. spring force
# full - allow to move according to full force,
# i.e. relax to energy minimum

Free_End_EC # Energy contour value for image 0 - needed for
# free_end_type = contour

Free_End_EC_End # Energy contour value for image N - needed for
# free_end_type = contour

Free_End_Kappa # harmonic restraint term - needed for
# free_end_type = contour

# Monitor convergence for all images or only the CI.
# Convergence type

ConvType all # all (default)
# CIOnly

CI false # Do Climbing image NEB

NEB_TS false # Do CI NEB and subsequent TS opt.

# Convergence tolerance. In Eh / Bohr (except Tol_Scale ).
Tol_MaxFP_I 1.e-3 # Default. The convergence tolerance for the

# maximum component of the atomic force
# perpendicular to the path.

Tol_RMSFP_I 5.e-4 # Default. The convergence tolerance for the rms
# atomic force perpendicular to the path. Only
# applies to regular images.

Tol_MaxF_CI 2.e-3 # The convergence tolerance for the maxmimum
# component of the atomic force acting on the CI.
# Only applies to (ZOOM-)NEB-CI/-TS calculations.
# Default is 5.e-4 (-CI) and 2.e-3 (-TS)

Tol_RMSF_CI 1.e-3 # The convergence tolerance for the rms atomic
# force acting on the CI. Only applies to (ZOOM-)NEB-CI.
# Default is 2.5e-4 (-CI) and 1.e-3 (-TS)

Tol_Turn_On_CI 2.e-2 # Thresholds for max. atomic force for switching on
# CI in (ZOOM-)NEB-CI and (ZOOM-)NEB-TS.
# Defaults: 0.02 for LBFGS, 0.2 for VPO and FIRE

Tol_Scale 10.0 # For convergence type 'all' the user can scale
# the convergence tolerance of the regular images
# relative to the CI values using this
# multiplicative factor. Only applies to (ZOOM-)NEB-CI
# and (ZOOM-)NEB-TS calculations.

# Interpolation and redistribution of the path is performed every 'reparam'
# iterations. The type of interpolation is set by reparam_type.
Reparam_type linear # Cubic

# Linear (default)
Reparam 0 # No. of iterations after which the path should be

# reparametrized
# 0 (default) means: reparametrization is off

Tol_Reparam 0.0 # User-defined threshold at which the path should be
# reparametrized
# 0.0 (default) means: reparametrization is off

# The optimization method used to converge the band on the MEP / saddle point.
# The L-BFGS is more aggressive and efficient, but also more error-prone.
# VPO is conservative and robust.
Opt_Method LBFGS # LBFGS (default)

(continues on next page)
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# VPO
# FIRE
# BFGS - TODO Villi correct?

# Options Optim. Method
Maxmove 0.1 # maximum component allowed per step. Default is 0.1 (LBFGS)

# and 0.2 (VPO / FIRE)
Stepsize 1.0 # multiplicative factor to scale the size of the step in each

# optimization cycle.
# Default is 1.0 (LBFGS) and 0.5 (VPO / FIRE)

MaxIter 500 # Maximum number of iterations. 500 for LBFGS, 1000 for VPO / FIRE.
Local false # Use local optimization.

# Default is false for NEB, but true for (ZOOM-)NEB-CI/-TS.

# Options LBFGS
LBFGS_Mem 20 # the number of previous steps to be kept in memory and used

# to construct the approximate Hessian matrix.
LBFGS_DR 1.e-3 # Size of the finite difference step taken at the

# initialization of L-BFGS
LBFGS_Restart_On_Maxmove true # Re-initialize L-BFGS for the next step when

# the 'max-move' limit is reached.
LBFGS_Reparam_On_Restart false # Re-parametrize when L-BFGS is re-initialized
LBFGS_Precondition true # If true, then after initialization, the curvature

# along direction of the force is estimated and
# used to determine the first step

# FIRE parameters
FIRE_INITIAL_DAMP 0.1 # Initial value for the damping factor
FIRE_DAMP_DECR" 0.99 # Decrease of the damping factor
FIRE_STEP_INCR" 1.1 # Factor to increase the stepsize
FIRE_STEP_DECR" 0.5 # Factor to decrease the stepsize
FIRE_MAX_STEP" 5.0 # Default is 10 x Stepsize
FIRE_RETENTION" 5 # Retention before starting acceleration

# Options Zoom
Tol_Turn_On_Zoom 0.1 # use ZOOM-NEB(-CI/TS)
Zoom_Offset 1 # if manual selection is chosen, how many

# images away from CI should be chosen
Zoom_Auto true # automatically select zoom region
Zoom_Alpha 0.5 # determines how much of the barrier

# zoom-auto should select
Zoom_Interpolation # linear (default)

# cubic
Zoom_PrintFullTrj # print full trajectory including fixed region during Zoom

# Set of parameters to adjust the IDPP pre-optimization when generating the initial
# path.
# Options IDPP

IDPP_NMax 7000 # maximum number of cycles allowed in IDPP
IDPP_Tol_MaxF 0.01 # tolerance on the maximum component of the

# atomic force perpendicular to the path.
# For S-IDPP, this setting is used in the
# final IDPP optimization after all images
# have been added to the path

IDPP_ksp 1.0 # spring constant used to scale the spring
# force parallel to the path.

IDPP_Alpha 0.01 # multiplicative factor to scale the size
# of the step in each opt. cycle

IDPP_MaxMove 0.05 # maximum component allowed per step
IDPP_Debug false # will print out the convergence of IDPP

# and also the optimization trajectory and

(continues on next page)
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# the log file for the IDPP run.
IDPP_Quatern true # Whether quaternions should be used in the

# IDPP optimization
# Interpolation scheme between the endpoint images to use for the pairwise atom
# distances to obtain the ideal distances. Bilinear identifies bonded atoms in
# one endpoint structure that are not bonded in the other and leads to a smaller
# change in the bond distance in the bonded region than in the non-bonded one.
IDPP_Dist_Interpolation # Linear (default)

# Bilinear
IDPP_Bilinear_Partition 0.5 # Path position at which to join the two

# linear distance interpolations. The default
# corresponds to the midpoint of the path.

SIDPP false # Whether the IDPP optimization should use a
# Cartesian linear interpolation initial
# guess or sequentially add images to the
# path

SIDPP_Tol_MaxF 0.01 # Tolerance on the maximum component of the
# atomic force perpendicular to the path
# acting on the images closest to the center
# of the path. This setting defines when
# new images are added to the path

SIDPP_Reparam true # Whether to reparameterize the path once
# after all images have been added to it
# (uses Reparam_type setting) before the
# final IDPP optimization of the full path

SIDPP_Energy_Weighted_Tangent false # Whether to use an energy weight in the
# tangent definition of the images closest
# to the center of the path

SIDPP_Even_NIm true # Whether to perform S-IDPP with one image
# less than requested until all images
# have been added to the path and then
# add the last image afterwards. This
# setting increases robustness of the
# method since no image is placed in the
# center of the path during image addition

SIDPP_Double_NIm false # Whether to perform S-IDPP with twice the
# amount of images and then remove half of
# them automatically. This setting
# increases robustness of the method for
# systems involving very heavy rotations of
# large groups

SIDPP_Ideal_Springconst false # Whether the spring constant between the
# images closest to the center of the path
# should be scaled according to the ratio
# of the number of images that have been
# placed on the path already and the
# requested number of images. This is a
# more aggressive setting pulling the
# images closest to the center of the path
# together more.

# Extra Output options
Monitor_Internals # Up to three internal coordinates can be defined

{B 0 1} # for which the values are printed during the NEB run.
{B 1 5} # Possible are (B)onds, (A)ngles, (D)ihedrals and (I)mpropers

end
end

Output files:

• Configuration and trajectory files:
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– basename_initial_path_trj.xyz: The initial path generated at the start of the NEB run and after mini-
mization of RMSD between the reactant and product states.

– basename_MEP_trj.xyz: The final converged MEP trajectory.

– basename_MEP_ALL_trj.xyz: The configurations of each image is appended to this file for each step
of the NEB optimization.

– basename_trj.xyz: The trajectory of TS optimization.

– basename_MEP.allxyz: Restart file that includes the configuration of each image from the last iteration
of an NEB or NEB-CI iteration.

– basename_NEB-CI_converged.xyz: The configuration of the climbing image after a successful NEB-
CI calculation.

– basename_NEB-HEI_converged.xyz: The configuration of the highest energy image after a successful
NEB calculation.

– basename.xyz: The configuration of the optimized saddle point using the TS optimization.

• Log files:

– basename.interp: The interpolated energy profile of the path for each iteration during the NEB/NEB-CI
optimization.

– basename.interp.final: The energy profile for the converged path of an NEB/NEB-CI optimization.

– basename.log: A general log file containing essential information regarding the run e.g., energy, forces
and step size.

7.30 Excited States via RPA, CIS, TD-DFT and SF-TDA

ORCA features a relatively efficient single-excitation CI (CIS), “random-phase approximation” (RPA) and time-
dependent DFT module that can be used to calculate excitation energies, absorption intensities and CD intensities.
Especially TD-DFT became very popular for excited state calculations as it offers significantly better results than
HF-CIS at about the same cost. However, there are also many pitfalls of TD-DFT, some of which are discussed in
reviews[613][615]. TD-DFT methods are available for closed-shell and spin-unrestricted reference states, together
with its collinear spin-flip variant. Analytic gradients are available for all these cases. There also is a doubles
correction implemented that improves the results (but also the computational cost). It is often used together with
double-hybrid functionals as explained below. The TD-DFT module of ORCA is also extensively used for the
calculation of X-ray absorption spectra at the K-edge of a given element.

Starting from version 6.0.0, the output format of the absorption wavelength, oscillator strength etc. has changed
compared to the 5.0.x version. For more details on the interpretation of the output, please refer to One Photon
Spectroscopy.

7.30.1 General Features

The module is invoked with the block:

%cis end

# or equivalently

%tddft end

There are a variety of options. The most important one is the number of excited states that you want to have
calculated:

%cis NRoots 10 end
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The convergence tolerances are given by:

%cis
...
ETol 1e-6
RTol 1e-6

end

The variable ETol gives the required convergence of the energies of the excited states (in Eh) and RTol is the
required convergence on the norm of the residual vectors. Under normal ciorcumstances the calculations need
about 5-10 iterations to converge to the default convergence tolerances.

Once converged, the program prints the wave function composition. To keep the printing concise, coefficients
smaller than 0.01 are omitted. The threshold can be adjusted with the keyword TPrint.

%cis
...
TPrint 0.0001 # cut-off for the wave function printing, default= 0.01

end

If closed-shell references are used the program can calculate the singlet and spin-adapted triplet excited states at
the same time by using:

%cis
...
triplets true

end

This is available for all combinations of methods, including analytic gradients, and for double-hybrids.

In order to control the orbitals that should be taken into account in the calculation two mechanisms are available.
The first mechanism is the default mechanism and consists of specifying and orbital energy window within which
all single excitations will be considered:

%cis
...
EWin -3,3 # (orbital energy window in Eh)

end

Thus, the default is to keep core orbitals frozen and to neglect very high lying virtual orbitals which is a sensible
approximation. However, you may want to consider to include all virtual orbitals by choosing for example EWin
-3,10000. The second mechanism is to explicitly give an orbital energy window for each operator, i.e.

%cis
...
OrbWin[0] = 2,-1,-1,14 # orbital window for spin-up MOs
OrbWin[1] = 2,-1,-1,16 # orbital window for spin-down MOs

end

The “-1“‘s in the above example mean that the HOMO and LUMO for the spin-.up and spin-down orbitals will be
automatically determined by the program. In other words, in the above example, only the following excitations are
included in the TDDFT calculation:

• Excitations from any occupied alpha orbital whose index is between 2 (inclusive) and that of the alpha
HOMO (inclusive), to any virtual alpha orbital whose index is between that of alpha LUMO (inclusive) and
14 (inclusive)

• Excitations from any occupied beta orbital whose index is between 2 (inclusive) and that of the beta HOMO
(inclusive), to any virtual beta orbital whose index is between that of beta LUMO (inclusive) and 16 (inclu-
sive)

For calculations based on a restricted reference, OrbWin[1] will be ignored.

In using the CIS/TD-DFT module five different types of calculations should be distinguished:
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• Semiempirical methods

• Hartree-Fock calculations

• DFT calculations without HF exchange (non-hybrid functionals)

• DFT calculations with HF exchange (hybrid functionals)

• DFT calculations with HF exchange and MP2 correlation (double-hybrid functionals)

7.30.2 Semiempirical Methods

The semiempirical INDO/S method is very suitable to calculate absorption spectra of medium sized to large organic
and inorganic molecules. It has been parameterized by the late M. C. Zerner for optical spectroscopy and in my
experience at least, it tends to work nicely for many systems. With the semiempirical approach it is easy to calculate
many states of large molecules. For example, consider the following calculation on a bis-histidine ligated iron-
porphyrin model (in the Fe(II) state) that includes 92 atoms and ≈ 16,500 CSFs in the single excitation space. Yet
the calculation requires only a few minutes on an ordinary computer for the prediction of the first 40 excited states.

The calculated spectrum is in essentially reasonable agreement with experiment in showing a huge band around
400 nm (the famous Soret band) and a smaller but still intense band between 500 and 550 nm (the Q-band). There
are no predicted absorptions below ≈ 10,000 cm−1.

The input for the job is shown below:

# Test CIS in conjunction with INDO/S

! ZINDO/S TightSCF DIIS NoMOPrint
%cis NRoots 40

end
* xyz 0 1
Fe -0.01736 0.71832 -0.30714
C 2.65779 4.03195 -0.13175
C 3.51572 3.02488 -0.24101
C 2.66971 1.82027 -0.30891
C 3.30062 0.51609 -0.42755
C 2.61022 -0.60434 -0.47131
C 3.32146 -1.89491 -0.57434
C 2.35504 -2.79836 -0.57179
C 1.11740 -1.99868 -0.46878
C -0.04908 -2.61205 -0.44672
C -1.30967 -1.89127 -0.38984
C -2.58423 -2.63345 -0.40868
C -3.50492 -1.68283 -0.37930
C -2.72946 -0.42418 -0.33711
C -3.35747 0.73319 -0.28970
C -2.66935 2.01561 -0.22869
C -3.31167 3.19745 -0.16277
C -4.72835 3.62642 -0.14517
C -5.84825 2.89828 -0.20597
C -2.21443 4.15731 -0.09763
C -1.11572 3.39398 -0.14235
C 0.19578 4.02696 -0.10122
C 1.33370 3.36290 -0.15370
C 3.09165 5.44413 -0.02579
C 2.35656 6.55323 0.10940
N 1.43216 2.09428 -0.24815
N 1.34670 -0.74673 -0.42368
N -1.39885 2.15649 -0.21891
N -1.47620 -0.63353 -0.34705
C 5.03025 3.02708 -0.28544
C 4.81527 -2.12157 -0.66646
C -5.01065 -1.83771 -0.38886
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750 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

(continued from previous page)

C -2.28137 5.66820 -0.00321
C -2.73691 -4.14249 -0.43699
C -2.42579 -4.72805 -1.83259
C 2.45978 -4.31073 -0.64869
C 2.19678 -4.82182 -2.08201
C 1.60835 -6.22722 -2.10748
C -1.90102 -6.15737 -1.82447
O -1.96736 -6.92519 -2.75599
O 1.60982 -7.01844 -1.19330
O -1.15355 -6.41323 -0.74427
O 0.89871 -6.41433 -3.22828
H 4.17823 5.62170 -0.05623
H 2.86221 7.53117 0.17503
H 1.26303 6.57673 0.17212
H 0.21799 5.11603 -0.03468
H -1.78003 6.14426 -0.87498
H -3.32281 6.05139 0.01906
H -1.78374 6.03115 0.92347
H -4.89690 4.71221 -0.07358
H -6.82566 3.40843 -0.18007
H -5.88239 1.80643 -0.28628
H -4.44893 0.70720 -0.28575
H -5.32107 -2.89387 -0.54251
H -5.45075 -1.49552 0.57400
H -5.46788 -1.24144 -1.20929
H -2.05997 -4.55939 0.34045
H -3.76430 -4.43895 -0.12880
H -3.33638 -4.66246 -2.47119
H -1.65517 -4.10119 -2.33605
H -0.56422 -7.14866 -1.00437
H 0.26056 -7.12181 -3.00953
H 1.48118 -4.13253 -2.58671
H 3.13949 -4.79028 -2.67491
H 3.46153 -4.65168 -0.30336
H 1.73023 -4.75206 0.06633
H 5.26172 -1.51540 -1.48550
H 5.31767 -1.84036 0.28550
H 5.06416 -3.18438 -0.87628
H -0.07991 -3.70928 -0.48866
H 4.39835 0.46775 -0.47078
H 5.39550 2.59422 -1.24309
H 5.47197 4.04179 -0.19892
H 5.44914 2.41988 0.54738
N 0.01831 0.60829 1.68951
C 0.02054 1.64472 2.54371
C 0.04593 -0.50152 2.45186
N 0.04934 1.20474 3.84418
C 0.06582 -0.16578 3.80848
H 0.00322 2.72212 2.31829
N -0.05051 0.81937 -2.30431
H 0.05251 -1.53704 2.08183
C 0.11803 1.92670 -3.04495
H 0.05712 1.81091 4.70485
H 0.08982 -0.83278 4.68627
C -0.24302 -0.18840 -3.17641
C -0.19749 0.28568 -4.49059
N 0.03407 1.63309 -4.38373
H 0.30109 2.95786 -2.70479
H -0.41432 -1.24242 -2.91290
H -0.31761 -0.27403 -5.43315
H 0.12975 2.31943 -5.17616

(continues on next page)
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*

Fig. 7.24: Structure of the iron-porphyrin used for the prediction of its absorption spectrum (the structure was
obtained from a molecular mechanics calculation and the iron-imidazole bondlength was set to 2.0 Å).
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Fig. 7.25: The ZINDO/S predicted absorption spectrum of the model iron porphyrin shown above. The spectrum
has been plotted using the orca_mapspc tool.

Note that ORCA slightly departs from standard ZINDO/S in using dipole integrals in the intensity calculations that
include all one- and two-center terms which are calculated via a STO-3G expansion of the Slater basis orbitals.
The calculated intensities are not highly accurate anyways. In the present case they are overestimated by a factor
of ≈ 2.

7.30.3 Hartree-Fock Wavefunctions

When applying the procedures outlined above to pure Hartree-Fock, one obtains the “random-phase approximation”
(RPA) or the CI singles (CIS) model (when effectively using the Tamm-Dancoff Approximation, TDA). In general,
RPA and CIS calculations do not lead to good agreement with experimental excitation energies and errors of 1-5
eV are common. Therefore HF/CIS is mostly a qualitative tool or can be used with caution for larger molecules if
more extensive and more well balanced CI calculations are not computationally tractable.

7.30.4 Non-Hybrid and Hybrid DFT

For DFT functionals there is the choice between the full TD-DFT (eq. (7.219)) treatment and the so-called Tamm-
Dancoff approximation (TDA). (︂

A B
B* A*

)︂(︂
X
Y

)︂
=

(︂
𝜔 0
0 −𝜔

)︂(︂
X
Y

)︂
(7.219)

The TDA is the same approximation that leads from RPA to CIS (i.e. neglect of the so-called “B” matrix, see eq.
(7.220)). The results for vertical excitation energies are usually very similar between the two approaches.

AXTDA = 𝜔TDAXTDA (7.220)
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In general, the elements of matrix “A” and “B” for singlet-singlet excitations in the spin-restricted case are given
by eqs. (7.221) and (7.222).

𝐴𝑖𝑎,𝑗𝑏 =𝛿𝑖𝑗𝛿𝑎𝑏(𝜖𝑎 − 𝜖𝑖) + 2(𝑖𝑎|𝑗𝑏)− 𝑎X(𝑖𝑗|𝑎𝑏)
+ (1− 𝑎X)(𝑖𝑎|𝑓XC|𝑗𝑏)

(7.221)

and

𝐵𝑖𝑎,𝑗𝑏 = 2(𝑖𝑎|𝑏𝑗)− 𝑎X(𝑖𝑏|𝑎𝑗) + (1− 𝑎𝑥)(𝑖𝑎|𝑓XC|𝑏𝑗). (7.222)

Here, 𝑖, 𝑗 denote occupied and 𝑎, 𝑏 virtual orbitals. 𝑎X is the amount of non-local Fock exchange in the density
functional. If 𝑎X is equal to one, eqs. (7.219) and (7.220) correspond to the RPA and CIS case, based on a Hartree-
Fock ground state determinant.

The TDA is actually the default method for TD-DFT, and can be turned off by:

%tddft
TDA false

end

There are situations where hybrid functionals give significantly better results than pure functionals since they suffer
less from the self-interaction error. In those cases, the RIJCOSX procedure[624] [415][383] leads to very large
speedups in such calculations at virtually no loss in accuracy[676], and is turned on by default whenever the SCF
uses that too.

7.30.5 Collinear Spin-Flip TDA (SF-TD-DFT)

Another approach to obtain excited states via CIS/TD-DFT are the so called spin-flip methods (for a good review,
please check ref [144]). The idea is to start from an UHF state, and then “flip” one of the alpha electrons to generate
states with 𝑀𝑆𝑆𝐹 = 𝑀𝑆𝑈𝐻𝐹 − 1. In order to do that, we look for excitations from alpha-to-beta orbitals only,
and that makes the A matrix from TDA even simpler:

𝐴𝑆𝐹𝑖�̄�,𝑗�̄� = 𝛿𝑖𝑗𝛿�̄��̄�(𝜖�̄� − 𝜖𝑖)− 𝑎X(𝑖𝑗|�̄��̄�) (7.223)

where the overbar represent beta orbitals, and no-overbars alpha orbitals.

OBS.: Please note that for pure DFT (with 𝑎𝑋 = 0, and no HF contribution), the A matrix is based simply in the
orbital energies, and thus it is always good to have a good amount of HF on the functional!

In order to facilitate the discussion on the results one gets from the SF-TDA, let’s take a closer look at the picture
representing some possible excitations:

Fig. 7.26: Effect of the spin-flip operator on a UHF (𝑀𝑆 = 3) wavefunction. The “spin-complete” states are
eigenvectors of the 𝑆2 operator, while the “spin-incomplete” are not. Alpha and beta orbitals here are represented
with the same energy, just to simplify the image. Adapted from the previously mentioned review.
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It is important to note that no all SF-excitations lead to determinants that are eigenvalues of the 𝑆2 operator. That
means, depending on how much of these “spin incomplete” excitations are present in the final SF-state, the spin-
contamination could be high, and in this case, states with ⟨𝑆2⟩ ≃ 1 would be predicted. These are undefined states
within the SF theory and should be treated carefully.

OBS.: Any SF method can only be used starting from a UHF wavefunction, with a multiplicity of at least 3!

First example: methylene and SF-CIS

One simple example is the calculation of the vertical singlet-triplet splitting of the methylene radical within CIS,
using the following input with symmetry included:

!HF 6-31G USESYM
%TDDFT SF TRUE END
* XYZ 0 3
C 0 0 0.1058
H 0 0.9910 -0.3174
H 0 -.9910 -.3174
*

The geometry was taken from a high-level CCSD(T)/cc-pVQZ (𝑋3𝐵1) optimized geometry, and after the regular
UHF SCF, the SF-CIS result is:

---------------------
SF-CIS EXCITED STATES
---------------------

the weight of the individual excitations are printed if larger than 1.0e-02

(SPIN-FLIP GROUND STATE)
STATE 1: E= 0.004953 au 0.135 eV 1087.0 cm**-1 <S**2> = 2.044208 Sym: B1

1a -> 3b : 0.018853 (c= 0.13730475)
3a -> 3b : 0.474153 (c= -0.68858776)
3a -> 10b : 0.015096 (c= -0.12286571)
4a -> 4b : 0.451519 (c= 0.67195159)
4a -> 9b : 0.023981 (c= 0.15485668)

STATE 2: E= 0.065212 au 1.774 eV 14312.3 cm**-1 <S**2> = 0.019616 Sym: A1
3a -> 4b : 0.126253 (c= 0.35532096)
4a -> 3b : 0.833446 (c= -0.91293269)
4a -> 10b : 0.017089 (c= -0.13072354)

STATE 3: E= 0.085608 au 2.330 eV 18788.7 cm**-1 <S**2> = 0.028873 Sym: B1
3a -> 3b : 0.461538 (c= 0.67936623)
3a -> 10b : 0.010687 (c= 0.10337584)
4a -> 4b : 0.497210 (c= 0.70513090)
4a -> 9b : 0.018632 (c= 0.13649832)

Now, it is very important to consider that the SF ground state is not the UHF ground state anymore, the
“new” ground state within the SF scheme is actually STATE 1. You can think of the UHF as being only an initial
model, on the basis of which the SF states are built. The final energy of the new ground state is actually the SCF
energy + energy of the STATE 1 (which is the one given as the FINAL SINGLE POINT ENERGY is no IROOT
is given). This last contribution can be either positive or negative, depending on the case.

Anyway, the ground state is predicted to be a triplet state (here with𝑀𝑆 = 0), as expected for this carbene, and the
S-T spiting energy is 1.774 − 0.135 eV = 1.639 eV. The full CI results for that is 1.50 eV, so it is already almost
there! Of course, in this case computing the RHF singlet - UHF triplet makes no sense, since the RHF singlet
would not have the necessary open-shell singlet character.
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Benzyne and SF-TDA

Benzyne is a classic diradical that can be generated from benzene by hydrogen abstraction (Fig. 7.27). It is known
to have an open-shell singlet ground state, and has its adiabatic sinlget-triplet splitting measured experimentally.
Let’s try to compute this value using SF-TDA with ORCA.

Fig. 7.27: Lewis representation of the benzene and benzyne molecules, indicating the diradical character of the
later.

First, we optimize the open-shell singlet by using SF, and the input that follows. Here we use now DFT, in particular
the BHANDHLYP functional, which uses 50% of HF correlation, and is recommended for this kind of application.
By default, the IROOT to be optimized is 1, which in this case corresponds to the SF ground state.

!BHANDHLYP DEF2-TZVPD OPT
%TDDFT

SF TRUE
NROOTS 3

END
* xyz 0 3
C -1.39113 0.00000 0.00000
C 0.69557 1.20476 0.00000
C -0.69557 1.20476 0.00000
C -0.69557 -1.20476 0.00000
C 0.69557 -1.20476 0.00000
C 1.39113 0.00000 0.00000
H -1.24291 2.15278 0.00000
H -1.24291 -2.15278 0.00000
H 1.24291 -2.15278 0.00000
H 1.24291 2.15278 0.00000
*

And after the optimization of IROOT 1, the final SF-TDA result is:

---------------------
SF-TDA EXCITED STATES
---------------------

the weight of the individual excitations are printed if larger than 1.0e-02

(SPIN-FLIP GROUND STATE)
STATE 1: E= 0.024231 au 0.659 eV 5318.2 cm**-1 <S**2> = 0.023398

11a -> 19b : 0.018546 (c= -0.13618298)
17a -> 20b : 0.245671 (c= -0.49565233)
17a -> 27b : 0.016834 (c= 0.12974401)
20a -> 19b : 0.666596 (c= -0.81645317)
20a -> 25b : 0.020096 (c= 0.14176006)

STATE 2: E= 0.032598 au 0.887 eV 7154.5 cm**-1 <S**2> = 2.018033
11a -> 20b : 0.015438 (c= -0.12424884)
17a -> 19b : 0.448627 (c= -0.66979616)
17a -> 25b : 0.017992 (c= 0.13413494)
20a -> 20b : 0.460929 (c= -0.67891734)
20a -> 27b : 0.024021 (c= 0.15498845)

(continues on next page)

756 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

(continued from previous page)

STATE 3: E= 0.106572 au 2.900 eV 23389.9 cm**-1 <S**2> = 1.029619
15a -> 20b : 0.051524 (c= 0.22698827)
18a -> 19b : 0.910478 (c= -0.95418975)
18a -> 25b : 0.017481 (c= 0.13221571)

confirming the singlet ground state, with an upper triplet excited state.

Now to optimize the triplet state using SF-TDA, one has to use a similar input, except that now IROOT 2 has to be
chosen as the one to be optimized:

!BHANDHLYP DEF2-TZVPD OPT
%TDDFT SF TRUE

NROOTS 3
IROOT 2

END
* xyz 0 3
C -1.39113 0.00000 0.00000
C 0.69557 1.20476 0.00000
C -0.69557 1.20476 0.00000
C -0.69557 -1.20476 0.00000
C 0.69557 -1.20476 0.00000
C 1.39113 0.00000 0.00000
H -1.24291 2.15278 0.00000
H -1.24291 -2.15278 0.00000
H 1.24291 -2.15278 0.00000
H 1.24291 2.15278 0.00000
*

After the optimization, the final predicted adiabatic singlet-triplet gap is 0.163 eV, very close to the experimental
value of 0.165 eV [178], and even better than what the Broken-Symmetry (BS) result would be (0.074 eV).

method ∆𝑎𝑑
𝑆𝑇 (𝑒𝑉 )

Exp 0.165 ± 0.016
SF-TDA 0.163
CCSD(dT) 0.172
∆UKS 1.477
BS 0.074

7.30.6 Including solvation effects via LR-CPCM theory

The LR-CPCM theory, as developed by Cammi and Tomasi [134], is implemented for both energies and gradients
of excited states. It is turned on by default, whenever CPCM is also requested for the ground state.

The major change is that now there is a 𝐺𝑖𝑎,𝑗𝑏 term in the A part of Eq. (7.219), related to solvation effects.

𝐴𝑖𝑎,𝑗𝑏 =𝛿𝑖𝑗𝛿𝑎𝑏(𝜖𝑎 − 𝜖𝑖) + 2(𝑖𝑎|𝑗𝑏) + 2𝐺𝑖𝑎,𝑗𝑏

− 𝑎X(𝑖𝑗|𝑎𝑏) + (1− 𝑎X)(𝑖𝑎|𝑓XC|𝑗𝑏)
(7.224)

where 𝐺𝑖𝑎,𝑏𝑗 is defined as:

𝐺𝑖𝑎,𝑗𝑏 = (V𝑖𝑎)
𝑇q𝑗𝑏 (7.225)
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Equilibrium and non-equilibrium conditions

These charges 𝑞𝑗𝑏 are calculated in the same way as described in The Conductor-like Polarizable Continuum Model
(C-PCM), but for excited states, two different values of 𝜀 can be used, depending on the dynamics of the system:

• Non-equilibrium: If the calculation assumes that the electronic excitation is so fast, that there is no time
for the solvent to reorganize around the solute, then the 𝜀inf of the solvent is used, which is equivalent to the
square of the refractive index. That is the case if one wants to compute the vertical excitation energy, and it
is the default in that case.

• Equilibrium: If the excited state is assumed to be completely solvated, then the true dielectric constant 𝜀 of
the solvent should be used. That is the case for geometry optimizations, frequencies or inside ORCA_ESD.
This is turned on by default whenever analytic gradients are requested.

In any case, these conditions can be controlled by the flag CPCMEQ, that can be set to TRUE or FALSE by the
user, and will then override the defaults.

These are available to all CIS/TD-DFT options: singlets, spin-adapted triplets, UHF and spin-flip variants. It works
inclusive for double-hybrids and whenever SOC is requested.

Population Analysis of Excited States

If you want to print a population analysis for the excited state using CIS/TD-DFT, there are two options available:
using unrelaxed or relaxed densities. For the unrelaxed densities, simply use UPOP TRUE:

!B3LYP DEF2-SVP
%TDDFT NROOTS 5

UPOP TRUE
END
* XYZ 0 1
O -1.88199 1.42016 -0.00000
C -1.80947 0.20286 0.00000
H -2.50488 -0.38174 -0.59212
H -1.04956 -0.29504 0.59212
*

and the atomic changes and bond orders will be printed for the chosen IROOT (default 1):

------------------------------------------------------------------------------
UNRELAXED CIS/TDA DENSITY POPULATION ANALYSIS

IROOT 1
------------------------------------------------------------------------------
------------------------------------------------------------------------------

ORCA POPULATION ANALYSIS
------------------------------------------------------------------------------
Input electron density ... form.cisp
BaseName (.gbw .S,...) ... form

********************************
* MULLIKEN POPULATION ANALYSIS *
********************************

-----------------------
MULLIKEN ATOMIC CHARGES
-----------------------

0 O : 0.166776
1 C : -0.402481
2 H : 0.117828
3 H : 0.117876

(...)

(continues on next page)
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*****************************
* MAYER POPULATION ANALYSIS *
*****************************

NA - Mulliken gross atomic population
ZA - Total nuclear charge
QA - Mulliken gross atomic charge
VA - Mayer's total valence
BVA - Mayer's bonded valence
FA - Mayer's free valence

ATOM NA ZA QA VA BVA FA
0 O 7.8332 8.0000 0.1668 2.5573 1.4373 1.1200
1 C 6.4025 6.0000 -0.4025 3.8545 3.1963 0.6582
2 H 0.8822 1.0000 0.1178 0.9737 0.8626 0.1112
3 H 0.8821 1.0000 0.1179 0.9737 0.8625 0.1112

Mayer bond orders larger than 0.100000
B( 0-O , 1-C ) : 1.4379 B( 1-C , 2-H ) : 0.8792 B( 1-C , 3-H ) : 0.8792

To get the analysis from the relaxed density, simply use !ENGRAD to a run a gradient calculation:

!B3LYP DEF2-SVP ENGRAD
%TDDFT NROOTS 5
END
* XYZ 0 1
O -1.88199 1.42016 -0.00000
C -1.80947 0.20286 0.00000
H -2.50488 -0.38174 -0.59212
H -1.04956 -0.29504 0.59212
*

and the printout is:

------------------------------------------------------------------------------
RELAXED CIS/TDA DENSITY POPULATION ANALYSIS

IROOT 1
------------------------------------------------------------------------------
------------------------------------------------------------------------------

ORCA POPULATION ANALYSIS
------------------------------------------------------------------------------
Input electron density ... form.cisp
BaseName (.gbw .S,...) ... form

********************************
* MULLIKEN POPULATION ANALYSIS *
********************************

-----------------------
MULLIKEN ATOMIC CHARGES
-----------------------
0 O : -0.094934
1 C : -0.074730
2 H : 0.084824
3 H : 0.084840
Sum of atomic charges: 0.0000000

(...)

In order to print the analysis for multiple states, simply use IROOTLIST and TROOTLIST:
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!B3LYP DEF2-SVP
%TDDFT NROOTS 5

IROOTLIST 1,2,3
TROOTLIST 1,2,3
UPOP TRUE

END
* XYZ 0 1
O -1.88199 1.42016 -0.00000
C -1.80947 0.20286 0.00000
H -2.50488 -0.38174 -0.59212
H -1.04956 -0.29504 0.59212
*

7.30.7 Simplified TDA and TD-DFT

ORCA also supports calculations of excited states using the simplified Tamm-Dancoff approach (sTDA) by S.
Grimme[323]. The sTDA is particularly suited to calculate absorption spectra of very large systems. sTDA as well
as the simplified time-dependent density functional theory (sTD-DFT)[69] approach require a (hybrid) DFT ground
state calculation. For large systems, using range-separated hybrid functionals (e.g. 𝜔B97X) is recommended.[725]
The sTD-DFT approach in particular yields much better electronic circular dichroism (ECD) spectra and should
be used for this purpose.

Theoretical Background

A brief outline of the theory will be given in the following. For more details, please refer to the original papers[69,
323]. In the sTDA, the TDA eigenvalue problem from eq. (7.220) is solved using a truncated and semi-empirically
simplified 𝐴′ matrix. The trunctation negelects all excitations that are beyond the energy range of interest, except
a few strongly coupled ones. The matrix elements from eq. (7.221) are simplified by neglecting the response of
the density functional and by approximating the remaining two-electron integrals as damped Coulomb interactions
between transition/charge density monopoles. In the following, the indices 𝑖, 𝑗 denote occupied, 𝑎, 𝑏 virtual and
𝑝, 𝑞 either kind of orbitals.

𝐴′𝑖𝑎,𝑗𝑏 = 𝛿𝑖𝑗𝛿𝑎𝑏(𝜖𝑎 − 𝜖𝑖) +
𝑁atoms∑︁
𝐴,𝐵

(2𝑞𝐴𝑖𝑎𝛾
𝐾
𝐴𝐵𝑞

𝐵
𝑗𝑏 − 𝑞𝐴𝑖𝑗𝛾𝐽𝐴𝐵𝑞𝐵𝑎𝑏) (7.226)

𝑞𝐴𝑝𝑞 and 𝑞𝐵𝑝𝑞 are the transition/charge density monopoles located on atom𝐴 and𝐵, respectively. These are obtained
from Löwdin population analysis (see Sec. Löwdin Population Analysis). 𝜖𝑝 is the Kohn-Sham orbital energy of
orbital 𝑝. 𝛾𝐾𝐴𝐵 and 𝛾𝐽𝐴𝐵 are the Mataga-Nishimoto-Ohno-Klopman damped Coulomb operators for exchange-type
(𝐾) and Coulomb-type (𝐽) integrals, respectively.

𝛾𝐽𝐴𝐵 =

(︂
1

(𝑅𝐴𝐵)𝛽 + (𝑎X𝜂)−𝛽

)︂ 1
𝛽

(7.227)

𝛾𝐾𝐴𝐵 =

(︂
1

(𝑅𝐴𝐵)𝛼 + 𝜂−𝛼

)︂ 1
𝛼

(7.228)

Here, 𝜂 is the arithmetic mean of the chemical hardness of atom𝐴 and𝐵. 𝛼 and 𝛽 are the parameters of the method
and are given by:

𝛼 = 𝛼1 + 𝑎𝑥𝛼2 (7.229)

𝛽 = 𝛽1 + 𝑎𝑥𝛽2 (7.230)

For any global hybrid functional, 𝛼1, 𝛼2, 𝛽1 and 𝛽2 are identical. 𝛼 and 𝛽 then depend on the amount of Fock
exchange (𝑎X) only. This is different for range-separated hybrid functionals where 𝛼2 and 𝛽2 are set to zero.
𝛼1 and 𝛽1 along with a value 𝑎𝑥 for the sTDA treatment are individually fitted for each range-separated hybrid
functional.[725] It can bee seen from eq. (7.226) that the method is asymptotically correct which is crucial for
excitations of charge transfer type.
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In sTD-DFT, eq. (7.219) is solved using the simplified matrices 𝐴′ (see above) and 𝐵′.

𝐵′𝑖𝑎,𝑗𝑏 =

𝑁atoms∑︁
𝐴,𝐵

(2𝑞𝐴𝑖𝑎𝛾
𝐾
𝐴𝐵𝑞

𝐵
𝑏𝑗 − 𝑎X𝑞

𝐴
𝑖𝑏𝛾

𝐾
𝐴𝐵𝑞

𝐵
𝑎𝑗) (7.231)

This approach yields better transition dipole moments and therefore spectra but the method is more costly than
sTDA (a factor of 2–5 for typical systems). The parameters used in sTDA and sTD-DFT are identical. There are
no additional parameters fitted for this method.

Calculation Set-up

sTDA and sTD-DFT can be combined with any (restricted or unrestricted) hybrid DFT singlepoint calculation.
Gradients and frequencies are not implemented! The methods can be invoked via the %tddft block. Table Keyword
list for sTDA and sTD-DFT. gives a list of the possible keywords.

Table 7.22: Keyword list for sTDA and sTD-DFT.

Mode sTDA Invokes a sTDA calculation
Mode sTDDFT Invokes a sTD-DFT calculation
EThresh 𝑣𝑎𝑙𝑢𝑒 Energy threshold up to which CSFs are included (in eV)
PTLimit 𝑣𝑎𝑙𝑢𝑒 Energy threshold up to which CSFs beyond EThresh may be selected (in eV)
PThresh 𝑣𝑎𝑙𝑢𝑒 Selection criterion to include CSF beyond EThresh (in Eh)
axstda 𝑣𝑎𝑙𝑢𝑒 Fock exchange parameter used in sTDA/sTD-DFT calculation (for range-separated hybrids)
beta1 𝑣𝑎𝑙𝑢𝑒 Constant part of 𝐽 integral parameter 𝛽
beta2 𝑣𝑎𝑙𝑢𝑒 𝑎X scaled part of 𝐽 integral parameter 𝛽
alpha1 𝑣𝑎𝑙𝑢𝑒 Constant part of 𝐾 integral parameter 𝛼
alpha2 𝑣𝑎𝑙𝑢𝑒 𝑎X scaled part of 𝐾 integral parameter 𝛼
triplets true Calculate singlet-triplet excitations (default: singlet-singlet)

The following example shows how to run such a sTDA calculation using the BHLYP functional if one is interested
in all excitations up to 10 eV.

! bhlyp def2-SV(P) nososcf tightscf
! smallprint printgap nopop
%maxcore 5000
%tddft
Mode sTDA
Ethresh 10.0
maxcore 5000
end

* xyzfile 0 1 coord.xyz

Replacing Mode sTDA by Mode sTDDFT will invoke a sTD-DFT calculation instead. This is shown in the next
example in combination with the 𝜔B97X functional and user specified parameters:

! wb97x def2-SV(P) nososcf tightscf
! smallprint printgap nopop
%maxcore 5000
%tddft
Mode sTDDFT
Ethresh 10.0
axstda 0.56
beta1 8.00
beta2 0.00
alpha1 4.58

(continues on next page)
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alpha2 0.00
maxcore 5000
end

* xyzfile 0 1 coord.xyz

For the range-separated hybrid functionals LC-BLYP, CAM-B3LYP, 𝜔B97, 𝜔B97X, 𝜔B97X-D3 and 𝜔B97X-
D3BJ, parameters are available and will be used by default if one of these functionals is used. The way of specifying
parameters as shown above is useful if there is a range-separated hybrid functional that has not been parametrized
for sTDA yet. For very large systems (e.g. > 500 atoms), it may be useful to define an upper boundary PTLimit for
the selection of configurations that are beyond EThresh (otherwise the whole configuration space will be scanned).
This can be done as shown below:

! cam-b3lyp def2-SV(P) nori tightscf
! nososcf smallprint printgap nopop
%pal nprocs 4
end
%maxcore 5000
%tddft
Mode sTDDFT
Ethresh 10.0
PThresh 1e-4
PTLimit 30
maxcore 20000
end
%method

runtyp energy
end
* xyzfile 0 1 coord.xyz

In this case, all excitations up to 7 eV are considered from the very beginning. Configurations between 7 and 14
eV are included if their coupling to the configurations below 7 eV is strong enough (in total larger than PThresh).
All configurations beyond 14 eV are neglected. Since the sTDA/sTD-DFT calculations run in serial mode, it is
recommended to reset the maxcore within the %tddft block (as done in the above examples). In the latter sample
input, the ground state procedure runs in parallel mode on 4 cores with a maxcore of 5000 MB set for each node.
The subsequent sTD-DFT calculation then runs on a single core, but in order to use all the available memory, the
maxcore is reset to a larger value (i.e., 20000 MB). If the maxcore statement within the %tddft block was missing,
only 5000 MB of memory would be available in the sTD-DFT calculation. Note furthermore that for very large
systems, using a functional with the correct asymptotic behaviour is very important (due to the fixed amount of
GGA exchange, CAM-B3LYP does not provide this property).

The ORCA output will summarize the important properties of your calculation which allows you to check your
input:

---------------------------------------------------------------------------------

ORCA sTDA CALCULATION

please cite in your paper
orginal sTDA method: S. Grimme, J. Chem. Phys. 138, 244104 (2013)
range-separated sTDA: T. Risthaus, A. Hansen, S. Grimme, Phys. Chem. Chem. Phys.

16, 14408-14419 (2014)
sTD-DFT approach: C. Bannwarth, S. Grimme, Comp. Theor. Chem.

1040-1041, 45-53 (2014)
---------------------------------------------------------------------------------

spectral range up to (eV) ... 10.000000
occ. MO cut-off (eV) ... -24.052589
virt. MO cut-off (eV) ... 17.726088

(continues on next page)
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perturbation threshold ... 1.000e-04
CSF selection range up to (eV) ... 30.000000
MOs in sTD-DFT ... 37
occ. MOs in sTD-DFT ... 14
virt. in sTD-DFT ... 23
calculate triplets ... no

Calculating the dipole lengths integrals ...
Transforming integrals ...
Calculating the dipole velocity integrals ...
Transforming integrals ...
Calculating magnetic dipole integrals ...
Transforming integrals ...

SCF atom population (using active MOs):

4.009 4.182 4.182 4.318 4.318 0.867 0.867 0.876 0.876 0.876
0.876 0.876 0.876

Number of electrons in sTDA: 28.000

ax(DF) : 0.3800
s_k : 2.0000
beta (J): 1.8600
alpha (K): 0.9000

The spectroscopic data is also printed out after the calculation has finished:

14 roots found, lowest/highest eigenvalue : 6.627 9.945

excitation energies, transition moments and amplitudes

molecular weight: 68.119
state eV nm fL fV Rl RV

0 6.627 187.1 0.000000 0.000001 0.002400 0.033014 0.71 ( 12-> 14) ...
1 6.637 186.8 0.000188 0.000233 -6.595360 -6.544674 -0.71 ( 13-> 14) ...
2 8.162 151.9 0.000022 0.000113 -0.169704 -0.383021 -0.65 ( 12-> 16) ...
3 8.185 151.5 0.708166 0.559459 -33.378989 -33.157817 0.62 ( 13-> 16) ...
4 8.514 145.6 0.461396 0.349012 64.100474 55.364958 -0.63 ( 12-> 17) ...
5 8.531 145.3 0.000004 0.000282 0.539213 4.637973 -0.72 ( 13-> 17) ...
6 8.927 138.9 0.000080 0.001340 0.439265 1.794914 0.70 ( 13-> 18) ...
7 8.929 138.9 0.002612 0.003077 -5.590091 -7.144206 -0.69 ( 12-> 18) ...
8 9.156 135.4 0.432008 0.300685 -30.271745 -29.351033 -0.74 ( 12-> 17) ...
9 9.347 132.6 0.058500 0.054136 -37.502752 -36.077121 -0.53 ( 12-> 19) ...
10 9.534 130.0 0.338851 0.235400 59.709273 68.042758 0.66 ( 12-> 18) ...
11 9.624 128.8 0.007213 0.004968 25.554619 21.208832 -0.49 ( 13-> 18) ...
12 9.922 125.0 0.021172 0.019486 -22.874039 -23.258574 0.81 ( 13-> 20) ...
13 9.945 124.7 0.001403 0.001498 6.301469 6.510456 0.79 ( 12-> 20) ...

sTD-DFT done

Total run time: 0.326 sec

*** ORCA-CIS/TD-DFT FINISHED WITHOUT ERROR ***

fL, fV, RL and RV are the length and velocity expressions of the oscillator and rotatory strengths, respectively. They
may be convoluted by a spectrum processing program to yield the UV/Vis absorption and ECD spectra.
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7.30.8 Double-hybrid functionals and Doubles Correction

The program can compute a doubles correction to the CIS excitation energies. The theory is due to Head-Gordon
and co-workers.[371] The basic idea is to compute a perturbative estimate (inspired by EOM-CCSD theory) to
the CIS excited states that is compatible with the MP2 ground state energy. In many cases this is a significant
improvement over CIS itself and comes at a reasonable cost since the correction is computed a posteriori. Of
course, if the CIS prediction of the excited state is poor, the (D) correction – being perturbative in nature – cannot
compensate for qualitatively wrong excited state wavefunctions.

In addition – and perhaps more importantly – the (D) correction is compatible with the philosophy of the double-
hybrid functionals and should be used if excited states are to be computed with these functionals. The results are
usually much better than those from TD-DFT since due to the large fraction HF exchange, the self-interaction error
is much smaller than for other functionals and after the (D) correction the results do not suffer from the overesti-
mation of transition energies that usually comes with increased amounts of HF exchange in TD-DFT calculations.

Since the calculations would require a fairly substantial integral transformation that would limit it to fairly small
molecules if no approximation are introduced we have decided to only implement a RI version of it. With this
approximation systems with more than 1000 basis functions are readily within the reach of the implementation.

Since one always has a triad of computational steps: MP2-CIS solution-(D) correction, we have implemented
several algorithms that may each become the method of choice under certain circumstances. The choice depends
on the size of the system, the number of roots, the available main memory and the available disk space together
with the I/O rate of the system. The formal cost of the (D) correction is𝑂(𝑁5) and its prefactor is higher than that
of RI-MP2. In the best case scenario, the rate limiting step would be the calculation of the pair-contribution in the
“U-term” which requires (for a closed-shell system) twice the effort of a RI-MP2 calculation per state.

The use of the (D)-correction is simple. Simply write:

! HF DEF2-SVP DEF2-SVP/C TightSCF
%cis dcorr n # n=1-4. The meaning of the four algorithms is

# explained below.
# algorithm 1 Is perhaps the best for small systems. May use a
# lot of disk space
# algorithm 2 Stores less integrals
# algorithm 3 Is good if the system is large and only a few
# states are calculated. Saves disk and main
# memory.
# algorithm 4 Uses only transformed RI integrals. May be the
# fastest for large systems and a larger number
# of states

end

Table 7.23: Integral handling in various implementations of the (D) correction (i,j=occupied MOs, a,b=virtual
MOs, Q=aux function; NumInt=numerical integration).

DCORR = 1 2 3 4
(ia|jb) integrals Stored Stored Not stored Not stored
(ij|ab) integrals Stored Not made Not made Not made
(ab|Q) integrals Stored Not made Not made Stored
(ij|Q) integrals Stored Stored Stored Stored
(ia|Q) integrals Stored Stored Stored Stored
Coulomb CIS From (ia|jb) From (ia|jb) From (ia|Q) From (ia|Q)
Exchange CIS From (ij|ab) RI-AO-direct RI-AO-direct From (ab|Q)
XC-CIS Num. Int. Num. Int. Num. Int. Num. Int.
V-term in (D) From (ia|jb) From (ia|jb) From (ia|Q) From (ia|Q)
U-term in (D) From (ab|Q) RI-AO-direct RI-AO-direct From (ab|Q)

NOTE:

• In all three involved code sections (MP2, CIS, (D)) the storage format FLOAT is respected. It cuts down
use of disk and main memory by a factor of two compared the default double precision version. The loss of
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accuracy should be negligible; however it is – as always in science – better to double check.

• The (ab|Q) list of integrals may be the largest for many systems and easily occupies several GB of disk
space (hence algorithms 2 and 3). However, that disk-space is often well invested unless you run into I/O
bottlenecks.

• The (ia|jb) and (ij|ab) lists of integrals is also quite large but is relatively efficiently handled. Nevertheless,
I/O may be a problem.

• Making the exchange contribution to the CIS residual vector in an RI-AO direct fashion becomes quite
expensive for a larger number of states. It may be a good choice if only one or two excited states are to be
calculated for a larger system.

• Calculations are possible with the full TD-DFT and the TDA-DFT versions.

• Usage of time-dependent double-hybrids should be cited as follows: For TD or TDA with any double
hybrid,[328] TD-B2GPLYP,[310] TDA-PBE0-DH or TDA-PBE0-2,[579] TD-PBE0-DH, TD-PBE0-2, or
TDA-B2GP-PLYP [772], TD-𝜔B2PLYP or TD-𝜔B2GPPLYP [146], TDA-𝜔B2PLYP or TDA-𝜔B2GPPLYP
[145], TD(A)-RSX-QIDH or TD(A)-RSX-0DH [145], TDA-PBE-QIDH [119], TD-PBE-QIDH [386],
TD(A)-DSD-BLYP or TD(A)-DSD-PBEP86 or many other spin-component-scaled double-hybrid func-
tionals with TD(A)-DFT from 2017 [772], TD(A) 𝜔B88PP86 or TD(A) 𝜔PBEPP86 or many other spin-
component and opposite scaled double hybrids with TD(A)-DFT from 2021 [147].

• For instructions on how to employ spin-component-scaling, spin-opposite-scaling, and the calculation of
singlet-triplet excitation energies with double hybrids, see Sec. Doubles Correction. Note that SCS/SOS-
CIS(D) is only automatically used when a TD(A)-DFT calculation is requested for the functionals from 2021
by Casanova-Páez and Goerigk. [147] In those instances, “doscs” has not to be set. SCS/SOS-CIS(D) is not
automatically used for PWPB95, 𝜔wB97X-2, or the DSD functionals.

• Cite Ref. [145] when singlet-triplet excitations are calculated with double hybrids.

7.30.9 Natural Transition Orbitals

Results of TD-DFT or CIS calculations can be tedious to interprete as many individual MO pairs may contribute
to a given excited state. In order to facilitate the analysis while keeping the familiar picture of an excited state
originating from essentially an electron being promoted from a donor orbital to an acceptor orbital, the concept of
“natural transition orbitals” can be used.

The procedure is quite straightforward. For example, consider the following job on the pyridine molecule:

! PBE D3ZERO def2-SVPD tightscf

%tddft nroots 5
DoNTO true # flag to turn on generation of natural transition orbitals
NTOStates 1,2,3 # States to consider for NTO analysis;

#if empty all will be done
NTOThresh 1e-4 # threshold for printing occupation numbers
end

* xyz 0 1
N 0.000000 0.000000 1.401146
C 0.000000 1.146916 0.702130
C 0.000000 -1.146916 0.702130
C -0.000000 1.205574 -0.702848
C -0.000000 -1.205574 -0.702848
C 0.000000 -0.000000 -1.421344
H -0.000000 2.079900 1.297897
H -0.000000 -2.079900 1.297897
H -0.000000 2.179600 -1.219940
H -0.000000 -2.179600 -1.219940
H 0.000000 0.000000 -2.525017

*
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which results in:

------------------------------------------
NATURAL TRANSITION ORBITALS FOR STATE 1
------------------------------------------

Making the (pseudo)densities ... done
Solving eigenvalue problem for the occupied space ... done
Solving eigenvalue problem for the virtual space ... done
Natural Transition Orbitals were saved in TD-DFT-Example-6.s1.nto
Threshold for printing occupation numbers 0.000100

E= 0.158709 au 4.319 eV 34832.6 cm**-1
20a -> 21a : n= 0.99824359
19a -> 22a : n= 0.00067784
18a -> 23a : n= 0.00051644
17a -> 24a : n= 0.00030975

------------------------------------------
NATURAL TRANSITION ORBITALS FOR STATE 2
------------------------------------------

Making the (pseudo)densities ... done
Solving eigenvalue problem for the occupied space ... done
Solving eigenvalue problem for the virtual space ... done
Natural Transition Orbitals were saved in TD-DFT-Example-6.s2.nto
Threshold for printing occupation numbers 0.000100

E= 0.159970 au 4.353 eV 35109.3 cm**-1
20a -> 21a : n= 0.99941615
19a -> 22a : n= 0.00019849
18a -> 23a : n= 0.00019659

------------------------------------------
NATURAL TRANSITION ORBITALS FOR STATE 3
------------------------------------------

Making the (pseudo)densities ... done
Solving eigenvalue problem for the occupied space ... done
Solving eigenvalue problem for the virtual space ... done
Natural Transition Orbitals were saved in TD-DFT-Example-6.s3.nto
Threshold for printing occupation numbers 0.000100

E= 0.197236 au 5.367 eV 43288.3 cm**-1
20a -> 21a : n= 0.64398585
19a -> 22a : n= 0.35061220
18a -> 23a : n= 0.00163202
17a -> 24a : n= 0.00112466
16a -> 25a : n= 0.00073130
15a -> 26a : n= 0.00062628
14a -> 27a : n= 0.00045034
13a -> 28a : n= 0.00022996
12a -> 29a : n= 0.00019819
11a -> 30a : n= 0.00017291
10a -> 31a : n= 0.00011514

-----------------------------
TD-DFT/TDA-EXCITATION SPECTRA
-----------------------------

(continues on next page)
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Center of mass = ( 0.0000, 0.0000, 0.0036)
Generating CIS transition densities ... done
--------------------------------------------------------------------
Using One-Photon Spectroscopy module
--------------------------------------------------------------------

-----------------------------------------------------------------------------------------------
→˓-----

ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-----------------------------------------------------------------------------------------------
→˓-----

Transition Energy Energy Wavelength fosc T2 TX TY ␣
→˓TZ

(eV) (cm-1) (nm) (au**2) (au) (au) ␣
→˓(au)
-----------------------------------------------------------------------------------------------
→˓-----
0-1A -> 1-1A 4.318686 34832.6 287.1 0.004072319 0.03849 0.19619 0.00000 0.

→˓00000
0-1A -> 2-1A 4.352995 35109.3 284.8 0.000000000 0.00000 0.00000 -0.00000 -0.

→˓00000
0-1A -> 3-1A 5.367066 43288.3 231.0 0.024724713 0.18803 0.00000 -0.43363 0.

→˓00000
0-1A -> 4-1A 6.156133 49652.6 201.4 0.000029118 0.00019 -0.00000 -0.00000 -0.

→˓01389
0-1A -> 5-1A 6.746055 54410.6 183.8 0.027331420 0.16537 -0.00000 -0.40666 0.

→˓00001

We see that there is a weakly allowed transition (S1) that is essentially totally composed of a single NTO pair
(20a→21a : n= 0.99825296), while the third excited state (S3) is strongly allowed and requires two NTO pairs for
its description (20a→21a : n= 0.64493520 and 19a→22a : n= 0.34962356).

These orbitals are shown below. It is evident that the S1 state donor orbital (NTO20) is a nitrogen lone pair and
the acceptor orbital is a 𝜋* orbital of the ring. For the S3 state the two NTO donor orbitals are comprised of a
nearly degenerate set of 𝜋 orbitals (they would be degenerate in the parent benzene) and the acceptor orbitals are
a pair of nearly degenerate 𝜋* orbitals. It is evident from this example that by looking at the NTOs one can obtain
a nicely pictorial view of the transition process, even if many orbital pairs contribute to a given excited state in the
canonical basis.
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Fig. 7.28: Natural transition orbitals for the pyridine molecule in the S1 and S3 states.

Similar analysis can be performed in the case of ROCIS and DFT/ROCIS calculations as it will be described in
section Natural Transition Orbitals/ Natural Difference Orbitals.

7.30.10 Computational Aspects

RI Approximation (AO-Basis)

If the SCF calculation used the RI approximation it will also be used in the TD-DFT calculation. The RI approxi-
mation saves a large amount of time while giving close to identical results (the errors will usually be<0.1 eV) and
is generally recommended. If the functional is a hybrid functional the RI-approximation will only be applied to the
Coulomb term while the exchange will be treated as before. In the SCF you can use this feature with the keyword
(! RIJONX). It will then also be used in the TD-DFT calculation. Again, the RIJCOSX approximation can be used
in TD-DFT and CIS calculations and leads to very large speedups at virtually no loss in accuracy.

768 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

RI Approximation (MO-Basis)

As an alternative to the direct AO-basis computation ORCA allows to use RI-integrals transformed to the MO basis
to generate the CI matrix. This algorithm is more disk-intensive. However, for medium sized molecules we have
observed speedups on the order of 15 or more with this method. It is particularly benefitial together with hybrid
functionals.

In order to use this method you have to specify mode riints in the %tddft block and you also have to assign
an auxiliary basis set (for example def2-TZVP/C). There is a second algorithm of this kind that is labelled mode
riints_disk

Note that the auxiliary basis set has to be valid for correlation treatments in case that you have a hybrid functional.
Thus the basis sets developed for RI-MP2 are suitable (def2-SVP/C, def2-TZVP/C and def2-TZVPP/C). If you
have a non-hybrid functional the normal RI-J auxiliary basis sets are fine.

An example that uses the B3LYP functional is given below:

! RKS B3LYP/G SV(P) def2-SVP/C TightSCF

%tddft
mode riints # or riints_disk (often faster but requires more disk space)
nroots 8

end

* int 0 1
C 0 0 0 0.00 0.0 0.0
O 1 0 0 1.20 0.0 0.0
H 1 2 0 1.08 120.0 0.0
H 1 2 3 1.08 120.0 180.0

*

ò Note

• Do not forget to assign a suitable auxiliary basis set! If Hartree-Fock exchange is present (HF or hybrid-
DFT) these are the auxiliary bases optimized for correlation while for non-hybrid functionals the standard
RI-J bases are suitable.

• The standard auxiliary basis sets may not be suitable if you have diffuse functions present and want to
study Rydberg states. You have to augment the axuliary basis with diffuse functions yourself in this case.

• Be prepared that the transformed integrals take up significant amounts of disk space.

Integral Handling

If the SCF calculation is carried out in an integral direct fashion this will also be done in the CIS/TD-DFT calcula-
tion. Thus, no bottlenecks arising from large integral transformations or large disk space requirement arise in the
calculations. An exception is the MO based RI approximations described in the previous section.

Valence versus Rydberg States

For valence excited states the usual orbital basis sets are reasonable. Thus, with polarized double-zeta basis sets
sensible results are obtained. Especially DFT calculations have the nice feature of not being overly basis set de-
pendent.

If Rydberg states are desired, you should make sure that diffuse functions are present in your basis set. You could
always use the augmented-specific basis, e.g. DEF2-TZVPD, ma-DEF2-TZVP, or aug-cc-pVTZ, or add some
extra diffuse basis to your regular basis. These can be added to any “normal” basis set. For example, the following
example provides a rather high quality basis for excited state calculations that is based on the Ahlrichs basis set:

7.30. Excited States via RPA, CIS, TD-DFT and SF-TDA 769



ORCA Manual, Release 6.0

%basis
# augment the carbon basis set by diffuse functions
addgto 6
s 1

1 0.01 1.0
p 1

1 0.01 1.0
d 1

1 0.07 1.0
end

end

� Tip

If you want to augment a given basis set it is sensible to run a preliminary SCF calculation and use %output
print[p_basis] 2 end. This will provide you with a detailed listing of basis functions and their exponents.
You can then add additional s, p and perhaps d-functions with the AddGTO command as in the example above. It
is sensible to decrease the exponent of the diffuse functions by roughly a factor of 3 from the smallest exponent
in the original basis.

Restrictions for Range-Separated Density Functionals

Several restrictions apply for range-separated (hybrid as well as double-hybrid) density functionals. They are cur-
rently only implemented to work with the AO-based algorithm within the RIJONX, RIJCOSX, and NORI integral
schemes. Additionally, the asymptotic correction has been disabled. However, the nuclear gradient for the excited
states is now available, including for the triplets. Please no that the IROOTMULT flag must be set to TRIPLET
under %CIS or %TDDFT in order to obtain that.

Potential Energy Surface Scans

ORCA allows the combination the scan feature with CIS or TD-DFT. This can be used to map out the excited
state potential energy surfaces as a function of one- two- or three parameters. The output of the “trajectory” run
automatically contains the excited state energies in addition to the ground state energy. For example consider the
following simple job.

! def2-TZVPD
%method scanguess pmodel # this assignment forces a PModel guess at each step

# which is often better if diffuse functions are present
end

%cis NRoots 7
end

%paras rCO = 0.85,1.45,21;
end

* xyz 0 1
O 0 0 0
C 0 0 {rCO}

*

The output file from this job contains the total energies (i.e. the ground state energy plus the excitation energy) for
each excited state as a function of C-O bondlength as shown below. Howerver, the assignment of the individual
states will change with geometry due to curve crossings. Thus, the state-to-state correlation must be worked out
“by hand”. These calculations are nevertheless very helpful in obtaining at least a rough idea about excited state
energy surfaces.
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Fig. 7.29: Result of a potential energy surface scan for the excited states of the CO molecule using the orca_cis
module.
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Potential Energy Surface Scans along Normal Coordinates

The ground and excited state potential energy surfaces can also be mapped as a function of normal coordinates. The
normal mode trajectory run is invoked by the keyword !MTR. In addition several parameters have to be specified in
the block %mtr. The following example illustrates the use:

First you run a frequency job:

#
! BP86 def2-SV(P) def2/J TightSCF AnFreq

* xyz 0 1
C 0.000001 -0.000000 -0.671602
C 0.000000 0.000000 0.671602
H -0.000000 -0.940772 -1.252732
H -0.000000 -0.940772 1.252732
H -0.000000 0.940772 -1.252732
H -0.000000 0.940772 1.252732

*

and then:

! BP86 def2-SV(P) def2/J TightSCF MTR

%tddft
NRoots 3
triplets false

end

%mtr
HessName "ethene.hess"
modetype normal
MList 9,13
RSteps 4,5
LSteps 4,5
ddnc 1.0, 0.5

end

* xyz 0 1
C 0.000001 -0.000000 -0.671602
C 0.000000 0.000000 0.671602
H -0.000000 -0.940772 -1.252732
H -0.000000 -0.940772 1.252732
H -0.000000 0.940772 -1.252732
H -0.000000 0.940772 1.252732

*

The HessName parameter specifies the name of the file which contains nuclear Hessian matrix calculated in the
frequency run. The Hessian matrix is used to construct normal mode trajectories. The keyword MList provides
the list of the normal modes to be scanned. The parameters RSteps and LSteps specify the number of steps in
positive and negative direction along each mode in the list. In general, for a given set of parameters

mlist m1,m2,...mn
rsteps rm1,rm2,...rmn
lsteps lm1,lm2,...lmn

the total number of the displaced geometries for which single point calculations will be performed is equal to∏︀
𝑚𝑖

(𝑟𝑚𝑖 + 𝑙𝑚𝑖 + 1). Thus, in the present case this number is equal to (4 + 4 + 1) (5 + 5 + 1) = 99.

The ddnc parameter specifies increments 𝛿𝑞𝛼 for respective normal modes in the list in terms of dimensionless
normal coordinates (DNC’s). The trajectories are constructed so that corresponding normal coordinates are varied
in the range from −𝑙𝛼𝛿𝑞𝛼 to 𝑟𝛼𝛿𝑞𝛼. The measure of normal mode displacements in terms DNC’s is appropriate
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choice since in spectroscopical applications the potential energy function 𝑈 is usually expressed in terms of the
DNC’s. In particular, in the harmonic approximation 𝑈(𝑞𝛼) has a very simple form around equilibrium geometry:

𝑈 = 𝑈0 +

3𝑁−6∑︁
𝛼

ℏ𝜔𝛼
2
𝑞2𝛼 (7.232)

where 𝜔𝛼is the vibrational frequency of the 𝛼-th mode.

Dimensionless normal coordinate 𝑞𝛼 can be related to the vector of atomic Cartesian displacements 𝛿X as follows:

𝑞𝛼 =
(︁𝜔𝛼

ℏ

)︁ 1
2

3𝑁∑︁
𝑘=1

𝐿𝑘𝛼𝛿𝑋𝑘

√︀
𝑀𝑘 (7.233)

where {𝐿𝑘𝛼} is the orthogonal matrix obtained upon numerical diagonalization of the mass-weighted Hessian
matrix, and M is the vector of atomic masses. Accordingly, the atomic Cartesian displacements corresponding to
a given dimensionless normal coordinate 𝑞𝛼 are given by:

𝛿𝑋𝑘 =

(︂
ℏ
𝜔𝛼

)︂ 1
2

𝐿𝑘𝛼𝑞𝛼 (𝑀𝑘)
− 1

2 (7.234)

Alternatively, it is possible to specify in the input the Cartesian increment for each normal mode. In such a case,
instead of the ddnc parameter one should use the dxyz keyword followed by the values of Cartesian displacements,
for example:

%mtr
HessName "ethene.hess"
modetype normal
MList 9,13
RSteps 4,5
LSteps 4,5
dxyz 0.01, 0.02 # increments in the Cartesian basis

# are given in angstrom units
end

For a given Cartesian increment 𝑑𝑋,𝛼 along the 𝛼–th normal mode the atomic displacements are calculated as
follows:

𝛿𝑋𝑘 =
𝑑𝑋,𝛼
‖T𝛼‖

𝐿𝑘𝛼 (𝑀𝑘)
− 1

2 (7.235)

The vector T𝛼 in the Cartesian basis has components 𝑇𝑖𝛼 = 𝐿𝑘𝛼 (𝑀𝑘)
− 1

2 and length (norm) ‖T𝑘‖.

The increment length can also be selected on the basis of an estimate for the expected change in the total energy
∆𝐸 due to the displacement according to eq.(7.118). The value of ∆𝐸 can be specified via the EnStep parameter:

%mtr
HessName "ethene.hess"
modetype normal
MList 9,13
RSteps 4,5
LSteps 4,5
EnStep 0.001, 0.001 # the values are given in Eh

end

All quantum chemical methods have to tolerate a certain amount of numerical noise that results from finite con-
vergence tolerances or other cutoffs that are introduced into the theoretical procedures. Hence, it is reasonable to
choose ∆𝐸 such that it is above the characteristic numerical noise level for the given method of calculation.

At the beginning of the program run the following trajectory files which can be visualized in gOpenMol will be
created:

• BaseName.m9.xyz and BaseName.m13.xyz contain trajectories along normal modes 9 and 13, respec-
tively.
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• BaseName.m13s1.m9.xyz - BaseName.m13s5.m9.xyz contain trajectories along normal mode 9 for dif-
ferent fixed displacements along mode 13, so that the file BaseName.m13sn.m9.xyz corresponds to the
𝑛-th step in the positive direction along mode 13.

• BaseName.m13s-1.m9.xyz - BaseName.m13s-5.m9.xyz contain trajectories along normal mode 9 for
different fixed displacements along mode 13, so that the file BaseName.m13s-n.m9.xyz corresponds to
the 𝑛-th step in the negative direction along mode 13.

• BaseName.m9s1.m13.xyz - BaseName.m9s4.m13.xyz contain trajectories along normal mode 13 for
different fixed displacements along mode 9, so that the file BaseName.m9sn.m13.xyz corresponds to the
𝑛-th step in the positive direction along mode 9.

• BaseName.m9s-1.m13.xyz - BaseName.m9s-4.m13.xyz contain trajectories along normal mode 13 for
different fixed displacements along mode 9, so that the file BaseName.m9s-n.m13.xyz corresponds to the
𝑛-th step in the negative direction along mode 9.

The results of energy single point calculations along the trajectories will be collected in files BaseName.mtr.
escf.S.dat (for the SCF total energies) and files BaseName.mtr.ecis.S.dat (for the CIS/TDDFT total ener-
gies), where “S” in the suffix of *.S.dat filenames provides specification of the corresponding trajectory in the
same way as it was done for the case of trajectory files *.xyz (e.g. S=”m9s-1.m13”). Likewise, the calculated total
energies along the trajectories will be collected in files BaseName.mtr.emp2.S.dat in the case of MP2 calcula-
tions, BaseName.mtr.emdci.S.dat (MDCI), BaseName.mtr.ecasscf.S.dat (CASSCF), BaseName.mtr.
emrci.S.dat (MRCI).

Note, that in principle normal coordinate trajectories can be performed for an arbitrary number normal modes.
This implies that in general trajectories will contain geometries which involve simultataneous displacement along
several (>2) modes. However, trajectory files *.xyz and corresponding *.dat files will be generated only for the
structures which are simultaneously displaced along not more than 2 normal coordinates.
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Fig. 7.30: Result of a potential energy surface scan along C-C stretching normal coordinate (mode 13 in the present
example) for the excited states of the ethene molecule using the orca_cis module.
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Normal Mode Scan Calculations Between Different Structures

This type of job allows to map PES between two different structures as a function of normal coordinates. The
H2O molecule represent a trivial case which has formally 2 equivalent equilibrium structures which differ by angle
H1—O—H2 ( 103.5∘ and 256.5∘, respectively, as follows from the BP86/SV(P) calculations). In such a case
the input for the nomal mode trajectory run would require the calculation of geometry difference between both
structures in terms of the dimensionless normal coordinates. This can be done in orca_vib run as follows :

> orca_vib water.hess ddnc geom.xyz

The second parameter ddnc in the command line invokes the calculation of geometry difference in terms of the
DNC’s. Both structures are specified in the file geom.xyz which has a strict format:

2 3
0

0.000000 0.000000 0.000000
0.000000 0.607566 0.770693
0.000000 0.607566 -0.770693

1
0.000000 0.000000 0.000000
0.000000 -0.607566 0.770693
0.000000 -0.607566 -0.770693

The first line of the input specifies the number of the structures and total number of atoms (2 and 3, respectively).
Specification of each structure in sequence starts with a new line containing the number of the structure. The
number 0 in the second line is used to denote the reference structure. Note that atomic coordinates should be given
in units of Å and in the same order as in the ORCA input for the frequency run from which the file water.hess
was calculated.

At the end of the orca_vib run the file geom.ddnc is generated. It contains the geometry difference in terms
of the dimensionless normal coordinates between the structures with nonzero numbers and the reference one in
geom.xyz :

1
1 9

0 0.000000
1 0.000000
2 0.000000
3 0.000000
4 0.000000
5 0.000000
6 9.091932
7 -9.723073
8 0.000000

The output file indicates that the structural difference occurs along 2 normal coordinates: 6 (bending mode) and 7
(totally symmetric O—H stretching mode). On the basis of the calculated displacement pattern the following input
for the normal mode trajectory run between two structures can be designed:

! RKS BP86 SV(P) def2/J RI TightScf MTR

%mtr
HessName "water.hess"
modetype normal
mlist 6,7
rsteps 10,0
lsteps 0, 10
ddnc 0.9091932, 0.9723073

end

* xyz 0 1

(continues on next page)
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O 0.000000 0.000000 0.000000
H 0.000000 0.607566 0.770693
H 0.000000 0.607566 -0.770693
*

Here the parameters RSteps, LSteps and ddnc are chosen in such a way that in the scan along modes 6 and
7 the corresponding dimensionless normal coordinates will be varied in the range 0 − 9.091932 and -9.723073
− 0, respectively, in accordance with the projection pattern indicated in the file geom.ddnc. Note that normal
modes are only defined up to an arbitrary choice of sign. Consequently, the absolute sign of the dimensionless
displacements is ambiguous and in principle can vary in different orca_vib runs. It is important that the normal
mode scan between different structures exemplified above is performed using the same sign of normal modes as
in the calculation of normal mode displacements. This condition is fulfilled if the same normal modes are used in
orca_vib run and trajectory calculation. Thus, since in orca_vib calculation normal modes are stored in .hess
file it is necessary to use the same Hessian file in the trajectory calculation.

Printing Extra Gradients Sequentially

If you want to print extra gradients for external applications or any other reason, you can use the keywords
SGRADLIST and TGRADLIST, for singlets and triplets. This will print the gradients sequentially after the
CIS/TDDFT run. If you put 0 on the singlet list, the ground state gradient will also be added, always at the end.

%TDDFT SGRADLIST 0, 1, 2
TGRADLIST 2, 3

END

In order to save this gradients in a text file, please use:

%METHOD STORECISGRAD TRUE END

7.30.11 Keyword List

%cis or %tddft

NRoots 3 #The number of desired roots
IRoot 1 #The root to be optimized
IRootMult Singlet #or Triplet to optimize it

MaxDim 5 #Davidson expansion space = MaxDim * NRoots
MaxIter 35 #Maximum CI Iterations
NGuessMat 512 #The dimension of the guess matrix
MaxCore 1024 #The maximum memory to be used on this calculation
ETol 1e-6 #Energy convergence tolerance
RTol 1e-6 #Residual Convergence tolerance

TDA false #Switch off for full TDDFT

LRCPCM true #Use LRCPCM
CPCMEQ false #Which epsilon is used to compute the charges.

DoNTO #Generate Natural Transition Orbitals
NTOStates 1,2,3 #States to consider for NTO analysis. If empty, all will be done.
NTOThresh 1e-4 #Threshold for printing occupation numbers

SaveUnrNatOrb #Saves natural orbitals (not NTO) from unrelaxed densities
#for the IROOT chosen (including IROOTLISTs)

DoSoc false #Include spin-orbit coupling?

(continues on next page)
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SocGrad false #Set true to compute the SOC gradient for a given IROOT

DOTRANS false #Transient spectra - starting from IROOT
ALL #Compute all possible transitions

7.31 Excited States via ROCIS and DFT/ROCIS

The ORCA program package includes the orca_rocis module to perform configuration interaction with single
excitations (CIS) calculations using a restricted open-shell Hartee-Fock (ROHF) reference function. It produces
excitation energies, absorption energies and CD intensities. It was designed with the aim to reproduce and - even
more importantly - reliably predict transition metal L-edges as observed in X-ray absorption spectroscopy (XAS).

7.31.1 General Use

In the present implementation the orca_rocis module is only able to perform CIS calculations on top of a high-
spin ROHF reference function. All spins of the unpaired electrons have to be coupled ferrmoagnetically to give
a total spin of 𝑆 = 1

2𝑁 , where 𝑁 is the number of unpaired electrons. Other ROHF functions such as Zerner’s
configuration averaged or spin averaged ROHF cannot be used as reference. The input for a high spin ROHF
calculation is done in the %scf block.

%scf
HFTyp ROHF # Flag for ROHF
ROHF_Case HighSpin # selects the high-spin case
ROHF_NEl[1] = 4 # the number of unpaired electrons

end

In our experience ROHF calculations suffer a lot from convergence problems. UHF calculations generally exhibit
better convergence properties. In most cases the quasi-restricted orbitals (qro’s) of a UHF calculation resemble the
ROHF orbitals. Thus the program features the ability to start a ROCIS calculation on top of a UHF calculation. It
will automatically create the qro’s and build the reference determinant with them. If one wants to avoid the (small)
errors that are introduced by this procedure, one may take the qro’s of a UHF calculation as starting orbitals for
a subsequent ROHF calculation. Furthermore it is possible to invoke the orca_rocis module for closed-shell
molecules. The program will then perform a CI calculation with the provided RHF reference function. In this case
it will yield the same result as the orca_cis program.

A number of basic variables in the %rocis block control the settings of the Davidson procedure that is used to
solve the CI problem:

%rocis
NRoots 6 # number of desired roots
MaxDim 5 # Davidson expansion space = MaxDim * NRoots
ETol 1e-6 # energy convergence tolerance
RTol 1e-6 # residual vector convergence tolerance
MaxIter 35 # maxmimum number of iterations
NGuessMat 512 # dimension of the guess matrix: 512x512

end

The dimension of the iterative subspace is given by MaxDim · NRoots. The lowest possible choice for MaxDim is
a value of 2. In general, by choosing MaxDim≈ 5-10 times NRoots you will achieve a more favorable convergence
by the cost of an increased disk space requirement. Increasing the NGuessMat variable will improve the conver-
gence of the iterative CI procedure. The amount of output produced during the calculation is controlled via the
PrintLevel variable

%rocis NRoots 3
PrintLevel 3
end
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Note, that this does not influence which spectra are calculated or printed. The absorption spectrum calculated on
the basis of the pure dipole approximation for your calculation is always printed. In addition, it is possible to allow
for electric quadrupole and magnetic dipole contributions to the absorption spectrum as well as to calculate the
CD spectrum check section (One Photon Spectroscopy) for details. By defining in the %rocis block:

%rocis
NRoots 6
DoDipoleLength true
DoDipoleVelocity true
DoHigherMoments true
DecomposeFoscLength true
DecomposeFoscVelocity true
DoFullSemiclassical true
DoCD true

end

The printed spectra look like this:

-----------------------------------------------------------------------------
ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

-----------------------------------------------------------------------------
State Energy Wavelength fosc T2 TX TY TZ

(cm-1) (nm) (au**2) (au) (au) (au)
-----------------------------------------------------------------------------

1 2635.0 3795.1 0.000000001 0.00000 0.00001 -0.00001 0.00029
2 4365.5 2290.7 0.000011416 0.00086 0.01200 -0.00864 0.02534
3 4368.2 2289.3 0.000011174 0.00084 -0.02006 0.01442 0.01523
4 5977.9 1672.8 0.000093897 0.00517 -0.04164 -0.05863 0.00000
5 65245.3 153.3 0.027669631 0.13961 -0.20555 -0.31203 -0.00023

-----------------------------------------------------------------------------
ABSORPTION SPECTRUM VIA TRANSITION VELOCITY DIPOLE MOMENTS

-----------------------------------------------------------------------------
State Energy Wavelength fosc P2 PX PY PZ

(cm-1) (nm) (au**2) (au) (au) (au)
-----------------------------------------------------------------------------

1 2635.0 3795.1 0.000000085 0.00000 -0.00000 0.00000 -0.00004
2 4365.5 2290.7 0.001777771 0.00005 -0.00315 0.00223 -0.00618
3 4368.2 2289.3 0.001850956 0.00006 0.00526 -0.00372 -0.00371
4 5977.9 1672.8 0.003237195 0.00013 0.00667 0.00937 0.00000
5 65245.3 153.3 0.057301314 0.02555 0.08779 0.13358 0.00010

-------------------------------------------------------------------
CD SPECTRUM

-------------------------------------------------------------------
State Energy Wavelength R MX MY MZ

(cm-1) (nm) (1e40*sgs) (au) (au) (au)
-------------------------------------------------------------------

1 2635.0 3795.1 0.00007 -0.00511 -0.01539 0.00021
2 4365.5 2290.7 10.02484 0.57434 -0.40490 0.42899
3 4368.2 2289.3 -10.03730 0.34432 -0.24269 -0.71470
4 5977.9 1672.8 0.01537 -0.00033 -0.00032 -0.00286
5 65245.3 153.3 -0.00865 0.00004 0.00003 -0.00005

-----------------------------------------------------------------------------------------------
→˓------

COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM
-----------------------------------------------------------------------------------------------
→˓------
State Energy Wavelength D2 m2 Q2 D2+m2+Q2 D2/TOT m2/TOT ␣
→˓Q2/TOT

(cm-1) (nm) (*1e6) (*1e6)

(continues on next page)

7.31. Excited States via ROCIS and DFT/ROCIS 779



ORCA Manual, Release 6.0

(continued from previous page)

-----------------------------------------------------------------------------------------------
→˓------
1 2635.0 3795.1 0.00000 0.00011 0.00000 0.00000000080469 0.86010 0.13938 ␣

→˓0.00052
2 4365.5 2290.7 0.00001 0.47866 0.00000 0.00001189497194 0.95976 0.04024 ␣

→˓0.00000
3 4368.2 2289.3 0.00001 0.48629 0.00000 0.00001166062671 0.95830 0.04170 ␣

→˓0.00000
4 5977.9 1672.8 0.00009 0.00001 0.00001 0.00009389664707 1.00000 0.00000 ␣

→˓0.00000
5 65245.3 153.3 0.02767 0.00000 0.06183 0.02766969236508 1.00000 0.00000 ␣

→˓0.00000

-----------------------------------------------------------------------------------------------
→˓------

COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (origin␣
→˓adjusted)
-----------------------------------------------------------------------------------------------
→˓------
State Energy Wavelength D2 m2 Q2 D2+m2+Q2 D2/TOT M2/TOT ␣
→˓Q2/TOT

(cm-1) (nm) (*1e6) (*1e6)
-----------------------------------------------------------------------------------------------
→˓------
1 2635.0 3795.1 0.00000 0.00000 0.00000 0.00000000069409 0.99716 0.00016 ␣

→˓0.00268
2 4365.5 2290.7 0.00001 0.38277 0.00039 0.00001179947536 0.96753 0.03244 ␣

→˓0.00003
3 4368.2 2289.3 0.00001 0.36798 0.00045 0.00001154275975 0.96808 0.03188 ␣

→˓0.00004
4 5977.9 1672.8 0.00009 0.00000 0.00001 0.00009389663928 1.00000 0.00000 ␣

→˓0.00000
5 65245.3 153.3 0.02767 0.00003 0.06176 0.02766969232228 1.00000 0.00000 ␣

→˓0.00000

Furthermore like in TD-DFT (section Use of TD-DFT for the Calculation of X-ray Absorption Spectra) or CASSCF
one may obtain intensities by evaluating the 2nd order oscillation strengths, or the full semi-classical oscillation
strengths.

• The exact oscillation strengths behave like the multipole expansion in the velocity representation.

• They are by definition origin independent they do not suffer from artificial negative values like the multipole
moments beyond 1st order.

• They are used with the multipole moments up to 2nd order to regenerate the electric dipole, electric
quadrupole and magnetic dipole contributions in either length or the velocity representation.

For the Fe K-edge XAS spectrum of [FeCl4]2−. This will result in addition to the following tables for the velocity
representation:

----------------------------------------------------------------------------------------
→˓---------------------

COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (Origin␣
→˓Independent, Velocity)

----------------------------------------------------------------------------------------
→˓---------------------

State Energy Wavelength P2 m2 Q2 P2+m2+Q2+PM+PO P2/TOT m2/
→˓TOT Q2/TOT

(cm-1) (nm) (*1e6) (*1e6)
----------------------------------------------------------------------------------------

(continues on next page)
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→˓---------------------
1 57131638.5 0.2 0.00000 0.00000 3.75184 0.00000375184371 0.00000 0.

→˓00000 1.00000
2 57131638.5 0.2 0.00000 0.00000 3.75184 0.00000375184267 0.00000 0.

→˓00000 1.00000
3 57145543.6 0.2 0.00007 0.00000 3.46619 0.00007086820341 0.95853 0.

→˓00000 0.04891
4 57145543.6 0.2 0.00007 0.00000 3.46620 0.00007078008474 0.95972 0.

→˓00000 0.04897
5 57145543.6 0.2 0.00007 0.00000 3.46620 0.00007084079919 0.95889 0.

→˓00000 0.04893
11 57351031.6 0.2 0.00000 0.00000 0.00000 0.00000000000002 0.99463 0.

→˓00618 0.00216
12 57351031.6 0.2 0.00000 0.00000 0.00000 0.00000000000001 0.00000 0.

→˓00000 0.00000
13 57351031.6 0.2 0.00000 0.00000 0.00000 0.00000000000002 0.99414 0.

→˓00692 0.00217
15 57354687.7 0.2 0.00000 0.00000 0.00000 0.00000000000888 0.00898 0.

→˓00000 0.00002

----------------------------------------------------------------------------------------
→˓---------------------

COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC QUADRUPOLE SPECTRUM (Exact␣
→˓Formulation, Velocity)

----------------------------------------------------------------------------------------
→˓---------------------

State Energy Wavelength P2 m2 Q2 Exact Osc. Strength P2/TOT ␣
→˓m2/TOT Q2/TOT

(cm-1) (nm) (*1e6) (*1e6)
----------------------------------------------------------------------------------------

→˓---------------------
1 57131638.5 0.2 0.00000 0.00000 3.02719 0.00000302719471 0.00000 0.

→˓00000 1.00000
2 57131638.5 0.2 0.00000 0.00000 2.66225 0.00000266224706 0.00000 0.

→˓00000 1.00000
3 57145543.6 0.2 0.00007 0.00000 3.46619 0.00007092969904 0.95853 0.

→˓00000 0.04891
4 57145543.6 0.2 0.00007 0.00000 3.46620 0.00007074406444 0.95972 0.

→˓00000 0.04897
5 57145543.6 0.2 0.00007 0.00000 3.46620 0.00007075200792 0.95889 0.

→˓00000 0.04893
11 57351031.6 0.2 0.00000 0.00000 0.00000 0.00000000000002 0.99463 0.

→˓00618 0.00216
12 57351031.6 0.2 0.00000 0.00000 0.00000 0.00000000000001 0.98256 0.

→˓01631 0.00209
13 57351031.6 0.2 0.00000 0.00000 0.00000 0.00000000000002 0.99414 0.

→˓00692 0.00217
15 57354687.7 0.2 0.00000 0.00000 0.00000 0.00000000001200 0.00898 0.

→˓00000 0.00002
....

These spectra are plotted by calling:

orca_mapspc MyOutput.out ABS/ABSV/CD/ABSQ/ABSOI/ABSVOI -eV -x0(start) -x1(stop)
-w(width) -n(points)

In particular ABSOI and ABSVOI will plot the exact transition moments spectra at the Length and Velocity rep-
resentations (For the multiple expansion contributions).

If calculations on large molecules are conducted, the integral transformation will be the most time-consuming
part. Therefore it is strongly recommended to use the resolution of the identity (RI) approximation in those cases.
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It effectively reduces the computational costs of the transformation step by only introducing minor errors to the
calculation. It has to be kept in mind that in order to keep the introduced errors small, one has to provide a
reasonable auxiliary basis sets along with your normal basis set input.

Starting from ORCA 4.0 the basis set definition on ORCA has changed. This also affects the definition of the
auxiliary basis set when the DoRI keyword is set. ROCIS will then only allow in the mainline /C auxiliary basis
sets to be set (i.e. def2-TZVP/C). As these basis are usually optimised on the presence of effective core potentials
(ECPs) they are generally not recommended for core-electron calculations. The /J auxiliary basis set need to be
used and they are specified in the following way.

%basis
AuxC "def2/J"
end

! def2-TZVP def2-TZVP/C TightSCF SlowConv

%SCF HFTyp ROHF
ROHF_Case HighSpin
ROHF_Nel[1] = 1
End

%ROCIS NROOTS 5
DoRI true # invokes the RI approximation
DoHigherMoments true
end

* xyz 0 2
N 0 0 0
O 0 0 1.15
*

The orca_rocis module provides two ways of choosing the orbital excitation space: by orbital energy or orbital
number. In the former case an energy window has to be specified and the program will then take all orbitals, whose
orbital energies lie within this window, into account. Note, that one actually has to define two orbital windows:
One for the donor and the second for the acceptor orbital. The input of the windows is done as an array: The first
two numbers define the donor space while the last two numbers define the acceptor space.

%rocis
NRoots 3
EWin = -5,5,-5,5

end

The default is to keep core orbitals and very high lying virtual orbitals out of their respective orbital excitation
spaces. Since these orbitals span a space that is usually not reachable with regular UV/Vis spectroscopy, this is a
reasonable approximation. One has to keep in mind that an orbital energy window makes only sense if the orbitals
used in the calculation have a well-defined orbital energy. As a consequence one cannot use an orbital energy
window for a calculation with localized orbitals. The second way to specify the excitation space is by orbital
numbering.

%rocis
NRoots 3
OrbWin = 1,13,9,22

end

In restricted calculations only one set of spatial orbitals is created. Hence it is not necessary to provide orbital
windows for 𝛼 and 𝛽 electrons separately. Of course, only doubly or singly occupied orbitals can act as donor
orbitals and only singly and nonoccupied orbitals can act as acceptor orbitals. The program recognises nonoccupied
orbitals in the donor space and doubly occupied orbitals in the acceptor space and removes both.

The many-electron expansion space of a ROCIS calculation in ORCA is divided into five classes. Using second
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quantised replacement operators 𝐸𝑞𝑝 = �̂�↑𝑞𝛼�̂�𝑝𝛼 + �̂�↑𝑞𝛽 �̂�𝑝𝛽 they take the form[727].

|Φ𝑠𝑖 ⟩ = 𝐸𝑠𝑖 |0⟩
|Φ𝑎𝑠⟩ = 𝐸𝑎𝑠 |0⟩
|Φ𝑎𝑖 ⟩ = 1√

2
𝐸𝑎𝑖 |0⟩

|Φ𝑎𝑠𝑡𝑖 ⟩ = 𝐸𝑎𝑡 𝐸
𝑠
𝑖 |0⟩

|Φ𝑎𝑠𝑡𝑖 ⟩ = 1√
6
(𝐸𝑎𝑖 − 2𝐸𝑎𝑠𝐸

𝑠
𝑖 ) |0⟩

(7.236)

The orbital label 𝑖 denotes a doubly occupied orbital, 𝑠 and 𝑡 refer to singly occupied orbitals and orbital label 𝑎
corresponds to a virtual orbital. The form of the excitation classes ensures that all excited states are eigenfunctions
of the 𝑆2-operator and have the same total spin 𝑆 as the electronic ground state. Each of the five excitation classes
can be switched on or off manually.

%rocis
NRoots 3
Do_is true # Include DOMO->SOMO excitations
Do_sa true # Include SOMO->Virtual excitations
Do_ia true # Include DOMO->Virtual excitations
Do_ista true # Include DOMO->SOMO coupled to

# SOMO->Virtual excitations with s not equal t
Do_isa true # Include DOMO->SOMO coupled to

# SOMO->Virtual excitations with s = t
# ---------------------------------
# by default all switches for the
# excitation classes are set to
# ``true''
# ---------------------------------

end

Formally, the |Φ𝑎𝑠𝑡𝑖 ⟩ and |Φ𝑎𝑡𝑡𝑖 ⟩ excitation classes can be regarded as double excitations. When the program finishes
the ROCIS calculation it gives the excitation energy together with the composition for each root. According to the
number of labels of the respective functions |Φ⟩, contributions from excited configuration state functions belonging
to the different excitation classes are given by two, three or four numbers.

STATE 5 Exc. Energy: 297.279mEh 8.089eV 65245.3cm**-1
47->50 : 0.2196
47->51 : 0.0138
37->50 : 0.1165
41->50 : 0.0960
38->46 ; 47->50 : 0.0103
37->46 ->50 : 0.0150
37->47 ->50 : 0.0938
37->48 ->50 : 0.0179
37->49 ->50 : 0.0179
41->46 ->50 : 0.0174
41->47 ->50 : 0.0585
41->48 ->50 : 0.0213
41->49 ->50 : 0.0211

Furthermore the orca_rocis module is able to calculate the effect of spin-orbit coupling (SOC) on the calculated
ground and excited states. It introduces SOC in the framework of quasi-degenerate perturbation theory (QDPT).
The SOC Hamiltonian is diagonalized in the basis of the calculated ROCIS states

⃒⃒
Ψ𝑆𝑀𝐼

⟩︀
, where 𝐼 is the root label

and 𝑆 and 𝑀 are the spin and magnetic spin quantum numbers, respectively[622], [727].

%rocis
NRoots 3
OrbWin = 1, 3 ,9 ,22
SOC true # invokes the calculation of SOC effects
TEMPERATURE 10 # temperature for SOC corrected spectra in Kelvin

end

After the SOC calculation the program will produce additional spectra for the SOC corrected results. The spectra
contain transitions from the 2𝑆 + 1 lowest lying states into all excited states, where S is the spin quantum number
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of the electronic ground state. These 2𝑆 + 1 lowest states may be split up in the order of 1-100 cm−1. Due to the
small magnitude of the splitting, all of the 2𝑆 + 1 states can be significantly populated even at low temperatures.
Experimentally, the intensity of a given transition is dependent on the population of the corresponding initial state.
With the TEMPERATURE keyword the population of the theoretically calculated states can be manipulated by the
varying the fictive temperature of the system. It has to be mentioned that the electric quadrupole transitions between
spin-orbit coupled states are not well defined and are likely to give unreasonable results. Hence it is recommended
to use the DoHigherMoments keyword only for calculations that do not include SOC.

-------------------------------------------------------------------------------
SPIN ORBIT CORRECTED ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-------------------------------------------------------------------------------
States Energy Wavelength fosc T2 TX TY TZ

(cm-1) (nm) (au**2) (au) (au) (au)
-------------------------------------------------------------------------------
0 1 5.6 0.0 0.000000000 0.00000 0.00003 0.00002 0.00000
0 2 6.2 0.0 0.000000000 0.00000 0.00000 0.00000 0.00005
0 3 23.7 422287.3 0.000000000 0.00000 0.00000 0.00000 0.00000
0 4 23.7 421562.8 0.000000000 0.00000 0.00018 0.00025 0.00000
0 5 2621.7 3814.3 0.000000000 0.00000 0.00000 0.00001 0.00005
0 6 2622.0 3813.9 0.000000000 0.00000 0.00003 0.00012 0.00000
0 7 2634.7 3795.5 0.000000095 0.00002 0.00388 0.00273 0.00049
0 8 2634.9 3795.2 0.000000103 0.00002 0.00039 0.00027 0.00495
0 9 2639.5 3788.6 0.000000001 0.00000 0.00001 0.00001 0.00036
0 10 4223.6 2367.6 0.000000103 0.00002 0.00043 0.00029 0.00390
0 11 4223.9 2367.5 0.000000120 0.00002 0.00348 0.00236 0.00046
0 12 4296.3 2327.6 0.000000696 0.00010 0.00562 0.00842 0.00000
0 13 4357.6 2294.8 0.000000002 0.00000 0.00001 0.00001 0.00049
0 14 4418.1 2263.4 0.000005778 0.00083 0.00653 0.00468 0.02762
0 15 4422.1 2261.4 0.000005517 0.00079 0.02184 0.01559 0.00832
0 16 4488.2 2228.0 0.000000001 0.00000 0.00004 0.00006 0.00038
0 17 4524.2 2210.3 0.000000001 0.00000 0.00030 0.00018 0.00000
0 18 4597.2 2175.2 0.000000027 0.00000 0.00023 0.00016 0.00191
0 19 4597.4 2175.2 0.000000051 0.00001 0.00213 0.00153 0.00023
0 20 6043.6 1654.6 0.000047989 0.00502 0.04104 0.05779 0.00000
0 21 6049.5 1653.0 0.000000014 0.00000 0.00109 0.00057 0.00001
0 22 6051.3 1652.5 0.000000021 0.00000 0.00001 0.00004 0.00150
0 23 6069.7 1647.5 0.000000000 0.00000 0.00005 0.00007 0.00000
0 24 6069.9 1647.5 0.000000028 0.00000 0.00098 0.00138 0.00000
0 25 65281.7 153.2 0.014223474 0.13787 0.20423 0.31010 0.00023
0 26 65281.7 153.2 0.000000035 0.00000 0.00032 0.00048 0.00011
0 27 65281.7 153.2 0.000009000 0.00009 0.00522 0.00774 0.00001
0 28 65281.7 153.2 0.000007207 0.00007 0.00460 0.00698 0.00000
0 29 65281.7 153.2 0.000047448 0.00046 0.01179 0.01791 0.00001
1 2 0.6 0.0 0.000000000 0.00000 0.00001 0.00001 0.00000
1 3 18.1 553477.5 0.000000000 0.00000 0.00000 0.00000 0.00009
1 4 18.1 552233.6 0.000000000 0.00000 0.00006 0.00004 0.00000
1 5 2616.1 3822.5 0.000000063 0.00001 0.00006 0.00003 0.00261
1 6 2616.4 3822.1 0.000000060 0.00001 0.00211 0.00144 0.00006
1 7 2629.1 3803.6 0.000000143 0.00002 0.00225 0.00321 0.00003
1 8 2629.3 3803.3 0.000000002 0.00000 0.00015 0.00025 0.00040
1 9 2633.9 3796.7 0.000000271 0.00003 0.00011 0.00008 0.00538
1 10 4218.0 2370.8 0.000000005 0.00000 0.00031 0.00046 0.00019
...

If the PrintLevel value is set to 3 or higher, the program will print out the composition of the SOC corrected
states in the basis of states

⃒⃒
Ψ𝑆𝑀𝐼

⟩︀
.

Eigenvectors of SOC calculation:
the threshold for printing is: 0.010000

weight : Root Spin Ms
State 0: 0.00 cm**-1 0.00000 eV

(continues on next page)
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0.378045 : 0 2 2
0.235825 : 0 2 0
0.378045 : 0 2 -2

State 1: 5.61 cm**-1 0.00070 eV
0.496236 : 0 2 2
0.496236 : 0 2 -2

State 2: 6.20 cm**-1 0.00077 eV
0.496291 : 0 2 1
0.496291 : 0 2 -1

Further details of the SOC calculation such as the procedure of SOC integral calculation can be controlled via the
%rel block (section Relativistic Options.

7.31.2 Transition Metal L-Edges with ROCIS or DFT/ROCIS

The orca_rocis program was designed to calculate transition metal L-edge spectra of large molecules as they are
observed in X-ray absorption spectroscopy (XAS). An L-edge results when an electron is promoted from the 2p
shell of a transition metal ion into the valence d shell by an X-ray photon. Strong spin-orbit coupling in the 2p shell
and p-d coupling phenomena complicate the interpretation and even more so the prediction of these spectra. It has
to be kept in mind that the present program applies a variety of approximations which might lead to observable
deviations from experimentally determined spectra. However, we believe that the results obtained from the program
are in general qualitatively correct and in most cases accurate close to the experimental uncertainty. In cases where
quantitative accuracy is not met, the provided results might still give some insight into the mechanisms of intensity
distribution in the spectra.

The special input structure for orbital windows described in General Use allows the user to restrict the donor orbital
space to the transition metal 2p shell. The acceptor orbital space is the same as in regular UV/Vis spectroscopy. It
should include all singly occupied molecular orbitals and as many virtual orbitals as one can afford in the calcula-
tion. The number of roots should be chosen large enough so that at least all 2p-3d single excitations are calculated.
In many cases even more roots are required since doubly excited or charge transfer states may become important.
Moreover the strong SOC apparent in the 2p shell of transition metal ions necessitates the additional calculation
of excited states with a total spin of 𝑆′ = 𝑆 + 1 and 𝑆′ = 𝑆 − 1 where 𝑆 is the total spin of the electronic ground
state. Accordingly four additional excitation classes introduce excited configuration state functions with a lower
and higher spin multiplicity. They feature the second quantized spin raising and lowering operators 𝑆+

𝑝𝑞 = �̂�↑𝑞𝛼�̂�𝑝𝛽 ,
𝑆−𝑝𝑞 = �̂�↑𝑞𝛽 �̂�𝑝𝛼.

⃒⃒⃒
Φ

(𝑡−)
𝑖

⟩
=
√︁

2𝑆′+1
2𝑆′+2𝑆

−
𝑡𝑖 |0⟩ −

SOMO∑︀
�̸�=𝑡

1√
2𝑆′+1

1√
2𝑆′+2

𝑆−𝑢𝑢𝐸
𝑡
𝑖 |0⟩⃒⃒⃒

Φ
(𝑡−)
𝑖

⟩
=
√︁

2𝑆′+1
2𝑆′+2𝑆

−
𝑡𝑖 |0⟩ −

SOMO∑︀
�̸�=𝑡

1√
2𝑆′+1

1√
2𝑆′+2

𝑆−𝑢𝑢𝐸
𝑡
𝑖 |0⟩⃒⃒⃒

Φ
(𝑎−)
𝑖

⟩
=
√︁

2𝑆′+1
2𝑆′+3𝑆

−
𝑎𝑖 |0⟩ −

SOMO∑︀
𝑡

√︁
(𝑆′+1)2−𝑆′2

(𝑆′+1)(2𝑆′+3)
1√

2(2𝑆′+2)
𝑆−𝑡𝑡𝐸

𝑎
𝑖 |0⟩

+
SOMO∑︀
𝑡,�̸�=𝑡

√︁
2

(2𝑆′+2)(2𝑆′+3)

√︁
1

(2𝑆′+2)2(2𝑆′+1)𝑆
−
𝑡𝑡𝑆
−
𝑢𝑢𝑆

+
𝑎𝑖 |0⟩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
𝑆′ = 𝑆 − 1

⃒⃒⃒
Φ𝑎

+

𝑖

⟩
= 𝑆+

𝑎𝑖 |0⟩
}︁

𝑆′ = 𝑆 + 1

(7.237)

Inclusion of configuration state functions with higher or lower multiplicity is invoked with the keywords
DoLowerMult and DoHigherMult, respectively.

%rocis
NRoots 20
SOC true
DoRI true
PrintLevel 3

(continues on next page)
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DoLowerMult true #Invokes a CI calculation #with S'=S-1
DoHigherMult true #Invokes a CI calculation #with S'=S+1
OrbWin = 6,8,0,2000

end

The program will conduct a separate Davidson procedure for each multiplicity. Subsequently it gives the excitation
energies and compositions of the calculated excited states for all included multiplicities. After all CI calculations
are finished, the program gives a list of all calculated roots with their excitation energies and their multiplicities. It is
this number that will be referred to as label 𝐼 in the decomposition of spin-orbit coupled states in the basis

⃒⃒
Ψ𝑆𝑀𝐼

⟩︀
.

It is very important to note, that when states with different multiplicities are calculated this number might deviate
from the number that appears in the respective CI part of the output. If one gets confused about the numbering of
the states, the state energies might act as a guideline through the output of the program.

Without SOC the spin exclusion rule applies which means that only excited states with a total spin equal to the
ground state spin (𝑆′ = 𝑆) give rise to non-vanishing intensities. Hence, only these transitions are listed in the
spectra before SOC.

--------------------------------------------------------------------------------
ROOT Mult Excitation energy[Eh] [cm-1] [eV]

--------------------------------------------------------------------------------
0 5 0.00000000 0.00 0.000
1 5 26.24822856 5760820.28 714.251
2 5 26.24833619 5760843.90 714.254
3 5 26.27159871 5765949.43 714.887
4 5 26.27982129 5767754.08 715.110
5 5 26.30321870 5772889.22 715.747
6 5 26.30458669 5773189.46 715.784
7 5 26.33143414 5779081.79 716.515
8 5 26.33600432 5780084.83 716.639
9 5 26.33865219 5780665.97 716.711

10 5 26.34522494 5782108.52 716.890
11 5 26.34577552 5782229.36 716.905
12 5 26.35183534 5783559.34 717.070
13 3 26.42121780 5798787.03 718.958
14 3 26.42122881 5798789.45 718.958

...

42 7 27.22926558 5976133.02 740.946
43 7 27.23201078 5976735.52 741.021
44 7 27.23280499 5976909.83 741.042
45 7 27.23594814 5977599.67 741.128
46 7 27.23865050 5978192.77 741.201
47 7 27.26590445 5984174.32 741.943
48 7 27.26597947 5984190.78 741.945
49 7 27.26604364 5984204.87 741.947
50 3 27.29447169 5990444.10 742.720
51 3 27.30121861 5991924.88 742.904
52 3 27.30655497 5993096.08 743.049
53 3 27.30685328 5993161.55 743.057
54 3 27.31274496 5994454.62 743.218
55 7 27.52164817 6040303.58 748.902
56 7 27.52433114 6040892.42 748.975
57 7 27.52448641 6040926.50 748.979
58 7 27.53903479 6044119.50 749.375
59 7 27.53935644 6044190.10 749.384

------------------------
ROCIS-EXCITATION SPECTRA
------------------------

(continues on next page)
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NOTE: At this point no SOC is included!!!
Hence only transitions to states with the same spin multiplicity
as the ground state are observed!!!

Center of mass = ( -0.0011, -0.0021, 0.0000)
Calculating the Dipole integrals ... done
Transforming integrals ... done
Calculating the Linear Momentum integrals ... done
Transforming integrals ... done

-----------------------------------------------------------------------------
ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

-----------------------------------------------------------------------------
State Energy Wavelength fosc T2 TX TY TZ

(cm-1) (nm) (au**2) (au) (au) (au)
-----------------------------------------------------------------------------

1 5760820.3 1.7 0.000985130 0.00006 0.00612 -0.00434 0.00011
2 5760843.9 1.7 0.000777158 0.00004 -0.00008 0.00006 0.00666
3 5765949.4 1.7 0.000000036 0.00000 0.00000 0.00001 -0.00004
4 5767754.1 1.7 0.000007564 0.00000 0.00033 0.00057 -0.00000
5 5772889.2 1.7 0.025379335 0.00145 -0.00031 0.00021 -0.03804
6 5773189.5 1.7 0.026898175 0.00153 0.03203 -0.02254 -0.00039
7 5779081.8 1.7 0.000000323 0.00000 -0.00006 -0.00009 -0.00008
8 5780084.8 1.7 0.001711738 0.00010 -0.00572 -0.00805 0.00001
9 5780666.0 1.7 0.113054940 0.00644 -0.04616 -0.06564 -0.00001
10 5782108.5 1.7 0.151287595 0.00861 0.00073 -0.00052 0.09281
11 5782229.4 1.7 0.147199895 0.00838 0.07488 -0.05266 -0.00088
12 5783559.3 1.7 0.000000026 0.00000 0.00001 -0.00001 0.00004
28 5960986.7 1.7 0.004292708 0.00024 -0.00881 -0.01263 -0.00000
29 5963084.1 1.7 0.001638281 0.00009 -0.00774 0.00553 0.00006
30 5963136.7 1.7 0.001369356 0.00008 -0.00005 0.00003 -0.00869
31 5963484.9 1.7 0.000935993 0.00005 0.00415 0.00587 -0.00000
32 5968477.0 1.7 0.000661255 0.00004 0.00493 -0.00349 -0.00007
33 5968705.6 1.7 0.000607238 0.00003 0.00006 -0.00004 0.00579
35 5970943.7 1.7 0.000000001 0.00000 0.00000 0.00000 -0.00001

After calculation of SOC in the basis of all calculated ROCIS roots, the program prints out the composition of the
spin-orbit coupled states (if PrintLevel >2) and the corresponding absorption spectrum.

Eigenvectors of SOC calculation:
the threshold for printing is: 0.010000

weight : Root Spin Ms
State 0: 0.00 cm**-1 0.00000 eV

0.129027 : 0 2 2
0.741116 : 0 2 0
0.129027 : 0 2 -2

-------------------------------------------------------------------------------
SPIN ORBIT CORRECTED ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-------------------------------------------------------------------------------
States Energy Wavelength fosc T2 TX TY TZ

(cm-1) (nm) (au**2) (au) (au) (au)
-------------------------------------------------------------------------------
0 1 0.0 0.0 0.000000000 0.00000 0.00000 0.00000 0.00000
0 2 0.8 0.0 0.000000000 0.00000 0.00000 0.00000 0.00000
0 3 0.8 0.0 0.000000000 0.00000 0.00000 0.00000 0.00000
0 4 1.0 0.0 0.000000000 0.00000 0.00000 0.00000 0.00000
0 5 5729330.4 1.7 0.000080556 0.00002 0.00013 0.00009 0.00464
0 6 5729330.4 1.7 0.000096984 0.00003 0.00415 0.00295 0.00013
0 7 5731365.3 1.7 0.000000001 0.00000 0.00001 0.00000 0.00000
0 8 5731365.4 1.7 0.000000000 0.00000 0.00000 0.00000 0.00001

(continues on next page)
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0 9 5733452.5 1.7 0.000058329 0.00002 0.00323 0.00227 0.00004
0 10 5733477.2 1.7 0.000066389 0.00002 0.00003 0.00002 0.00421
0 11 5734964.4 1.7 0.000000034 0.00000 0.00005 0.00007 0.00004
0 12 5737151.2 1.7 0.000047769 0.00001 0.00208 0.00291 0.00000

With the aid of the orca_mapspc program it is possible to extract a .plt file from the printed spectra, which
then can be used to generate a plot of the intensity vs the excitation energy. The orca_mapspc program applies
Gaussian type lineshape functions to the calculated transitions with a user-defined FWHM. One has to provide
some information for the program such as the name of the output file, the type of spectrum you wish to plot, the
energy range and the like. It is invoked in the command line and the parameters are given as arguments:

orca_mapspc FeIICl4.out socabs -eV -w1 -n3000 -x0710 -x1740

The first argument has to be the output file of your calculation followed by the type of spectrum that should be
plotted. In the case of transition metal L-edges it is an absorption spectrum after the SOC correction. The arguments
“-eV” (use electron Volt as energy unit), “-w1” (FWHM = 1eV), “-n3000” (use 3000 grid points), “-x0710” and
“-x1740” (energy range: 710 to 740 eV) have to be adapted to the specific calculation. As a result, one obtains a
.plt and a .stk file. The .plt file contains five columns. In the first column one finds the energy and in the
second the total intensity. Columns three to five contain the x-,y- and z-components of the transition moment.
Note, that the distribution of the transition moment among its spatial components depends on the orientation of
your molecular axis system. The .stk file contains a list of all transitions with their respective transition energy
and intensity. A more detailed description of the orca_mapspc program and its usage can be found in chapter
orca_mapspc.

Fig. 7.31: Comparison of the experimentally observed (black) and calculated ROCIS (red) Fe L-edge of [FeCl4]2−.
The red bars highlight the contribution of individual states to the total spectrum. The calculation was performed
using the TZVP basis set.

For many transition metal compounds the description of the electronic ground and excited states by Hartree-Fock
theory and CIS is of rather poor quality. Especially covalency and relative spin state energetics are not reproduced

788 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

correctly. This in turn might lead to wrong intensity distributions in the calculated L-edge spectra. In the majority
of these cases the quality of the description and hence the predicted L-edge spectra can be significantly improved
with the DFT/ROCIS method[727]. It features the usage of a restricted open-shell Kohn-Sham matrix as reference
and also uses the DFT orbitals for setting up the excited configuration state functions in the CI expansion. The
two electron integrals that include the DFT orbitals are scaled according to their nature and their position in the CI
matrix by the parameters 𝑐1, 𝑐2 and 𝑐3. They all lie in the interval [0;1]. Parameters 𝑐1 and 𝑐2 scale coulomb- and
exchange- like terms in the diagonal part of the CI matrix, whereas 𝑐3 reduces the size of all off-diagonal elements
of the CI matrix. For example:

𝐻DFT/ROCIS
𝑖𝑎,𝑖𝑎 = 𝐹

𝐶(KS)
𝑎𝑎 − 𝐹𝐶(KS)

𝑖𝑖 − 𝑐1 (𝑖𝑖|𝑎𝑎) + 2𝑐2 (𝑖𝑎|𝑖𝑎)
𝐻DFT/ROCIS
𝑖𝑎,𝑗𝑏 = 𝑐3

{︁
𝛿𝑖𝑗𝐹

𝐶(KS)
𝑎𝑏 − 𝛿𝑎𝑏𝐹𝐶(KS)

𝑗𝑖 − (𝑖𝑗|𝑎𝑏) + 2 (𝑖𝑎|𝑗𝑏)
}︁ (7.238)

The three default parameters 𝑐1 = 0.18, 𝑐2 = 0.20 and 𝑐3 = 0.40 have been optimized for a test set of molecules
and their excited states on a B3LYP/def2-TZVP(-f) level of theory but can be freely chosen[727]. It is most likely
that for a different combination of test molecules, functional and basis set, a different set of parameters gives better
results. Since the parameters are chosen with regard of a good “balance” between orbital energies, Coulomb and
exchange integrals, a new set of parameters should at least crudely resemble their relative proportions.

! B3LYP def2-TZVP(-f) TightSCF

%Basis
AuxC "def2/J"

end

%ROCIS
NRoots 20
DoRI true
SOC true
DoHigherMult true
PrintLevel 3
OrbWin = 5,7,50,60
DoDFTCIS true #switches on the DFT/ROCIS method
DFTCIS_c = 0.18, 0.20, 0.40 #Array input of the three parameters

end

Fig. 7.32: Comparison of the experimentally observed (black) and calculated (red) Ti L-edge of [Cp2TiCl2]. The
red bars highlight the contribution of the individual states to the total spectrum. The pure ROCIS method (left)
predicts a wrong L3-L2 intensity ratio and strongly overestimates the splitting of the satellite features to the main
bands. Better results are obtained with the DFT/ROCIS method (right).
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7.31.3 Natural Transition Orbitals/ Natural Difference Orbitals

Likewise to CIS and TD-DFT (section Natural Transition Orbitals) The nature of the calculated excited states in
ROCIS and DFT/ROCIS can be analyzed by using the Natural Transition Orbitals (NTO) or Natural Difference
Orbitals (NDO) machineries.[688] Note that:

• The NTO analysis is based on the transition density between ground and excited states. Hence is valid for
singly excited states and for states of the same multiplicity.

• The NDO analysis on the otherhand is somewhat more flexible in this respect as it is based on the difference
density between ground and excited states.

• Presently, only one analysis (NTO or NDO) can be performed at a time while when both flags are on the
NTO analysis switches off.

An example is given below for [FeCl4]2−:

!B3LYP def2-TZVP Conv TightSCF LargePrint PAL4

%Basis
AuxC "def2/J"

end

%ROCIS
NRoots 40
PrintLevel 3
MaxCore 4000
MaxDim 360
SOC true
DoRI true
DoNTO true
DoNDO true
NDOThresh/NTOThresh 1e-4
NDOStates/NTOStates= 1,2,3,4,5,6,7,8,9,10,13,14,15
DoLowerMult true
DoHigherMult true
DoDFTCIS true
DFTCIS_c = 0.18, 0.20, 0.40
OrbWin = 6,8,0,2000

end

* xyz -2 5
Fe -17.84299991694815 -0.53096694321123 6.09104775508499
Cl -19.84288422845700 0.31089495619796 7.04101319789001
Cl -17.84298666758073 0.11868125024595 3.81067954087770
Cl -17.84301352218429 -2.87052442818457 6.45826391412877
Cl -15.84311566482982 0.31091516495189 7.04099559201853
*

Then the respective NTO and NDO analysis for state 15 is given below:

------------------------------------------
NATURAL TRANSITION ORBITALS FOR STATE 14
------------------------------------------

done
Solving eigenvalue problem for the Occupied space ... done
Solving eigenvalue problem for the Acceptor space ... done
Natural Transition Orbitals were saved in nto.14.nto
Threshold for printing occupation numbers 1.0e-04

E= 25.447756 au 692.469 eV 5585137.0 cm**-1

(continues on next page)
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49[0] -> 46[1] : n= 0.39056909
48[0] -> 47[1] : n= 0.08619374
47[0] -> 48[1] : n= 0.00441125

-------------------------------------------------
NATURAL DIFFERENCE ORBITALS FOR STATE 14
-----------------------------------------------

done
Solving eigenvalue problem for the Occupied space ... done
Solving eigenvalue problem for the Acceptor space ... done
Natural Difference Orbitals were saved in ndo.14.ndo
Threshold for printing occupation numbers 1.0e-04

E= 25.447756 au 692.469 eV 5585137.0 cm**-1
49[0] -> 46[1] : n= 0.81173217
48[0] -> 47[1] : n= 0.17903699
47[0] -> 48[1] : n= 0.01165859
46[0] -> 49[1] : n= 0.00922738
45[0] -> 50[1] : n= 0.00112567

For closed shell cases the orbitals are save in similar way to TDDFT and CIS (section Natural Transition Orbitals).
In the case of open shell cases for convenience donor orbitals are saved with orbital operator 0 while acceptor
orbitals with orbital operator 1. This needs to be specified in the orca_plot program and should not be confused
with the spin-up and spin-down orbitals in the UHF and UKS cases.

In practice one can use this machinery to analyze for example the relativistically corrected states located at 705.5
eV (when shifted with respect to experiment). It can be seen that these states contain for example significant
contributions from state 14. NTO or NDO analysis then shows that this state is dominated by the spin conserving
DOMO-SOMO 2𝑝𝑧 − 3𝑑𝑦𝑧 single electron excitation.

7.31. Excited States via ROCIS and DFT/ROCIS 791



ORCA Manual, Release 6.0

Fig. 7.33: DFT/ROCIS calculated L3 XAS spectrum of [Fe(Cl) 4]2− together with NDO analysis for state 14.
Constant broadening 0.5 eV and isovalue for the orbital plots 0.03 a.u. is used throughout

7.31.4 Resonant Inelastic Scattering Spectroscopy

General

Starting from ORCA version 4.0 ROCIS module can be used to calculate RIXS spectra

The present implementation is directly based on the Kramers Heisenerg Dirac (KDH) expression formula for near
resonant and resonant conditions

|𝛼𝜌𝜆(𝐸𝑒𝑥, 𝐸𝑠𝑐)|2𝑇𝑜𝑡𝑎𝑙 =
∑︁
𝐹

⃒⃒⃒⃒
⃒∑︁
𝑉

⟨𝐹 |𝑚𝜌 |𝑉 ⟩ ⟨𝑉 |𝑚𝜆 |𝐼⟩
𝐸𝑉 𝐼 − 𝐸𝑒𝑥 − 𝑖 12Γ𝑉

⃒⃒⃒⃒
⃒
2{︃

Γ𝐹

(𝐸𝐹𝑉 − 𝐸𝑒𝑥 + 𝐸𝑠𝑐)
2
+ 1

4Γ𝐹
2

}︃

|𝛼𝜌𝜆(𝐸𝑒𝑥, 𝐸𝑠𝑐, 𝑉 )|2𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑡 =
∑︁
𝐹

|⟨𝐹 |𝑚𝜌 |𝑉 ⟩|2|⟨𝑉 |𝑚𝜆 |𝐼⟩|2𝑓(𝐸𝑉 𝐼 , 𝐸𝐹𝑉 , 𝐸𝑒𝑥, 𝐸𝑠𝑐,Γ𝑉 ,Γ𝐹 )

|𝛼𝜌𝜆(𝐸𝑉 𝐼 , 𝐸𝑠𝑐)|2𝐷𝑖𝑟𝑒𝑐𝑡 =
∑︁
𝑉

|𝛼𝜌𝜆(𝐸𝑉 𝐼 , 𝐸𝑠𝑐, 𝑉 )|2𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑡

The resonance scattering cross section for total and direct cases, averaged over all orientations of the molecule and
integrated over all directions and polarizations of scattered radiation is given in equations:

𝜎𝑇𝑜𝑡𝑎𝑙
𝑅𝑋𝐸𝑆

(𝐸𝑒𝑥, 𝐸𝑠𝑐) =
8𝜋𝐸3

𝑠𝑐𝐸𝑒𝑥
9𝑐4

∑︁
𝜌,𝜆=𝑥,𝑦,𝑧

|𝛼𝜌𝜆(𝐸𝑒𝑥, 𝐸𝑠𝑐)|2𝑇𝑜𝑡𝑎𝑙

𝜎𝐷𝑖𝑟𝑒𝑐𝑡
𝑅𝑋𝐸𝑆

(𝐸𝑒𝑥, 𝐸𝑠𝑐) =
8𝜋𝐸3

𝑠𝑐𝐸𝑒𝑥
9𝑐4

∑︁
𝜌,𝜆=𝑥,𝑦,𝑧

|𝛼𝜌𝜆(𝐸𝑒𝑥, 𝐸𝑠𝑐)|2𝐷𝑖𝑟𝑒𝑐𝑡
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Interference effects can be then derived in a straightforward way from equation:

𝜎𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑅𝑋𝐸𝑆 (𝐸𝑒𝑥, 𝐸𝑠𝑐) = 𝜎𝑇𝑜𝑡𝑎𝑙𝑅𝑋𝐸𝑆(𝐸𝑒𝑥, 𝐸𝑠𝑐)− 𝜎𝐷𝑖𝑟𝑒𝑐𝑡𝑅𝑋𝐸𝑆(𝐸𝑒𝑥, 𝐸𝑠𝑐)

In order to access RIXS spectroscopy in the ROCIS module one needs in addition to specify a 2nd donor space.
This is specified by defining an OrbWin array with 6 elements: The first four elements define the ranges of the two
donor spaces while the last two elements the respective acceptor space range.

OrbWin = 0,0,2,4,45,60

An important difference with respect to the conventional ROCIS or DFT/ROCIS calculations is the fact that two
donor spaces of very different energy ranges are involved (e.g. K-edge, L-edge) which requires to restrict somewhat
the acceptor space and saturate it with as many states as possible.

The main calling commands in order to perform a RIXS calculation within both ROCIS and CASSCF blocks are
the following:

• RIXS true. Similar to absorption spectroscopy, this requests the RIXS calculation to be performed based on
the calculated non-relativistic ground state multiplicity States

• RIXSSOC true. By turning-on this flag the RIXS is calculated by taking in account the relativistically
corrected Ms States.

• Elastic true. This flag indicates whether the resonant condition in which the initial and Final states coincide
should be taken into account. Note that the intensity of this spectral feature might be overestimated as
presently the non resonant terms are not treated

The respective ROCIS input reads then as follows:

!B3LYP def2-TZVP SlowConv

%Basis
AuxC "def2/J"

end

%ROCIS
NRoots 200
PrintLevel 3
MaxCore 4000
DoRI true
DoHigherMult true
SOC true
RIXS true # Request RIXS calculation (NoSOC)
RIXSSOC true # Request RIXS calculation (with SOC)
Elastic true # Request RIXS calculation (Elastic)
DoDFTCIS true
DFTCIS_c =0.18,0.20,0.40
OrbWin = 2,4,25,33,0,100

end
* xyzfile 2 2 test.xyz

When running the calculation one can monitor if the requested NRoots were sufficient enough to select the states
dominated by both the donor orbital spaces

--------------------------------------------------------------------------------
ROOT Mult Excitation energy[Eh] [cm-1] [eV]
--------------------------------------------------------------------------------
0 2 0.00000000 0.00 0.000
1 2 0.06611737 14511.08 1.799
2 2 0.07728471 16962.03 2.103
3 2 0.07732428 16970.72 2.104
...
84 2 33.75471831 7408304.35 918.513

(continues on next page)
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85 2 33.77073325 7411819.22 918.948
86 2 33.77076955 7411827.19 918.949
87 4 34.06882971 7477243.83 927.060
88 2 34.07021441 7477547.74 927.098
...

If that is not the case the respective RIXS calculations will not be performed and a Warning Message will be
generated:

Making the RIXS files ...
WARNING!: Flag for RIXS property calculation was identified but
there is zero number of Intermediate and/or Final states:
No Cross-Section properties will be evaluated ...Skipping this part
TIP: Increase the number of NRoots and/or decrease or increase
the acceptor orbital space
...Done

A successful run on the other hand will generate the following messages for RIXS and RIXSSOC calculations.

----------------------------------------------------------------------------------
ROCIS RIXS SPECTRUM
----------------------------------------------------------------------------------

Making the RIXS data files for Inelastic and Elastic Scattering
Ground State: 1
Intermediate States: 21
Final States: 59
The RIXS cross section will be generated from:
60 Ground-Final State Pairs and 21 Intermediate States/Pair
Calculating Intensities...
10% done
20% done
30% done
40% done
50% done
60% done
70% done
80% done
90% done
100% done
Storing the files...All Done
----------------------------------------------------------------------------------

----------------------------------------------------------------------------------
ROCIS RIXSSOC SPECTRUM
----------------------------------------------------------------------------------

Making the RIXS-SOC data files for Inelastic and Elastic Scattering
Ms States: 2
Intermediate States: 78
Final States: 214
The RIXS cross section will be generated from:
432 Ground-Final State Pairs and 78 Intermediate States/Pair

Calculating Intensities...
10% done
20% done
30% done
40% done
50% done
60% done

(continues on next page)
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70% done
80% done
90% done
100% done

Storing the files...All Done
----------------------------------------------------------------------------------

In both cases the number of involved Initial, Final and Intermediate states is specified explicitly.

For example in the case of RIXSSOC 2 Ms Ground states, 78 Intermediate states and 214 Final states are involved.
Then the RIXS cross section for elastic and inelastic scattering will be generated by 432 (2*(2+214)) Ground-Final
State-Pairs and 78 Intermediate States per Ground-Final state pair.

Processing the spectra with orca_mapspc

By calling orca_mapspc with the following keywords:

orca_mapspc test.el_inel.rocis.rixssoc RIXS -x0871 -x1876 -x2-1 -x34 -w0.4 -g0.4
-l -n125 -m125 -dx20 -eaxis1

The program will process the test.el_inel.rocis.rixssoc file with the following parameters:

Energy range along x : 871-876 eV

Energy range along y: -1-34 eV

-l indicates Lorentzian broadening

Width along x (gamma): 0.4 eV

Width along y (gamma): 0.4 eV

Points along x: 125

Points along y:125

Shift to be applied along Incident energy/Emission axis: 20 eV

The y axis will be Energy Transfer axis. If -eaxis2 is the y axis will be then Emission Energy axis

All this information is printed during the data processing:

Mode is RIXS
Using Lorentzian shape
Cannot read the paras.inp file ...
taking the line width parameter from the command line
Cannot read the udex.inp file ...
taking the excitation energy ranges from the command line
Cannot read the udem.inp file ...
taking the emission energy ranges from the command line
Cannot read the gfsp.inp file ...
No Ground-Final State Pairs will be evaluated
---------------------------------------------------------------------------------
PLOTTING RIXS SPECTRA
---------------------------------------------------------------------------------
Input File : test.el_inel.rocis.rixssoc
Incident Energy Excitation axis : 871.000 ... 876.000 eV 125 points
Energy transfer axis : -1.000 ... 4.000 eV 125 points
Incident Energy Shift : 20.000 eV
Lorenzian Linewidth along Incident Axis : 0.400 eV
Lorenzian Linewidth along Energy Transfer/Emission Axis : 0.400 eV
y axis : 1 -> Energy transfer
Number of user defined cuts at constant Excitation Energy axis: 0

(continues on next page)
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Number of user defined cuts at constant Emission/Energy Transfer Energy axis : 0

Making checks...Done

Proccessing data...
10% done
20% done
...
100% done

RIXS-plotting done
Incident Energy range: 845.800 ... 869.249
Emission/Energy-transfer range: 0.000 ... 4.853

Now storing the 2D file...
Done

Making the Integrated spectra along Energy Transfer/Emission axis... Done

Making the Integrated spectra along Incident axis... Done

All Done
---------------------------------------------------------------------------------

Successful run will generate the following files: The RIXS planes of the Total, Direct and Interference RIXS
intensity as indicated in the above equations:

test.el_inel.rocis.rixssoc.total_rixs.dat
test.el_inel.rocis.rixssoc.direct_rixs.dat
test.el_inel.rocis.rixssoc.interference_rixs.dat

In addition one obtains the integrated spectra at constant Incident energies (CIE):

test.el_inel.rocis.rixssoc.dw.dat

as well as at constant Emission/Energy Transfer energies (CEE/CET):

test.el_inel.rocis.rixssoc.wex.dat
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Fig. 7.34: DFT/ROCIS calculated RIXS planes for [𝐶𝑢(𝑁𝐻3)4]
2−. Left: Total RIXS Intensity, Middle: Direct

RIXS intensity and Right: Interference RIXS intensity. Lorentzian lineshape broadening with constant widths
along Incident and Energy Transfer axis (0.5 and 0.2 eV respectively) were used throughout.

Generating Cuts

Cuts along x and y axis can be generated with two ways:

1) At first, this action can be performed by adding the following keywords: uex and udw accounting for generating
cuts at constant Incident Energies (CIE) and at constant Emission (CEE)/or at constant Energy Transfer (CET)
respectively, together with the desired number of cuts.

2) Alternatively, the energies of the desired cuts can be specified as lists in the files udex.inp (user defined excita-
tions) udem.inp (user defined emissions)

For example if in udex.inp one specifies:

872.5
874.2

and for the cuts along Energy Transfer axis one just specify -udw3

orca_mapspc test.el_inel.rocis.rixssoc RIXS -x0871 -x1876 -x2-1 -x34 -w0.4 -g0.4
-l -n125 -m125 -dx20 -eaxis1 -udw3

Then at the end one gets:

Making the specified cuts (2) at constant Excitation Energy axis...
Writing file: test.el_inel.rocis.rixssoc_872.50.rxes_vs.dat ...Done
Writing file: test.el_inel.rocis.rixssoc_872.50.rxes_fs.dat ...Done

(continues on next page)
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Writing file: test.el_inel.rocis.rixssoc_874.20.rxes_vs.dat ...Done
Writing file: test.el_inel.rocis.rixssoc_874.20.rxes_fs.dat ...Done
Done

Making the specified cuts (3) at constant Emission/Energy Transfer axis...
Writing file: test.el_inel.rocis.rixssoc_-1.00.xas_vs.dat ...Done
Writing file: test.el_inel.rocis.rixssoc_-1.00.xas_fs.dat ...Done
Writing file: test.el_inel.rocis.rixssoc_1.50.xas_vs.dat ...Done
Writing file: test.el_inel.rocis.rixssoc_1.50.xas_fs.dat ...Done
Writing file: test.el_inel.rocis.rixssoc_4.00.xas_vs.dat ...Done
Writing file: test.el_inel.rocis.rixssoc_4.00.xas_fs.dat ...Done
Done
All Done
---------------------------------------------------------------------------------

The files *_rxes_fs.dat are RXES spectra containing all individual contributions from all Final states together
with the Direct, the Total and the Interference contributions at the given constant Incident Energy.

Similarly, the *_rxes_vs.dat are RXES spectra containing individual contributions of the Intermediate states,
together with the Direct the Total and the Interference contributions at the given constant Incident Energy

Likewise, the respective *_xas_fs.dat and *_xas_vs.dat are XAS type spectra with individual contributions
at a given constant Emission or Energy transfer Energy

These files are Energy vs Intensity files and read like:

1) for *fs.dat

X S- 1( 0- 0) S- 2( 0- 1) DIRECT TOT INTERFERENCE

2) for *vs.dat

X S- 1( 45) S- 2( 47) DIRECT TOT INTERFERENCE

In the first case S -1(0-0) represents the individual contribution of a given Ground-Final state pair. The numbering
follows the numbering of the output file e.g.:

Eigenvalues: cm-1 eV Boltzmann populations at T = 300.000 K
0: 0.0000 0.0000 3.44e-01
1: 8.3818 0.0010 3.31e-01

Hence, in this case S -1 represents the elastic scattering intensity.

In the second case S -1(45) represents the individual contribution of a given Intermediate state.

44: 66918.6071 8.2968 1.43e-140
45: 6996678.8061 867.4775 0.00e+00
46: 6996693.0276 867.4793 0.00e+00

In this case S -1 represents the intensity contribution of the first Intermediate state.

Starting from ORCA 4.2 in every RIXS requested calculation the Off resonant XES spectrum is automatically
generated in every RIXS requested calculation.

----------------------------------------------------------------------------------
ROCIS RIXS SPECTRUM
----------------------------------------------------------------------------------

Making the RIXS data files for Inelastic and Elastic Scattering
Ground State: 1
Intermediate States: 28
Final States: 588
The RIXS cross section will be generated from:

(continues on next page)
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589 Ground-Final State Pairs and 28 Intermediate States/Pair
The Off-Resonance XES spectrum will be printed

Calculating Intensities...
10% done
20% done
30% done
40% done
50% done
60% done
70% done
80% done
90% done
100% done

Printing the XES spectrum and Storing the files...
-------------------------------------------------------------------------------------
X-RAY EMISSION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-------------------------------------------------------------------------------------
Transition Energy INT TX TY TZ
(eV) (fosc) (au) (au) (au)
-------------------------------------------------------------------------------------
1 589 -> 0 6403.377 0.000000000721 0.00000 0.00000 0.00000
2 590 -> 0 6403.380 0.000000000083 -0.00000 0.00000 0.00000
3 591 -> 0 6403.685 0.000873238810 0.00236 0.00000 0.00000
4 592 -> 0 6404.766 0.000000000154 0.00000 0.00000 0.00000
5 593 -> 0 6408.288 0.000000006850 -0.00001 0.00000 0.00000
6 594 -> 0 6408.295 0.000034710300 -0.00047 0.00000 0.00000
...
16490 614 -> 588 6387.989 0.000000000000 0.00000 0.00000 0.00000
16491 615 -> 588 6388.222 0.000000000000 0.00000 0.00000 0.00000
16492 616 -> 588 6388.881 0.000000000000 0.00000 0.00000 0.00000
All Done
----------------------------------------------------------------------------------

Hence also the myfile-rixs.out file can also be processed with the orca_mapspc to generate the respective XES
spectra:

orca_mapspc myfile_rixs.out XES/XESSOC -x06000 -x16500 -w2.0 -eV -n10000

7.31.5 Core PNO-ROCIS, PNO-ROCIS/DFT

It has been shown recently[546] that it is possible to combine the powerful machinery of the PNOs with the ROCIS
and ROCIS/DFT methods to formulate the core PNO-ROCIS and PNO-ROCIS/DFT methods. The usage of PNOs
here is somewhat unconventional since they are not used to treat electron correlation effects in a state specific
manner. Rather, the PNOs are used to identify the relevant part of the virtual space that can be reached by excitation
out of local core orbitals. This subspace of the virtual space is local, thus leading to a linear scaling, state universal
method.

The PNO-ROCIS calculations can be requested with the following keywords:

...
DoPNO true #Flag to call the PNO truncation
TCutPNO 1e-11#Threshold to cutout the PNO populations
XASElems 0 #Number of the involved element to the calculated core XAS calculation
OrbWin = 0,0,0,2000
...

As has been shown in reference[546] a universal TCutPNO 1e-11 threshhold can be defined for all edges provided
that the PNOs are constructed by taking into account all the availiable core orbitals in the systems. For example in
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the case of a 1st row transition metal this will be the 9 1s, 2s, 2p, 3s and 3p MOs. These orbitals will be identified
automatically by the program provided that the element or the elements for which the XAS calculation will be
performed are specified within the XASElems keyword. In the following example these correspond to Core MOs
36-44. Note that the CoreMOs list should not be confused with the OrbWin which is used to specify the excitation
space that will be actually used in the actual calculation.

===============================================
Core PNO/ROCIS truncation
================================================

------------------------------------------------
Calculating Integrals...
------------------------------------------------

...

------------------------------------------------
Calculating Guess Amplitudes and Densities...
------------------------------------------------

----------------------------------------------------------------
The densities will be generated from the Detected Core MOs:
----------------------------------------------------------------

MO= 36, E= -261.246087 Eh
MO= 37, E= -31.777896 Eh
MO= 38, E= -27.263122 Eh
MO= 39, E= -27.263122 Eh
MO= 40, E= -27.263122 Eh
MO= 41, E= -3.914132 Eh
MO= 42, E= -2.457405 Eh
MO= 43, E= -2.457405 Eh
MO= 44, E= -2.457405 Eh

Alternativelly one can also use the CoreMOs keyword to individual select the respective CoreMOs

...
DoPNO true #Flag to call the PNO truncation
TCutPNO 1e-11#Threshold to cutout the PNO populations
CoreMOs 0,1,6,7,8,29,30,31,32 #The core MOs for the selected element

#to perform the XAS calculation
OrbWin = 0,0,0,2000
...

A complete list of CoreMOs of the different atoms can be found in reference[546] The program will then proceed
and generate the Core PNOs and use the TCutPNO threshold to reduce the Virtual MO space. In the following
example only virtual orbitals are selected out of the total 1445 virtual MOs

TCutPNO: 1.000e-11
Virtual orbitals before selection: 368 ... 1812 (1445 MO's)
Virtual orbitals after selection: 368 ... 447 ( 80 MO's)
PNO transformation completed in: 177.09 sec

From this point and on the programm will proceed the usual way. This will result in extraordinary computation
speeding ups without loss in accuracy.
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7.31.6 ROCIS Magnetic Properties

Several magnetic properies are availiable in the ROCIS method Including g-tensors (G-Matrix), zero field splittings
(ZFS), hyperfine couplings (HFCs) and electric field gradients (EFGs).

The g-tensors as well as the zfs are calculated on the basis of the Effective Hamiltonian as well in the sum over
states (SOS) framework. HFCs are calculated in the SOS framework while EFGs are calculated as expectation
values. Please consult also the respective discussion in the MRCI chapter (section The Multireference Correlation
Module)

...
DoHeff true # Requests calculation of G-tenosrs and ZFS

# in the effective Hamiltonian framework
DoEPR true # Requests calculation of G-tenosrs, ZFS and HFCs

# in the Sum over states (SOS) framework
AtensorNuc 0 # Nuclei to account for the HFCs calculation
NAtensors 1 # How many Nuclei are included in the HFCs calculation
ATensor 0 # Nucleus to calculate HFCs and EFGs
NDoubGtensor 1 # Kramers doublets to account for the g tensor calculations
...

This will enter the calculation in the ROCIS Spin Hamiltonian section

--------------------------------------------------------
ROCIS SPIN HAMILTONIAN PROPERTIES
--------------------------------------------------------

7.31.7 Keyword List

%rocis
#-----------------------------------------------------------
# GENERAL KEYWORDS
#-----------------------------------------------------------
NRoots 3 # The number of desired roots
MaxDim 5 # Davidson expansion space = MaxDim * NRoots
MaxIter 35 # Maximum CI Iterations
NGuessMat 512 # The dimension of the guess matrix
ETol 1e-6 # Energy convergence tolerance
RTol 1e-6 # Residual Convergence tolerance
MaxCore 2000 # Maximum memory used during the calculation in MB
EWin= -5,5,-5,5 # Energy Window that defines orbital excitation space
OrbWin=6,8,0,2000 # Orbital Window that defines orbital excitation space

# (overrides EWin)
DoRI false # Switch for the RI approximation
DoLoc false # Switch for localization of Donor orbital space
LocMet PipekMezey # chooses the localization method:

# PipekMezey or FosterBoys.
# Abbreviations "PM" and "FB"
# are equivalent to full names.

SOC false # Switch for inclusion of SOC

TEMPERATURE 10 # The fictive temperature for the
# SOC corrected spectra

DoDFTCIS false # Switch for the DFT/ROCIS method
DFTCIS_C = 0.18, 0.20, 0.40 #Array Input of the

# three DFT/ROCIS parameters

#-----------------------------------------------------------
# FLAGS FOR EXCITATION SPACES
#-----------------------------------------------------------

(continues on next page)
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Do_is true # Include DOMO->SOMO excitations
Do_sa true # Include SOMO->Virtual excitation
Do_ia true # Include DOMO->Virtual excitations
Do_ista true # Include DOMO->SOMO excitations

# coupled to SOMO->Virtual
# excitations with s not equal t

Do_isa true # Include DOMO->SOMO excitations
# coupled to SOMO->Virtual
# excitations with s = t

DoLowerMult false # Switch for excitation with S’=S-1
Do_LM_is true # Include DOMO->SOMO excitations

# with S’=S-1
Do_LM_sa true # Include SOMO->Virtual excitations

# with S’=S-1
Do_LM_ia true # Include DOMO->Virtual excitations

# with S’=S-1
Do_LM_ss true # Include SOMO->SOMO excitations

# with S’=S-1
DoHigherMult false # Switch for DOMO->Virtual

# excitations with S’=S+1

#-----------------------------------------------------------
OUTPUT KEYWORDS
#-----------------------------------------------------------
PrintLevel 3 # Controls the amount of output

# produced during the calculation
RIXS false # Perform a RIXS calculation
RIXSSOC false # Perform a RIXS calculation on the basis

# of relativistically corrected states
Elastic false # Include the elastic line in the generation

# of the RIXS or RIXSSOC spectra
PlotDiffDens = 1,2 # Array input for plotting

# difference densities of CI roots
# 1 and 2 to the ground state.

PlotSOCDiffDens=1,2 # Array input for plotting
# difference densities of SOC
# states 1 and 2 to the ground state

DoNTO false # Request Natural Transition Orbital Analysis
DoNDO false # Request Natural Difference Orbital Analysis

# (if true it switches off the NTO analysis)

NDOThresh 1e-4 # Threshold for printing occupation numbers
NTOThresh 1e-4 # Threshold for printing occupation numbers
NDOStates = 1,2 # Array input for states to be taken into account
NTOStates = 1,2 # Array input for states to be taken into account
TPrint 0.01 # Threshold for contributions to CI

# and SOC states to be printed
DoPNO false # Performs the calculation in the PNO-ROCIS framework

DoCD true # Request circular dichroism calculation
DoDipoleLength true # Request the use of electric moments in a length formulation
DoDipoleVelocity true # Request the use of electric moments in a velocity formulation
DoHigherMoments true # Request the calculation of electric quadrupole and magnetic

# dipole moments contributions
DoFullSemiclassical true # Request the calculation of complete semiclassical

# multipolar moments
DecomposeFoscLength true # Request the decomposition of the oscillator strengths

# in a multipolar expansion under a length formulation
DecomposeFoscVelocity true # Request the decomposition of the oscillator strengths

# in a multipolar expansion under a velocity formulation
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7.32 Excited States via MC-RPA

MC-RPA excitation energies and transition moments are computed from the poles and residues of the linear re-
sponse function of CASSCF a wave function.[380, 417, 902] By following similar lines, it is in principle possible
to compute any kind of static and dynamic molecular property that is based on analytic derivatives of the CASSCF
energy, which may be available in future releases of ORCA.

7.32.1 General Description

The starting point of response theory for variational wave functions like CASSCF is the time-dependent (TD)
Schrödinger equation in its phase-isolated form[174](︁

�̂� − 𝑖 𝜕
𝜕𝑡
−𝑄

)︁
|0̃⟩ = 0

with the TD quasi energy

𝑄(𝑡) = ⟨0̃|
(︁
�̂� − 𝑖 𝜕

𝜕𝑡

)︁
|0̃⟩.

The Hamiltonian �̂� = �̂�0 + 𝑉 𝑡 consists of the unperturbed time-independent Hamiltonian �̂�0 and a TD pertur-
bation

𝑉 𝑡 =
∑︁
𝑘

𝑒−𝑖 𝜔𝑘 𝑡
∑︁
𝑥

𝜀𝑥(𝜔𝑘) �̂�

which is described as a sum of periodic perturbations, i.e. a Fourier series. TD molecular properties are obtained
by applying the TD variational principal

𝛿{𝑄(𝑡)}𝑇 = 0

up to a certain order in the time-averaged quasi energy

{𝑄(𝑡)}𝑇 =
1

𝑇

∫︁ 𝑇/2

−𝑇/2
𝑄(𝑡) 𝑑𝑡

while {𝑄(𝑡)}𝑇 is expanded by the perturbation strengths 𝜀𝑋 at vanishing frequencies 𝜔𝑘 = 0. Applying the TD
variational principle for the second-order quasi energy leads to

0 = 𝛿{𝑄(𝑡)}(2)𝑇 =⇒ 𝜕𝑄𝑋𝑌 (−𝜔𝑌 , 𝜔𝑌 )
𝜕𝜆𝑋(−𝜔𝑌 )

=
(︁
E(2) − 𝜔𝑌 S(2)

)︁
𝜆𝑌 −V𝑌 = 0. (7.239)

The first-order response equations (7.239) become singular if the perturbation frequency 𝜔𝑌 approaches any eigen-
value

E(2) 𝜆 = S(2) 𝜆𝜔,

of second-derivative matrices E(2) and S(2). The eigenvalues 𝜔 correspond to the electronic excitation energies.
The second-derivative matrices E(2) and S(2) have a paired structure as both kind of operators that express orbital
excitation and de-excitations are involved:[︂(︂

A B
B* A*

)︂
− 𝜔

(︂
Σ Δ
−Δ* −Σ*

)︂]︂(︂
X
Y*

)︂
=

(︂
0
0

)︂
The eigenvalue equations above are valid for all variational wave functions methods, e.g. DFT, HF, CASSCF etc.
The only difference is the operator manifold and the unperturbed Hamiltonian �̂�0 that is used. For the CASSCF
linear response and eigen value equations, the super matrices A, B, Σ, and Δ have the following structure:

A =

(︃
⟨0| [𝑞𝑖, [�̂�0, 𝑞

†
𝑗 ]] |0⟩ ⟨0| [[𝑞𝑖, �̂�0], 𝑅

†
𝑗 ] |0⟩

⟨0| [𝑅𝑖, [�̂�0, 𝑞
†
𝑗 ]] |0⟩ ⟨0| [𝑅𝑖, [�̂�0, 𝑅

†
𝑗 ]] |0⟩

)︃
Σ =

(︃
⟨0| [𝑞𝑖, 𝑞†𝑗 ] |0⟩ ⟨0| [𝑞𝑖, 𝑅†𝑗 ] |0⟩
⟨0| [𝑅𝑖, 𝑞†𝑗 ] |0⟩ ⟨0| [𝑅𝑖, 𝑅

†
𝑗 ] |0⟩

)︃

B =

(︂
⟨0| [𝑞𝑖, [�̂�0, 𝑞𝑗 ]] |0⟩ ⟨0| [[𝑞𝑖, �̂�0], 𝑅𝑗 ] |0⟩
⟨0| [𝑅𝑖, [�̂�0, 𝑞𝑗 ]] |0⟩ ⟨0| [𝑅𝑖, [�̂�0, 𝑅𝑗 ]] |0⟩

)︂
Δ =

(︂
⟨0| [𝑞𝑖, 𝑞𝑗 ] |0⟩ ⟨0| [𝑞𝑖, 𝑅𝑗 ] |0⟩
⟨0| [𝑅𝑖, 𝑞𝑗 ] |0⟩ ⟨0| [𝑅𝑖, 𝑅𝑗 ] |0⟩

)︂
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The TD CASSCF wave function is expressed in terms of orbital excitation 𝑞†𝑖 and de-excitation operators 𝑞𝑖,

𝑞†𝑖 = 𝐸𝑝𝑞 = 𝑎†𝑝𝛼𝑎𝑞𝛼 + 𝑎†𝑝𝛽𝑎𝑞𝛽 , 𝑞𝑖 = 𝐸𝑞𝑝, with 𝑝 > 𝑞

as well as so called state transfer operators

𝑅†𝑖 = |𝑖⟩ ⟨0| , 𝑅𝑖 = |0⟩ ⟨𝑖| , with 𝑖 ̸= 0

that account for relaxation of orbitals and CI coefficients when perturbed by an electromagnetic field, respectively.

The eigenvalue (and response) equations are solved iteratively by a customized version of the Davidson algorithm
that simultaneously determines the N lowest lying roots. The most time-consuming step is the transformation
of the trial vectors that contain an orbital and CI coefficient part with the electronic Hessian matrix E(2). The
working equations are very similar to those of the CASSCF electronic gradient that is computed when minimizing
the CASSCF ground state energy.

As a show case example the UV/Vis spectrum of a Nickel dimethylglyoximato complex (Ni(dmg) 2) was simulated
with both SA-CASSCF and MC-RPA. A CAS (12/9) with the 3d electrons on Ni and 4 𝜋 orbitals and electrons
from the ligands was selected; the def2-SVP basis set was used. For SA-CASSCF we have averaged over 21 states
while for MC-RPA the 20 lowest roots were determined. Though both UV/Vis spectra have two intense peaks,
their excitation energies and oscillator strengths differ quite substantially. This can be attributed to the lack of
state-specific orbital relaxation that is only available in MC-RPA. In subsection Natural Transition Orbitals the
most important natural transition orbitals[380, 562] and active natural orbitals of MC-RPA and SA-CASSCF are
shown, respectively.

Fig. 7.35: Calculated UV/Vis spectra of Ni(dmg)2.

7.32.2 Detecting CASSCF Instabilities

Selecting the right orbitals for the active space is not always an easy task. A wrong selection may lead to con-
vergence to excited states or saddle points when minimizing the CASSCF energy. Such an instability in the wave
function can be detected by computing the lowest excitation energy, i.e. the lowest root of the electronic Hessian
with MC-RPA.

Instabilities may occur even for the simplest cases if the starting orbitals for CASSCF energy calculation were
inappropriate. Let us look at a benzene CAS(6/6) calculation where we started from the model potential initial
guess for the MOs.

! TZVP Def2-TZVP/C VeryTightSCF

(continues on next page)
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%pal
nprocs = 20
end

%casscf
nel 6
norb 6
mult 1
nroots 1
TrafoStep RI
gtol 1e-8
etol 1e-12
end

%mcrpa
nroots 1
TolR 1e-4
MaxRed 80
end

*xyz 0 1
H 0.000000 2.484212 0.000000
H 0.000000 -2.484212 0.000000
H 2.151390 1.242106 0.000000
H -2.151390 -1.242106 0.000000
H -2.151390 1.242106 0.000000
H 2.151390 -1.242106 0.000000
C 0.000000 1.396792 0.000000
C 0.000000 -1.396792 0.000000
C 1.209657 0.698396 0.000000
C -1.209657 -0.698396 0.000000
C -1.209657 0.698396 0.000000
C 1.209657 -0.698396 0.000000
*

The energy converges smoothly

E(CAS)= -230.560657053 Eh DE= 0.000000000
E(CAS)= -230.767928524 Eh DE= -0.207271471
E(CAS)= -230.810472828 Eh DE= -0.042544304
E(CAS)= -230.811818980 Eh DE= -0.001346152
E(CAS)= -230.812866285 Eh DE= -0.001047305
E(CAS)= -230.812930081 Eh DE= -0.000063796
E(CAS)= -230.812944302 Eh DE= -0.000014221
E(CAS)= -230.812944635 Eh DE= -0.000000333
E(CAS)= -230.812943979 Eh DE= 0.000000656
E(CAS)= -230.812944834 Eh DE= -0.000000856
E(CAS)= -230.812944944 Eh DE= -0.000000110
E(CAS)= -230.812944943 Eh DE= 0.000000001
E(CAS)= -230.812944952 Eh DE= -0.000000009
E(CAS)= -230.812944953 Eh DE= -0.000000000

as the gradient norm does

||g|| = 2.538097040 Max(G)= -0.486818498 Rot=144,0
||g|| = 0.850498225 Max(G)= 0.219916319 Rot=23,11
||g|| = 0.192712320 Max(G)= -0.055714161 Rot=23,11
||g|| = 0.144524323 Max(G)= 0.035741221 Rot=23,11
||g|| = 0.034101354 Max(G)= -0.011346113 Rot=23,17
||g|| = 0.016336825 Max(G)= 0.005232633 Rot=122,17
||g|| = 0.003090776 Max(G)= 0.000935457 Rot=122,17

(continues on next page)
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||g|| = 0.002539517 Max(G)= -0.000597246 Rot=21,16
||g|| = 0.004134603 Max(G)= -0.000980627 Rot=21,16
||g|| = 0.001410672 Max(G)= 0.000353494 Rot=21,16
||g|| = 0.000506790 Max(G)= -0.000172518 Rot=23,17
||g|| = 0.000408528 Max(G)= -0.000191970 Rot=122,17
||g|| = 0.000087961 Max(G)= -0.000042271 Rot=23,17
||g|| = 0.000107447 Max(G)= -0.000041858 Rot=23,17
||g|| = 0.000139470 Max(G)= -0.000058693 Rot=23,11
||g|| = 0.000094867 Max(G)= 0.000020639 Rot=23,11
||g|| = 0.000033056 Max(G)= -0.000011307 Rot=23,11
||g|| = 0.000009908 Max(G)= -0.000005192 Rot=23,11
||g|| = 0.000013678 Max(G)= -0.000007007 Rot=23,11
||g|| = 0.000011838 Max(G)= 0.000004991 Rot=23,17
||g|| = 0.000006431 Max(G)= -0.000002076 Rot=122,17
||g|| = 0.000008817 Max(G)= -0.000002828 Rot=122,17
||g|| = 0.000012070 Max(G)= 0.000004189 Rot=23,17
||g|| = 0.000001891 Max(G)= 0.000001284 Rot=23,17
||g|| = 0.000003505 Max(G)= 0.000001187 Rot=23,17
||g|| = 0.000002121 Max(G)= -0.000000447 Rot=122,17
||g|| = 0.000002233 Max(G)= -0.000000508 Rot=122,17
||g|| = 0.000000933 Max(G)= 0.000000494 Rot=23,17
||g|| = 0.000000711 Max(G)= 0.000000369 Rot=23,17
||g|| = 0.000000430 Max(G)= 0.000000230 Rot=23,17
||g|| = 0.000000200 Max(G)= 0.000000047 Rot=23,11
||g|| = 0.000000103 Max(G)= 0.000000030 Rot=23,11
||g|| = 0.000000025 Max(G)= 0.000000005 Rot=20,16

Though we have reached convergence for a CASSCF ground state energy calculation, the MC-RPA calculation
however detects an instability

Davidson Eigenvalue solver (Iteration 10)

State Eigenvalue RMSD error Converged
0 0.2405996888 1.4767724243e-01 F

WARNING
1 null space vectors in reduced space Hessians!
This indicates an instability in your reference wave function!

Davidson Eigenvalue solver (Iteration 11)

State Eigenvalue RMSD error Converged
0 0.0000000000 0.0000000000e+00 T

by finding positive-indefiniteness by a Cholesky decomposition of the reduced space Hessians.

Instabilities in the CASSCF wavefunction can usually be avoided by carefully monitoring the active space orbitals
in the

----------------------------
LOEWDIN REDUCED ACTIVE MOs
----------------------------

section of the CASSCF output.

18 19 20 21 22 23
-0.62274 -0.32864 -0.32863 0.15983 0.16011 0.77971
1.99910 1.93810 1.93808 0.06203 0.06195 0.00075
-------- -------- -------- -------- -------- --------

2 H s 11.6 0.0 0.0 0.0 0.0 12.8
3 H s 11.6 0.0 0.0 0.0 0.0 12.8

(continues on next page)
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4 H s 11.6 0.0 0.0 0.0 0.0 12.8
5 H s 11.6 0.0 0.0 0.0 0.0 12.8
6 C pz 0.0 0.0 32.2 0.0 30.9 0.0
7 C pz 0.0 0.0 32.2 0.0 30.9 0.0
8 C pz 0.0 24.1 8.0 23.2 7.7 0.0
8 C px 6.7 0.0 0.0 0.0 0.0 3.0
9 C pz 0.0 24.1 8.0 23.2 7.7 0.0
9 C px 6.7 0.0 0.0 0.0 0.0 3.0
10 C pz 0.0 24.1 8.0 23.2 7.7 0.0
10 C px 6.7 0.0 0.0 0.0 0.0 3.0
11 C pz 0.0 24.1 8.0 23.2 7.7 0.0
11 C px 6.7 0.0 0.0 0.0 0.0 3.0

In this particular example, MOs 18 and 23 are not part of the 𝜋 system and have to be rotated with orbitals 16 and
31, respectively. After rotating all 𝜋 orbitals into the active space, the CASSCF converges to a lower energy.

--------------
CASSCF RESULTS
--------------

Final CASSCF energy : -230.844448647 Eh -6281.5968 eV

The electronic CASSCF Hessian is now positive definite and the lowest MC-RPA excitation energy becomes

STATE 1: E= 0.171023 au 4.654 eV 37535.3 cm**-1

7.32.3 Natural Transition Orbitals

Natural transition orbitals[380, 562] (NTO) are obtained from a singular value decomposition of the MC-RPA
ground-to-excited state (f) transition density matrices 𝜌0→𝑓𝑝𝑞 . As for TD-DFT and ROCIS one obtains two sets of
orbitals for each state that describe the donation (occupied and active) and acceptance (active and virtual) of an
electron in the electronic transition. The orbital structure of 𝜌0→𝑓𝑝𝑞 for CASSCF wave functions is illustrated in Fig.
7.36.
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Fig. 7.36: Structure of MC-RPA transition density matrix 𝜌0→𝑓𝑝𝑞

The compute NTOS only the following flag in the input has to switched ON:

%mcrpa
nroots 20
DoNTO true
NTOThresh 5e-5
end

This will compute all NTOs with a singular value larger then the NTOThresh threshold for ALL roots.

------------------------------------------
NATURAL TRANSITION ORBITALS FOR STATE 12
------------------------------------------

Natural Transition Orbitals were saved in ni-dmg-2-svp-cas-12-9-mcrpa.s12.nto-donor
Threshold for printing occupation numbers 1.0000e-03
Natural Transition Orbitals were saved in ni-dmg-2-svp-cas-12-9-mcrpa.s12.nto-acceptor
Threshold for printing occupation numbers 1.0000e-03

(continues on next page)
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STATE 13: E= 0.214726 au 5.843 eV 47126.9 cm**-1

77 -> 69 : n= 0.16680786
76 -> 70 : n= 0.06575768
75 -> 71 : n= 0.02841330
74 -> 72 : n= 0.01485889
73 -> 73 : n= 0.01138840
72 -> 74 : n= 0.01099324
71 -> 75 : n= 0.00899487
70 -> 76 : n= 0.00764206
69 -> 77 : n= 0.00546103
68 -> 78 : n= 0.00517046
67 -> 79 : n= 0.00511544
66 -> 80 : n= 0.00485839
65 -> 81 : n= 0.00405297
64 -> 82 : n= 0.00379270
63 -> 83 : n= 0.00325052
62 -> 84 : n= 0.00315477
61 -> 85 : n= 0.00297172
60 -> 86 : n= 0.00291081
59 -> 87 : n= 0.00268810
58 -> 88 : n= 0.00243609
57 -> 89 : n= 0.00240536
56 -> 90 : n= 0.00238574
55 -> 91 : n= 0.00183946
54 -> 92 : n= 0.00181492
53 -> 93 : n= 0.00165943
52 -> 94 : n= 0.00154428
51 -> 95 : n= 0.00146299
50 -> 96 : n= 0.00137434
49 -> 97 : n= 0.00136656
48 -> 98 : n= 0.00128274
47 -> 99 : n= 0.00121332
46 -> 100 : n= 0.00117752
45 -> 101 : n= 0.00107962
44 -> 102 : n= 0.00105733
43 -> 103 : n= 0.00104762

For the above example, the most important (controlled by NTOThresh) donating and accepting NTOs of state 13
are written to the gbw-type files

ni-dmg-2-svp-cas-12-9-mcrpa.s12.nto-donor
ni-dmg-2-svp-cas-12-9-mcrpa.s12.nto-acceptor

and can be plotted with the orca_plot program (see Sec. orca_plot)

orca_plot ni-dmg-2-svp-cas-12-9-mcrpa.s12.nto-donor -i

Please be aware of the different indices for states in the in and output!

To compute less or more NTOs the threshold NTOThresh can be adapted accordingly.

Let us come back to the UV/Vis spectra of Ni(dmg)2. For the two most intense peaks the natural orbitals and NTOs
of MC-RPA and SA-CASSCF, respectively, are shown in Fig. 7.37. While the most intense peak in each spectrum
(b and A) correspond to the same 𝜋 → 𝜋* excitation, transition a and B are complete different, i.e. 𝑑 → 𝜋* and
𝜋 → 𝜋*.
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(a) (a) SA natural orbitals (b) (b) NTOs

Fig. 7.37: Calculated UV/Vis spectra of Ni(dmg)2.

7.32.4 Computational Aspects

The code is intended to be used for medium-sized and larger open-shell molecules. It has the same scaling as
ORCA’s first-order CASSCF energy implementation though a larger pre-factor as the computational cost grow “in
principle” linearly with the number of roots.

The implementation is AO-driven meaning that the computational bottleneck is the Fock matrix construction for
the several state-specific pseudo AO densities. Note that there are up to 6 pseudo AO densities for each state.
The computational costs can be reduced significantly if the RIJCOSX approximation is employed, which is highly
recommended.

The second most expensive part of the MC-RPA computation are the two-electron integrals with 3 active indices
𝑔𝑝𝑡𝑢𝑣 . As we aim for running calculations on larger systems, there is only an implementation of the integral
transformation that uses the resolution-of-the-identity (RI) approximation.

The restrictions on the auxiliary basis sets are the same as for the CASSCF code (Sec. General Description). That
is

• If the Fock matrices are constructed in Direct or Conventional mode, the /C bases are used for the RI
approximation of the 𝑔𝑝𝑡𝑢𝑣 integrals.

• If the RIJCOSX approximation for the Fock matrices is employed, the /JK bases are used for both the Fock
matrices and the 𝑔𝑝𝑡𝑢𝑣 integrals.

Note that MC-RPA implementation can be run in parallel with MPI which allows for computing UV/Vis and ECD
spectra large open-shell molecules in a limited amount of time.

Before starting running MC-RPA, it is recommended to converge the state specific CASSCF energy calculation
until you hit the point of stagnating convergence. Note that property calculations in general assume vanishing
electronic gradients otherwise numerical issues in the eigenvalue / response equations may occur.
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7.32.5 Keyword List

%mcrpa

NRoots 0 # The number of desired roots

TolR 1e-5 # Convergence threshold for residual norm
TolLDP 1e-5 # linear dependency threshold for generalized eigenvalue problem
PrintWF CFG # print CI part in (CFG (default), CSF, or DET basis)
TolPrint 1e-2 # Threshold for printing elements of excitation vector

MaxRed 200 # maximum size of reduces space for ALL VECTORS IN TOTAL
MaxIter 100 # maximum number of (Davidson) iterations

TDA false # Switch off full TD-CASSCF (Tamm-Dancoff approximation)

DoNTO false # Generate Natural Transition Orbitals
NTOThresh 1e-3 # Threshold for printing occupation numbers

DoCD true #Request circular dichroism calculation
DoDipoleLength true #Request the use of electric moments in a length formulation
DoDipoleVelocity true #Request the use of electric moments in a velocity formulation
DoHigherMoments true #Request the calculation of electric quadrupole and magnetic␣

→˓dipole moments contributions
DoFullSemiclassical true #Request the calculation of complete semiclassical multipolar␣

→˓moments
DecomposeFoscLength true #Request the decomposition of the oscillator strengths in a␣

→˓multipolar expansion under a length formulation
DecomposeFoscVelocity true #Request the decomposition of the oscillator strengths in a␣

→˓multipolar expansion under a velocity formulation

7.33 Excited States via EOM-CCSD

The EOM-CCSD routine is part of the orca_mdci module of the ORCA program package. It is called after
a successful coupled-cluster calculation, if the appropriate flags and the number of roots have been set. In the
following chapter the general program flow and all input parameters of the EOM routine will be described in
detail (for typical use, see Excited States with EOM-CCSD). For an RHF or UHF reference, the EE-, IP- and EA-
EOM-CCSD approaches are available for the computation of excitation energies, ionization potentials and electron
affinities, respectively. Currently, the following simple input keywords are available:

!EOM-CCSD # same as !EE-EOM-CCSD
!EE-EOM-CCSD # EOM for electronically excited states
!IP-EOM-CCSD # IP version
!EA-EOM-CCSD # EA version

7.33.1 General Description

The EOM wave function is parametrized in the following manner

ℛ|Ψ𝐶𝐶⟩,

i.e. via the action of a linear excitation operatorℛ on the coupled-cluster ground state wave function Ψ𝐶𝐶 . Here,
ℛ is a particle conserving operator, in the case of the excitation energy problem. However, this is not true for the
ionization or electron attachment problems, where ℛ is a net annihilation or net creation operator, respectively.
The ground state coupled-cluster T-amplitudes are obtained from a CCSD calculation, and our task is to obtainℛ.
Note that since the CC Hamiltonian is nonsymmetric, a left hand solution (ℒ) would also be needed to evaluate
properties. For the calculation of excitation, ionization or electron attachment energies, however, it is enough to
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obtain the right hand solutions (ℛ). In principle, this is done by building the Hamiltonian and diagonalizing it in
order to obtain energy expectation values.

In practice, the size of the CCSD Hamiltonian matrix is prohibitively large and thus, various methods have been
devised to obtain its lowest few eigenvalues and eigenstates. One of the most popular of these approaches is the
Davidson method, which can be summarized as follows:

• Construct an initial guess of orthogonal trial vectors, 𝐶.

• Evaluate the sigma vectors 𝜎 = 𝐻𝐶.

• Build model Hamiltonianℋ = 𝐶𝑇𝜎.

• Diagonalizeℋ: ℰ = 𝒰𝑇ℋ𝒰 .

• Compute Ritz vectors 𝑋 = 𝐶𝒰 .

• Compute residuals 𝑅 = 𝑋ℰ − 𝜎𝒰 , check convergence: if yes, pass 𝑋, ℰ as solutions.

• Preconditioning: 𝑇 =𝑀𝑅 (many possible choices for the preconditioner 𝑀 ).

• Check if adding new trial vectors would exceed the maximum number of trial vectors:

– if no, add 𝑇 to 𝐶, and orthonormalize the united set

– if yes, then set 𝑋 as 𝐶 (orthonormalize if 𝐻 is nonsymmetric); then add 𝑇 and orthonormalize

The advantage of the above method is that, instead of the full Hamiltonian, only the sigma vectors have to be
explicitly evaluated and stored.

It is also possible to use a lower scaling version of the EOM-CCSD methods, which relies on the perturbative
truncation of the coupled-cluster similarity transformed Hamiltonian. Presently, only the second order truncated
version (CCSD(2) approximation) is available for closed-shell molecules (RHF). However, it is better to use the
PNO based implementation, as it has the cost of EOM-CCSD(2), but its accuracy is comparable to canonical
EOM-CCSD.

Below are all the parameters that influence the RHF EOM routine. In the following sections, these parameters will
be explained following the solver algorithm described above.

%mdci
#EOM parameters - defaults displayed

DoEOM false # whether to perform EOM
UseEOMOptS true # use optimized sigma routines for singles
UseEOMOptD true # use optimized sigma routines for doubles
NDav 20 # maximum size of reduced space (i.e. 20*NRoots)
CCSD2 false # Use the lower scaling CCSD(2) approximation
CheckEachRoot true # check convergence for each root separately
RootHoming true # apply root homing
DoLanczos false # use the Lanczos procedure rather than Davidson
UseCISUpdate true # use diagonal CIS for updating
NInits 0 # number of roots in the initial guess, if 0, use preset value
DRESS3ES true # construct the external dressing to singles

# or calculate on the fly
DRESS3ED false # construct the external dressing to doubles

#or calculate on the fly
DOCOSXEOM false # use COSX approximation for external exchange term in EOM
DOAOX3E false # use COSX approximation for 4 external terms contribution

# to 3 external intermediate
DoRootwise false # solves for each root separately,

# more stable for large number of roots
DoTDM false # option for calculation of default transition moment
Doleft false # calculation of exact left vector
NRootsPerBatch 1 # no of roots calculated together
FOLLOWCIS false # follows the initial singles guess
DoCore true # initiates ionization or excitation from core orbital
CoreHole 0 # core orbital from which ionization or excitation is needed
CVSEP false # separates core orbital from valence,

(continues on next page)
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(continued from previous page)

DTol 1e-5 # default for EOM residual threshold
#keywords which affect EOM parameters, but do not belong to the routine itself

NRoots 9 # number of roots
OTol 1e-14 # orthogonalization threshold
KCOpt KC_MO # method for external exchange formation

KC_AOX # when asked for exact TDM calculation
KC_AOBLAS # most efficient

PrintLevel 3 # the amount of information to be printed
MaxCore 500 # total amount of memory

end

In the case of the UHF EOM-CCSD implementation, the parameters that influence a given calculation are provided
below.

%mdci
#UHF EOM parameters - defaults displayed

DoEOM false # whether to perform EOM
DoAlpha false # removal/attachment of an alpha electron (IP/EA calculations)
DoBeta false # removal/attachment of a beta electron (IP/EA calculations)
NDav 20 # maximum size of reduced space (i.e. 20*NRoots)
UseQROs false
CheckEachRoot true # check convergence for each root separately
RootHoming true # apply root homing
DoLanczos false # use the Lanczos procedure rather than Davidson
DoOlsen false # use the Olsen procedure rather than Davidson
UseCISUpdate true # use diagonal CIS for updating
NInits 0 # number of roots in the initial guess, if 0, use preset value
DOCOSXEOM false # use COSX approximation for external exchange term in EOM
DOAOX3E false # use COSX approximation for 4 external terms contribution

# to 3 external intermediate
DoRootwise false # solves for each root separately,

# more stable for large number of roots
NRootsPerBatch 1 # no of roots calculated together
FOLLOWCIS true # follows the initial singles guess
DTol 1e-5 # default for EOM residual threshold

#keywords which affect EOM parameters, but do not belong to the routine itself
NRoots 9 # number of roots
OTol 1e-14 # orthogonalization threshold
KCOpt KC_AOX # AO exchange for the four external contributions

# (the only option available at present)
PrintLevel 3 # the amount of information to be printed
MaxCore 500 # total amount of memory

end

7.33.2 Memory Management

The most important data coming from the coupled-cluster routine are the ground state energy and wave function,
and the molecular integrals. The integrals are then used to create “dressed” integral containers, which allows for an
efficient factorization of the EOM equations, since these dressed quantities do not change during the calculation.
Most of these are written on disk, with the possible exception of the integral container which has three external
labels. This, and the solver files may remain in core if enough memory is available. The program sequentially tries
to allocate memory for the files in the order of their importance, and what cannot be kept in core, goes on disk. The
order of allocation is as follows: 1. residual vectors, 2. Ritz vectors, 3. three external integrals, 4. sigma vectors
and 5. state (trial) vectors, as seen in the example below:

--------------------------------
AUTOMATIC CHOICE OF INCORE LEVEL
--------------------------------

(continues on next page)
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(continued from previous page)

Memory available ... 6512.00 MB
Memory needed for Residual-vectors ... 71.27 MB
Memory needed for Ritz-vectors ... 71.27 MB
Memory needed for 3-ext integrals ... 92.05 MB
Memory needed for Sigma-vectors ... 1425.31 MB
Memory needed for State-vectors ... 1425.31 MB
-> Final InCoreLevel ... 5

Half of the memory specified with the keyword MaxCore is distributed among the five candidates. In the above
case, everything fits in memory. Note that these are only the largest contributors to memory consumption, and
there should ideally be a safety margin when allocating memory.

In order to estimate the amount of necessary memory, it should be kept in mind that, in the closed shell case, the
memory requirements of the residual and Ritz vectors are proportional to 𝑁𝑅𝑁𝑃𝑁2

𝑉 , the three external integrals
to 𝑁𝑅𝑁𝑂𝑁3

𝑉 and the sigma and trial vectors to 𝑁𝐷𝑁𝑅𝑁𝑃𝑁2
𝑉 , where 𝑁𝑂 and 𝑁𝑉 are the number of occupied

and virtual orbitals, 𝑁𝑃 = 𝑁𝑂(𝑁𝑂+1)
2 is the number of occupied pairs, 𝑁𝑅 is the number of roots, and 𝑁𝐷 is

the maximum size of the reduced space. The keyword NRoots sets 𝑁𝑅, while NDav determines 𝑁𝐷. Luckily, the
contributions that, in our experience, are the most important to keep in memory, are also the ones that require the
smallest amount of it. It is advisable to use KCOpt AOBLAS, as it has the lowest memory requirements.

Note that in the UHF EE-EOM-CCSD implementation, the memory requirements of the residual and Ritz vectors
are proportional to𝑁𝑅(𝑁𝑃𝛼

𝑁2
𝑉𝛼

+𝑁𝑃𝛽
𝑁2
𝑉𝛽

+𝑁𝑂𝛼
𝑁𝑂𝛽

𝑁𝑉𝛼
𝑁𝑉𝛽

), the three external integrals to𝑁𝑅(𝑁𝑂𝛼
𝑁2
𝑉𝛼

+

𝑁𝑂𝛽
𝑁2
𝑉𝛽

+𝑁𝑂𝛼
𝑁𝑉𝛼

𝑁2
𝑉𝛽

+𝑁𝑂𝛽
𝑁𝑉𝛽

𝑁2
𝑉𝛼

) and the sigma and trial vectors memory requirements are proportional
to 𝑁𝐷𝑁𝑅(𝑁𝑃𝛼𝑁

2
𝑉𝛼

+ 𝑁𝑃𝛽
𝑁2
𝑉𝛽

+ 𝑁𝑂𝛼𝑁𝑂𝛽
𝑁𝑉𝛼𝑁𝑉𝛽

), where 𝑁𝑂𝛼 , 𝑁𝑂𝛽
, 𝑁𝑉𝛼 and 𝑁𝑉𝛽

are respectively, the
number of occupied alpha, occupied beta, virtual alpha and virtual beta orbitals and 𝑁𝑃𝛼 =

𝑁𝑂𝛼 (𝑁𝑂𝛼−1)
2 and

𝑁𝑃𝛽
=

𝑁𝑂𝛽
(𝑁𝑂𝛽

−1)
2 are the number of alpha and beta occupied pairs, respectively.

7.33.3 Initial Guess

The present initial guess in the RHF EOM implementation consists of constructing a CIS Hamiltonian of a certain
dimension, and diagonalizing it. The roots are preselected based on the energetic ordering of the diagonal elements
of the Hamiltonian. In the UHF case, the guess is constructed from the solutions of a UHF CIS calculation. The
number of roots in the initial guess is determined as 20 times the number of roots desired in EOM (NRoots) if
NDav is 20 or smaller, otherwise it is set to NDav times the number of EOM roots. If the parameter NInits is
larger than zero, then the number of initial guess roots will be set to this parameter times NRoots. The maximum
possible number of roots is the full CIS dimension, (𝑁𝑂𝑁𝑉 (RHF) or 𝑁𝑂𝛼

𝑁𝑉𝛼
+𝑁𝑂𝛽

𝑁𝑉𝛽
(UHF)) . One should

keep in mind, while increasing the number of initial guess vectors, that this corresponds to diagonalizing a matrix
of increasing dimension. If, for example NRoots is 10, then by default 200 roots are considered in the initial guess
(unless it exceeds the size of the CIS space), or if NInits is set to 100, then there will be 1000 roots in the guess.
In some cases, the roots calculated using EOM may not be the lowest ones, but a few of these may be replaced by
some higher roots which are “easier” to find. In such cases, it may help to increase NRoots or NInits to converge
to the proper roots. The program can be made to follow the initial CIS guess by setting FollowCIS to true and
is necessary if we wish to ionize or excite from inner-valence or core orbitals. In the RHF implementation, the
core orbital, from which the ionization or excitation originates, can be specified using the keyword CoreHole,
in addition to setting DoCore and FollowCIS to true. The CoreHole keyword is quite general and in principle,
ionization or excitation processes from any occupied orbital can be specified using this keyword.
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7.33.4 Hamiltonian Construction

The Hamiltonian construction begins by calling the sigma routines. In the case of the closed-shell code, the logical
variables UseEOMOptS and UseEOMOptD choose the routines to be used in the evaluation of the singles and doubles
sigma vectors, respectively. If true, the optimized sigma routine, using dressed integrals, will be used. This should
not be changed, the option is there mainly for debugging purposes. If set to false, an automatically generated, and
much slower serial code will be used instead. In the case of the open-shell UHF implementation, optimized sigma
routines have been generated using the ORCA Automated Generator Environment (AGE) [474]. In each early
iteration, 𝑁𝑅 sigma vectors will be determined, except in the case of a restart, where the number of sigma vectors
is 2𝑁𝑅. For further details on convergence, see Convergence, Restart, Preconditioning and Subspace Expansion
below.

The most time consuming part of the sigma vector construction is the formation of the external exchange contri-
bution, which can be influenced via the CC keyword KCOpt. Currently, there are three options that are compatible
with the RHF EOM implementation: KC_MO,KC_AOX and KC_AOBLAS (see the MDCI documentation) and KC_AOX
is the only option available in the UHF EOM code. The external exchange term can be treated most efficiently
using COSX, which in the closed-shell case, leads to average speed ups of 10x for the external exchange term
and an overall speedup of 3x for the EOM calculation. This is accompanied by a drastic reduction of the storage
cost[233]. The error introduced is below 1 meV, which is 200-fold less than the error bar of the method[233] itself.
It is the default for KCOpt KC_AOX and KC_AOBLAS and can be controlled by the keyword DOCOSXEOM. The default
grid settings for EOM are GridX 1 and IntAccX 2.68.

Once the sigma vectors are available, they are multiplied with the trial vectors to yield the reduced space Hamilto-
nian. The Hamiltonian is built in a way that, in each iteration, only the new vector products are added to the “edge”
of the old Hamiltonian, so that a full build is avoided. It should be clear that the parameter NDav plays an important
role here, since it determines the maximum size of the Hamiltonian (𝑁𝐷𝑁𝑅), and also controls how much memory
is needed for the trial and sigma vectors, as seen above. Since the choice of this parameter influences convergence
properties, it will be discussed further in Convergence, Restart, Preconditioning and Subspace Expansion.

7.33.5 Solution of the (Nonsymmetric) Eigenproblem

Following the construction of the Hamiltonian, a nonsymmetric eigensolver is called. In this case, it is possible to
have complex eigenvalues. In practice, this is rarely the case, and indicates a problem of some kind. A warning
will be given if this happens, however, one may get away with this if it only happens in an isolated iteration step.

Once the eigenvectors are available, they are compared with those of the previous iteration, if root homing is turned
on, i.e. if the RootHoming keyword is set to true. This means evaluating the overlap of the old and new eigenvectors,
in order to keep track of the possible movement of the eigenvectors if root flipping occurs. If converged roots are
removed from further iterations (see next section), it is important to keep track of changes in ordering, especially
if a converged and a non-converged root is swapped. After diagonalization, the Ritz vectors and residuals can be
evaluated.

7.33.6 Convergence, Restart, Preconditioning and Subspace Expansion

Convergence is signaled once a residual square norm based criteria is fulfilled. This criteria is determined by the
CheckEachRoot keyword. If it is true (default), the convergence of the residual square norm of each root is checked
separately. This is due to the fact that different roots converge at a different rate. Once a root is converged, no new
trial vectors will be generated, belonging to that vector. This means that the EOM iterations will progressively
become faster (until restart). Turning off the rootwise convergence check is possible, but not recommended. In this
case, the maximum of all residual square norms is checked for convergence, and all iterations will take roughly the
same amount of time since no vectors are removed in any iteration. However, this procedure can be numerically
unstable, since the residuals of some roots might become very close to zero, and trying to generate new vectors,
which are orthogonal to these, may lead to numerical disaster. In short, the recommended default is having both
CheckEachRoot and RootHoming set to true. If CheckEachRoot is false, then RootHoming should also be set
to false, as it may cause problems if NDav is too small. The convergence threshold of the residual in Davidson’s
method can be larger than that for the ground state CC residual threshold in order to obtain converged results.
Namely, a value of DTol of 1e-5 is almost always enough to get well converged energies.
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At this point it is worth discussing the role of the keyword NDav. This keyword determines at what point the David-
son algorithm should be restarted. If it is chosen too small, it may cause slow convergence. If this value is too large,
this may result in overwhelming demands on memory/disk space requirements. The default value (20) is chosen
with the hope that no, or maybe one restart will be required. It should only be changed if computational resources
demand it. However, the treatment of core ionization or core excitation processes often requires a large value of
NDav. At restart, Ritz vectors are copied as new trial vectors for all roots, which will then be orthonormalized,
while new vectors will only be generated for the non-converged roots. This means that the step after the rebuilding
of the expansion space will be 1-2 times as expensive as one of the initial steps.

New directions (trial vectors) are generated from the preconditioned residual vectors. If no preconditioning is
applied (the preconditioner is taken to be a unit matrix), one falls back to the Lanczos algorithm, which is inferior
to the Davidson algorithm. This happens if the keyword DoLanczos is true. This is not recommended, as the
Lanczos algorithm converges several times slower than Davidson’s, and is there for debugging mainly. The original
Davidson preconditioner is the inverse of a diagonal matrix which contains the difference of the diagonal elements
of the Hamiltonian and the current approximation to the eigenvalue belonging to the given root. Let us consider
the closed-shell RHF implementation for simplicity. If 𝑅𝑖𝑎 and 𝑅𝑖𝑗𝑎𝑏 are elements of the singles and doubles
amplitudes, respectively, then the updated vectors (𝑇𝑖𝑎, 𝑇𝑖𝑗𝑎𝑏) have the form

𝑇𝑖𝑎 =
𝑅𝑖𝑎

𝐷𝑖𝑎 + ℰ𝑅

for singles, and

𝑇𝑖𝑗𝑎𝑏 =
𝑅𝑖𝑎

𝐷𝑖𝑗𝑎𝑏 + ℰ𝑅

for doubles. Here, 𝐷𝑖𝑎 and 𝐷𝑖𝑗𝑎𝑏 are related to, and possibly approximations of, the respective diagonal Hamil-
tonian elements. The simplest approximation is just to construct these from diagonal Fock matrix elements (i.e.
orbital energies) as𝐷𝑖𝑎 = 𝜀𝑎−𝜀𝑖 and𝐷𝑖𝑗𝑎𝑏 = 𝜀𝑎+𝜀𝑏−𝜀𝑖−𝜀𝑗 . A slightly better preconditioning can be obtained
as follows. For singles, take the exact CIS diagonal elements, 𝐷𝑖𝑎 = 𝜀𝑎 − 𝜀𝑖 + 𝑔𝑖𝑖𝑎𝑎, where the last term is the
respective antisymmetrized integral; and construct the doubles as𝐷𝑖𝑗𝑎𝑏 = 𝐷𝑖𝑎+𝐷𝑗𝑏. This is the default, and can
be changed back to the simple Fock matrix guess by setting UseCISUpdate to false.

Following the preconditioning step, the resulting vectors are orthogonalized to the previous set of trial vectors,
and orthonormalized among themselves. Since, the trial vectors do not change once they are generated (unless a
restart occurs), only the new elements of the overlap matrix need to be generated for the orthonormalization. The
numerical threshold for the inversion (and other division steps) is controlled by the parameter OTol. Finally, the
amount of printed information can be controlled via the PrintLevel keyword. If not given or equal to 2, only basic
iteration information will be printed. If set to 3, detailed iteration information will be printed (recommended if
timing results for individual steps are required), while 4 or higher triggers additional (and very verbose) information
from other subroutines as well.

The default solver is a multi-root Davidson procedure. The single-root solver can be initiated by setting
DoRootwise and FollowCIS to true. The latter is more stable when a large number of roots are requested.

7.33.7 Properties in the RHF EOM implementation

The only property that can be calculated with the current RHF EOM implementation is the transition moment. It is
calculated as a CI-like expectation value, as proposed by Stanton and Bartlett. The right and left transition density
are defined as

𝜌𝐺𝑟→𝐸𝑥𝑝𝑞 = ⟨𝜑0|(1 + Λ)[𝑒−𝑇 {𝑝+𝑞−}𝑒𝑇 , 𝑅]|𝜑0⟩

𝜌𝐸𝑥→𝐺𝑟𝑝𝑞 = ⟨𝜑0|𝐿𝑒−𝑇 {𝑝+𝑞−}𝑒𝑇 |𝜑0⟩

In the above equation, Λ corresponds to the ground state left vector, which needs to solved once and 𝐿 is the left
vector , which needs to be solved separately for each root. Once the right and left vectors have been obtained, the
left and right transition densities are constructed and the oscillator strength is calculated using following formula

𝑓 =
2

3
𝜀|𝜇𝑝𝑞𝜌𝐸𝑥→𝐺𝑟𝑝𝑞 ||𝜇𝑝𝑞𝜌𝐺𝑟→𝐸𝑥𝑝𝑞 |
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The oscillator strength, calculated by default, employs a linear approximation for Λ. The𝐿 vectors are, on the other
hand, calculated as a general inverse of the corresponding 𝑅 vectors. This approximation requires no additional
effort over the energy calculation and gives similar accuracy as that of the exact oscillator strength calculation,
which is at least twice the cost of the energy calculation. Exact EOM-CC transition moments can, however, be
calculated by setting DoLeft and DoTDM to true. Please note that transition moments have not yet been implemented
for the UHF EOM-CCSD approach.

7.33.8 Some tips and tricks for EOM-CC calculation

• The COSX approximation gives significant savings in terms of memory use, disk space use and compu-
tational timings without almost no loss of accuracy[233]. Therefore, the preferred setting for large scale
calculations should include DoCOSXEOM true, DoAOX3e true and KCOpt KC_AOBLAS (Note that KC_AOX
is the only option available for KCOpt in the UHF implementation).

• The EOM-CC code in ORCA has three version of the Davidson’s solver. The default one is multi-root
solver which does optimization of all the roots together. It gives the fastest convergence and is more suitable
when one is interested only in a few roots of a big molecule. However, the multi-root solver can land into
numerical issues, if more than 10 root are desired. In that case, one can invoke the root-wise solver by setting
DoRootwise true. The single root solver is very stable and should be used when large number of roots are
desired. However, the convergence of the single root solver is slower than the multi-root one. In the RHF
implementation, there is also a batchwise solver, where a subset of the total number of roots is optimized
together. This can be invoked by setting NRootsPerBatch to true and is intermediate between the multi-root
and single-root solver in terms of stability and convergence.

• If the EOM iterations do not converge within 50 cycles, one can try to increase the number of iterations
by setting MaxIter in the %mdci block to a larger value. One can also try to increase the dimension of
the Davidson’s space by increasing the NDav value and this generally helps in convergence acceleration.
However, setting NDav to a value larger than 200 can make the calculation prohibitively costly .

• Convergence thresholds of DTol 1e-5 (Davidson convergence) and STol 1e-7 (ground state CCSD con-
vergence ) generally yield sufficiently converged energies, and are suitable for most purposes.

• The normal Davidson solver generally leads to the lowest energy solutions. This procedure can also yield
roots dominated by double excitations (the so-called satellite states) for the IP and EA variants of EOM-CC,
when one asks for a large number of roots. If one interested in the low lying Koopman’s type of IP and EA
states, they can be obtained by setting FollowCIS to true. This will follow the initial guess provided by the
Fock operators.

7.34 Excited States via STEOM-CCSD

The EOM-CCSD approach for excitation energies becomes prohibitively costly for large systems because of its
O(𝑁6) scaling. Therefore, one needs a more compact form of the wave-function ansatz. A second similarity
transformation can compress the final matrix diagonalization step to the CIS space only. The resulting STEOM-
CCSD method of Marcel Nooijen and co-workers [639] is an efficient way for accurate calculations of excitation
energies.

7.34.1 General Description

In the standard EOM-CC method, the transformed Hamiltonian is diagonalized over a singles and doubles space to
obtain ionized, attached, or excited states of the reference state. In STEOM-CC, one performs a second similarity
transformation

�̂� = {𝑒𝑆}−1 ˆ̄𝐻{𝑒𝑆}

The transformation operator 𝑆, including singles and doubles, is defined as

𝑆 = 𝑆𝐼𝑃 + 𝑆𝐸𝐴,
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𝑆𝐼𝑃 = 𝑆𝑚𝑖′ �̂�
𝑚
𝑖′ +

1

2
𝑆𝑚𝑏𝑖𝑗 �̂�

𝑚𝑏
𝑖𝑗 ,

𝑆𝐸𝐴 = 𝑆𝑎
′

𝑒 �̂�
𝑎′

𝑒 +
1

2
𝑆𝑎𝑏𝑒𝑗 �̂�

𝑎𝑏
𝑒𝑗 .

In the above equations, 𝑚 and 𝑒 denote active indices of the hole and particle type respectively, while a prime
denotes a restriction to orbitals that are not active. The amplitudes of the operator 𝑆 are defined in such a way that
matrix elements of the transformed Hamiltonian, in second quantized notation, become equal to zero.

𝑔𝑚𝑖′ = 𝑔𝑚𝑏𝑖𝑗 = 𝑔𝑎
′

𝑒 = 𝑔𝑎𝑏𝑒𝑗 = 0

In addition, the zeros which pre-existed in �̄� , after solving the CCSD equations, remain preserved. The above
equations are linear in 𝑆 and are equivalent to the Fock space multireference coupled cluster equations for the one
valence problem. However, to ensure numerical stability, the equations are re-casted as matrix diagonalization
problem and solved as IP-EOM-CCSD and EA-EOM-CCSD problems. The 𝑆𝐼𝑃 and 𝑆𝐸𝐴 are then extracted from
the converged previous calculations, respectively, by invoking intermediate normalization on the suitably chosen
eigenvectors corresponding to active holes and active particles. The total process can be described as following

• Solution of the ground state coupled cluster equations

• Construct the first similarity transformed Hamiltonian as ˆ̄𝐻 = 𝑒−𝑇 �̂�𝑒𝑇

• Solution of the IP-EOM and EA-EOM equations

• Extraction of the 𝑆 amplitudes

• Construct the second similarity transformed Hamiltonian as ˆ̄𝐺 = 𝑒−𝑆 ˆ̄𝐻𝑒𝑆

• Diagonalization of ˆ̄𝐺 in CIS space

The advantage of the above method is that, instead of one iterative O(𝑁6) scaling diagonalization step, it requires
two iterative O(𝑁5) scaling steps, one non-iterative O(𝑁5) scaling step and one iterative O(𝑁4) scaling matrix
diagonalization step. The presence of so-called ‘implicit triples excitation’ term ensures the charge transfer sep-
arability of the excited states, which is absent in EOM-CCSD. In addition, since the final diagonalization step
is performed in a CIS space, the spin adaption is trivial and excited states of triplet multiplicity can be obtained
without going through the complications of a spin orbital based implementation.

The STEOMCC approach has also recently been extended for applications to open-shell systems within the UHF
formalism [403]. In this case, the expressions for the operators 𝑆𝐼𝑃 and 𝑆𝐸𝐴 take the form,

𝑆𝐼𝑃 =
1

2

∑︁
𝑖,𝑒,𝑎,𝑏

𝑠𝑎𝑏𝑖𝑒
{︀
�̂�† �̂�† 𝑒 �̂�

}︀
+
∑︁
�̄�,𝑒,�̄�,𝑏

𝑠�̄�𝑏�̄�𝑒
{︀
ˆ̄𝑎† �̂�† 𝑒 ˆ̄𝑖

}︀
+

1

2

∑︁
�̄�,𝑒,�̄�,�̄�

𝑠�̄��̄��̄�𝑒
{︀
ˆ̄𝑎† ˆ̄𝑏† ˆ̄𝑒 ˆ̄𝑖

}︀
+
∑︁
𝑖,𝑒,𝑎,�̄�

𝑠𝑎�̄�𝑖𝑒
{︀
�̂�† ˆ̄𝑏† ˆ̄𝑒 �̂�

}︀
,

̂︀𝑆− =
1

2

∑︁
𝑖,𝑗,𝑎,𝑚

𝑠𝑎𝑚𝑖𝑗
{︀
�̂�† �̂�† �̂� �̂�

}︀
+
∑︁
�̄�,𝑗,�̄�,𝑚

𝑠�̄�𝑚�̄�𝑗
{︀
ˆ̄𝑎† �̂�† �̂� ˆ̄𝑖

}︀
+

1

2

∑︁
�̄�,�̄�,�̄�,�̄�

𝑠�̄��̄��̄��̄�
{︀
ˆ̄𝑎† ˆ̄𝑚† ˆ̄𝑗 ˆ̄𝑖

}︀
+
∑︁

𝑖,�̄�,𝑎,�̄�

𝑠𝑎�̄�𝑖�̄�
{︀
�̂�† ˆ̄𝑚† ˆ̄𝑗 �̂�

}︀
.

where we use overbars to distinguish the 𝛽 orbitals from the 𝛼 orbitals. The amplitudes
{︀
𝑠𝑎𝑏𝑖𝑒 , 𝑠

�̄�𝑏
�̄�𝑒

}︀
are determined

by solving the UHF EA-EOM-CCSD equations for the attachment of an𝛼 electron, while the
{︀
𝑠�̄��̄�
�̄�𝑒
, 𝑠𝑎�̄�𝑖𝑒

}︀
amplitudes

are extracted from a UHF EA-EOM-CCSD calculation for the attachment of a 𝛽 electron. Similarly, the sets of
amplitudes

{︀
𝑠𝑎𝑚𝑖𝑗 , 𝑠

�̄�𝑚
�̄�𝑗
} and

{︀
𝑠�̄��̄�
�̄��̄�
, 𝑠𝑎�̄�
𝑖�̄�

}︀
are determined by solving the decoupled UHF IP-EOM-CCSD problems

for the ionization of an 𝛼 electron and the ionization of a 𝛽 electron, respectively. Hence, an UHF STEOMCC
calculation involves two separate IP calculations (O(𝑁5) scaling) and two separate EA calculations (O(𝑁5) scaling
steps).

All the speed up options, including CCSD(2) (only available in RHF implementation) and COSX, which are avail-
able for EOM-CCSD are also available for STEOMCC. The most important steps in a STEOMCC calculation are
the IP-EOM and EA-EOM calculations. These steps are performed using the EOM-CCSD module and the relevant
keywords are the same as that described in Excited States via EOM-CCSD. The keywords which are exclusive to
the RHF STEOM module are:
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%mdci
#RHF STEOM parameters - defaults displayed
DoCISNat true # automatic selection of active space
NActIP 3 # number of states defined as active in the IP calculation
NActEA 2 # number of states defined as active in the EA calculation
DoTriplet false # target state of triplet multiplicity
DoDbFilter true # filters out states with doubles excitation character
DoNewActSch true # new active space selection scheme for STEOM-CCSD
DoSOLV # perturbative correction for solvation effects (experimental)
#Default values for automatic active space selection scheme
OThresh 0.001 # Cut off occupation of CIS natural orbitals in IP calculation
VThresh 0.001 # Cut off occupation of CIS natural orbitals in EA calculation
IPSThrs 80 # The percentage singles threshold for the IP calculation
EASThrs 80 # The percentage singles threshold for the EA calculation
end

The keywords pertaining to the UHF STEOM module are:

%mdci
#UHF STEOM parameters - defaults displayed
DoCISNat true # automatic selection of active space
NActIP_a 3 # number of states defined as active in the IP calculation

# for the removal of an α electron
NActIP_b 3 # number of states defined as active in the IP calculation

# for the removal of a β electron
NActEA_a 2 # number of states defined as active in the EA calculation

# for the attachment of an α electron
NActEA_b 2 # number of states defined as active in the EA calculation

# for the attachment of a β electron
DoDbFilter true # filters out states with doubles excitation character
UseQROs false # use QROs or not
DoNewActSch true # new active space selection scheme for STEOM-CCSD
#Default values for automatic active space selection scheme
OThresh 0.001 # Cut off occupation of CIS natural orbitals in tIP calculations
VThresh 0.001 # Cut off occupation of CIS natural orbitals in EA calculations
IPSThrs 80 # The percentage singles threshold for the IP calculations
EASThrs 80 # The percentage singles threshold for the EA calculations
end

7.34.2 Selection of Active space

The results of a STEOM-CC calculation depend upon the number of roots selected as active in the EOMIP and
EOMEA calculations. In ORCA, they are chosen automatically, by using state-averaged CIS natural transition
orbitals (NTO). By default, the number of roots included in this initial CIS computation is equal to the number of
roots requested in STEOM (NRoots). However, this can be modified setting NRootsCISNAT to higher values. The
orbitals up to a predefined occupation are then chosen to be active in the EOMIP and EOMEA calculations, and this
is controlled by the keywords OThresh and VThresh respectively. Now, there are two possible ways to chose active
space. One is to use the criteria of percentage occupation of NTO’s as described in ref [236]. However, a newer and
more robust approach is to use the criteria of absolute occupation, which is default in the current implementation.
One can switch on the old percentage occupation based active space selection by setting DoNewActSch to false
(not recommended).

One can also select the active spaces manually by turning the DoCISNat to false and setting the NActIP and NActEA
(RHF STEOM calculation) or the NActIP_a, NActIP_b, NActEA_a and NActEA_b (UHF STEOM calculation) to
desired values. However, this is not recommended for general uses. The following snippet shows the output of the
active orbital selection procedure on a closed-shell molecule:

------------------------------------------
STATE AVERAGED NATURAL ORBITALS FOR ACTIVE SPACE SELECTION

(continues on next page)
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------------------------------------------

Solving eigenvalue problem for the occupied space ... Occupied block occupation :
0 0.000478
1 0.002266
2 0.169928
3 0.171663
4 0.310125
5 0.345541

Orbital taken as active for IP roots:
0 0.345541
1 0.310125
2 0.171663
3 0.169928

done
Solving eigenvalue problem for the virtual space ... Virtual block occupation :

6 0.640886
7 0.332262
8 0.017272
9 0.005326

10 0.001752
11 0.000667
12 0.000574
13 0.000540
14 0.000160
15 0.000150
16 0.000139
17 0.000086
18 0.000082
19 0.000037
20 0.000023
21 0.000016
22 0.000013
23 0.000008
24 0.000003
25 0.000002
26 0.000001
27 0.000000
28 0.000000
29 0.000000
30 0.000000
31 0.000000
32 0.000000
33 0.000000
34 0.000000
35 -0.000000

Orbital taken as active for EA roots :
0 0.640886
1 0.332262
2 0.017272

done
No of roots active in IP calculation: 4
No of roots active in EA calculation: 3
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7.34.3 Active space selection using TD-DFT densities

Instead of using a CIS calculation for selected the Active Space roots, a TD-DFT based one can also be considered.
Be aware that using DFT Kohn-Sham orbitals for computing the CCSD GS energy can lead to some instabilities
and give incorrect results.

The main interest of this approach is to start the STEOM-CCSD calculation with TD-DFT electronic densities
which are in general better than the CIS one, especially for some specific compounds (metallic complexes for
example). The computed TD-DFT densities are also often more stable than the CIS one. It will however slow
down the calculation.

The input has to be written like this:

!RHF/UHF BHANDHLYP STEOM-CCSD TZVP

%mdci
nroots 10
tddftguess true
end

%tddft
nroots 10
end

*xyz 0 1

Any DFT functional can be used but we recommend one with a decent amount of HF exchange. On top of this, the
keyword TDDFTGuess has to be set to true in mdci block and the tddft has to be added together with the NRoots
keyword. In both input blocks (%mdci and %tddft) the same number of roots has to be given. Starting from ORCA
6, using TD-DFT guess with an UHF reference is also possible.

7.34.4 The reliability of the calculated excitation energy

The excitation energy for any states calculated in STEOM-CC are only reliable when the dominant excitation for
that states are confined within the active space. This can be verified from the percentage active character of the
calculated states, an a posteriori diagnostic which is defined as

%𝑎𝑐𝑡𝑖𝑣𝑒𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 =

∑︀
𝑚,𝑒

𝐶(𝑚, 𝑒) * 𝐶(𝑚, 𝑒)∑︀
𝑖,𝑎

𝐶(𝑖, 𝑎) * 𝐶(𝑖, 𝑎)
* 100

for closed-shell systems and takes the form,

%𝑎𝑐𝑡𝑖𝑣𝑒𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 =

∑︀
𝑚,𝑒

𝐶(𝑚, 𝑒) * 𝐶(𝑚, 𝑒) +
∑̄︀
𝑚,𝑒

𝐶(�̄�, 𝑒) * 𝐶(�̄�, 𝑒)∑︀
𝑖,𝑎

𝐶(𝑖, 𝑎) * 𝐶(𝑖, 𝑎) +
∑̄︀
𝑖,�̄�

𝐶 (̄𝑖, �̄�) * 𝐶 (̄𝑖, �̄�)
* 100.

within the UHF formalism. The roots which have %𝑎𝑐𝑡𝑖𝑣𝑒𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 higher than 98.0 are considered to be con-
verged with respect to the active space.

------------------
STEOM-CCSD RESULTS
------------------

IROOT= 1: 0.145412 au 3.957 eV 31914.3 cm**-1
Amplitude Excitation
-0.169361 4 -> 8
-0.984822 7 -> 8

Percentage Active Character 99.86

(continues on next page)
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Amplitude Excitation in Canonical Basis
-0.166580 4 -> 8
-0.975432 7 -> 8
-0.124356 7 -> 13

IROOT= 2: 0.309409 au 8.419 eV 67907.5 cm**-1
Amplitude Excitation
0.994141 7 -> 9

Percentage Active Character 99.78

Amplitude Excitation in Canonical Basis
-0.990029 7 -> 9

IROOT= 3: 0.336993 au 9.170 eV 73961.4 cm**-1
Amplitude Excitation
-0.994078 5 -> 8

Percentage Active Character 99.10

Amplitude Excitation in Canonical Basis
-0.984116 5 -> 8
-0.136769 5 -> 13

IROOT= 4: 0.357473 au 9.727 eV 78456.2 cm**-1
Amplitude Excitation
0.181761 4 -> 10
0.728209 6 -> 8
0.611668 7 -> 10
-0.191540 7 -> 12

Percentage Active Character 94.10

Warning:: the state may have not converged with respect to active space
-------------------- Handle with Care --------------------

Amplitude Excitation in Canonical Basis
-0.184144 4 -> 10
-0.725183 6 -> 8
-0.633718 7 -> 10

IROOT= 5: 0.386654 au 10.521 eV 84860.8 cm**-1
Amplitude Excitation
0.980406 4 -> 8
-0.178551 7 -> 8

Percentage Active Character 99.79

Amplitude Excitation in Canonical Basis
0.971678 4 -> 8
0.122877 4 -> 13
-0.179242 7 -> 8

IROOT= 6: 0.444881 au 12.106 eV 97640.1 cm**-1
Amplitude Excitation
-0.995150 6 -> 9

Percentage Active Character 99.69

Amplitude Excitation in Canonical Basis

(continues on next page)
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-0.989966 6 -> 9

If the %𝑎𝑐𝑡𝑖𝑣𝑒𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 for any calculated state is less than 98, that state may have not converged with respect
to active space and the excitation energy for that particular state is less reliable. The user should request a larger
number of roots under those conditions.

7.34.5 Removal of IP and EA states with double excitation character

To obtain accurate results with STEOM-CCSD, only the 𝑆 amplitudes corresponding to the states dominated by
single excitations should be included in the second similarity transformation. This is ensured in ORCA in two
ways. First, the root following (FollowCIS) is activated by default so that it converges to the states dominated by
singly excited guess vectors. This avoids the calculation of so called ‘satellite states’, which are of double excitation
character with respect to the ground state. Secondly, among the converged IP and EA roots, the states which have
%singles character below a certain predefined threshold (i.e. controlled by the keywords IPThresh and EAThresh)
are automatically excluded from the second similarity transformation.

EOM-CCSD RESULTS
----------------

IROOT= 1: 0.105316 au 2.866 eV 23114.2 cm**-1
Amplitude Excitation
0.697547 x -> 8

IROOT= 2: 0.217925 au 5.930 eV 47829.1 cm**-1
Amplitude Excitation
-0.701454 x -> 9

IROOT= 3: 0.304098 au 8.275 eV 66741.8 cm**-1
Amplitude Excitation
-0.700458 x -> 10

IROOT= 4: 0.350387 au 9.535 eV 76901.1 cm**-1
Amplitude Excitation
0.702705 x -> 11

IROOT= 5: 0.651462 au 17.727 eV 142979.4 cm**-1
Amplitude Excitation
0.637352 x -> 12
0.121747 x -> 8 4 -> 10
0.177039 x -> 8 5 -> 9
0.109987 x -> 9 5 -> 8
-0.206789 x -> 8 7 -> 10
-0.109870 x -> 10 7 -> 8

EA STATE= 0: percentage singles 95.282
EA STATE= 1: percentage singles 96.981
EA STATE= 2: percentage singles 96.540
EA STATE= 3: percentage singles 97.844
EA STATE= 4: percentage singles 68.884

Warning: high double excitation character, excluding from the STEOM transformation
Final no active EA roots: 4

Note that the use of CIS natural transition orbitals can lead to convergence issues for the IP and EA states which
are dominated by double excitation character. This can be remedied by setting DoDbFilter to true.
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7.34.6 Transition and difference densities

At the end of a STEOM computation, it is possible to store the final eigenvectors in a file “job.cis”, in analogy with
what is done for CIS and TD-DFT computations. This file can be obtained by setting DoStoreSTEOM true in the
input. This file can then be processed by orca_plot to obtain the difference and / or the transition densities.

An Natural Transition Orbitals analysis can also be performed within the STEOM-CCSD scheme, as described in
Natural Transition Orbitals. It can be performed by setting the keyword DoSTEOMNatTransOrb to true.

7.34.7 Properties

The dipolar and transition moments (as well as the oscillator strength) can be computed within the STEOM module
using different kinds of approximations. Please cite our paper on these corrected STEOM transition densities [297]!
Starting from ORCA 5, new defaults (DoSimpleDens false) are used that are much better than the previous CIS-
like approximation, and the full option is of CC3-like quality.

%mdci

DosimpleDens false # Default, using the STEOM-CCSD density + some doubles effect.
AddL2term true

DosimpleDens false # using the STEOM-CCSD density + some doubles effect.
AddL2term true # + neglected GS double
UpdateL1 true

DosimpleDens false # using the STEOM-CCSD density + some doubles effect.
AddL2term true # + neglected GS double + doubles from EOM-CCSD
UpdateL1 true # (expensive, but of CC3 quality - see reference)
AddDDTerm true

end

By default, the STEOM-CCSD densities with AddL2term true should be used for all calculation as discussed in
ref. [297].

7.34.8 Solvation (Experimental)

In STEOM-CCSD, the excitation energies and densities can be corrected using the CPCM solvation scheme in
ORCA.

To use it, the keyword DoSolv has to be set to true in the %mdci block and the simple keyword CPCM (or SMD) +
name of the solvent has to be given.

!CPCM(ethanol) STEOM-CCSD TightSCF def2-TZVP def2-TZVP/C def2/J

%mdci
Nroots 5
DoSolv true
end
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7.34.9 Spin-Orbit Coupling (Experimental)

You can compute the spin-orbit coupling between singlet and triplets states in STEOM-CCSD using the keyword
STEOMSOC true. Please note that all SOC matrix elements and properties are currently computed from the right
vector only!

7.34.10 Core excitation

The STEOM-CCSD (and bt-PNO-STEOM-CCSD) method can also be used to compute the K-edge core-excitation
energy of molecules. See Core-Excitation for more details.

7.34.11 Transient absorption

Transient absorption spectra can be computed using the keyword DoTrans true. The IRoot keyword will select
the targeted excited state.

7.35 Excited States via IH-FSMR-CCSD

An alternative approach for decoupling the singles excitation space from the space of double and higher excitations
is to use the so called Fock space multi-reference coupled cluster (FSMRCC) method. The method is similar to
STEOM-CCSD, but much more flexible in terms of formulation.

7.35.1 General Description

FSMRCC is originally based on an effective Hamiltonian (EH). The basic idea of EH theory is to obtain some
selective eigenvalues of the Hamiltonian operator from the total eigenvalue spectrum. For this purpose, the entire
configuration space is divided into a model and an outer space with projection operators 𝑃𝑀 and 𝑄𝑀 , respec-
tively (see Fig. 7.38). The diagonalization of the EH takes care of the non-dynamic correlation coming from the
interactions between the model space configurations. On the other hand, the dynamic correlation arises due to the
interactions of the model space configurations with the outer space configurations. This interaction is introduced
through a universal wave operator Ω, which is parametrized such that it generates the exact wave function when
acting on the model space. The valence universal wave operator Ω has the form

Ω = 𝑒𝑆
(𝑝,ℎ)

where the braces indicate normal ordering of the cluster operators and 𝑆(𝑝,ℎ) is defined as

𝑆(𝑝,ℎ) =

𝑝∑︁
𝑘=0

ℎ∑︁
𝑙=0

𝑆(𝑘,𝑙)

The cluster operator 𝑆(𝑘,𝑙) is capable of destroying exactly k active particles and l active holes, in addition to
creation of holes and particles. The 𝑆(𝑝,ℎ) subsumes all lower sector Fock space 𝑆(𝑘,𝑙) operators. The 𝑆(0,0) is
equivalent to standard single-reference coupled cluster 𝑇 operator. The EH for (p,h) valence system can be defined
as

�̂�𝑒𝑓𝑓 = 𝑃
(𝑝,ℎ)
𝑀 Ω−1�̂�Ω𝑃

(𝑝,ℎ)
𝑀

However, Ω−1 may not be well defined in all the cases. Therefore, the above definition for the EH is seldom used.
Instead, the Block-Lindgren approach is generally used for solving the equations, which is defined by

𝑃
(𝑝,ℎ)
𝑀

[︁
�̂�Ω− Ω�̂�𝑒𝑓𝑓

]︁
𝑃

(𝑝,ℎ)
𝑀 = 0

𝑄
(𝑝,ℎ)
𝑀

[︁
�̂�Ω− Ω�̂�𝑒𝑓𝑓

]︁
𝑃

(𝑝,ℎ)
𝑀 = 0
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Fig. 7.38: Division of the configuration space into model and outer space in effective Hamiltonian (EH) theory and
into model, intermediate, and outer space in intermediate Hamiltonian (IH) theory. 𝑃 and𝑄 denote the respective
projection operators.

When the model space is not energetically well separated from the outer space, this method faces convergence prob-
lems. This is commonly termed as the intruder state problem. In the intermediate Hamiltonian (IH) formulation,
configuration space is divided into three subspaces, namely, the main(M), the intermediate(I), and the outer(O)
space (see Fig. 7.38) with projection operators 𝑃𝑀 , 𝑃𝐼 and 𝑄𝑂, respectively. The intermediate space acts as a
buffer between the model and the outer space. When diagonalization the IH, a subset of the eigenvalues corre-
spond to the main space obtained through EH theory. The IH is for the singly excited state sector (1,1) is defined
as

𝐻
(1,1)
𝐼 = 𝑃

(1,1)
𝑂 �̄�𝑃

(1,1)
𝑂 + 𝑃

(1,1)
𝑂 �̄�𝑌 (1,1)𝑃

(1,1)
𝑀

where

𝑌 (1,1) = 𝑄
(1,1)
𝑂

{︁
𝑆
(0,1)
2 + 𝑆

(1,0)
2 + 𝑆

(0,1)
2 𝑆

(1,0)
1 + 𝑆

(1,0)
2 𝑆

(0,1)
1 + 𝑆

(1,0)
2 𝑆

(0,1)
2

}︁
𝑃

(1,1)
𝑀

The 𝑆(1,0) and 𝑆(0,1) are extracted from converged EOMIP-CCSD and EOMEA-CCSD calculations, respectively,
by invoking intermediate normalization on the suitably chosen eigenvectors corresponding to active holes and
active particles. The total procedure can be described as following

• solve the ground state coupled cluster equations

• construct ˆ̄𝐻 = 𝑒−𝑇 �̂�𝑒𝑇

• solve the EOMIP and EOMEA equations

• extract the 𝑆 amplitudes
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• construct the second similarity transformed Hamiltonian as 𝐻(1,1)
𝐼

• diagonalize the 𝐻(1,1)
𝐼 in CIS space

The automatic active space selection scheme and all the speed up options which are available for STEOM-CCSD,
including bt-PNO and COSX, are also available for IH-FSMR-CCSD. All the keywords controlling the IH-FSMR-
CCSD are similar to STEOM-CCSD as described in Excited States via STEOM-CCSD.

No UHF variant of IH-FSMR-CCSD is currently available.

7.35.2 Properties

The transition properties can be calculated using a simple CIS-like formulation, employing the converged IH-
FSMR-CC eigenvectors. The transition moments are computed by default in an IH-FSMR-CCSD calculation.

7.35.3 Solvation Correction

Solvent effects can be approximated by a simple perturbative correction to the IH-FSMR-CCSD via

𝜔𝑘 = 𝜔0
𝑘 +

1

2
𝑉 Δ�̄�Δ

where

𝜔0
𝑘 = 𝐿𝐾𝐻

(1,1)
𝐼 𝑅𝐾

The CPCM correction directly enters the𝐻(1,1)
𝐼 , the modified Hatree-Fock orbitals. In the non-equilibrium regime,

one can simply write the perturbative correction as

𝜔𝑛𝑒𝑞𝑘 = 𝜔0,𝑛𝑒𝑞
𝑘 +

1

2
𝑉 (𝑃𝑛𝑒𝑞Δ ) �̄� (𝑃𝑛𝑒𝑞Δ )

where

𝑃𝑛𝑒𝑞Δ = 𝐿𝑘𝑅𝑘

A typical input file looks like

! aug-cc-pVDZ IH-FSMR-CCSD
!CPCM(water)
%mdci
NROOTS 8
DoSOLV true
DTol 1e-10
end
*xyz 0 1
O 0.0000 0.0000 0.1173
H 0.0000 0.7572 -0.4692
H 0.0000 -0.7572 -0.4692
*

For the above input, the following output is obtained:

---------------------------------
CALCULATED SOLVENT SHIFTS

CPCM MODEL
---------------------------------

Contributions of the 'fast' term to the solvent shift

State Shift(Eh) Shift(eV) Shift(cm**-1) Shift(nm) E_FSMRCC(eV) E_FSMRCC+SHIFT(eV)

(continues on next page)
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-------------------------------------------------------------------------------
0: -0.0058000 -0.158 -1273.0 3.3 7.814 7.656
1: -0.0133523 -0.363 -2930.5 5.0 9.650 9.287
2: -0.0053622 -0.146 -1176.9 1.8 10.144 9.998
3: -0.0078092 -0.212 -1713.9 2.2 10.958 10.746
4: -0.0040294 -0.110 -884.4 1.0 11.534 11.424
5: -0.0137147 -0.373 -3010.0 3.3 12.003 11.630
6: -0.0093172 -0.254 -2044.9 2.2 12.131 11.878
7: -0.0077514 -0.211 -1701.2 1.7 12.562 12.352

Thee perturbative correction only changes the transition energies and neither the wave function nor the transition
moment.

7.36 Excited States using PNO-based coupled cluster

Despite the successes of the DLPNO-CC approximation for ground states, the use of PNOs for excited states has
been less fruitful. It is not straightforward to define a PNO-based scheme for excited states, which will maintain the
balance between speed and accuracy, as observed for the ground state. As an intermediate solution, the basis for
ground state DLPNO quantities is transformed back to the canonical basis and are used within the canonical EOM
routine. This procedure is justified, as the main bottle neck of the EOM-CCSD or STEOM-CCSD methods comes
from the ground state calculation. Approximating the ground state CCSD amplitudes with MP2 amplitudes is also
possible, as done in the EOM-CCSD(2) approach. However, it is not reliable and can lead to large errors, when
the reference HF wave function does not provide a reasonable zeroth order approximation to the ground state wave
function. Note that the back-transformed PNO scheme (bt-PNO) described here is available for both open-shell
(UHF (QROs) or ROHF reference) and closed-shell (RHF reference) systems.

7.36.1 General Description

The back transformation of the ground state DLPNO-CCSD amplitudes to the virtual space involves three steps.
The 𝑇 amplitudes in the PNO basis are first converted into the PAO basis, then subsequently to the atomic orbital
(AO) basis, and finally to the canonical MO basis[234]. For example, in the closed-shell case, we have

𝑑𝑖𝑗�̃��̃�𝑖𝑗𝑇
𝑖𝑗

�̃�𝑖𝑗 �̃�𝑖𝑗
𝑑𝑖𝑗
�̃�𝑖𝑗 �̃�
⇒ 𝐿𝑖𝑗𝜇�̃�𝑇

𝑖𝑗
�̃�𝜈𝐿

𝑖𝑗
𝜈𝜈 ⇒ 𝐶𝑖𝑗𝑎𝜇𝑇

𝑖𝑗
𝜇𝜈𝐶

𝑖𝑗
𝜈𝑏 ⇒ 𝑇 𝑖𝑗𝑎𝑏,

𝑑𝑖�̃��̃�𝑖𝑖𝑇
𝑖
�̃�𝑖𝑖 ⇒ 𝐿𝑖𝜇�̃�𝑇

𝑖
�̃� ⇒ 𝐶𝑖𝑎𝜇𝑇

𝑖
𝜇 ⇒ 𝑇 𝑖𝑎,

The AO basis functions are denoted as 𝜇, 𝜈, . . ., while �̃�, 𝜈, . . . refers to PAOs. The missing pairs are treated using
MP2 amplitudes. If all the thresholds are set to zero, the back-transformed amplitudes match exactly with the
canonical RI-EOM-CCSD ones. On the other hand, when all the thresholds are made infinitely tight, one obtains
the EOM-CCSD(2) results. This PNO-based excited state approach is available for all the flavors of EOM-CCSD
and for STEOM-CCSD in both open- and closed-shell systems.

Below, we list all the parameters that influence the DLPNO-CCSD-based excited state calculations

%mdci
#bt-PNO-EOM and STEOM parameters - defaults displayed
DoEOMMP2 true # MP2 correction for missing pairs
DoRECAN true # recanonicalization of the occupied

# orbitals before the excited state calculation
#(only relevant for the RHF implementation)

end
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7.36.2 Reference State Energy

Here, it should be noted that the reference energy for PNO-based EOM-CCSD or STEOM-CCSD is slightly dif-
ferent from that printed for a converged ground state DLPNO-CCSD calculation, as it includes the perturbative
correction for different truncated quantities.

----------------------
COUPLED CLUSTER ENERGY
----------------------

E(0) ... -113.913498239
E(CORR)(strong-pairs) ... -0.401457078
E(CORR)(weak-pairs) ... -0.000339627
E(CORR)(corrected) ... -0.401796705
E(TOT) ... -114.315294944

In the bt-PNO-EOM-CCSD scheme, the CI-like excited state treatment of the reference state is defined by back-
transformed DLPNO amplitudes (or MP2 amplitudes for the weak pairs). The energy corresponding to this set of
amplitude is printed at the beginning of the EOM calculations.

Dressing integrals for EOM-CCSD ...
Reference state energy for EOM-DLPNO-CCSD ... -114.314954945

done ( 0.4)

Therefore, to calculate the total energy of an excited (ionized or electron attached) state, one needs to add the
excitation energy to the reference state energy in bt-PNO-EOM-CCSD.

7.36.3 Use of Local Orbitals

The use of local orbitals makes it difficult to follow a particular guess vector in the Davidson digonalization process
in EOM-CC and STEOM-CC. Therefore, it is advisable to recanonicalize the occupied orbitals after the ground
state DLPNO-CCSD calculation by setting DoRECAN to true (i.e. only relevant for the closed-shell RHF imple-
mentation). It should be noted that the recanonicalization does not change the EOM-CCSD energies. However,
the STEOM-CC energies are not invariant to orbital rotations and differ slightly for local and canonical orbitals.
In the open-shell bt-PNO implementation, we follow a different procedure in that all quantities are transformed to
the delocalized basis before proceeding with the back transformation and the excited state calculation.

7.36.4 Some tips and tricks for bt-PNO calculations

• The bt-PNO scheme with tightPNO settings gives results, which are within 0.01 eV of the canonical EOM-
CCSD numbers, at a fraction of the computational cost[234]. So, use of bt-PNO scheme is always preferable
over canonical calculations.

• In the case of an RHF reference, one should set ‘DLPNOLINEAR true’ and ‘NEWDOMAINS true’ in the
mdci block input to use the 2015 fully linear scaling implementation, which is more robust than the 2013
implementation used as default in bt-PNO scheme.

• The transition moment in bt-PNO-EOM (RHF only) and bt-PNO-STEOM (RHF, UHF (QROs) or ROHF)
is only available using the linear approximation.
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7.37 Excited States via DLPNO-STEOM-CCSD

7.37.1 PNO dressing (experimental keyword)

In STEOM-DLPNO-CCSD method most of the steps are done using the powerful PNO approximation except the
last one corresponding to the STEOM-CCSD calculation itself. In the canonical version of the dressing (default in
ORCA) all the amplitudes previously computed at the PNO level are recanonicalized which increases the calculation
cost.PNO dressing uses some of the PNO intermediates to reduce the dressing time. It has however no effect on
the storage size.

Using this PNO dressing will reduce the calculation timing but at a reduce accuracy for the excitation energies. We
thus recommend this option only for specific large systems (>2500 basis functions).

The keyword DirectDressSTEOM set to true enable this option.

7.37.2 Keywords from STEOM-CCSD

Most of the keywords from STEOM-CCSD can be used within the DLPNO version, except for core excitation.
More information on the Excited States via STEOM-CCSD section.

7.37.3 Tips and Tricks

As written in the typical calculation section of the manual we would recommend this input for standard organic
molecules.

As a general guideline we will discuss some of the keywords used there:

! STEOM-DLPNO-CCSD def2-TZVP def2-TZVP/C def2/J TightSCF

%mdci
NRoots 6
DoRootWise true
OThresh 0.005
VThresh 0.005
TCutPNOSingles 1e-11
NDAV 400
DoStoreSTEOM true
DoSimpleDens false
AddL2Term True
DTol 1e-5

end

* xyz 0 1
C 0.016227 -0.000000 0.000000
O 1.236847 0.000000 -0.000000
H -0.576537 0.951580 -0.000000
H -0.576537 -0.951580 -0.000000

*

• TIGHTSCF is a must for any CCSD calculation.

• We will recommend using TIGHTPNO for all molecules as it is not a lot more expensive and helps achieving
a better convergence.

• The OTHRESH, VTHRESH and TCutPNOSingles keywords help with converging the calculations, increas-
ing the percentage active of each root. In contrary to standard STEOM-CCSD, we would acknowledge that
the roots are converged when the percentage active character is at least 96%. Of course you have to check
that the amplitude and orbitals associated with the excitation are correct (and what you expect). Tighten-
ing the 3 keywords mentioned will increase this percentage active character. The most important being the
TCutPNOSingles one. Be careful, the computational cost increases exponentially when tightened. In more
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case 10−12 or 5× 10−12 should be enough. For OTHRESH and VTHRESH you should not go below 10−3,
as the benefits are not so obvious.A trick to achieve a better convergence is to play with the number of roots.
It is often not necessary to compute a lot of roots if you are only interested in the first 3 for example. If some
high energy roots have some low percentage active character, removing them can help for the convergence
of other roots.

• As shown in the related paper[298], the STEOM density with the L2term is now the default for computing
the excited state properties.

• The choice of the basis set can also speed up the calculation without a significant loss of accuracy. For most
organic molecules def2-TZVP(-f) is enough. Trying def2-SVP is also a good idea for preliminary tests.

• The STEOM-CCSD excitation energies are very dependent from the starting geometry. Geometries opti-
mised with several DFT functional can yield significant differences for the excitation energies (about 0.1
eV).

• It has happened that some roots were missing with the keyword Dorootwise set to true. Turning it off solved
the issue but this keyword should be on by default.

7.38 Core-level spectroscopy with coupled cluster methods

The equation of motion coupled cluster method and its similarity transformed version provides an easy way to
directly calculate core-ionization and core-excitation energies. Currently, the core-level spectroscopy with EOM-
CCSD and STEOM-CCSD is only available for closed shell systems.

7.38.1 Core-ionization

One can obtain core-ionized states if one calculates a large no of roots. The ORCA implementation of IP-EOM-
CCSD, however, allows one to directly target the ionization from the core-orbitals. A typical IP-EOM-CCSD input
file for the acetic acid will look like

!IP-EOM-CCSD ExtremeSCF cc-pvtz
!NoFrozencore
%maxcore 5000

%mdci
nroots 4 #no of roots
CVSORB 0,3 #orbital considered for core-valence separation
FollowCIS true # Follow the initial guess orbital
CVSEP true # Core valence separation
DoCVS true # Core valence separation (currently both the option needs to be true)
DoCore true # Directly target the core
corehole 0 # The state from which it will count the roots
printlevel 3 # the printing options
maxiter 500 # no of iteration, generally requires larger no of roots
end

*xyz 0 1
C -6.7624010562 0.1328615492 0.0389382700
C -5.3564667033 0.2819965475 -0.5188248498
H -6.9983743824 1.0019615710 0.6510029634
H -7.4924880320 0.0542210905 -0.7741766747
H -6.8380664832 -0.7720291637 0.6519904379
O -4.9303467983 -0.7518088469 -1.3223158759
H -5.6257914271 -1.4265892921 -1.4015111180
O -4.6208051175 1.2132365445 -0.3081931529
*

The output of it will be
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----------------------
EOM-CCSD RESULTS (RHS)
----------------------

IROOT= 1: 19.902202 au 541.566 eV 4368028.3 cm**-1
Amplitude Excitation
-0.673297 0 -> x

Percentage singles character= 82.93

IROOT= 2: 19.842487 au 539.942 eV 4354922.4 cm**-1
Amplitude Excitation
0.672818 1 -> x

Percentage singles character= 82.71

IROOT= 3: 10.891843 au 296.382 eV 2390483.3 cm**-1
Amplitude Excitation
-0.669218 2 -> x

Percentage singles character= 81.11

IROOT= 4: 10.754926 au 292.656 eV 2360433.5 cm**-1
Amplitude Excitation
-0.670254 3 -> x

Percentage singles character= 81.57

The option ‘DoCore true’ starts the counting of the roots from ‘corehole’ upwards. The default is ‘DoCore false’
and it counts the root from the HOMO downwards. The ‘corehole 0’ starts the counting from the first occupied
orbital which is the oxygen K-edge in this case. One can directly target the carbon K-edge in this case by putting
‘corehole 2’.

!IP-EOM-CCSD ExtremeSCF cc-pvtz
!NoFrozencore
%maxcore 5000

%mdci
nroots 2 #no of roots
CVSORB 2,3 #orbital considered for core-valence separation
FollowCIS true # Follow the initial guess orbital
CVSEP true # Core valence separation
DoCVS true # Core valence separation (currently both the option needs to be true)
DoCore true # Directly target the core
corehole 2 # The state from which it will count the roots
printlevel 3 # the printing options
maxiter 500 # no of iteration, generally requires larger no of roots
end

*xyz 0 1
C -6.7624010562 0.1328615492 0.0389382700
C -5.3564667033 0.2819965475 -0.5188248498
H -6.9983743824 1.0019615710 0.6510029634
H -7.4924880320 0.0542210905 -0.7741766747
H -6.8380664832 -0.7720291637 0.6519904379
O -4.9303467983 -0.7518088469 -1.3223158759
H -5.6257914271 -1.4265892921 -1.4015111180
O -4.6208051175 1.2132365445 -0.3081931529
*

The output of it will be

----------------------
EOM-CCSD RESULTS (RHS)
----------------------

(continues on next page)
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IROOT= 1: 10.891843 au 296.382 eV 2390483.3 cm**-1
Amplitude Excitation
0.669218 2 -> x

Percentage singles character= 81.11

IROOT= 2: 10.754926 au 292.656 eV 2360433.5 cm**-1
Amplitude Excitation
-0.670254 3 -> x

Percentage singles character= 81.57

Now, the core-ionized states remains embedded in the high density of doubly ionized valence states that form the
continuum. This leads to severe convergence problems. One easy way to overcome this is to use the core-valence
separation approximation which is turned on by the two keywords ‘CVSEP true’ and ‘DoCVS true’. The orbitals
from which the contributions are not neglected for the core-valence separation are set by ‘CVSORB initial,final’.
It is generally a good idea to include all the core orbitals corresponding to a particular element if one is interested
in the ionization from any of the core orbitals for the particular element. In the second example both the carbon
core-orbitals are included in the ‘CVSORB 2,3’. A ‘bt-PNO-IP-EOM-CCSD’ input file for the same example will
look like

!bt-PNO-IP-EOM-CCSD ExtremeSCF cc-pvtz cc-pvtz/c
!NoFrozencore
%maxcore 5000

%mdci
nroots 4
CVSORB 0,3
FollowCIS true
CVSEP true
DoCVS true
DoCore true
DoRECAN true # recanonilize the occupied space before the EOM step
corehole 0
printlevel 3
maxiter 500
end

*xyz 0 1
C -6.7624010562 0.1328615492 0.0389382700
C -5.3564667033 0.2819965475 -0.5188248498
H -6.9983743824 1.0019615710 0.6510029634
H -7.4924880320 0.0542210905 -0.7741766747
H -6.8380664832 -0.7720291637 0.6519904379
O -4.9303467983 -0.7518088469 -1.3223158759
H -5.6257914271 -1.4265892921 -1.4015111180
O -4.6208051175 1.2132365445 -0.3081931529
*

The output of it will be

IROOT= 1: 19.901845 au 541.557 eV 4367950.0 cm**-1
Amplitude Excitation
-0.673298 0 -> x

Percentage singles character= 82.93

IROOT= 2: 19.842152 au 539.932 eV 4354848.9 cm**-1
Amplitude Excitation
0.672832 1 -> x

Percentage singles character= 82.72

IROOT= 3: 10.892369 au 296.396 eV 2390598.7 cm**-1
Amplitude Excitation

(continues on next page)
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-0.669213 2 -> x
Percentage singles character= 81.11

IROOT= 4: 10.754951 au 292.657 eV 2360438.9 cm**-1
Amplitude Excitation
-0.670244 3 -> x

Percentage singles character= 81.56

The results are in excellent agreement with the canonical one. A DLPNO variant for the same example will look
like

!IP-EOM-DLPNO-CCSD ExtremeSCF cc-pvtz cc-pvtz/c autoaux def2/J TightPNO pal16
!NoFrozencore
%maxcore 5000

%mdci
nroots 4
CVSORB 0,3
FollowCIS true
CVSEP true
DoCVS true
DoCore true
corehole 0
printlevel 3
maxiter 500
end

*xyz 0 1
C -6.7624010562 0.1328615492 0.0389382700
C -5.3564667033 0.2819965475 -0.5188248498
H -6.9983743824 1.0019615710 0.6510029634
H -7.4924880320 0.0542210905 -0.7741766747
H -6.8380664832 -0.7720291637 0.6519904379
O -4.9303467983 -0.7518088469 -1.3223158759
H -5.6257914271 -1.4265892921 -1.4015111180
O -4.6208051175 1.2132365445 -0.3081931529
*

The output of it will be

----------------------
EOM-CCSD RESULTS (RHS)
----------------------

IROOT= 1: 19.945319 au 542.740 eV 4377491.5 cm**-1
Amplitude Excitation
0.678788 0 -> x

Percentage singles character= 101.06

IROOT= 2: 19.890529 au 541.249 eV 4365466.5 cm**-1
Amplitude Excitation
0.679716 1 -> x

Percentage singles character= 101.02

IROOT= 3: 10.912292 au 296.939 eV 2394971.3 cm**-1
Amplitude Excitation
0.672646 2 -> x

Percentage singles character= 101.22

IROOT= 4: 10.792478 au 293.678 eV 2368675.1 cm**-1
Amplitude Excitation

(continues on next page)
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0.674795 3 -> x
Percentage singles character= 101.14

Although the error in the absolute IP values are as large as 1 eV, the so-called ‘chemical shift’ i.e. the difference
between the IP value of two different atoms of the same elements are reasonably correct.

7.38.2 Core-Excitation

The STEOM-CCSD approach provides an efficient and accurate way to do the K-edge core-excitation spectroscopy.
A typical input file for the STEOM-CCSD will look like

!STEOM-CCSD ExtremeSCF aug-cc-pCVQZ Bohrs NoFrozencore

%mdci
nroots 10
CVSORB 6,6 # should always be HOMO
FollowCIS true
CVSEP true
DoCVS true
DoCore true
DoSimpleDens False # use exact STEOM transition moment
corehole 0
maxiter 500
NDAV 80
printlevel 3
end

*xyz 0 1
O 0 0 0.913973
C 0 0 -1.218243
*

The output will be

------------------
STEOM-CCSD RESULTS
------------------

IROOT= 1: 19.686174 au 535.688 eV 4320615.8 cm**-1
Amplitude Excitation
-0.215317 6 -> 7
-0.211332 6 -> 8
-0.442546 6 -> 11
0.330607 6 -> 12
0.568497 6 -> 15
-0.506486 6 -> 16
Ground state amplitude: 0.000000

Percentage Active Character 97.59

Warning:: the state may have not converged with respect to active space
-------------------- Handle with Care --------------------

Amplitude Excitation in Canonical Basis
-0.177019 0 -> 8
0.346366 0 -> 9
0.590044 0 -> 11
0.464534 0 -> 12
-0.214399 0 -> 14
0.338336 0 -> 15

(continues on next page)
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-0.146649 0 -> 20
0.169124 0 -> 21
-0.192930 0 -> 24

IROOT= 2: 19.686174 au 535.688 eV 4320615.8 cm**-1
Amplitude Excitation
0.211332 6 -> 7
-0.215317 6 -> 8
0.330607 6 -> 11
0.442546 6 -> 12
-0.506486 6 -> 15
-0.568497 6 -> 16
Ground state amplitude: 0.000000

Percentage Active Character 97.59

Warning:: the state may have not converged with respect to active space
-------------------- Handle with Care --------------------

Amplitude Excitation in Canonical Basis
0.346366 0 -> 8
0.177019 0 -> 9
0.464534 0 -> 11
-0.590044 0 -> 12
0.338336 0 -> 14
0.214399 0 -> 15
0.169124 0 -> 20
0.146649 0 -> 21
-0.192930 0 -> 23

IROOT= 3: 19.865373 au 540.564 eV 4359945.5 cm**-1
Amplitude Excitation
-0.571289 6 -> 9
0.792679 6 -> 10
0.137627 6 -> 13
-0.112257 6 -> 17
Ground state amplitude: -0.000591

Percentage Active Character 97.37

Warning:: the state may have not converged with respect to active space
-------------------- Handle with Care --------------------

Amplitude Excitation in Canonical Basis
-0.900242 0 -> 7
-0.116863 0 -> 13
-0.375672 0 -> 18
0.128317 0 -> 19

IROOT= 4: 19.909335 au 541.761 eV 4369594.0 cm**-1
Amplitude Excitation
0.340300 6 -> 7
0.704671 6 -> 8
-0.338179 6 -> 11
0.511324 6 -> 12
Ground state amplitude: 0.000000

Percentage Active Character 99.71

Amplitude Excitation in Canonical Basis
0.101796 0 -> 8

(continues on next page)
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-0.793309 0 -> 9
0.482364 0 -> 11
0.160972 0 -> 12
-0.209491 0 -> 15
-0.128207 0 -> 23
-0.188543 0 -> 24

IROOT= 5: 19.909335 au 541.761 eV 4369594.0 cm**-1
Amplitude Excitation
-0.704671 6 -> 7
0.340300 6 -> 8
0.511324 6 -> 11
0.338179 6 -> 12
Ground state amplitude: 0.000000

Percentage Active Character 99.71

Amplitude Excitation in Canonical Basis
-0.793309 0 -> 8
-0.101796 0 -> 9
0.160972 0 -> 11
-0.482364 0 -> 12
-0.209491 0 -> 14
-0.188543 0 -> 23
0.128207 0 -> 24

IROOT= 6: 19.914772 au 541.909 eV 4370787.3 cm**-1
Amplitude Excitation
-0.804799 6 -> 9
-0.557108 6 -> 10
-0.125228 6 -> 13
0.119745 6 -> 17
Ground state amplitude: 0.000364

Percentage Active Character 97.38

Warning:: the state may have not converged with respect to active space
-------------------- Handle with Care --------------------

Amplitude Excitation in Canonical Basis
0.934227 0 -> 10
-0.273222 0 -> 13
0.144269 0 -> 18
-0.159846 0 -> 22

IROOT= 7: 19.966983 au 543.329 eV 4382246.2 cm**-1
Amplitude Excitation
0.190413 6 -> 10
-0.954987 6 -> 13
0.113662 6 -> 22
Ground state amplitude: 0.000138

Percentage Active Character 94.88

Warning:: the state may have not converged with respect to active space
-------------------- Handle with Care --------------------

Amplitude Excitation in Canonical Basis
-0.190758 0 -> 7
0.246282 0 -> 10
0.890287 0 -> 13

(continues on next page)
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0.198835 0 -> 18
0.170782 0 -> 19
0.180954 0 -> 25

IROOT= 8: 19.981194 au 543.716 eV 4385365.2 cm**-1
Amplitude Excitation
0.513702 6 -> 7
0.587528 6 -> 11
0.608754 6 -> 15
Ground state amplitude: -0.000000

Percentage Active Character 98.92

Amplitude Excitation in Canonical Basis
0.391272 0 -> 8
-0.123811 0 -> 9
-0.308174 0 -> 12
-0.796992 0 -> 14
0.173278 0 -> 15
-0.202678 0 -> 20
0.130010 0 -> 29

IROOT= 9: 19.981194 au 543.716 eV 4385365.2 cm**-1
Amplitude Excitation
-0.513700 6 -> 8
0.587528 6 -> 12
0.608756 6 -> 16
Ground state amplitude: -0.000000

Percentage Active Character 98.92

Amplitude Excitation in Canonical Basis
0.123796 0 -> 8
0.391276 0 -> 9
0.308177 0 -> 11
-0.173290 0 -> 14
-0.796989 0 -> 15
-0.202680 0 -> 21
0.130002 0 -> 28

IROOT= 10: 20.005026 au 544.364 eV 4390595.8 cm**-1
Amplitude Excitation
0.997209 6 -> 14
Ground state amplitude: 0.000000

Percentage Active Character 99.44

Amplitude Excitation in Canonical Basis
0.980462 0 -> 16
-0.142106 0 -> 26

Excitation from a particular core orbital can be considered currently. In the present case it is the 1S orbital of oxygen.
The required orbital can be specified using the keyword ‘corehole’. For the oxygen 1S it should be ‘corehole 0’.
The carbon 1S can be specified with ‘corehole 1’

!STEOM-CCSD ExtremeSCF aug-cc-pCVQZ Bohrs NoFrozencore

%mdci
nroots 10
CVSORB 6,6 # should always be HOMO
FollowCIS true

(continues on next page)

838 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

(continued from previous page)

CVSEP true
DoCVS true
DoCore true
DoSimpleDens False # use exact STEOM transition moment
corehole 1
maxiter 500
NDAV 80
printlevel 3
end

*xyz 0 1
O 0 0 0.913973
C 0 0 -1.218243
*

It will give the carbon K-edge spectra as follows

------------------
STEOM-CCSD RESULTS
------------------

IROOT= 1: 10.569902 au 287.622 eV 2319825.3 cm**-1
Amplitude Excitation
0.429677 6 -> 8
0.132429 6 -> 11
0.880021 6 -> 16
Ground state amplitude: -0.000000

Percentage Active Character 98.73

Amplitude Excitation in Canonical Basis
0.158027 1 -> 8
0.273564 1 -> 9
-0.354592 1 -> 11
-0.668565 1 -> 12
0.184004 1 -> 14
0.308132 1 -> 15
0.112105 1 -> 20
0.195715 1 -> 21
0.134711 1 -> 23
0.275743 1 -> 24
-0.140527 1 -> 29

IROOT= 2: 10.569902 au 287.622 eV 2319825.3 cm**-1
Amplitude Excitation
0.429686 6 -> 7
-0.132345 6 -> 12
0.880029 6 -> 15
Ground state amplitude: -0.000000

Percentage Active Character 98.73

Amplitude Excitation in Canonical Basis
-0.273564 1 -> 8
0.158027 1 -> 9
0.668565 1 -> 11
-0.354592 1 -> 12
-0.308132 1 -> 14
0.184004 1 -> 15
-0.195715 1 -> 20
0.112105 1 -> 21

(continues on next page)
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-0.275744 1 -> 23
0.134711 1 -> 24
0.140527 1 -> 28

IROOT= 3: 10.807563 au 294.089 eV 2371985.9 cm**-1
Amplitude Excitation
-0.759965 6 -> 9
-0.366007 6 -> 10
0.514219 6 -> 13
Ground state amplitude: 0.000746

Percentage Active Character 97.59

Warning:: the state may have not converged with respect to active space
-------------------- Handle with Care --------------------

Amplitude Excitation in Canonical Basis
0.865305 1 -> 7
-0.246321 1 -> 10
-0.230712 1 -> 13
0.312193 1 -> 18
0.113059 1 -> 25

IROOT= 4: 10.840510 au 294.985 eV 2379217.0 cm**-1
Amplitude Excitation
-0.813493 6 -> 7
0.345752 6 -> 12
0.449353 6 -> 15
Ground state amplitude: 0.000000

Percentage Active Character 98.33

Amplitude Excitation in Canonical Basis
0.803886 1 -> 8
-0.349815 1 -> 9
0.318183 1 -> 11
-0.124975 1 -> 12
0.186068 1 -> 14
-0.239028 1 -> 23

IROOT= 5: 10.840510 au 294.985 eV 2379217.0 cm**-1
Amplitude Excitation
0.813492 6 -> 8
0.345726 6 -> 11
-0.449377 6 -> 16
Ground state amplitude: 0.000000

Percentage Active Character 98.33

Amplitude Excitation in Canonical Basis
0.349809 1 -> 8
0.803873 1 -> 9
0.124977 1 -> 11
0.318188 1 -> 12
0.186103 1 -> 15
-0.239038 1 -> 24

IROOT= 6: 10.845730 au 295.127 eV 2380362.5 cm**-1
Amplitude Excitation
0.116483 2 -> 136
0.438618 6 -> 9

(continues on next page)
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-0.879925 6 -> 10
0.106779 6 -> 19
Ground state amplitude: 0.000706

Percentage Active Character 96.67

Warning:: the state may have not converged with respect to active space
-------------------- Handle with Care --------------------

Amplitude Excitation in Canonical Basis
-0.244947 1 -> 7
-0.900149 1 -> 10
-0.170451 1 -> 13
-0.205137 1 -> 18
-0.192328 1 -> 22
0.116486 3 -> 136

IROOT= 7: 10.906409 au 296.778 eV 2393680.2 cm**-1
Amplitude Excitation
0.113733 2 -> 136
-0.397156 6 -> 9
-0.234927 6 -> 10
-0.815420 6 -> 13
-0.293892 6 -> 17
0.126290 6 -> 30
Ground state amplitude: -0.000417

Percentage Active Character 87.78

Warning:: the state may have not converged with respect to active space
-------------------- Handle with Care --------------------

Amplitude Excitation in Canonical Basis
0.219961 1 -> 7
-0.178103 1 -> 10
0.883509 1 -> 13
-0.239553 1 -> 18
-0.188730 1 -> 19
-0.161616 1 -> 25
0.113733 3 -> 136

IROOT= 8: 10.926332 au 297.321 eV 2398052.6 cm**-1
Amplitude Excitation
-0.365429 6 -> 8
0.927126 6 -> 11
Ground state amplitude: 0.000000

Percentage Active Character 99.66

Amplitude Excitation in Canonical Basis
-0.129108 1 -> 8
-0.295033 1 -> 9
0.119506 1 -> 11
0.302428 1 -> 12
0.353687 1 -> 14
0.777349 1 -> 15
0.200807 1 -> 21

IROOT= 9: 10.926332 au 297.321 eV 2398052.8 cm**-1
Amplitude Excitation
0.365449 6 -> 7

(continues on next page)
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0.927109 6 -> 12
Ground state amplitude: 0.000000

Percentage Active Character 99.66

Amplitude Excitation in Canonical Basis
-0.295006 1 -> 8
0.129096 1 -> 9
0.302490 1 -> 11
-0.119530 1 -> 12
0.777245 1 -> 14
-0.353640 1 -> 15
0.201146 1 -> 20

IROOT= 10: 10.944288 au 297.809 eV 2401993.5 cm**-1
Amplitude Excitation
0.998859 6 -> 14
Ground state amplitude: -0.000000

Percentage Active Character 99.77

Amplitude Excitation in Canonical Basis
-0.983120 1 -> 16
-0.104304 1 -> 33

The core-valence separation should be used similar to that in the core-ionization. The only difference is that the
natural orbital based active space selection scheme in STEOM-CCSD always rotate the particular core orbital to
the HOMO. Therefore, CVSORB should always be HOMO in STEOM-CCSD irrespective of the core-hole. One
should use the exact STEOM-CCSD transition moment by using DoSimpleDens False. Fig. 7.40 presents the
STEOM-CCSD oxygen K-edge spectra in thymine.

Fig. 7.39: Comparison of theoretical and experimental X-ray absorption spectra of oxygen K-edge in thymine. The
simulated spectrum is shifted by -3.7 eV to align with the experimental spectrum.
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One can interpret the results in terms of NTOs caculated from STEOM-CC eigen vectors

Fig. 7.40: Natural transition orbitals (ntos) for the oxygen K edge spectrum of thymine. All the core EE values
mentioned are in eV and provided in the format (EE,Oscillator Strength).

7.39 The Multireference Correlation Module

7.39.1 General Description

A number of uncontracted multireference approaches are implemented in ORCA and reside in the orca_mrci
module. All of these approaches start with a reference wavefunction that consists of multiple configurations (orbital
occupation patterns). The reference wavefunction defined in the ref subblock can be a complete active space
(CAS), restricted active space (RAS) or an arbitrary list of configurations. The total wavefunction is constructed
by considering single and double excitations out of the reference configurations. These excited configurations
are then used to generate configuration state functions (CSF) that have the proper spin and spatial symmetry.
The number of wavefunction parameters rapidly grows with the number of reference functions. The orca_mrci
module features a set of truncation criteria (TSel, TPre, TNat) that help to reduce the number of wavefunction
parameters. Furthermore, by default, the program only considers reference configurations that already have the
target spin and spatial symmetry. There are situations, where this is undesired and the restrictions can be lifted
with the keyword rejectinvalidrefs false. For more information on the theory, the program module as well
as its usage we recommend the review article by Neese et al.[629]. A tutorial type introduction to the subject is
presented in chapter The Multireference Correlation Module of the manual and more examples in the CASSCF
tutorial. The detailed documentation of all features of the MR-CI and MR-PT module is somewhat premature and
at this point only a summary of keywords is given below. A thorough description of all technical and theoretical
subtleties must wait for a later version of the manual.

The overall scaling of uncontracted approaches is steep. Hence, the methodology is restricted to small reference
spaces and small molecules in general. Note that all integrals must be kept in memory! Internally contracted
multireference approaches such as NEVPT2 do not share these bottlenecks. Aside from NEVPT2, ORCA features
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a fully internally contracted MRCI (FIC-MRCI) that resides in the orca_autoci module. For more details on the
FIC-MRCI we refer to section CI methods using generated code.

%mrci
# -----------------------------------------------------------
# Orbital selection
# NOTE: The orbitals are used as supplied. Thus, the ORDER of
# orbitals is critical. Say you have
# nact electrons in the active space
# nint electrons in the internal space
# nfrozen electrons
# * The first nfrozen/2 orbitals will not be included in the CI
# * The next nint/2 orbitals will be doubly occupied in all
# references
# * the nact electrons are distributed over the,say, mact
# orbitals according to the active space definitions.
# The remaining orbitals are external.
# IT IS YOUR RESPONSIBILITY THAT THE ORBITAL ORDERING MAKES
# SENSE!
# A sensible two-step procedure is:
# * generate some orbitals and LOOK AT THEM. Decide which ones
# to include in the CI.
# * re-read these orbitals with ! MORead NoIter. Perhaps use
# the "rotate" feature to reorder the MOs
# Then jump right into the CI which is defined in this se-
# cond job
#
# NOTE: the MRCI module respects the %method FrozenCore settings
# -----------------------------------------------------------
Loc 0,0,0

# Localize orbitals in the internal (first flag), active
# (second flag) and external space (third flag).

UseIVOs false
# Use improved virtual orbitals in the CI

# ---------------------------------
# Method selection
# ---------------------------------
CIType MRCI # Multireference CI (default)

MRDDCI1 # Difference dedicated CI 1-degree of freedom
MRDDCI2 # Difference dedicated CI 2-degrees of freedom
MRDDCI3 # Difference dedicated CI 3-degrees of freedom
MRACPF # Average coupled-pair functional
MRACPF2 # Modified version of ACPF
MRACPF2a # A slightly modified version of ACPF-2a
MRAQCC # Average quadratic coupled-cluster
MRCEPA_R # Multireference CEPA due to Ruttink
MRCEPA_0 # CEPA-0 approximation
SORCI # Spectroscopy oriented CI
SORCP # Spectroscopy oriented couplet pair approx.
MRMP2 # Multireference Moeller-Plesset at second order
MRMP3 # Multireference Moeller-Plesset at third order
MRMP4 # Multireference Moeller-Plesset at fourth order

# but keeping only singles and doubles relative to
# the reference configurations.

# ---------------------------------
# Selection thresholds
# ---------------------------------
Tsel 1e-6 # Selection threshold for inclusion in the CI based

# 2nd order MP perturbation theory <0|H|I>/DE(MP)
Tpre 1e-4 # Selection of configurations in the reference space

# after the initial diagonalization of the reference
(continues on next page)
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# space only configurations with a weight large>Tpre
# to any root are included

AllSingles false
# include ALL SINGLES in the CI. Default is now TRUE!!!

# perturbative estimate of the effect of the rejected configurations
EunselOpt 0 # no correction

1 # based on the overlap with the 0th order wavefunction
2 # calculation with the relaxed reference space

# coefficients. This is the most accurate and only
# slightly more expensive

# For CIType=MRCI,MRDDCI and SORCI the approximate correction for
# higher excitations
DavidsonOpt Davidson1 # default

Davidson2 # modified version
Siegbahn # Siegbahn's approximation
Pople # Pople's approximation

# For MRACPF,MRACPF2,MRAQCC and SORCP
NelCorr 0
# Number of electrons used for computing the average coupled-
# pair correction.
# =0 : set equal to ALL electrons in the CI
# =-1: set equal to all ACTIVE SPACE electrons
# =-2: set equal to ACTIVE SPACE electrons IF inactive doubles
# are excluded (as in MRDDCI)
# >0 : set equal to user defined input value

LinearResponse false
# Use ground state correlation energy to compute the shift for
# higher roots (not recommended)

# ---------------------------------
# Natural Orbital Iterations
# ---------------------------------
NatOrbIters 0 # default
# number of average natural orbital iterations

Tnat 1e-4
# cutoff of natural orbitals. NOs with an occupation number less
# then Tnat will not be included in the next iteration
# Also, orbitals with occupation number closer than Tnat to 2.0
# will be frozen in the next iteration

Tnat2 -1
# if chosen >0 then Tnat2 is the threshold for freezing the
# almost doubly occupied orbitals. Otherwise it is set equal
# to Tnat

# ----------------------------------
# Additional flags and algorithmic
# details
# ----------------------------------
PrintLevel 2 # default. Values between 1 and 4 are possible

DoDDCIMP2 false
# for DDCI calculations: if set to true the program computes
# a MP2 like correction for the effect of inactive double
# excitations which are not explicitly included in the CI. This
# is necessary if you compare molecules at different geometries
# or compute potential energy surfaces.

# ----------------------------------
# The SORCP model

(continues on next page)
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# ----------------------------------
CIType_in # First step CIType
CIType_fi # Second step CIType
Exc_in # First step excitation scheme
Exc_fi # Second step excitation scheme
Tsel_in # First step Tsel
Tsel_fi # Second step Tsel
Tpre_in # First step Tsel
Tpre_fi # Second step Tpre

# Thus, the SORCI model corresponds to CIType=SORCP with
# CIType_in MRCI CIType_fi MRCI
# Exc_in DDCI2 Cexc_fi DDCI3
# Tsel_in 1e-5 Tsel_fi 1e-5
# Tpre_in 1e-2 Tpre_fi 1e-2

# ----------------------------------
# Multirerence perturbation theory
# ----------------------------------
MRPT_b 0.02 # Intruder state avoidance PT after Hirao (default 0.0)

# with this flag individual intruders are shifted away to
# to some extent from the reference space

MRPT_shift 0.3 # Level shift introduced by Roos which shifts the entire
# excited manifold away in order to avoid intruder states.
# A correction is applied afterwards but results do depend
# on this (arbitrary) value to some extent.

H0Opt projected # use an off-diagonal definition of H0
Diagonal # use a diagonal definition of H0 (much faster but maybe

# a little less reliable
Partitioning MP # Moeller plesset partitioning

EN # Epstein-Nesbet partitioning (not recommended)
Fopt Standard # Standard definition of MR Fock operators

G3 # uses Anderson's g3 correction also used in CASPT2

#---------------------------------------
# restrict reference configurations
#---------------------------------------
RejectInvalidRefs true # by default reference CSFs are restricted

# to target spin and spatial symmetry

# ======================================
# Definitions of blocks of the CI Matrix
# ======================================
NewBlock 2 * # generate a Block with doublet(=2) multiplicity
Nroots 1 # number of roots to be generated
Excitations cis # CI with single excitations

cid # CI with double excitations
cisd # CI with single and double excitations
ddci1 # DDCI list with one degree of freedom
ddci2 # DDCI list with two degrees of freedom
ddci3 # DDCI list with three degrees of freedom

Flags[_class_] 0 or 1
# Turn excitation classes on or off individually
# ``s'' stands for any SOMO, ``i'',``j'' for internal orbitals and
# ``a'',``b'' for external orbitals
# Singles _class_ = ss, sa, is, ia
# Doubles _class_ = ijss, ijsa, ijab,
# isss, issa, isab,
# ssss, sssa, ssab
# ``Flags'' takes priority over ``Excitations''. In fact ``Excitations''

(continues on next page)
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# does nothing but to set ``Flags''. So, you can use ``Excitations''
# to provide initial values for ``Flags'' and then modify them
# with subsequent ``Flags'' assignments

refs
#
# First choice - complete active space
#
CAS(nel,norb) # CAS-CI reference with nel electrons in

# Norb orbitals
#
# Second choice - restricted active space
#
RAS(nel: m1 h/ m2 / m3 p)

# RAS-reference with nel electrons
# m1= number orbitals in RAS-1
# h = max. number of holes in RAS-1
# m2= number of orbitals in RAS-2 (any number of
# electrons or holes)
# m3= number of orbitals in RAS-3
# p = max. number of particles in RAS-3

#
# Third choice - individually defined configurations
#
\{ 2 0 1 0\}
\{ 1 1 1 0\}
etc.
# define as many configurations as you want. Doubly occupied MOs
# singly occupied MOs and empty MOs. Important notes:
# a) the number of electrons must be the same in all references
# b) the number of orbitals is determined from the number of
# definitions. Thus, in the example above we have three active
# electrons and four active orbitals despite the fact that the
# highest orbital is not occupied in any reference.
# The program determines the internal, active and external spaces
# automatically from the number of active electrons and orbitals

end
end
# there can be as many blocks as you want!!!

# ----------------------------------
# Density matrix generation flags
# First Key= State densities <I|D|I>
# =0: none
# =1: Ground state only (lowest root of all blocks; Electron only)
# =2: Ground state only (Electron and spin density)
# =3: Lowest root from each block (Electron density)
# =4: Lowest root from each block (Electron and spin density)
# =5: All states (Electron density)
# =6: All states (Electron and spin density)
# Second Key= Transition densities <I|D|J>
# needed for all transition intensities, g-tensor etc
# =0: none
# =1: from the ground state into all excited states (el)
# =2: from the ground state into all excited states (el+spin)
# =3: from all lowest states into all excited states (el)
# =4: from all lowest states into all excited states (el+spin)
# =5: all state pairs (el)
# =6: all state pairs (el+spin)
# Note that for perturbation theory the density is computed as
# an expectation value over the first (second) order wavefunction.
# which is renormalized for this purpose

(continues on next page)
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# ----------------------------------
Densities 1,1

# ----------------------------------
# Complete printing of the wavefunction
# ----------------------------------
PrintWF 1 # CFG based printing (default)

det # Determinant based wavefunction printing
TPrintWF 3e-3 # Threshold for the printing of the CFGs/Dets

# ----------------------------------
# Algorithm for the solver
# ----------------------------------
Solver Diag # Davidson like solver

DIIS # DIIS like solver
# both solvers have their pros and cons. The DIIS may converge
# better or use less time since it only recomputes the vectors that
# have not yet converged; The DIIS may be less sensitive to root flipping
# effects but occasionally it converges poorly and states of the same
# symmetry are occasionally a little problematic
# For perturbation theory DIIS is always used.

# For both solvers
MaxIter 100 # the maximum number of iterations
Etol 1e-6 # convergence tolerance for energies in Eh
Rtol 1e-6 # convergence tolerance for residual

# For Solver=Diag (Davidson solver)
Otol 1e-16 # Orthogonality threshold for Schmidt process
NGuessMat 512 # Dimension of the guess matrix 512x512

# be used to compute the initial guess of the actual MRCI calculation
NGuessMatRefCI 512 # Dimension of the guess matrix

# for the reference CI

MaxDim 3 # Davidson expansion space = MaxDim * NRoots
# For the Solver=DIIS. Particularly recommended for anything else but
# straightforward CI and also for calculations in direct2 mode!
MaxDIIS 5 # Maximum number of old vectors to be used in DIIS
RelaxRefs true # Relax reference space coefficients in the CI or

# freeze them to their zeroth order values
LevelShift 0.4 # Level Shift for stabilizing the DIIS procedure

# ----------------------------------
# RI Approximation
# ----------------------------------
IntMode RITrafo #Use RI integrals

FullTrafo #No RI (default)

# ----------------------------------
# Integral storage, memory and files
# ----------------------------------
IntStorage FloatVals

DoubleVals (default)
# store integrals with float (4 byte) or double (8 byte)
# accuracy in main memory

FourIndexInts false (default)
True

# Store ALL four index integrals over Mos in main memory
# only possible for relatively small systems, perhaps up
# to 150-200 MOs included in the CI

MaxMemInt 256
# Maximum amount of core memory devoted to the storage of

(continues on next page)
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# integrals. If NOT all three index integrals fit into main
# memory the program fails

MaxMemVec 16
# Maximum amount of memory used for section of the trial and
# sigma vectors. This is not a particularly critical variable

KeepFiles false
# Keep integrals and CI program input file (.mrciinp). Then
# you can manually edit the .mrciinp file which is a standard
# ASCII file and run the MRCI program directly. The only thing
# you cannot change is the orbital window.

end

7.39.2 Properties Calculation Using the SOC Submodule

Zero-Field Splitting

The spin-orbit coupling (SOC) and spin-spin coupling (SSC) contributions to the zero-field splitting (ZFS) can
be calculated very accurately using a wavefunction obtained from a multiconfigurational calculation of a multi-
reference type such as CASSCF, MRCI, or MRPT as is described in QDPT Magnetic Properties Section Magnetic
properties through Quasi Degenerate Perturbation Theory.

# In case that you want to run QDPT-SOC calculation with manually adjusted diagonal ␣
→˓

# energies you can copy the following part into the %mrci soc block and modify it as needed ␣
→˓

# (energies are given in wavenumbers relative to the lowest state). ␣
→˓

# ␣
→˓

# NOTE: It is YOUR responsibility to make sure that the CAS-CI state that you may want to␣
→˓dress
# with these energies correlates properly with the energies printed here. The order of␣
→˓states
# or even the identity of states may change with and without inclusion of dynamic␣
→˓correlation.
# In the case that dynamic correlation strongly mixes, different CAS-CI states there may␣
→˓not
# even be a proper correlation! ␣
→˓

# ␣
→˓

EDiag[ 0] -149.526236244 # root 0 of block 0 ␣
→˓

EDiag[ 1] -149.359818263 # root 1 of block 0 ␣
→˓

EDiag[ 2] -149.359818263 # root 2 of block 0 ␣
→˓

EDiag[ 3] -149.496737695 # root 0 of block 1 ␣
→˓

EDiag[ 4] -149.496737695 # root 1 of block 1 ␣
→˓

EDiag[ 5] -149.474844108 # root 2 of block 1 ␣
→˓

Those transition energies can be substituted by a more accurate energies provided in the input file as follows:

%soc
dosoc true
dossc true

(continues on next page)
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EDiag[ 0] -149.526236244 # root 0 of block 0
EDiag[ 1] -149.359818263 # root 1 of block 0
EDiag[ 2] -149.359818263 # root 2 of block 0
EDiag[ 3] -149.496737695 # root 0 of block 1
EDiag[ 4] -149.496737695 # root 1 of block 1
EDiag[ 5] -149.474844108 # root 2 of block 1

end

Accurate diagonal energies generally improve the accuracy of the SOC and SSC splittings.

Local Zero-Field Splitting

The submodule can also be used to calculate the local ZFS splitting parameters of atomic centers. The method,
referred to as local complete active space configuration interaction (L-CASCI), can be used to separate into atomic
contributions the SOC part of the total ZFS tensor. The rational behind it and additional details are described in
the original publication [717]; below are listed only the steps required to reproduce the calculation for the dimer
complex presented there.

1. The first step consists in obtaining the molecular orbitals that are going to be used in the configuration interaction
(CI) procedure. A good set of orbitals can be obtained from a restricted open-shell spin-averaged Hartree-Fock
(SAHF) calculation. The relevant part of the input is listed below:

! def2-tzvp keepfock

% scf
hftyp rohf
rohf_case sahf
rohf_numop 2
rohf_nel[1] 9
rohf_norb[1] 10
end

For the present Mn(II)Mn(III) dimer there are a total of 9 electrons distributed into 10 d-orbitals.

2. Next, the molecular orbitals are localized using one of the implemented localization schemes. Below is the
orca_loc input used in this case:

sahf.gbw
sahf.loc
0
200 # first of the 10 d-orbitals
209 # last of the 10 d-orbitals
128
0.000001
0.75
0.65
2

3. Following this, the localized orbitals are made locally canonical by block diagonalizing the Fock matrix using
the orca_blockf utility.

orca_blockf sahf.fsv sahf.loc 200 204 205 209

The first two numbers define the range of molecular orbitals localized on one center; the last two are for the second
center.

4. The recanonicalized orbitals stored in the sahf.loc file can be then used to calculate the SOC contribution to
the local ZFS of the Mn(III) center using the following MRCI input:
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! zora-def2-tzvp def2-tzvp/c zora
! nomulliken noloewdin
! moread noiter allowrhf
! moread

% mrci
citype mrci
tsel 0
tpre 0
intmode ritrafo
solver diis
soc

intmode ritrafo
dosoc true
end

newblock 10 *
nroots 5
excitations none
refs

# Mn(II) Mn(III)
{1 1 1 1 1 1 1 1 1 0}
{1 1 1 1 1 1 1 1 0 1}
{1 1 1 1 1 1 1 0 1 1}
{1 1 1 1 1 1 0 1 1 1}
{1 1 1 1 1 0 1 1 1 1}
end

end
newblock 8 *

nroots 45
excitations none
refs

# Mn(II) Mn(III)
{1 1 1 1 1 2 1 1 0 0}
{1 1 1 1 1 2 1 0 1 0}
{1 1 1 1 1 2 1 0 0 1}
{1 1 1 1 1 2 0 1 1 0}
{1 1 1 1 1 2 0 1 0 1}
{1 1 1 1 1 2 0 0 1 1}
{1 1 1 1 1 1 2 1 0 0}
{1 1 1 1 1 1 2 0 1 0}
{1 1 1 1 1 1 2 0 0 1}
{1 1 1 1 1 1 1 2 0 0}
{1 1 1 1 1 1 1 1 1 0}
{1 1 1 1 1 1 1 1 0 1}
{1 1 1 1 1 1 1 0 2 0}
{1 1 1 1 1 1 1 0 1 1}
{1 1 1 1 1 1 1 0 0 2}
{1 1 1 1 1 1 0 2 1 0}
{1 1 1 1 1 1 0 2 0 1}
{1 1 1 1 1 1 0 1 2 0}
{1 1 1 1 1 1 0 1 1 1}
{1 1 1 1 1 1 0 1 0 2}
{1 1 1 1 1 1 0 0 2 1}
{1 1 1 1 1 1 0 0 1 2}
{1 1 1 1 1 0 2 1 1 0}
{1 1 1 1 1 0 2 1 0 1}
{1 1 1 1 1 0 2 0 1 1}
{1 1 1 1 1 0 1 2 1 0}
{1 1 1 1 1 0 1 2 0 1}
{1 1 1 1 1 0 1 1 2 0}
{1 1 1 1 1 0 1 1 1 1}
{1 1 1 1 1 0 1 1 0 2}
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{1 1 1 1 1 0 1 0 2 1}
{1 1 1 1 1 0 1 0 1 2}
{1 1 1 1 1 0 0 2 1 1}
{1 1 1 1 1 0 0 1 2 1}
{1 1 1 1 1 0 0 1 1 2}
end

end
end

5. The three second order ZFS components printed at the end of the calculation (Second order D-tensor:
component 0, etc.) are scaled using the S value for the complex, which in this case is 4.5 (9 electrons × 0.5).
In order to obtain the correct local value of the ZFS, the three matrices have to be rescaled using the S value for
Mn(III), which is to 2. Note that the three matrices have different scaling prefactors, and the dependence on S is
not the same:

D𝑆𝑂𝐶−(0) ∝ 1
𝑆2

D𝑆𝑂𝐶−(−1) ∝ 1
𝑆(2𝑆−1)

D𝑆𝑂𝐶−(+1) ∝ 1
(𝑆+1)(2𝑆+1)

These equations can be used to calculate the required prefactors. For example in the case of the SOC-(0) the
prefactor is equal to:

D
𝑆𝑂𝐶−(0)
Mn(III) = 4.52

22 ·D
𝑆𝑂𝐶−(0)
dimer = 5.0625 ·D𝑆𝑂𝐶−(0)

dimer

The final step is to scale the two remaining matrices using the appropriate prefactors, sum all three of them up,
diagonalize the resulting the matrix, and use its eigenvalues to calculate the D and E parameters. These represent
the local ZFS parameters of the Mn(III) center.

Zero-Field Splitting from an excited Multiplet

For an excited state Multiplet the Calculationof ZFS can be requested by

Lowest eigenvalue of the SOC matrix: -149.86223277 Eh
Energy stabilization: -2.54512 cm-1
Eigenvalues: cm-1 eV Boltzmann populations at T = 300.000 K

0: 0.00 0.0000 3.36e-01
1: 2.37 0.0003 3.32e-01
2: 2.37 0.0003 3.32e-01
3: 7757.65 0.9618 2.33e-17
4: 7757.66 0.9618 2.33e-17
5: 11913.81 1.4771 5.15e-26

soc
DTensor true
IStates 3,4,5
end

*****************************************
EXCITED STATE ZERO-FIELD SPLITTING:
*****************************************

--------------------------------------------
Computing Excited State D Tensors of
Excited State Multiplet Consisting of States : 3 4 5
--------------------------------------------

0 4
1 5
2 0

(continues on next page)
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3 1
4 0
5 2

--------------------------------------------
ZERO-FIELD SPLITTING

(2ND ORDER SPIN-ORBIT COUPLING CONTRIBUTION)
--------------------------------------------

D = -2.668445 cm-1
E/D = 0.000103

...

--------------------------------------------------------
ZERO-FIELD SPLITTING

EFFECTIVE HAMILTONIAN SOC CONTRIBUTION
--------------------------------------------------------

D = -2.674495 cm-1
E/D = 0.009610

...

g-Tensor

The orca_mrci program contains an option to calculate g-tensors using MRCI wavefunctions. For a system with an
odd number of electrons, the doubly degenerate eigenvalues obtained from the QDPT procedure represent Kramers
pairs, which are used to build the matrix elements of the total spin operator and the total angular momentum operator
from the Zeeman Hamiltonian. Denoting Ψ as a solution and Ψ̄ as its Kramers partner and using matrix element
notations

Φ𝑘11 = ⟨Ψ| �̂�𝑘 + 𝑔𝑒𝑆𝑘 |Ψ⟩ , Φ𝑘12 = ⟨Ψ| �̂�𝑘 + 𝑔𝑒𝑆𝑘
⃒⃒
Ψ̄
⟩︀
, 𝑘 = 𝑥, 𝑦, 𝑧 (7.240)

The elements of g-matrix are obtained as:

𝑔𝑘𝑧 = 2Φ𝑘11, 𝑔𝑘𝑦 = −2ℑ
(︀
Φ𝑘12
)︀
, 𝑔𝑘𝑥 = 2ℜ

(︀
Φ𝑘12
)︀

(7.241)

Then, the true tensor G is built from g-matrices:

𝐺 = 𝑔𝑔𝑇 (7.242)

G is subjected further to diagonalization yielding positive eigenvalues, the square roots of which give the principal
values of g-matrix.

𝑔𝑥𝑥 =
√︀
𝐺𝑥𝑥, 𝑔𝑦𝑦 =

√︀
𝐺𝑦𝑦, 𝑔𝑧𝑧 =

√︀
𝐺𝑧𝑧 (7.243)

A typical mrci block of the input file for a g-tensor calculation should (e.g. for a S=3/2 problem) look as the
following:

%mrci ewin -4,1000
citype mrci
cimode direct2
intmode fulltrafo
solver diis
etol 1e-8
rtol 1e-8

(continues on next page)
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tsel 1e-6
tpre 1e-5
soc
PrintLevel 2
GTensor true # make g-tensor calculations
NDoubGTensor 2 # number of Kramers doublets to account

# for every pair a separate
# calculation is performed

end
newblock 4 *
excitations cisd
nroots 10
refs cas(7,5) end

end
end

The result for the first Kramers pair is printed as follows:

--------------
KRAMERS PAIR 1
--------------

Matrix elements Re<1|S|1> -0.072128 0.024511 -2.998843
Matrix elements Re<1|S|2> -0.001088 0.000366 -0.002010
Matrix elements Im<1|S|2> -0.000354 -0.001037 -0.000173
Matrix elements Re<1|L|1> -0.027067 0.009209 -1.123531
Matrix elements Re<1|L|2> -0.000031 0.000010 -0.000763
Matrix elements Im<1|L|2> -0.000006 -0.000011 -0.000065

-------------------
ELECTRONIC G-MATRIX
-------------------

g-matrix:
-0.002240 0.000754 -0.005551
0.000720 0.002100 0.000477
-0.198556 0.067498 -8.251703

g-factors:
0.002220 0.002222 8.254370 iso = 2.752937

g-shifts:
-2.000100 -2.000098 6.252051 iso = 0.750618

Eigenvectors:
0.057426 0.998060 0.024055
0.998327 -0.057244 -0.008177
0.006784 -0.024484 0.999677

Here for the 𝐿 and 𝑆 matrix elements indices 1 and 2 are assumed to denote Kramers partners, and three numbers
in the first row stand for 𝑥, 𝑦, 𝑧 contributions.

In addition the g-tensor is calculated within the Effective Hamiltonian formalism.

----------------------------------------------
ELECTRONIC G-MATRIX FROM EFFECTIVE HAMILTONIAN
----------------------------------------------

g-matrix:
1.978874 -0.000345 0.018908
-0.000345 1.977899 -0.006433

(continues on next page)
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0.018879 -0.006418 2.763402

g-factors:
1.977789 1.978477 2.763909 iso = 2.240058

g-shifts:
-0.024530 -0.023843 0.761590 iso = 0.237739

Eigenvectors:
0.288884 0.957062 0.024060
0.957364 -0.288770 -0.008181
0.000882 -0.025397 0.999677

# The g-factors are square roots of the eigenvalues of gT*g
# Orientations are the eigenvectors of gT*g

Finally and only within the MRCI module the g-tensor is evaluated by using the Sum Over States formalism[610]:

---------------------------------------------------------------------------
SUM OVER STATES CALCULATION OF THE SPIN HAMILTONIAN (for g and HFC tensors)
---------------------------------------------------------------------------

Ground state index = 0
Ground state multiplicity = 4
Ground state spin density = P[ 1]
State = 1 <0|P|I>= 2 <0|Q|I>= 19
State = 2 <0|P|I>= 3 <0|Q|I>= 27
State = 3 <0|P|I>= 4 <0|Q|I>= 34
State = 4 <0|P|I>= 5 <0|Q|I>= 40
State = 5 <0|P|I>= 6 <0|Q|I>= 45
State = 6 <0|P|I>= 7 <0|Q|I>= 49
State = 7 <0|P|I>= 8 <0|Q|I>= 52
State = 8 <0|P|I>= 9 <0|Q|I>= 54
State = 9 <0|P|I>= 10 <0|Q|I>= 55

Origin for angular momentum ... ( -0.0006, -0.0010, 0.0021)
Kinetic Energy ... done
Relativistic mass correction ... done
Gauge correction ... done
Angular momentum integrals ... done
Reading Spin-Orbit Integrals ... done
-----------------------
MATRIX ELEMENT PRINTING
-----------------------

Energy differences (DE=EI-E0) and spin-orbit matrix elements (SO=<I|HSO|0>) are
printed in cm**-1. Orbital Zeeman matrix elements (L=<I|L|0>) are printed in au.

State DE LX LY LZ SOX SOY SOZ

1 1349.3 0.0464 -0.0158 1.9264 -23.432 7.965 -974.312
2 13026.2 -0.6596 0.6888 0.0214 337.028 -351.116 -10.966
3 13615.1 -0.6961 -0.6514 0.0113 354.225 332.219 -5.736
4 56686.3 -0.0053 0.0077 0.0971 1.794 -1.696 -36.786
5 56954.2 -0.0516 -0.0048 -0.0042 28.211 5.821 1.459
6 56994.0 -0.0418 0.0233 -0.0025 15.185 -2.144 1.145
7 63371.5 -0.0211 0.0226 0.0078 3.833 -2.948 -2.724
8 64176.0 -0.0652 0.0032 -0.0002 32.779 6.146 0.063
9 74309.9 -0.0007 0.0032 0.0380 0.183 -1.058 -13.517
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-------------------
ELECTRONIC G-MATRIX
-------------------

raw-matrix :
2.025533 -0.000738 0.021755
-0.000738 2.024537 -0.007389
0.021755 -0.007389 2.928943

g-factors:
2.024122 2.025363 2.929527 iso = 2.326338

g-shifts:
0.021803 0.023044 0.927208 iso = 0.324018

Eigenvectors:
0.533896 -0.845208 0.024064
0.845530 0.533866 -0.008182
-0.005932 0.024715 0.999677

Euler angles w.r.t. molecular frame (degrees):
-76.5038 1.4564 -161.2223

-----------------------------
CONTRIBUTIONS TO THE G-MATRIX
-----------------------------

Term g1 g2 g3
--------------------------------------------------------------------
Relativistic mass correction: -0.0008220 -0.0008220 -0.0008220
Gauge correction : 0.0000000 0.0000000 0.0000000
g(OZ/SOC) : 0.0226250 0.0238662 0.9280297

State 1 : 0.0000000 -0.0000000 0.9279829
State 2 : 0.0013767 0.0223913 0.0000000
State 3 : 0.0212332 0.0014408 0.0000000
State 4 : 0.0000000 0.0000004 0.0000418
State 5 : 0.0000074 0.0000099 0.0000001
State 6 : 0.0000002 0.0000078 0.0000001
State 7 : 0.0000000 0.0000015 0.0000002
State 8 : 0.0000076 0.0000144 0.0000000
State 9 : 0.0000000 0.0000000 0.0000046
-----------------------------------------
Total g-shifts : 0.0218030 0.0230442 0.9272077

# The g-factors are square roots of the eigenvalues of gT*g
# Orientations are the eigenvectors of gT*g

Note that within the SOS formalism in addition to the second order (SOC) contributions the bilinear to the field
terms: Relativistic mass correction and diamagnetic spin-orbit term (Gauge) are evaluated. As can be seen these
corrections are rather negligible in comparison to the second order SOC contributions and most of the time can be
safely omitted. Moreover further insight is obtained by printing the individual contribution of each excited state
to the g-tensor. In the example above the first excited state contributes to the 𝑔𝑧 component while the next two to
both the 𝑔𝑥 and 𝑔𝑦 components, respectively.

So to summarize the g-tensor calculations in the framework of wavefunction based methods like MRCI and/or
CASSCF can be evaluated:

• via the QDPT approach within an individual Kramers doublet. This is valid analysis only for non-integer
spin cases. In particular for systems with well isolated Kramers doublets where the EPR spectrum originates
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only from one Kramers doublet defined within the pseudo spin 1/2 formalism. This analysis has been proven
useful in determining the sign of the ZFS and the electronic structure of the system under investigation.[548]

• within the effective Hamiltonian approach. This is a valid analysis for all spin cases as it provides the principal
g-values of the system under investigation evaluated in the molecular axis frame. These g-values can be
directly compared with the experimentally determined ones.[421]

• within the sum over states formalism (SOS). As above this analysis is valid for all spin cases and is only
available via the MRCI module.

Magnetization and Magnetic Susceptibility

The MRCI and CASSCF modules of ORCA allow for the calculation of magnetization and magnetic susceptibility
curves at different fields and temperatures by differentiation of the QDPT Hamiltonian with respect to the magnetic
field. For magnetic susceptibility, calculations are performed in two ways when a static field different from zero
is defined: (i) as the second derivative of energy with respect to the magnetic field and (ii) as the magnetization
divided by the magnetic field. Although the first method corresponds to the definition of magnetic susceptibility,
the second approach is widely used in the experimental determination of 𝜒 * 𝑇 curves. If the static field is low,
both formulas tend to provide similar values.

The full list of keywords is presented below.

%mrci
citype mrci
newblock 3 *
excitations none
refs cas(2,7) end
end
soc

dosoc true
domagnetization true # Calculate magnetization (def: false)
dosusceptibility true # Calculate susceptiblity (def: false)
LebedevPrec 5 # Precision of the grid for different field

# directions (meaningful values range from 1
# (smallest) to 10 (largest))

nPointsFStep 5 # number of steps for numerical differentiation
# (def: 5, meaningful values are 3, 5 7 and 9)

MAGFieldStep 100.0 # Size of field step for numerical differentiation
# (def: 100 Gauss)

MAGTemperatureMIN 4.0 # minimum temperature (K) for magnetization
MAGTemperatureMAX 4.0 # maximum temperature (K) for magnetization
MAGTemperatureNPoints 1 # number of temperature points for magnetization
MAGFieldMIN 0.0 # minimum field (Gauss) for magnetization
MAGFieldMAX 70000.0 # maximum field (Gauss) for magnetization
MAGNpoints 15 # number of field points for magnetization
SUSTempMIN 1.0 # minimum temperature (K) for susceptibility
SUSTempMAX 300.0 # maximum temperature (K) for susceptibility
SUSNPoints 300 # number of temperature points for susceptibility
SUSStatFieldMIN 0.0 # minimum static field (Gauss) for susceptibility
SUSStatFieldMAX 0.0 # maximum static field (Gauss) for susceptibility
SUSStatFieldNPoints 1 # number of static fields for susceptibility

end
end

The same keywords apply for CASSCF calculations in rel block (instead of soc in MRCI). Although different
aspects of integration and grid precision can be modified through keywords, default values should provide an
accurate description of both properties. Calculated magnetization and susceptibility are printed in .sus and .mag
files, respectively and also in the output file.

-------------------------------------------------------------------------------
FIELD DEPENDENT MAGNETIZATION AND MEAN SUSCEPTIBILITY (chi=M/B)

(continues on next page)
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-------------------------------------------------------------------------------
TEMPERATURE (K) M. FIELD (Gauss) MAGNETIZATION (B.M.) chi*T (cm3*K/mol)
-------------------------------------------------------------------------------

4.00 0.00 0.000000 inf
4.00 5000.00 0.350759 1.567189
4.00 10000.00 0.688804 1.538788
4.00 15000.00 1.003466 1.494496
4.00 20000.00 1.287480 1.438115
4.00 25000.00 1.537346 1.373773
4.00 30000.00 1.752841 1.305282
4.00 35000.00 1.936067 1.235764
4.00 40000.00 2.090450 1.167516
4.00 45000.00 2.219920 1.102067
4.00 50000.00 2.328368 1.040315
4.00 55000.00 2.419335 0.982690
4.00 60000.00 2.495883 0.929301
4.00 65000.00 2.560582 0.880052
4.00 70000.00 2.615538 0.834730
-----------------------------------------------------------

-----------------------------------------------------------
TEMPERATURE DEPENDENT MAGNETIC SUSCEPTIBILITY
-----------------------------------------------------------
STATIC FIELD TEMPERATURE chi*T (cm3*K/mol)
(Gauss) (K) M/B d2E/dB2
-----------------------------------------------------------

0.00 1.00 ---- 1.576836
0.00 2.00 ---- 1.576910
0.00 3.00 ---- 1.576951
0.00 4.00 ---- 1.576988
0.00 5.00 ---- 1.577023
0.00 6.00 ---- 1.577057
0.00 7.00 ---- 1.577091
0.00 8.00 ---- 1.577125
0.00 9.00 ---- 1.577159
0.00 10.00 ---- 1.577193
0.00 11.00 ---- 1.577227
.....
0.00 300.00 ---- 1.586942
1000.00 1.00 1.570517 1.558042
1000.00 2.00 1.575324 1.572178
1000.00 3.00 1.576246 1.574845
1000.00 4.00 1.576590 1.575802
1000.00 5.00 1.576768 1.576264
1000.00 6.00 1.576880 1.576530
1000.00 7.00 1.576961 1.576704
1000.00 8.00 1.577026 1.576829
.....

Note that the CASSCF module also supports the calculation of susceptibility tensors at non-zero user-defined
magnetic fields. This is not yet possible with the MRCI module.
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MCD and Absorption Spectra

The MRCI module of the ORCA program allows calculating MCD spectra and the SOC effects on absorption
spectra. The formalism is described in detail by Ganyushin and Neese[283]. The approach is based on the direct
calculation of the transition energies and transition probabilities between the magnetic levels. Namely, the differ-
ential absorption of LCP- and RCP photons for transitions from a manifold of initial states 𝐴 to a manifold of final
states 𝐽 . Using Fermi’s golden rule, the Franck-Condon approximation, assuming a pure electronic dipole mecha-
nism and accounting for the Boltzmann populations of the energy levels, the basic equation of MCD spectroscopy
may be written as (atomic units are used throughout):

∆𝜀

𝐸
= 𝛾

∑︁
𝑎,𝑗

(𝑁𝑎 −𝑁𝑗)
(︁
|⟨Ψ𝑎 |𝑚LCP|Ψ𝑗⟩|2 − |⟨Ψ𝑎 |𝑚RCP|Ψ𝑗⟩|2

)︁
𝑓 (𝐸) (7.244)

Here 𝑎 and 𝑗 label members of the initial and state manifold probed in the experiments.

𝑁𝑎 (𝐵, 𝑇 ) =
exp (−𝐸𝑎/𝑘𝑇 )∑︀
𝑖

exp (−𝐸𝑖/𝑘𝑇 ) (7.245)

denotes the Boltzmann population and if the 𝑎-th ground state sublevel at energy 𝐸𝑎, 𝑓 (𝐸) stands for a line shape
function, and 𝛾 denotes a collection of constants. The electric dipole operators are given by:

𝑚LCP ≡ 𝑚𝑥 − 𝑖𝑚𝑦 (7.246)

𝑚RCP ≡ 𝑚𝑥 + 𝑖𝑚𝑦 (7.247)

They represent linear combinations of the dipole moment operator:

�⃗� =
∑︁
𝑁

𝑍𝑁 �⃗�𝑁 −
∑︁
𝑖

�⃗�𝑖 (7.248)

where 𝑁 and 𝑖 denotes summations of nuclei (at positions �⃗�𝑁 with charges 𝑍𝑁 ) and electrons (at positions �⃗�𝑖)
respectively. The calculated transition dipole moment are subjected to the space averaging over the Euler angles
which is performed by a simple summation over three angular grids.

(︂
∆𝜀

𝐸

)︂
𝑒𝑣

=
1

8𝜋2

2𝜋∫︁
𝜓=0

2𝜋∫︁
𝜑=0

𝜋∫︁
𝜃=0

(︂
∆𝜀

𝐸

)︂
sin 𝜃𝑑𝜃𝑑𝜑𝑑𝜓 ≈

∑︁
𝜇𝜂𝜏

(︂
∆𝜀

𝐸

)︂
𝜇𝜂𝜏

sin 𝜃𝜏 (7.249)

Finally, every transition is approximated by a Gaussian curve with a definite Gaussian shape width parameter.
Hence, the final calculated MCD spectrum arises from the superposition of these curves.

As an illustration, consider calculation of a classical example of MCD spectrum of [Fe(CN) 6]3−. The mrci block
of the input file is presented below.

%mrci ewin -4,10000
citype mrddci2
intmode ritrafo
Tsel 1e-6
Tpre 1e-5
etol 1e-8
rtol 1e-8
cimode direct2
maxmemint 300
solver diis
davidsonopt 0
nguessmat 150
MaxIter 50
LevelShift 0.5
PrintLevel 3
soc
printlevel 3

(continues on next page)
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Domcd true # perform the MCD calculation
NInitStates 24 # number of SOC and SSC state to account

# Starts from the lowest state
NPointsTheta 10 # number of integration point for
NPointsPhi 10 # Euler angles
NPointsPsi 10 #
B 43500 # experimental magnetic field strength

# in Gauss
Temperature 299.0 # experimental temperature (in K)
end
newblock 2 *
nroots 12
excitations cisd
refs cas(23,12) end
end
end

The parameters B and Temperature can be assigned in pairs, i.e. B = 1000, 2000, 3000. . . , Temperature = 4,
10, 300. . . . The program calculates the MCD and absorption spectra for every pair. Now for every point of the
integration grid the program prints out the Euler angles, the orientation of the magnetic field in the coordinate
system of a molecule, and the energy levels.

Psi = 36.000 Phi = 72.000 Theta = 20.000

Bx = 8745.0 By = 12036.5 Bz = 40876.6

Energy levels (cm-1,eV):Boltzmann populations for T = 299.000 K
0 : 0.000 0.0000 4.53e-01
1 : 3.943 0.0005 4.45e-01
2 : 454.228 0.0563 5.09e-02
3 : 454.745 0.0564 5.08e-02
4 : 1592.142 0.1974 2.13e-04
5 : 1595.272 0.1978 2.10e-04
6 : 25956.363 3.2182 2.59e-55
7 : 25958.427 3.2184 2.56e-55
8 : 25985.656 3.2218 2.25e-55
9 : 25987.277 3.2220 2.23e-55
10 : 26070.268 3.2323 1.49e-55
11 : 26071.484 3.2325 1.49e-55
12 : 31976.645 3.9646 6.78e-68
13 : 31979.948 3.9650 6.67e-68
14 : 32018.008 3.9697 5.56e-68
15 : 32021.074 3.9701 5.48e-68
16 : 32153.427 3.9865 2.90e-68
17 : 32157.233 3.9870 2.84e-68
18 : 42299.325 5.2444 1.81e-89
19 : 42303.461 5.2450 1.78e-89
20 : 42346.521 5.2503 1.45e-89
21 : 42348.023 5.2505 1.44e-89
22 : 42456.119 5.2639 8.53e-90
23 : 42456.642 5.2640 8.51e-90

In the next lines, ORCA calculates the strength of LCP and RCP transitions and prints the transition energies, the
difference between LCP and RCP transitions (denoted as C), and sum of LCP and RCP transitions (denoted as D),
and C by D ratio.

dE Na C D C/D

0 -> 1 3.943 4.53e-01 1.14e-13 8.13e-13 0.00e+00
0 -> 2 454.228 4.53e-01 5.01e-09 9.90e-09 5.06e-01
0 -> 3 454.745 4.53e-01 -4.65e-09 7.00e-09 -6.65e-01

(continues on next page)
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0 -> 4 1592.142 4.53e-01 -8.80e-08 1.02e-07 -8.67e-01
0 -> 5 1595.272 4.53e-01 -2.29e-08 2.97e-08 -7.71e-01
0 -> 6 25956.363 4.53e-01 1.22e+01 9.60e+01 1.27e-01
0 -> 7 25958.427 4.53e-01 3.44e+01 3.52e+01 9.77e-01
0 -> 8 25985.656 4.53e-01 3.83e+01 1.70e+02 2.25e-01
0 -> 9 25987.277 4.53e-01 -7.73e+00 6.03e+01 -1.28e-01
0 ->10 26070.268 4.53e-01 -6.11e+00 2.85e+01 -2.14e-01
0 ->11 26071.484 4.53e-01 6.17e+00 9.21e+00 6.70e-01
0 ->12 31976.645 4.53e-01 2.45e+01 6.21e+01 3.95e-01
0 ->13 31979.948 4.53e-01 -6.58e+01 6.93e+01 -9.50e-01
0 ->14 32018.008 4.53e-01 3.42e-01 1.07e+02 3.21e-03
0 ->15 32021.074 4.53e-01 -6.16e+00 3.24e+01 -1.90e-01
0 ->16 32153.427 4.53e-01 -4.73e+01 1.37e+02 -3.46e-01
0 ->17 32157.233 4.53e-01 -1.02e+00 5.97e+01 -1.71e-02
0 ->18 42299.325 4.53e-01 6.47e+00 2.11e+01 3.07e-01
0 ->19 42303.461 4.53e-01 -2.59e+00 7.61e+00 -3.40e-01
0 ->20 42346.521 4.53e-01 1.90e+01 8.99e+01 2.11e-01
0 ->21 42348.023 4.53e-01 3.36e+00 3.55e+00 9.48e-01
0 ->22 42456.119 4.53e-01 2.52e-01 4.86e-01 5.20e-01
0 ->23 42456.642 4.53e-01 -2.01e+00 2.91e+00 -6.91e-01
1 -> 2 450.285 4.45e-01 4.59e-09 6.87e-09 6.69e-01
1 -> 3 450.802 4.45e-01 -4.96e-09 9.73e-09 -5.09e-01

All C and D values are copied additionally into the text files input.1.mcd, input.2.mcd. . . , for every pair of Temper-
ature and B parameters. These files contain the energies and C and D values for every calculated transition. These
files are used by the program orca_mapspc to calculate the spectra lines. The orca_mapspc program generates
from the raw transitions data into spectra lines. The main parameters of the orca_mapspc program are described in
section 7.18.1. A typical usage of the orca_mapspc program for MCD spectra calculation for the current example
may look as the following:

orca_mapspc input.1.mcd MCD -x020000 -x150000 -w2000

Here the interval for the spectra generation is set from 20000 cm−1 to 50000 cm−1, and the line shape parameter
is set to 2000 cm−1.

Very often, it is desirable to assign different line width parameters to different peaks of the spectra to obtain a
better fitting to experiment. orca_mapspc can read the line shape parameters from a simple text file named as
input.1.mcd.inp. This file should contain the energy intervals (in cm−1) and the line shape parameters for this
energy interval in the form of:

20000 35000 1000
35000 40000 2000
40000 50000 1000

This file should not be specified in the executing command; orca_mapspc checks for its presence automatically:

orca_mapspc input.1.mcd MCD -x020000 -x150000
Mode is MCD
Number of peaks ... 276001
Start wavenumber [cm-1] ... 20000.0
Stop wavenumber [cm-1] ... 50000.0
Line width parameters are taken from the file:input.1.mcd.inp
Number of points ... 1024

Finally, the orca_mapspc program generates the output text file input.1.mcd.dat which contains seven columns
of numbers: transition energies, intensities of MCD transitions (the MCD spectrum), intensities of absorption
transitions (the absorption spectrum), the ratio between the MCD and absorption intensities, and the last three
columns represent the “sticks” of the corresponding transitions.
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Energy C D C/D C D E/D
24310.8 0.6673 980.2678 0.0006 0.0000 0.0000 0.0000
24340.1 0.8471 1174.3637 0.0007 -0.0001 0.0129 -0.0112
24369.5 1.0664 1408.5788 0.0007 0.0001 0.0281 0.0033
24398.8 1.3325 1690.5275 0.0007 0.0000 0.0000 0.0000
24428.1 1.6542 2029.0152 0.0008 0.0000 0.0000 0.0000
24457.4 2.0416 2434.1699 0.0008 0.0000 0.0332 0.0003

Now the MCD and the absorption spectra can be plotted with a suitable graphical program, for instance with the
Origin program.

Fig. 7.41: Calculated MCD and absorption spectra of [Fe(CN) 6]3− (dash lines) compared to experimental spectra
(solid lines).
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Addition of Magnetic Fields

The inclusion of the Zeeman contribution into the QDPT procedure allows to obtain the splittings of the mag-
netic levels in an external magnetic field. The switch for this calculation and the magnetic field strength are
defined in the soc subblock of the mrci block. Optionally the wave function decomposition can be printed for
MagneticField_PrintLevel larger 0. The latter employs the thresh TPrint to omit small contributions from
the printing:

%mrci
soc
DoSOC true #
DoSSC true #
MagneticField true # default false
B 1,10,100,1000 # Strengh of the magnetic field in Gauss.

# 4000 is the default value

# Optional printing of the wave function for each
# magnetic field settings
MagneticField_PrintLevel 0 # default (disabled)
TPrint 1e-3

end
end

Then, the output contains three sets of data of splittings of the magnetic levels with the magnetic field applied
parallel to x, y, and z directions:

End B (Gauss) Energy levels (cm-1) and populations for B || x

1.0 -0.030 0.333 0.012 0.333 0.018 0.333
10.0 -0.030 0.333 0.012 0.333 0.018 0.333
100.0 -0.031 0.333 0.012 0.333 0.020 0.333
1000.0 -0.102 0.333 0.012 0.333 0.091 0.333

B (Gauss) Energy levels (cm-1) and populations for B || y

1.0 -0.030 0.333 0.012 0.333 0.018 0.333
10.0 -0.030 0.333 0.012 0.333 0.018 0.333
100.0 -0.032 0.333 0.014 0.333 0.018 0.333
1000.0 -0.105 0.334 0.018 0.333 0.087 0.333

B (Gauss) Energy levels (cm-1) and populations for B || z

1.0 -0.030 0.333 0.012 0.333 0.018 0.333
10.0 -0.030 0.333 0.011 0.333 0.018 0.333
100.0 -0.030 0.333 0.005 0.333 0.025 0.333
1000.0 -0.079 0.333 -0.030 0.333 0.108 0.333

Here the number in a row represents the strength of the magnetic field (in Gauss), and the following pairs of numbers
denote the energy of the magnetic level (in cm−1) with its occupation number. This table can be readily plotted
with any suitable graphical program.
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Relativistic Picture Change in Douglas-Kroll-Hess SOC and Zeeman Operators

The DKH correction to the SOC operator is implemented in ORCA as a correction to the one-electron part of the
SOMF operator. The DKH transformation is performed up to the second order, and the two-electron part in our
implementation is left untransformed. However, the electronic density employed for evaluating the SOMF matrix
elements is obtained from a scalar relativistic calculation. The inclusion of the DKH correction is controlled by
the picturechange key in the rel block:

%rel method DKH # relativistic method
picturechange 2 # include the DKH correction to SOC
end

The “picturechange” key can be set to 0, 1, and 2 for no picture change, the first order, and the second order DKH
transformations of the SOC operator.

With “picturechange” set to 1 or 2 the DKH correction are applied in the first order to the Zeeman operator. This
correction has a visible effect on calculated g-tensors for molecules containing third-row and heavier atoms.

X-ray Spectroscopy

Likewise to the CASCI/NEVPT2 computational protocol presented in section Core excited states with
(C/R)ASCI/NEVPT2 starting from ORCA 4.2 the MRCI module can be used to compute core excited spectra,
namely X-ray absorption (XAS) and resonant inelastic scattering (RIXS) spectra.

As discussed in the case of CASCI/NEVPT2 protocol Core excited states with (C/R)ASCI/NEVPT2 a similar strat-
egy is followed to compute XAS/RIXS spectra within the MRCI module. In principle the XAS/RIXS spectra
calculations require two steps:

• In a first step one needs to optimize the valence active space orbitals in the framework of SA-CASSCF
calculations, e.g. including valence excited states in the range between 6 to 15 eV.

• In a second step the relevant core orbitals are rotated into the active space and the MRCI problem is solved
by saturating the excitation space with singly core-excited electronic configurations using the previously
optimized sets of orbitals.

• The core orbitals are also included in the XASMOs definition. The use of this keyword is two fold. At
first it effecteively reduces the number of the generated configuration state functions (CSFs) to those that
exclusively contain contributions from the defined core orbitals. In the case of RIXS also XES (see below)
the specified XASMOs are used to define intermediate or core ionized states.

A representative input for the case of Fe(Cl) 4 is provided bellow:

• In the first step one performs a SA-CASSCF calculation for the 5 and 15 quintet and triplet states (FeI-
ICl4.casscf.inp).

!CC-PWCVTZ-DK cc-pVTZ/C RIJCOSX SARC/J TightSCF DKH2

%rel
FiniteNuc true

end

%basis
newgto Cl "cc-pVTZ-DK" end
newauxgto Cl "cc-pVTZ/C" end

end

%method FrozenCore FC_NONE
end

%casscf nel 6
norb 5
mult 5,3

(continues on next page)

864 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

(continued from previous page)

nroots 5,15
switchstep nr

end

* xyz -2 5
Fe -17.84299991694815 -0.53096694321123 6.09104775508499
Cl -19.84288422845700 0.31089495619796 7.04101319789001
Cl -17.84298666758073 0.11868125024595 3.81067954087770
Cl -17.84301352218429 -2.87052442818457 6.45826391412877
Cl -15.84311566482982 0.31091516495189 7.04099559201853
*

• In a second step the core orbitals are rotated in the active space and the MRCI problem is solved by saturating
the excitation space with all the quintet and triplet states that involve single excitations from the core orbitals
(FeIICl4-mrci.inp)

!MORead CC-PWCVTZ-DK cc-pVTZ/C RIJCOSX SARC/J TightSCF DKH2

%moinp "FeIICl4-casscf.gbw"

%rel
FiniteNuc true

end

%method FrozenCore FC_NONE
end

%scf
rotate { 6,42,90} { 7,43,90} { 8,44,90} end

end

%basis
newgto Cl "cc-pVTZ-DK" end
newauxgto Cl "cc-pVTZ/C" end

end

%casscf
nel 12
norb 8
mult 5,3
nroots 34,195
maxiter 1
switchstep nr

end

%mrci
CIType MRCI
intmode fulltrafo
XASMOs 42, 43, 44
newblock 5 *
nroots 34
excitations cisd
refs CAS(12,8)
end
end
newblock 3 *
nroots 195
excitations cisd
refs CAS(12,8)

(continues on next page)
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(continued from previous page)

end
end
maxiter 100
soc
printlevel 3
dosoc true
end

end

* xyz -2 5
Fe -17.84299991694815 -0.53096694321123 6.09104775508499
Cl -19.84288422845700 0.31089495619796 7.04101319789001
Cl -17.84298666758073 0.11868125024595 3.81067954087770
Cl -17.84301352218429 -2.87052442818457 6.45826391412877
Cl -15.84311566482982 0.31091516495189 7.04099559201853
*

In a similar fashion Multireference Equation of Motopn Couple Cluster MR-EOM-CC (see next section) can also
be used to compute X-ray spectra. Further information can be found in reference[550]

As it is explicitly described in the respective ROCIS section RIXS spectra can be requested by the following key-
words:

RIXS true # Request RIXS calculation (NoSOC)
RIXSSOC true # Request RIXS calculation (with SOC)
Elastic true # Request RIXS calculation (Elastic)

Please consult section Resonant Inelastic Scattering Spectroscopy for processing and analyzing the generated spec-
tra

Likewise to TDDFT (Use of TD-DFT for the Calculation of X-ray Absorption Spectra) ROCIS (General Use) and
CASSCF (Core excited states with (C/R)ASCI/NEVPT2) the computed transition densities also in the presence of
SOC can be taken beyond the dipole approximation by using the OPS tool for details.

1. by performing a multiple expantion up to second order

2. by computing the exact transition moments

The whole set of spectroscopy tables can be requested with the following commands:

%mrci
DoDipoleLength true
DoDipoleVelocity true
DoHigherMoments true
DecomposeFoscLength true
DecomposeFoscVelocity true
DoFullSemiclassical true
end

More details can be found in TDDFT (Use of TD-DFT for the Calculation of X-ray Absorption Spectra) ROCIS
(General Use) and CASSCF (Core excited states with (C/R)ASCI/NEVPT2) sections.

Starting from ORCA 4.2 the previously reported RASCI-XES protocol reference[691], which can compute K𝛽
Mainline XES spectra, can be processed entirely within the ORCA modules. In ORCA 5.0 a similar protocol
(CASCI-XES) exist in the CASSCF module (Core excited states with (C/R)ASCI/NEVPT2)

• Like above or in the CASCI/NEVPT2 case in a first step one needs to optimize the valence active space
orbitals in the framework of SA-CASSCF calculations, e.g. including valence excited states in the range
between 6 to 15 eV for the N electron system.

• In a second step the metal 1s and 3p orbitals are rotated in the active space and the 1s MO is defined in the
XASMOs list
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• Computes the XES spectrum in the RASCI framework for the N-1 electron system in the presence of SOC
if the XESSOC keyword for all the states that are dominated by 3p-1s electron decays.

A representative input sequence for the case of Fe(Cl) 6 is provided bellow:

As described in reference[691] at first for a CAS(5,5) the excitation space is saturated by the sextet as well as the
24 quartet and the 75 doublet states which are optimized in the SA-CASSCF fashion.

!ZORA def2-TZVP def2-TZVP/C

%cpcm
epsilon 80
refrac 1.33
surfacetype gepol_ses

end

%scf
MaxDisk 40000

end

%casscf
nel 5
norb 5
mult 6,4,2
nroots 1,24,75
shiftup 0.5
shiftdn 0.5
trafostep RI
maxiter 150

end

*xyzfile -3 6
Fe 0.0000 0.0000 0.000000
Cl 2.478 0.0000 0.000
Cl -2.478 0.0000 0.000
Cl 0.000005 2.478 0.00000
Cl 0.000005 -2.478 -0.0000
Cl -0.000 -0.000 2.478
Cl 0.000 -0.0000 -2.478
*

In following the 1s and 3p Fe based MOs are rotated in the active space and the XES spectra are computed for the
[Fe(Cl) 6]+ system for the 4 septet and 81 quintet states.

! ZORA def2-TZVP def2-TZVP/C noiter moread AllowRHF

%moinp "fecl6_casscf.gbw"

%cpcm
epsilon 80
refrac 1.33
surfacetype gepol_ses

end

%scf
MaxDisk 40000

end

%scf
rotate {0,59,90} {36, 60, 90} {37,61,90} {38,62,90} end

end

%mrci citype mrci

(continues on next page)
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UseIVOs false
Etol 1e-5
newblock 5 *
excitations none
nroots 81
refs ras(12:4 1/5/ 0 0) end
end
newblock 7 *
excitations none
nroots 4
refs ras(12:4 1/5/ 0 0) end
end
XASMOs 59
soc
dosoc true
XESSOC true
end

end

*xyzfile -2 7
Fe 0.0000 0.0000 0.000000
Cl 2.478 0.0000 0.000
Cl -2.478 0.0000 0.000
Cl 0.000005 2.478 0.00000
Cl 0.000005 -2.478 -0.0000
Cl -0.000 -0.000 2.478
Cl 0.000 -0.0000 -2.478
*

As a result the X-ray emission spectrum is calculated and the intensities are computed on the basis of the transition
electric dipole moments

Printing the XES spectrum ...

-------------------------------------------------------------------------------------
SPIN-ORBIT X-RAY EMISSION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-------------------------------------------------------------------------------------
Transition Energy INT TX TY TZ
1 421 -> 5 7228.632 0.000000000000 0.00000 0.00000 0.00000
2 422 -> 5 7228.632 0.000000000000 0.00000 0.00000 0.00000
3 423 -> 5 7228.632 0.000000000000 0.00000 0.00000 0.00000
4 424 -> 5 7228.632 0.000000000000 0.00000 0.00000 0.00000
5 425 -> 5 7228.632 0.000000000000 0.00000 0.00000 0.00000
...
242 422 -> 25 7177.286 0.000917305388 0.00025 0.00171 0.00149
243 423 -> 25 7177.286 0.002043577370 0.00197 0.00211 0.00181
244 424 -> 25 7177.286 0.000789769987 0.00114 0.00133 0.00119
245 425 -> 25 7177.286 0.000026130790 0.00018 0.00034 0.00002
246 426 -> 25 7177.286 0.000035191741 0.00034 0.00028 0.00003
247 427 -> 25 7177.286 0.005143175830 0.00294 0.00345 0.00296
248 428 -> 25 7177.341 0.000000000000 0.00000 0.00000 0.00000
249 429 -> 25 7177.341 0.000000000001 0.00000 0.00000 0.00000
250 430 -> 25 7177.341 0.000000000001 0.00000 0.00000 0.00000
251 431 -> 25 7177.341 0.000000000000 0.00000 0.00000 0.00000
252 432 -> 25 7177.341 0.000000000000 0.00000 0.00000 0.00000
...
4991 431 -> 420 7153.111 0.000195885011 0.00106 0.00000 0.00000
4992 432 -> 420 7153.111 0.002719228427 0.00256 0.00299 0.00002

All Done
-------------------------------------------------------------------------------------
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The resulted XES spectrum can be visualized by processing the above output file with the orca_mapspc

orca_mapspc fecl6_xes.out XESSOC -x07140 -x17190 -w4.0 -eV -n10000

This will result in Fig. 7.42.

Fig. 7.42: Calculated RASCI K𝛽 XES spectrum of [Fe(Cl) 6]+ .

7.40 Multireference Equation of Motion Coupled-Cluster (MR-EOM-
CC) Theory

In analogy with single reference EOM-CC (see sections Excited States with EOM-CCSD and Excited States via
EOM-CCSD) and STEOM-CC (see sections Excited States with STEOM-CCSD and Excited States via STEOM-
CCSD), Multireference Equation of Motion Coupled-Cluster (MR-EOM-CC) theory [193, 194, 203, 406, 407,
640] can be viewed a transform and diagonalize approach to molecular electronic structure theory. An MR-EOM
calculation involves a single state-averaged CASSCF calculation, incorporating a few low-lying states and the
solution of a single set of cluster amplitudes, which define a sequence of similarity-transformed Hamiltonians. The
ultimate goal of these many-body transformations is to effectively decouple the CAS configurations from important
excited configurations (e.g., 2p2h, 2p1h, 1p1h, etc.) which comprise the first-order interacting space. Through the
definition of suitable cluster operators, in each of the transformations, most of these excitations can be included
in an internally contracted fashion. Hence, the resulting final transformed Hamiltonian can be diagonalized over a
small subspace of the original first-order interacting space to gain access to many electronic states. As discussed
in section MR-EOM-CC: Multireference Equation of Motion Coupled-Cluster, the MR-EOM implementation in
ORCA therefore makes use of the CASSCF module (to obtain the state-averaged CASSCF reference), the MDCI
module for the solution of the amplitude equations and the calculation of the elements of the various similarity
transformed Hamiltonians and the MRCI module for the diagonalization of the final transformed Hamiltonian.
Some desirable features of this methodology are:

• Many states can be obtained through the diagonalization of a similarity transformed Hamiltonian over a com-
pact diagonalization manifold (e.g. the final diagonalization space in MR-EOM-T|T†|SXD|U only includes
the CAS configurations and 1h and 1p configurations).

• Only a single state-averaged CASSCF calculation and the solution of a single set of amplitudes is required
to define the final similarity transformed Hamiltonian and the results are typically quite insensitive to the
precise definition of the CAS (only a few low-lying multiplets need to be included in the state-averaging)
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• The MR-EOM approach is rigorously invariant to rotations of the orbitals in the inactive, active and virtual
subspaces, and it preserves both spin and spatial symmetry.

Table 7.24: The details of the various MR-EOM transformations that are considered in the ORCA implementation
of MR-EOM. The equations for the operator components and the residual equations which determine the corre-
sponding amplitudes also appear in the Table. Note that we use the usual (Einstein) convention that repeated indices
are summed over.

Name Transformation Operators Operator Compo-
nents

Residual Equation

T ̂︀
𝐻 = 𝑒−

̂︀𝑇 ̂︀𝐻𝑒̂︀𝑇 ̂︀𝑇 = ̂︀𝑇1+ ̂︀𝑇2 ̂︀𝑇1 = 𝑡𝑎𝑖
̂︀𝐸𝑎𝑖 𝑅𝑎𝑖 =∑︀

m 𝑤m ⟨Φm| ̂︀𝐸𝑖𝑎̂︀𝐻 |Φm⟩
= ℎ0 +ℎ

𝑝

𝑞

{︀ ̂︀𝐸𝑝𝑞}︀+ℎ𝑝𝑞𝑟𝑠{︀ ̂︀𝐸𝑝𝑞𝑟𝑠}︀+
. . .

̂︀𝑇2 = 1
2 𝑡
𝑎𝑏
𝑖𝑗
̂︀𝐸𝑎𝑏𝑖𝑗 𝑅𝑎𝑏𝑖𝑗 = ℎ

𝑎𝑏

𝑖𝑗

T† ̂︀
𝐻2𝑒

−̂︀𝑇 † ̂︀𝑇 † = ̂︀𝑇 †1 +̂︀𝑇 †2 ̂︀𝑇 †1 = 𝑡𝑖𝑎
̂︀𝐸𝑖𝑎 None (i.e. set 𝑡𝑖𝑎 ≈ 𝑡𝑎𝑖 )

= ̃︀ℎ0+̃︀ℎ 𝑝𝑞{︀ ̂︀𝐸𝑝𝑞}︀+̃︀ℎ 𝑝𝑞𝑟𝑠{︀ ̂︀𝐸𝑝𝑞𝑟𝑠}︀+
. . .

̂︀𝑇 †2 = 1
2 𝑡
𝑖𝑗
𝑎𝑏
̂︀𝐸𝑖𝑗𝑎𝑏 None (i.e. set 𝑡𝑖𝑗𝑎𝑏 ≈ 𝑡𝑎𝑏𝑖𝑗 )

SXD ̂︀
𝐹 ={︀
𝑒
̂︀𝑆+ ̂︀𝑋+ ̂︀𝐷}︀−1 ̂︀ℋ2

{︀
𝑒
̂︀𝑆+ ̂︀𝑋+ ̂︀𝐷}︀ ̂︀𝑆 = ̂︀𝑆2

̂︀𝑆2 = 𝑠𝑎𝑤𝑖′𝑗′
̂︀𝐸𝑎𝑤𝑖′𝑗′ 𝑅𝑎𝑤𝑖′𝑗′ = 𝑓 𝑎𝑤𝑖′𝑗′

= 𝑓0+𝑓
𝑝
𝑞

{︀ ̂︀𝐸𝑝𝑞}︀+𝑓 𝑝𝑞𝑟𝑠{︀ ̂︀𝐸𝑝𝑞𝑟𝑠}︀+
. . .

̂︀𝑋 = ̂︀𝑋2
̂︀𝑋2 = 𝑥𝑎𝑤𝑖′𝑥

̂︀𝐸𝑎𝑤𝑖′𝑥 𝑅𝑎𝑤𝑖′𝑥 = 𝑓,𝑎𝑤𝑖′𝑥

̂︀𝐷 = ̂︀𝐷2
̂︀𝐷2 = 𝑑𝑎𝑤𝑥𝑖′

̂︀𝐸𝑎𝑤𝑥𝑖′ 𝑅𝑎𝑤𝑥𝑖′ = 𝑓 𝑎𝑤𝑥𝑖′

U ̂︀𝐺 = 𝑒−
̂︀𝑈̂︀𝐹2𝑒

̂︀𝑈 ̂︀𝑈 = ̂︀𝑈2
̂︀𝑈2 = 𝑢𝑤𝑥𝑖′𝑗′

̂︀𝐸𝑤𝑥𝑖′𝑗′ 𝑅𝑤𝑥𝑖′𝑗′ = 𝑔𝑤𝑥𝑖′𝑗′

= 𝑔0 + 𝑔𝑝𝑞
{︀ ̂︀𝐸𝑝𝑞}︀+ 𝑔𝑝𝑞𝑟𝑠

{︀ ̂︀𝐸𝑝𝑞𝑟𝑠}︀+
. . .

As the details concerning the MR-EOM methodology are rather involved, we refer the interested reader to
Refs. [193, 194, 203, 406, 407, 640] for a more detailed discussion. Note that the details concerning the im-
plementation of MR-EOM in ORCA can be found in Refs. [406] and [407]. In the following discussion, we note
that general spatial orbitals 𝑝, 𝑞, 𝑟, 𝑠, which comprise the molecular orbital basis, are partitioned into (doubly oc-
cupied) inactive core orbitals 𝑖′, 𝑗′, 𝑘′, 𝑙′, occupied orbitals 𝑖, 𝑗, 𝑘, 𝑙 (i.e. the union of the inactive core and active
orbital subspaces), active orbitals 𝑤, 𝑥, 𝑦, 𝑧 and virtual orbitals 𝑎, 𝑏, 𝑐, 𝑑. In general, the many-body similarity
transformations assume the general form

̂︀𝐺 =
{︀
𝑒
̂︀𝑌 }︀−1̂︀𝐻2

{︀
𝑒
̂︀𝑌 }︀ = 𝑔0 +

∑︁
𝑝,𝑞

𝑔𝑝𝑞
{︀ ̂︀𝐸𝑝𝑞}︀+ ∑︁

𝑝,𝑞,𝑟,𝑠

𝑔𝑝𝑞𝑟𝑠
{︀ ̂︀𝐸𝑝𝑞𝑟𝑠}︀+ . . . ,

in which ̂︀𝑌 is a cluster operator and ̂︀𝐻2 is the bare Hamiltonian or a similarity transformed Hamiltonian truncated
up to two-body operators. The braces indicate Kutzelnigg-Mukherjee normal ordering [485, 597], which is used
extensively in the definition of the MR-EOM formalism. The various transformations which need to be considered
in the ORCA implementation of MR-EOM are summarized in Table Table 7.24. The table also includes the expres-
sions for the operator components of the various internally contracted cluster operators and the residual equations
that must be solved for the various amplitudes. Note that the residual equations are typically of the many-body type
(i.e. obtained by setting the corresponding elements of the similarity transformed Hamiltonian to zero). The only
exception is the residual equation which defines the 𝑡𝑎𝑖 amplitudes, which is a projected equation of the form

𝑅𝑎𝑖 =
∑︁
m

𝑤m

⟨︀
Φm| ̂︀𝐸𝑖𝑎 ̂︀𝐻|Φm

⟩︀
.

Here, |Φm

⟩︀
is the mth state included in the state averaged CAS, with weight 𝑤m. The reason the equation for the

singles is of the projected form is that it satisfies the Brillouin theorem (i.e. the first order singles vanish for all 𝑖
and 𝑎), whereas the corresponding many-body equation (ℎ̄𝑎𝑖 = 0) does not.

Table 7.25: Details of the three MR-EOM approaches implemented in ORCA
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Method Input Keyword Operators Diagonalization Manifold

MR-EOM-T|T†-h-v MR-EOM-T|Td ̂︀𝑇 ; ̂︀𝑇 † CAS, 2h1p, 1h1p, 2h, 1h, 1p
MR-EOM-T|T†|SXD-h-v MR-EOM-T|Td|SXD ̂︀𝑇 ; ̂︀𝑇 †; ̂︀𝑆 + ̂︀𝑋 + ̂︀𝐷 CAS, 2h, 1h, 1p
MR-EOM-T|T†|SXD|U-h-v MR-EOM ̂︀𝑇 ; ̂︀𝑇 †; ̂︀𝑆 + ̂︀𝑋 + ̂︀𝐷; ̂︀𝑈 CAS, 1h, 1p

Note that there are three different MR-EOM approaches which have been implemented in ORCA. Namely, the
current implementation allows for MR-EOM-T|T†-h-v, MR-EOM-T|T†|SXD-h-v and MR-EOM-T|T†|SXD|U-h-v
calculations. At this point it is useful to discuss the naming convention used for these approaches. We use a vertical
line to separate each transformation involved in the sequence of transformations defining the given MR-EOM
approach. For example, T|T†|SXD indicates that a T transformation, is followed by a T† transformation, which is
then followed by an SXD transformation. The h-v indicates that the elements of the transformed Hamiltonian have
been hermitized (h) and vertex symmetrized (v) before entering the MRCI diagonalization (see Ref. [407] for more
information). Essentially, this means that the full eightfold symmetry of the two-electron integrals (and hermiticity
of the one-body elements) have been enforced upon the elements of the transformed Hamiltonian. The details
of the three MR-EOM approaches are summarized in Table Table 7.25. This table includes the keyword (in the
first line of input) used to initiate the calculation in ORCA, the various operators involved, and the configurations
included in the final diagonalization manifold. One can clearly see that the MR-EOM-T|T†|SXD|U-h-v approach is
the most cost effective, as it only includes the 1h and 1p configurations, beyond the CAS, in the final diagonalization
manifold.

The various %mdci keywords, which are important for controlling MR-EOM calculations are (i.e. default values
are given here):

%mdci
STol 1e-7 #Convergence Tolerance on Residual Equations
MaxIter 100 #Maximum Number of Iterations
DoSingularPT false #Activate the Singular PT/Projection Procedure
SingularPTThresh 0.01 #Threshold for the Singular PT/Projection

#Procedure
PrintOrbSelect false #Print the Eigenvalues of the Orbital Selection

#Densities (and R_core and R_virt values)
#and Terminate the Calculation

CoreThresh 0.0 #Core Orbital Selection Threshold
VirtualThresh 1.0 #Virtual Orbital Selection Threshold

end

As discussed below, the orbital selection scheme is activated by adding !OrbitalSelection to the simple input
line. Keywords that are specific to the CASSCF and MRCI modules are discussed in sections The Complete Active
Space Self-Consistent Field (CASSCF) Module and The Multireference Correlation Module, respectively. We
note that in MR-EOM-T|T†-h-v and MR-EOM-T|T†|SXD-h-v calculations, it is possible to override the default
excitation classes in the final MRCI diagonalization. This is done by specifying excitations none and then
explicitly setting the excitation flags within a given multiplicity block. For example, if we wanted to have 1h, 1p,
1h1p, 2h and 2h1p excitations in the final diagonalization manifold, we would specify (i.e. here we have requested
6 singlets and have a CAS(6,4) reference):

%mrci
newblock 1 *

excitations none
Flags[is] 1
Flags[sa] 1
Flags[ia] 1
Flags[ijss] 1
Flags[ijsa] 1
nroots 6
refs

cas(6,4)
end

end
end
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7.40.1 The Steps Required to Run an MR-EOM Calculation

To illustrate the various steps required in a typical MR-EOM calculation, we will consider the calculation of the
excitation energies of the neutral Fe atom at the MR-EOM-T|T†|SXD|U-h-v level of theory.

State-Averaged CASSCF Calculation

Evidently, the first step is to determine a suitable state-averaged CASSCF reference for the subsequent MR-EOM
calculation. In choosing the state-averaged CAS for an MR-EOM calculation, we typically include a few of the
low-lying multiplets that have the same character as the (much larger number of) states that we wish to compute
in the final MR-EOM calculation. For the neutral Fe atom, we typically have electronic states which have either
4s23d6 character or 4s13d7 character. From the NIST atomic spectra database [1, 606], we find that the lowest lying
a5D multiplet is of 4s23d6 character and the higher lying a5F multiplet is of 4s13d7 character. Hence, we can set up
a state-averaged CASSCF(8,6) calculation (i.e. 8 electrons in 6 orbitals (4s and 3d)) which includes the 5D and 5F
states and choose the weights such that the average occupation of the 4s orbital is 1.5. As discussed in Ref. [529],
this is done to avoid a preference toward either of the 4s configurations in the state-averaging. We will run the
state-averaged CASSCF calculation, making use of the second order DKH (see The Douglas-Kroll-Hess Method)
method for the inclusion of relativistic effects in a Def2-TZVPP basis (i.e. the DKH-Def2-TZVPP relativistically
recontracted basis, listed in section Choice of Basis Set). The input file for the state-averaged CASSCF(8,6) calcu-
lation takes the form:

!CASSCF DKH-Def2-TZVPP VeryTightSCF DKH

%casscf
nel 8
norb 6
mult 5
nroots 12
weights[0] = 0.7, 0.7, 0.7, 0.7, 0.7, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5

end

* xyz 0 5
Fe 0.000000 0.000000 0.000000

end

Here, we have requested 12 quintet states (the lowest lying 5D and 5F multiplets) and we have chosen the weights
to be 0.7 for the five 5D states and 0.5 for the seven 5F states, such that the overall occupation of the 4s orbital will
be 1.5. Once the calculation has converged, it is important to inspect the results printed in the final macro-iteration
of the CASSCF calculation (macro-iteration 8 in this case). In this case, we have:

MACRO-ITERATION 8:
--- Inactive Energy E0 = -1249.82392764 Eh
--- All densities will be recomputed

CI-ITERATION 0:
-1271.258899450 0.000000000001 ( 0.00)
-1271.258899450 0.000000000001
-1271.258899450 0.000000000001
-1271.258899450 0.000000000001
-1271.258899450 0.000000000001
-1271.186288591 0.000000000001
-1271.186288591 0.000000000001
-1271.186288591 0.000000000002
-1271.186288591 0.000000000001
-1271.186288591 0.000000000001
-1271.186288591 0.000000000001
-1271.186288591 0.000000000001

CI-PROBLEM SOLVED
DENSITIES MADE
E(CAS)= -1271.222594021 Eh DE= -1.591616e-12
--- Energy gap subspaces: Ext-Act = 0.276 Act-Int = 2.469

(continues on next page)

872 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

(continued from previous page)

N(occ)= 1.50000 1.30000 1.30000 1.30000 1.30000 1.30000
||g|| = 4.669702e-05 Max(G)= 1.104493e-05 Rot=68,1

Directly below CI-ITERATION 0, the final CAS-CI energies are printed, and one observes that they follow the cor-
rect degeneracy pattern (i.e. 5 states with energy -1271.258899450 and 7 states with energy -1271.186288591).
Furthermore, the final state-averaged CASSCF energy (E(CAS)= -1271.222594021) and occupation numbers
(N(occ)= 1.50000 1.30000 1.30000 1.30000 1.30000 1.30000) are also printed. As expected, the oc-
cupation number of the 4s orbital is indeed 1.5, while the 3d orbitals each have an occupation of 1.3.

Selection of the States to Include in the MR-EOM Calculation

Once a satisfactory CASSCF reference has been obtained, the next step is to determine the number of states to
include in the MR-EOM calculation. From the NIST atomic spectra database, one finds that the higher lying states
of 4s23d6 and 4s13d7 character are either singlets, triplets, or quintets. To figure out how many states should be
included in each multiplicity block, one can perform an inexpensive CAS-CI calculation. This is done by reading
in the orbitals from the previous CASSCF calculation (here they are stored in the file CAS.gbw) and requesting a
single iteration (i.e. using the NoIter keyword) of a state-averaged CASSCF calculation:

!CASSCF DKH-Def2-TZVPP ExtremeSCF DKH NoIter

!MOREAD
%moinp "CAS.gbw"

%casscf
nel 8
norb 6
mult 5,3,1
nroots 15,90,55

end

* xyz 0 5
Fe 0.000000 0.000000 0.000000

end

Here, after some experimentation, we have chosen 15 quintets, 90 triplets and 55 singlets. It is important that we
calculate states up to sufficiently high energy (i.e. all the states that are of interest) and it is imperative that we have
complete multiplets. Hence, several iterations of this procedure might be required to choose the proper number
of states for each multiplet. The relevant section of the output file which should be analyzed is the SA-CASSCF
TRANSITION ENERGIES. For the above calculation, we obtain (i.e. only the CAS-CI energies for the first 33 roots
are shown here):

-----------------------------
SA-CASSCF TRANSITION ENERGIES
------------------------------

LOWEST ROOT (ROOT 0 ,MULT 5) = -1271.258899450 Eh -34592.713 eV

STATE ROOT MULT DE/a.u. DE/eV DE/cm**-1
1: 1 5 0.000000 0.000 0.0
2: 2 5 0.000000 0.000 0.0
3: 3 5 0.000000 0.000 0.0
4: 4 5 0.000000 0.000 0.0
5: 5 5 0.072611 1.976 15936.2
6: 6 5 0.072611 1.976 15936.2
7: 7 5 0.072611 1.976 15936.2
8: 8 5 0.072611 1.976 15936.2
9: 9 5 0.072611 1.976 15936.2
10: 10 5 0.072611 1.976 15936.2
11: 11 5 0.072611 1.976 15936.2

(continues on next page)
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12: 0 3 0.092859 2.527 20380.2
13: 1 3 0.092859 2.527 20380.2
14: 2 3 0.092859 2.527 20380.2
15: 3 3 0.092859 2.527 20380.2
16: 4 3 0.092859 2.527 20380.2
17: 5 3 0.092859 2.527 20380.2
18: 6 3 0.092859 2.527 20380.2
19: 7 3 0.092859 2.527 20380.2
20: 8 3 0.092859 2.527 20380.2
21: 9 3 0.092859 2.527 20380.2
22: 10 3 0.092859 2.527 20380.2
23: 11 3 0.101848 2.771 22353.1
24: 12 3 0.101848 2.771 22353.1
25: 13 3 0.101848 2.771 22353.1
26: 14 3 0.101848 2.771 22353.1
27: 15 3 0.101848 2.771 22353.1
28: 16 3 0.101848 2.771 22353.1
29: 17 3 0.101848 2.771 22353.1
30: 18 3 0.102559 2.791 22509.1
31: 19 3 0.102559 2.791 22509.1
32: 20 3 0.102559 2.791 22509.1

Running the MR-EOM Calculation

Now that we have chosen a suitable CASSCF reference and the states that we wish to calculate, we can finally
proceed with the MR-EOM calculation. The following input file runs an MR-EOM-T|T†|SXD|U-h-v calculation
for 15 quintet, 90 triplet and 55 singlet states of the neutral Fe atom (i.e. the CASSCF orbitals are read from
CAS.gbw):

!MR-EOM DKH-Def2-TZVPP VeryTightSCF DKH

!MOREAD
%moinp "CAS.gbw"

%method frozencore fc_ewin end

%casscf
nel 8
norb 6
mult 5
nroots 12
weights[0] = 0.7, 0.7, 0.7, 0.7, 0.7, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5

end

%mdci
ewin -6, 10000
STol 1e-7

end

%mrci
ewin -6, 10000
MaxIter 200
newblock 5 *
nroots 15
refs cas(8,6) end

end
newblock 3 *
nroots 90
refs cas(8,6) end

(continues on next page)
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end
newblock 1 *
nroots 55
refs cas(8,6) end

end
end

* xyz 0 5
Fe 0.000000 0.000000 0.000000

end

Note that since the default frozen core settings exclude the 3p orbitals from the correlation treatment, we have used
an energy window (i.e. the line ewin -6, 10000 in both the %mdci and %mrci blocks) such that they are included
in the current calculation. We note that a detailed discussion of the input and output of an MR-EOM calculation
has already been given in section MR-EOM-CC: Multireference Equation of Motion Coupled-Cluster and thus,
we do not repeat it here. It is important to reiterate that one should always inspect the values of the largest (T, S
and U) amplitudes. Ideally, the largest amplitudes should be smaller than 0.1 and should not exceed 0.15. If some
amplitudes are larger than 0.15, it might be necessary to revisit the definition of the CAS and the weights used.
For the T amplitudes, an alternative solution is to use the projection/singular PT scheme discussed in section A
Projection/Singular PT Scheme to Overcome Convergence Issues in the T Amplitude Iterations below.

As discussed in section MR-EOM-CC: Multireference Equation of Motion Coupled-Cluster, the excitation energies
are printed under the heading TRANSITION ENERGIES. For the current calculation, we obtain the following results
(only the results for 33 states are shown here):

-------------------
TRANSITION ENERGIES
-------------------

The lowest energy is -1271.833871822 Eh

State Mult Irrep Root Block mEh eV 1/cm
0 5 -1 0 0 0.000 0.000 0.0
1 5 -1 1 0 0.000 0.000 0.0
2 5 -1 2 0 0.000 0.000 0.0
3 5 -1 3 0 0.000 0.000 0.0
4 5 -1 4 0 0.000 0.000 0.0
5 5 -1 5 0 33.901 0.922 7440.4
6 5 -1 6 0 33.901 0.922 7440.4
7 5 -1 7 0 33.901 0.922 7440.4
8 5 -1 8 0 33.901 0.922 7440.4
9 5 -1 9 0 33.901 0.922 7440.4

10 5 -1 10 0 33.901 0.922 7440.4
11 5 -1 11 0 33.901 0.922 7440.4
12 3 -1 0 1 54.743 1.490 12014.8
13 3 -1 1 1 54.743 1.490 12014.8
14 3 -1 2 1 54.743 1.490 12014.8
15 3 -1 3 1 54.743 1.490 12014.8
16 3 -1 4 1 54.743 1.490 12014.8
17 3 -1 5 1 54.743 1.490 12014.8
18 3 -1 6 1 54.743 1.490 12014.8
19 5 -1 12 0 78.790 2.144 17292.5
20 5 -1 13 0 78.790 2.144 17292.5
21 5 -1 14 0 78.790 2.144 17292.5
22 3 -1 7 1 95.413 2.596 20940.8
23 3 -1 8 1 95.413 2.596 20940.8
24 3 -1 9 1 95.413 2.596 20940.8
25 3 -1 10 1 95.413 2.596 20940.8
26 3 -1 11 1 95.413 2.596 20940.8
27 3 -1 12 1 95.413 2.596 20940.8
28 3 -1 13 1 95.413 2.596 20940.8

(continues on next page)
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29 3 -1 14 1 95.413 2.596 20940.8
30 3 -1 15 1 95.413 2.596 20940.8
31 3 -1 16 1 95.413 2.596 20940.8
32 3 -1 17 1 95.413 2.596 20940.8

It is also important to recall that one should always inspect the reference weights for each state, as only states
which are dominated by reference space configurations can be treated accurately at the MR-EOM level of theory.
Generally, the reference weights should be larger than (or close to) 0.9. In each multiplicity block, the individual
state energies and reference weights can be found following convergence of the MRCI procedure, under the heading
CI-RESULTS (see section MR-EOM-CC: Multireference Equation of Motion Coupled-Cluster for a more detailed
discussion).

7.40.2 Approximate Inclusion of Spin-Orbit Coupling Effects in MR-EOM Calcu-
lations

The effects of spin-orbit coupling can approximately be included in MR-EOM calculations using the SOC submod-
ule of the MRCI module, as outlined in section Properties Calculation Using the SOC Submodule. This can be
viewed as a first order approximation to the inclusion of spin-orbit coupling effects in MR-EOM. In a more rigorous
formulation, one would have to consider the various similarity transformations of the spin-orbit coupling operator.
The details of the SOC submodule of the MRCI module have already been discussed in detail in Sec. Properties
Calculation Using the SOC Submodule and its usage within the MR-EOM formalism is identical to that discussed
therein. Let us consider the calculation of spin-orbit coupling effects in the excitation spectrum of the neutral Fe
atom considered in the previous section. The input file for this calculation is:

!MR-EOM DKH-Def2-TZVPP ExtremeSCF DKH

%method frozencore fc_ewin end

%casscf
nel 8
norb 6
mult 5
nroots 12
weights[0] = 0.7, 0.7, 0.7, 0.7, 0.7, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5
etol 1e-12
gtol 1e-12

end

%mdci
ewin -6, 10000
MaxIter 300
STol 1e-12

end

%mrci
ewin -6, 10000
MaxIter 200
newblock 5 *
nroots 15
refs cas(8,6) end

end
newblock 3 *
nroots 90
refs cas(8,6) end

end
newblock 1 *
nroots 55
refs cas(8,6) end

end
(continues on next page)
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soc
dosoc true #include spin-orbit coupling effects

end
end

* xyz 0 5
Fe 0.000000 0.000000 0.000000

end

In contrast with the calculation performed in section The Steps Required to Run an MR-EOM Calculation, the
convergence thresholds have been tightened in all aspects of the calculation (i.e. the use of the ExtremeSCF key-
word, etol and gtol (CASSCF energy and orbital gradient convergence tolerance) are set to 1 × 10−12 and the
convergence tolerance for the residuals in the MR-EOM amplitude iterations have been set to 1× 10−12). We note
that with the use of the ExtremeSCF keyword, the convergence tolerance on the energy (Etol) and residual (Rtol)
in the MRCI portion of the calculation are also set to 1× 10−12. Although it is not absolutely necessary, we have
used very strict convergence thresholds to preserve the degeneracies of the various multiplets as much as possible.
The output of spin-orbit corrected MR-EOM spectrum appears under the heading SOC CORRECTED ABSORPTION
SPECTRUM VIA TRANSITION DIPOLE MOMENTS:

-----------------------------------------------------------------------------------------------
→˓---------

SOC CORRECTED ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-----------------------------------------------------------------------------------------------
→˓---------

Transition Energy Energy Wavelength fosc(D2) D2 |DX| |DY| ␣
→˓ |DZ|

(eV) (cm-1) (nm) (*population) (au**2) (au) (au) ␣
→˓ (au)
-----------------------------------------------------------------------------------------------
→˓---------

It is possible to obtain more accurate results by performing an MR-EOM-T|T†|SXD-h-v calculation and including
the 1h1p excitations. It is important to note that these calculations are significantly more expensive. As discussed
above, to run an MR-EOM-T|T†|SXD-h-v calculation, the keyword MR-EOM-T|Td|SXD must appear in the first
line of input and, in order to activate the 1h1p excitations in each multiplicity block of the MRCI calculation, the
%mrci block takes the form:

%mrci
ewin -6, 10000
MaxIter 200
newblock 5 *
nroots 15
excitations none
Flags[is] 1
Flags[sa] 1
Flags[ia] 1
Flags[ijss] 1
refs cas(8,6) end

end
newblock 3 *
nroots 90
excitations none
Flags[is] 1
Flags[sa] 1
Flags[ia] 1
Flags[ijss] 1
refs cas(8,6) end

end
newblock 1 *
nroots 55

(continues on next page)
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excitations none
Flags[is] 1
Flags[sa] 1
Flags[ia] 1
Flags[ijss] 1
refs cas(8,6) end

end
soc
dosoc true

end
end

We use excitations none to set the default excitation flags to false and then manually set the 1h (Flags[is]),
1p (Flags[sa]), 1h1p (Flags[ia]) and 2h (Flags[ijss]) excitation flags to true.

WARNINGS

• Currently, MR-EOM-T|T†|SXD|U-h-v calculations can only be run with the default excitation classes in the
final MRCI (i.e. 1h and 1p). Any other input options for the excitation flags will automatically be overwritten
and set to the default values.

• Only the inclusion of spin-orbit coupling effects has been tested for MR-EOM calculations. Other features
that are available in the MRCI module (e.g. spin-spin coupling, magnetic property calculations, etc.) have
not been tested for use within MR-EOM calculations.

7.40.3 A Projection/Singular PT Scheme to Overcome Convergence Issues in the
T Amplitude Iterations

In certain cases, there may be nearly singular T2 amplitudes (often, but not always large in magnitude), which can
cause convergence issues in the solution of the T amplitude equations. Hence, it is sometimes necessary to discard
some of the amplitudes to remedy these convergence problems. The nearly singular T2 amplitudes are of the form
𝑡𝑎𝑏𝑤𝑥, where (𝑤, 𝑥) is a pair of active orbitals which corresponds to a small eigenvalue (pair occupation number
𝑛𝑤𝑥) of the two-body reduced density matrix (RDM). When nearly singular amplitudes are present, it is possible
to employ a singular PT/projection scheme (i.e. Scheme I described in Ref. [193]), using the two-body RDM as the
metric matrix, to discard these nearly singular amplitudes and replace them with suitable perturbative estimates.
As a first example, let us consider the following calculation on the cyclopentadiene molecule:

!MR-EOM def2-SVP VeryTightSCF

%casscf
nel 4
norb 4
nroots 2
mult 3

end

%mdci
STol 1e-7
MaxIter 60

end

%mrci
newblock 1 *
nroots 3
refs cas(4,4) end

end
newblock 3 *
nroots 3
refs cas(4,4) end

end
(continues on next page)
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end

* xyz 0 3
H -0.879859 0.000000 1.874608
H 0.879859 0.000000 1.874608
H 0.000000 2.211693 0.612518
H 0.000000 -2.211693 0.612518
H 0.000000 1.349811 -1.886050
H 0.000000 -1.349811 -1.886050
C 0.000000 0.000000 1.215652
C 0.000000 -1.177731 0.285415
C 0.000000 1.177731 0.285415
C 0.000000 -0.732372 -0.993420
C 0.000000 0.732372 -0.993420

*

The T amplitude iterations do not converge after 60 iterations and show no signs of convergence (i.e. final largest
residual of 0.000458135 and oscillatory behavior over a significant portion of the iterations). If we inspect the
largest T amplitudes,

--------------------
LARGEST T AMPLITUDES
--------------------

19-> 24 19-> 24 0.043103
19-> 23 19-> 23 0.031162
11-> 25 11-> 25 0.028458
19-> 41 19-> 41 0.027950
11-> 47 11-> 47 0.027026
19-> 22 19-> 22 0.025163
19-> 21 19-> 21 0.022167
15-> 26 15-> 26 0.022084
11-> 47 11-> 25 0.022033
11-> 25 11-> 47 0.022033
19-> 24 19-> 29 0.021769
19-> 29 19-> 24 0.021769
19-> 36 19-> 36 0.020986
17-> 38 17-> 38 0.019743
19-> 41 16-> 36 0.019107
18-> 40 18-> 40 0.017949

one can see that there are no unusually large amplitudes. If we turn on the singular PT/projection scheme by adding
the line DoSingularPT true to the %mdci block:

%mdci
STol 1e-7
MaxIter 60
DoSingularPT true

end

and rerun the calculation, we find that the T amplitude iterations now successfully converge in 22 iterations. If we
look at the largest T amplitudes:

--------------------
LARGEST T AMPLITUDES
--------------------

11-> 25 11-> 25 0.028440
11-> 47 11-> 47 0.027027
15-> 26 15-> 26 0.022069
11-> 47 11-> 25 0.022031
11-> 25 11-> 47 0.022031
19-> 41 19-> 41 0.020463

(continues on next page)
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17-> 38 17-> 38 0.018288
11-> 43 11-> 43 0.017250
11-> 39 11-> 39 0.016838
15-> 27 15-> 27 0.016001
13-> 26 13-> 26 0.015985
16-> 36 16-> 36 0.015759
19-> 41 16-> 36 0.015697
18-> 40 18-> 40 0.015376
17-> 31 17-> 31 0.015074
18-> 40 17-> 38 0.014470

most of the amplitudes corresponding to the active pair (𝑤, 𝑥) = (19, 19) no longer appear in the list (i.e. they are
nearly singular amplitudes which have been projected out). The only one that does appear in the list, corresponds
to a projected perturbative estimate (e.g. 19-> 41 19-> 41 0.020463).

By default, when the singular PT/projection scheme is active, the amplitudes 𝑡𝑎𝑏𝑤𝑥 for which the pair occupation
numbers satisfy 𝑛𝑤𝑥 < 0.01 (i.e. SingularPTThresh = 0.01), are replaced by perturbative amplitudes in the
procedure. However, in some cases, it might be necessary to increase the SingularPTThresh threshold beyond
the default value to achieve convergence. One such example is the ferrocene molecule. Consider the following
calculation:

!MR-EOM def2-SVP

%casscf
nel 6
norb 5
mult 1,3
nroots 5,6

end

%mdci
DoSingularPT true
MaxIter 50

end

%mrci
newblock 1 *
nroots 18
refs cas(6,5) end

end
newblock 3 *
nroots 10
refs cas(6,5) end

end
end

* xyz 0 1
Fe 0.000000 0.000000 0.000000
C 0.000000 1.220080 1.650626
C -1.160365 0.377025 1.650626
C -0.717145 -0.987065 1.650626
C 0.717145 -0.987065 1.650626
C 1.160365 0.377025 1.650626
C 0.000000 1.220080 -1.650626
C 1.160365 0.377025 -1.650626
C 0.717145 -0.987065 -1.650626
C -0.717145 -0.987065 -1.650626
C -1.160365 0.377025 -1.650626
H 0.000000 2.306051 1.635648
H -2.193184 0.712609 1.635648
H -1.355463 -1.865634 1.635648

(continues on next page)
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H 1.355463 -1.865634 1.635648
H 2.193184 0.712609 1.635648
H 0.000000 2.306051 -1.635648
H 2.193184 0.712609 -1.635648
H 1.355463 -1.865634 -1.635648
H -1.355463 -1.865634 -1.635648
H -2.193184 0.712609 -1.635648

end

The T amplitude iterations do not converge after 50 iterations, even though the singular PT/projection scheme is
activated. If we increase SingularPTThresh to 0.05 by adding SingularPTThresh 0.05 to the %mdci block:

%mdci
DoSingularPT true
SingularPTThresh 0.05
MaxIter 50

end

the T amplitude iterations successfully converge in 25 iterations.

In conclusion, it occasionally happens that the T amplitude iterations do not converge. In these cases, the singular
PT/projection scheme can be activated (DoSingularPT true) to overcome these convergence difficulties. Some-
times, like in the case of ferrocene, it is necessary to adjust the threshold for the singular PT/projection procedure
(SingularPTThresh) to achieve convergence. If the procedure still fails with larger values of the threshold, then
it might be necessary to revisit the definition of the state-averaged CAS.

7.40.4 An Orbital Selection Scheme for More Efficient Calculations of Excitation
Spectra with MR-EOM

As described in Ref. [406], the MR-EOM implementation in ORCA can make use of a sophisticated scheme to
discard inactive and virtual orbitals, which are not important for the description of the excited states of interest.
The selection of inactive core orbitals is based on the eigenvalues of the core orbital selection density

𝐷𝑖′𝑗′ = 𝐷𝑡
𝑖′𝑗′ +

Tr (𝐷𝑡)

Tr (𝐷𝑠) + Tr (𝐷𝑢)

(︀
𝐷𝑠
𝑖′𝑗′ +𝐷𝑢

𝑖′𝑗′
)︀
, (7.250)

in which

𝐷𝑡
𝑖′𝑗′ =

∑︁
𝑤,𝑎,𝑏

𝑡𝑎𝑏
(1)

𝑖′𝑤

(︁
2𝑡𝑎𝑏

(1)

𝑗′𝑤 − 𝑡𝑏𝑎
(1)

𝑗′𝑤

)︁
,

𝐷𝑠
𝑖′𝑗′ =

∑︁
𝑘,𝑤,𝑎

[︁
𝑠𝑎𝑤

(1)

𝑖′𝑘

(︁
2𝑎𝑤

(1)

𝑗′𝑘 − 𝑠𝑎𝑤
(1)

𝑘𝑗′

)︁
+ 𝑠𝑎𝑤

(1)

𝑘𝑖′

(︁
2𝑠𝑎𝑤

(1)

𝑘𝑗′ − 𝑠𝑎𝑤
(1)

𝑗′𝑘

)︁ ]︁
,

𝐷𝑢
𝑖′𝑗′ =

∑︁
𝑘′,𝑤,𝑥

𝑢𝑤𝑥
(1)

𝑖′𝑘′

(︁
2𝑢𝑤𝑥

(1)

𝑗′𝑘′ − 𝑢𝑤𝑥
(1)

𝑘′𝑗′

)︁
,

are respectively, the contributions from the first order 𝑡𝑎𝑏(1)𝑖′𝑤 , 𝑠𝑎𝑤(1)

𝑖′𝑘 and 𝑢𝑤𝑥(1)

𝑖′𝑘′ amplitudes (i.e. note that all ampli-
tudes have at least one active label). Similarly, the selection of virtual orbitals is based upon the eigenvalues of the
virtual orbital selection density

𝜌𝑎𝑏 = 𝜌𝑡𝑎𝑏 +
Tr (𝜌𝑡)
Tr (𝜌𝑠)

𝜌𝑠𝑎𝑏, (7.251)

in which, the contribution 𝜌𝑡, from the first order 𝑇2 amplitudes, is given by

𝜌𝑡𝑎𝑏 =
∑︁
𝑘,𝑤,𝑐

𝑡𝑎𝑐
(1)

𝑤𝑘

(︁
2𝑡𝑏𝑐

(1)

𝑤𝑘 − 𝑡𝑐𝑏
(1)

𝑤𝑘

)︁
+
∑︁
𝑖′,𝑤,𝑐

𝑡𝑎𝑐
(1)

𝑖′𝑤

(︁
2𝑡𝑏𝑐

(1)

𝑖′𝑤 − 𝑡𝑐𝑏
(1)

𝑖′𝑤

)︁
, (7.252)

and the contribution 𝜌𝑠, from the first order 𝑆2 amplitudes, is given by

𝜌𝑠𝑎𝑏 =
∑︁
𝑖′,𝑘,𝑤

𝑠𝑎𝑤
(1)

𝑖′𝑘

(︁
2𝑠𝑏𝑤

(1)

𝑖′𝑘 − 𝑠𝑏𝑤
(1)

𝑘𝑖′

)︁
+
∑︁
𝑖′,𝑤,𝑥

𝑠𝑎𝑤
(1)

𝑥𝑖′

(︁
2𝑠𝑏𝑤

(1)

𝑥𝑖′ − 𝑠𝑏𝑤
(1)

𝑖′𝑥

)︁
. (7.253)
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Diagonalization of the core orbital selection density 𝐷𝑖′𝑗′ and the virtual orbital selection density 𝜌𝑎𝑏 then yields
two respective sets of eigenvalues {𝜆𝑖′} and {𝜆𝑎}. We have found it useful to compute the ratios,

ℛcore =

∑︀𝑛excluded
core
𝑖′=0 𝜆𝑖′∑︀𝑛core
𝑖′=0 𝜆𝑖′

× 100%, (7.254)

ℛvirt =

∑︀𝑛excluded
virt
𝑎=0 𝜆𝑎∑︀𝑛virt
𝑎=0 𝜆𝑎

× 100%, (7.255)

of the sum of the excluded eigenvalues to the sum over all eigenvalues. The orbital selection in the core and virtual
subspaces is then based upon the values of these ratios, as will be discussed below.

The orbital selection procedure is activated by adding the keyword OrbitalSelection to the first line of input,
e.g.

! MR-EOM def2-TZVPP VeryTightSCF OrbitalSelection

There are two threshold parameters CoreThresh and VirtualThresh, which are used to determine which inactive
core and virtual orbitals are to be discarded in the orbital selection procedure, respectively. Namely, all inactive
core orbitals for which ℛcore < CoreThresh (i.e. ℛcore as defined in Eq. (7.254)) are discarded and all virtual
orbitals satisfying the condition ℛvirt < VirtualThresh (i.e. ℛvirt as defined in Eq. (7.255)) are discarded. The
default values of these thresholds are CoreThresh = 0.0 (no core orbital selection) and VirtualThresh = 1.0.
However, the values of these parameters can easily be changed by redefining them in the %mdci block:

%mdci
CoreThresh 1.0
VirtualThresh 1.0

end

Let us consider the calculation of the previous section (A Projection/Singular PT Scheme to Overcome Convergence
Issues in the T Amplitude Iterations) on ferrocene, with the orbital selection procedure activated (using the default
thresholds):

!MR-EOM def2-SVP OrbitalSelection

%casscf
nel 6
norb 5
mult 1,3
nroots 5,6

end

%mdci
DoSingularPT true
SingularPTThresh 0.05
MaxIter 50

end

%mrci
newblock 1 *
nroots 18
refs cas(6,5) end

end
newblock 3 *
nroots 10
refs cas(6,5) end

end
end

* xyz 0 1
Fe 0.000000 0.000000 0.000000
C 0.000000 1.220080 1.650626

(continues on next page)

882 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

(continued from previous page)

C -1.160365 0.377025 1.650626
C -0.717145 -0.987065 1.650626
C 0.717145 -0.987065 1.650626
C 1.160365 0.377025 1.650626
C 0.000000 1.220080 -1.650626
C 1.160365 0.377025 -1.650626
C 0.717145 -0.987065 -1.650626
C -0.717145 -0.987065 -1.650626
C -1.160365 0.377025 -1.650626
H 0.000000 2.306051 1.635648
H -2.193184 0.712609 1.635648
H -1.355463 -1.865634 1.635648
H 1.355463 -1.865634 1.635648
H 2.193184 0.712609 1.635648
H 0.000000 2.306051 -1.635648
H 2.193184 0.712609 -1.635648
H 1.355463 -1.865634 -1.635648
H -1.355463 -1.865634 -1.635648
H -2.193184 0.712609 -1.635648

end

The details of the orbital selection procedure are printed under the heading ORBITAL SELECTION:

------------------------------------------------
ORBITAL SELECTION
------------------------------------------------

T1 is NOT used in the construction of the orbital selection densities
Factor (in percent) for inactive (core) orbital selection ..
→˓. 0.000000000
Factor (in percent) for virtual orbital selection ..
→˓. 1.000000000
Inactive orbitals before selection: 15 ... 44 ( 30 MO's/ 60 electrons)
Virtual orbitals before selection: 50 ... 220 (171 MO's )
Inactive orbitals after selection: 15 ... 44 ( 30 MO's/ 60 electrons)
Virtual orbitals after selection: 50 ... 126 ( 77 MO's )

-------------------------------------------
TIMINGS FOR THE ORBITAL SELECTION PROCEDURE
-------------------------------------------

Total Time for Orbital Selection ... 61.470 sec

First Half Transformation ... 58.041 sec ( 94.4%)
Second Half Transformation ... 1.789 sec ( 2.9%)
Formation of Orbital Selection Densities ... 1.629 sec ( 2.7%)
Core Orbital Selection ... 0.000 sec ( 0.0%)
Virtual Orbital Selection ... 0.003 sec ( 0.0%)
Finalization of Orbitals ... 0.006 sec ( 0.0%)

Comparing the number of virtual orbitals before the orbital selection procedure (171) with the number that are left
after orbital selection (77), we see that more than half have been discarded (94). The canonical calculation (without
orbital selection) takes 149373 seconds to run and yields the following excitation energies:

-------------------
TRANSITION ENERGIES
-------------------

The lowest energy is -1648.190045042 Eh

State Mult Irrep Root Block mEh eV 1/cm

(continues on next page)
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0 1 -1 0 0 0.000 0.000 0.0
1 3 -1 0 1 65.110 1.772 14289.9
2 3 -1 1 1 65.110 1.772 14289.9
3 3 -1 2 1 70.413 1.916 15454.0
4 3 -1 3 1 70.413 1.916 15454.0
5 3 -1 4 1 95.979 2.612 21065.0
6 3 -1 5 1 95.979 2.612 21065.0
7 1 -1 1 0 105.302 2.865 23111.1
8 1 -1 2 0 105.302 2.865 23111.1
9 1 -1 3 0 107.034 2.913 23491.4

10 1 -1 4 0 107.034 2.913 23491.4
11 1 -1 5 0 160.595 4.370 35246.6
12 1 -1 6 0 160.596 4.370 35246.6
13 3 -1 6 1 164.694 4.482 36146.1
14 3 -1 7 1 165.379 4.500 36296.6
15 3 -1 8 1 165.379 4.500 36296.6
16 3 -1 9 1 171.464 4.666 37632.1
17 1 -1 7 0 208.587 5.676 45779.6
18 1 -1 8 0 208.587 5.676 45779.6
19 1 -1 9 0 213.093 5.799 46768.6
20 1 -1 10 0 213.093 5.799 46768.6
21 1 -1 11 0 216.225 5.884 47456.0
22 1 -1 12 0 220.230 5.993 48334.9
23 1 -1 13 0 220.230 5.993 48334.9
24 1 -1 14 0 224.583 6.111 49290.3
25 1 -1 15 0 224.583 6.111 49290.3
26 1 -1 16 0 237.914 6.474 52216.0
27 1 -1 17 0 237.914 6.474 52216.0

In contrast, the calculation with the orbital selection procedure activated runs in 28977 seconds (a factor of 5
speedup) and produces the following excitation energies:

-------------------
TRANSITION ENERGIES
-------------------

The lowest energy is -1647.788478559 Eh

State Mult Irrep Root Block mEh eV 1/cm
0 1 -1 0 0 0.000 0.000 0.0
1 3 -1 0 1 65.112 1.772 14290.4
2 3 -1 1 1 65.134 1.772 14295.3
3 3 -1 2 1 70.520 1.919 15477.3
4 3 -1 3 1 70.520 1.919 15477.3
5 3 -1 4 1 96.105 2.615 21092.7
6 3 -1 5 1 96.134 2.616 21099.0
7 1 -1 1 0 105.415 2.868 23136.0
8 1 -1 2 0 105.450 2.869 23143.5
9 1 -1 3 0 107.294 2.920 23548.3

10 1 -1 4 0 107.294 2.920 23548.3
11 1 -1 5 0 161.082 4.383 35353.4
12 1 -1 6 0 161.094 4.384 35356.0
13 3 -1 6 1 164.786 4.484 36166.4
14 3 -1 7 1 165.465 4.503 36315.4
15 3 -1 8 1 165.465 4.503 36315.5
16 3 -1 9 1 171.542 4.668 37649.1
17 1 -1 7 0 208.853 5.683 45838.0
18 1 -1 8 0 208.853 5.683 45838.0
19 1 -1 9 0 213.419 5.807 46840.1
20 1 -1 10 0 213.419 5.807 46840.1
21 1 -1 11 0 216.526 5.892 47521.9
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22 1 -1 12 0 220.611 6.003 48418.4
23 1 -1 13 0 220.611 6.003 48418.5
24 1 -1 14 0 225.135 6.126 49411.5
25 1 -1 15 0 225.136 6.126 49411.5
26 1 -1 16 0 238.388 6.487 52320.1
27 1 -1 17 0 238.388 6.487 52320.1

We note that the excitation energies in the orbital selection procedure agree very nicely with those of the canon-
ical calculation. However, the total energies are significantly different, as we currently have not implemented a
procedure to correct them. Hence, the following warning is particularly important.

WARNING

• The orbital selection procedure should only be used for the calculation of excitation energies. Total ener-
gies computed with the orbital selection procedure have not been corrected and can differ greatly from the
canonical results.

Before leaving the discussion of the orbital selection procedure, we note that there is also a keyword
PrintOrbSelect, which can be added to the %mdci block to print the eigenvalues of the inactive core orbital se-
lection and virtual orbital selection densities and the corresponding values ofℛcore andℛvirt defined in Eqs. (7.254)
and (7.255), respectively. This is useful if one wants to manually select the orbitals to discard in the orbital selec-
tion procedure by adjusting the values of CoreThresh and VirtualThresh. We note that the program terminates
after printing. In the case of the calculation on ferrocene, if we modify the %mdci block to read

%mdci
DoSingularPT true
SingularPTThresh 0.05
MaxIter 50
PrintOrbSelect True

end

we find the following information in the ORBITAL SELECTION section of the output (only the first 50 values for
the virtual orbital selection density are shown here):

Eigenvalues and corresponding R_core values for the core orbital selection density

Orbital Eigenvalue R_core
0 0.00026936 0.419318
1 0.00027080 0.840883
2 0.00038739 1.443947
3 0.00038739 2.047011
4 0.00040299 2.674355
5 0.00040299 3.301700
6 0.00077636 4.510285
7 0.00086085 5.850394
8 0.00086085 7.190503
9 0.00091850 8.620358
10 0.00091850 10.050213
11 0.00112826 11.806598
12 0.00115561 13.605563
13 0.00137961 15.753236
14 0.00137961 17.900908
15 0.00139093 20.066210
16 0.00139093 22.231512
17 0.00143349 24.463072
18 0.00143350 26.694633
19 0.00148539 29.006985
20 0.00148539 31.319338
21 0.00173415 34.018940
22 0.00224131 37.508054
23 0.00224132 40.997171

(continues on next page)
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24 0.00533017 49.294785
25 0.00533019 57.592429
26 0.00658679 67.846267
27 0.00662033 78.152314
28 0.00701718 89.076149
29 0.00701719 100.000000

Eigenvalues and corresponding R_virt values for the virtual orbital selection density

Orbital Eigenvalue R_virt
0 0.00000119 0.000450
1 0.00000119 0.000899
2 0.00000134 0.001404
3 0.00000134 0.001909
4 0.00000136 0.002423
5 0.00000177 0.003091
6 0.00000178 0.003764
7 0.00000178 0.004437
8 0.00000215 0.005248
9 0.00000224 0.006096
10 0.00000224 0.006944
11 0.00000238 0.007844
12 0.00000347 0.009154
13 0.00000347 0.010465
14 0.00000364 0.011841
15 0.00000386 0.013299
16 0.00000396 0.014793
17 0.00000396 0.016287
18 0.00000437 0.017937
19 0.00000437 0.019587
20 0.00000499 0.021472
21 0.00000499 0.023357
22 0.00000794 0.026354
23 0.00000794 0.029352
24 0.00000819 0.032447
25 0.00000819 0.035543
26 0.00000927 0.039044
27 0.00000927 0.042546
28 0.00001002 0.046332
29 0.00001002 0.050119
30 0.00001137 0.054415
31 0.00001137 0.058711
32 0.00001158 0.063086
33 0.00001158 0.067461
34 0.00001381 0.072678
35 0.00001381 0.077894
36 0.00001417 0.083249
37 0.00001417 0.088604
38 0.00001465 0.094137
39 0.00001495 0.099785
40 0.00001495 0.105432
41 0.00001554 0.111302
42 0.00001554 0.117172
43 0.00001623 0.123303
44 0.00001689 0.129685
45 0.00001754 0.136310
46 0.00001754 0.142934
47 0.00001805 0.149752
48 0.00001805 0.156570
49 0.00002111 0.164546
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.

.

.

In conclusion, the orbital selection scheme provides a more efficient way to calculate accurate excitation spectra
within the framework of MR-EOM. It can be used to extend the applicability of this approach to larger systems and
we expect it to be much more effective in larger systems where the chromophore is localized to a small part of the
molecule. We reiterate that it is currently limited to the calculation of excitation energies and should not be used
if one is interested in total energies.

7.40.5 Nearly Size Consistent Results with MR-EOM by Employing an MR-
CEPA(0) Shift in the Final Diagonalization Procedure

One drawback of the MR-EOM methodology is that it is not size-extensive (or size-consistent). The size-extensivity
errors arise due to the final uncontracted MR-CI diagonalization step. Namely, they result from the components of
the eigenvectors of the transformed Hamiltonian, which lie outside of the CASSCF reference space (e.g. 1h, 1p, etc.
configurations). As more of the excitation classes are included through the successive similarity transformations
of the Hamiltonian, the size of the final diagonalization manifold is greatly decreased resulting in much smaller
size-extensivity errors upon going from MR-EOM-T|T†-h-v to MR-EOM-T|T†|SXD|U-h-v. To illustrate this, let
us consider the O2—O2 dimer where the O2 molecules are separated by a large distance. For the O2 monomer,
we employ a minimal active space consisting of 2 electrons distributed amongst the two 𝜋* orbitals and we only
consider the ground 3Σ−𝑔 state (no state-averaging). In the MR-EOM calculations, we also calculate the higher
lying 1∆𝑔 and 1Σ+

𝑔 singlet states. For example, the input file for the MR-EOM-T|T†|SXD|U-h-v calculation is
given by:

!MR-EOM AUG-CC-PVTZ EXTREMESCF

%casscf
nel 2
norb 2
nroots 1
mult 3

end

%mdci
MaxIter 300
STol 1e-12

end

%mrci
newblock 1 *
nroots 3
refs cas(2,2) end

end
newblock 3 *
nroots 1
refs cas(2,2) end

end
end

* xyz 0 3
O 0.00000000 -0.00000000 -0.60500000
O -0.00000000 0.00000000 0.60500000

*

In the case of the dimer, we take the reference state as the coupled quintet state which is formed as the product
3Σ+

𝑔 ⊗ 3Σ+
𝑔 of the monomer states. We note that at large separation, in the non-interacting limit, the dimer state

energies can be decomposed as the sum of monomer state energies. There are various possibilities, taking into
account the degeneracies of the various states:
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1. a singlet, a triplet, and a quintet with energy 𝐸(3Σ−𝑔 + 3Σ−𝑔 ),

2. four triplets with energy 𝐸(3Σ−𝑔 + 1∆𝑔),

3. two triplets with energy 𝐸(3Σ−𝑔 + 1Σ+
𝑔 ),

4. four singlets with energy 𝐸(1∆𝑔 +
1∆𝑔),

5. four singlets with energy 𝐸(1∆𝑔 +
1Σ+

𝑔 ),

6. a singlet with energy 𝐸(1Σ+
𝑔 + 1Σ+

𝑔 ).

Hence, in the final diagonalization step of the MR-EOM calculation, we must ask for 10 singlets, 7 triplets and
1 quintet. The input file for the MR-EOM-T|T†|SXD|U-h-v calculation on the dimer is given by:

!MR-EOM AUG-CC-PVTZ EXTREMESCF

%casscf
nel 4
norb 4
nroots 1
mult 5
etol 1e-13
gtol 1e-13

end

%mdci
MaxIter 300
STol 1e-12

end

%mrci
newblock 1 *
nroots 10
refs cas(4,4) end

end
newblock 3 *
nroots 7
refs cas(4,4) end

end
newblock 5 *
nroots 1
refs cas(4,4) end

end
end

* xyz 0 5
O 0.00000000 0.00000000 -500.60500000
O 0.00000000 -0.00000000 -499.39500000
O -0.60500000 0.00000000 500.00000000
O 0.60500000 -0.00000000 500.00000000

*

In Table Test for size consistency in MR-EOM: Differences in energy (in mE_\text{h}) between the _2—O_2 dimer
energies (at large separation) and the sum of the monomer energies for the ground state and various excited states.
The results were obtained in an aug-cc-pVTZ basis using minimal active spaces., we have compiled the results
of the size consistency test, taking the difference of the dimer state energies (at large separation) and the sum of
the monomer state energies (in m𝐸h). It is evident that as more excitation classes are included in the similarity
transformed Hamiltonian and the size of the final diagonalization manifold is decreased, the size-consistency errors
decrease. Of particular note are the results for the MR-EOM-T|T†|SXD|U-h-v approach (only includes 1h and 1p
configurations in the final diagonalization manifold), for which the largest deviation is 1.25 × 10−2 m𝐸h. The
much larger deviations for the MR-EOM-T|T†|SXD-h-v approach clearly demonstrate the large effect that the 2h
excitations have on the size-consistency errors.
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Table 7.26: Test for size consistency in MR-EOM: Differences in energy (in mEh) between the 2—O2 dimer
energies (at large separation) and the sum of the monomer energies for the ground state and various excited states.
The results were obtained in an aug-cc-pVTZ basis using minimal active spaces.

T|T†-h-v T|T†|SXD-h-v (with 1h1p) T|T†|SXD-h-v T|T†|SXD|U-h-v

∆𝐸(3Σ−𝑔 + 3Σ−𝑔 ) 12.74 2.77 1.11 1.00 × 10−5

∆𝐸(3Σ−𝑔 + 1∆𝑔) 14.20 3.84 1.85 1.54 × 10−4

∆𝐸(3Σ−𝑔 + 1Σ+
𝑔 ) 17.21 5.52 2.83 4.13 × 10−4

∆𝐸(1∆𝑔 +
1∆𝑔) 15.69 3.10 2.31 5.26 × 10−3

∆𝐸(1∆𝑔 +
1Σ+

𝑔 ) 18.83 7.52 4.76 5.89 × 10−3

∆𝐸(1Σ+
𝑔 + 1Σ+

𝑔 ) 22.34 10.75 7.31 1.25 × 10−2

To reduce the size-consistency errors, one can make use of the MR-CEPA(0) shift in the final diagonalization step.
This MR-CEPA(0) shift can easily be activated by adding the line

citype mrcepa_0

to the beginning of the %mrci block. The results of the size-consistency test with the use of the MR-CEPA(0) shift
are tabulated in Table Test for size consistency in MR-EOM, using the MR-CEPA(0) shift: Differences in energy (in
mE_\text{h}) between the O_2—O_2 dimer energies (at large separation) and the sum of the monomer energies
for the ground state and various excited states. The results were obtained in an aug-cc-pVTZ basis using minimal
active spaces and the MR-CEPA(0) shift was applied in the final diagonalization in each case.. For each of the
methods, we see a marked improvement over the results of Table Test for size consistency in MR-EOM: Differences
in energy (in mE_\text{h}) between the _2—O_2 dimer energies (at large separation) and the sum of the monomer
energies for the ground state and various excited states. The results were obtained in an aug-cc-pVTZ basis using
minimal active spaces., which do not make use of the MR-CEPA(0) shift. The greatest improvement occurs in the
MR-EOM-T|T†|SXD-h-v and the MR-EOM-T|T†|SXD|U-h-v results. Namely, the errors in the former case are
on the order of nano Hartrees, while the errors in the MR-EOM-T|T†|SXD|U-h-v results are not detectable (sub-
nano Hartree), as the energy is only printed with nine decimal places. It is interesting to note that upon adding
the 1h1p configurations to the diagonalization manifold in the MR-EOM-T|T†|SXD-h-v calculations (i.e. with
1h1p), the size-consistency errors increase greatly. Hence, it appears that the use of the MR-CEPA(0) shift is most
effective at reducing the size-consistency errors resulting from the presence of the 1h, 1p and 2h configurations
in the final diagonalization manifold. In any case, one can easily take advantage of this approach to obtain nearly
size-consistent results with both the MR-EOM-T|T†|SXD-h-v and MR-EOM-T|T†|SXD|U-h-v methods.

Table 7.27: Test for size consistency in MR-EOM, using the MR-CEPA(0) shift: Differences in energy (in mEh)
between the O2—O2 dimer energies (at large separation) and the sum of the monomer energies for the ground state
and various excited states. The results were obtained in an aug-cc-pVTZ basis using minimal active spaces and the
MR-CEPA(0) shift was applied in the final diagonalization in each case.

T|T†-h-v T|T†|SXD-h-v (with 1h1p) T|T†|SXD-h-v T|T†|SXD|U-h-v

∆𝐸(3Σ−𝑔 + 3Σ−𝑔 ) 2.75 × 10−3 0.01 2.00 × 10−6 0.00
∆𝐸(3Σ−𝑔 + 1∆𝑔) 0.06 0.07 0.00 0.00
∆𝐸(3Σ−𝑔 + 1Σ+

𝑔 ) 0.14 0.15 4.00 × 10−6 0.00
∆𝐸(1∆𝑔 +

1∆𝑔) 0.21 0.22 1.00 × 10−6 0.00
∆𝐸(1∆𝑔 +

1Σ+
𝑔 ) 0.42 0.44 5.00 × 10−6 0.00

∆𝐸(1Σ+
𝑔 + 1Σ+

𝑔 ) 0.82 0.87 9.00 × 10−6 0.00
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7.40.6 Perturbative MR-EOM-PT

The MR-EOMPT approach was developed for situations where the full accuracy of the iterative MR-EOMCC
method is not required. It performs on par with other multireference perturbation theories such as fic-NEVPT2
and does not have the convergence difficulties with the 𝑇 and 𝑆, �̂�, �̂� amplitudes like its iterative parent method
as these amplitudes are computed in a non-iterative fashion. The only iterative part of the MR-EOMPT method is
the calculation of the �̂� amplitudes since they are quick to converge anyways [501].

The setup procedure for the MR-EOMPT method is the same as for the MR-EOMCC method, and the foregoing
also applies to the perturbative variant. Please note that the orbital selection scheme has not been tested with this
variant and should be unnecessary anyways since calculations are much faster than with the iterative MR-EOMCC
method.

To invoke the new variant, set up the calculation as you would for an MR-EOMCC calculation and then add the
keyword DoMREOM_MRPT True to the %mdci block.

The results are interpreted just like results for the iterative MR-EOMCC method. After transforming the Hamilto-
nian with the perturbatively estimated amplitudes and the final MRCIS diagonalization step, the final state energies
are printed along with their reference weights. For reliable results, we again recommend that the reference weight
be >90%.

7.41 Simulation and Fit of Vibronic Structure in Electronic Spec-
tra, Resonance Raman Excitation Profiles and Spectra with
the orca_asa Program

ò Deprecated since ORCA 6.0.0

• The orca_asa program is no longer supported. It is still included in the 6.0.0 release and the documen-
tation is preserved below. However, it may not function correctly and will be removed in a future ORCA
version!

• The !NMScan and !NMGrad keywords are still available but these calculations may fail or not generate
valid input for orca_asa. Please use the ESD module instead, if applicable.

In this section various aspects of the simulation and fit of optical spectra, including absorption, fluorescence, and
resonance Raman are considered. This part of the ORCA is fairly autonomous and can also be used in a data
analysis context, not only in a “quantum chemistry” mode. The program is called orca_asa, where ASA stands
for “Advanced Spectral Analysis”. The program was entirely designed by Dr. Taras Petrenko.

The general philosophy is as follows: An ORCA run produces the necessary data to be fed into the orca_asa
program and writes an initial input file. This input file may be used to directly run orca_asa in order to predict an
absorption, fluorescence or resonance Raman spectrum. Alternatively, the input file may be edited to change the
parameters used in the simulations. Last – but certainly not least – the orca_asa program can be used to perform
a fit of the model parameters relative to experimental data.
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All examples below are taken from [679], which must be cited if you perform any work with the orca_asa program!

7.41.1 General Description of the Program

The program input comprises the following information: (1) model and specification of the model parameters
characterizing the electronic structure of a molecule, as well as lineshape factors; (2) spectral ranges and resolution
for simulations; (3) specification of vibrational transitions for rR excitation profile and spectra generation; (4)
certain algorithm-selecting options depending on the model; (5) fitting options.

All optional parameters (1)-(3) are given in the %sim block, and fitting options are in the %fit block. The model
parameters are specified within various blocks that will be described below. The program orca_asa is interfaced
to ORCA and inherits its input style. The input for orca_asa run can be also generated upon ORCA run.

The current implementation features so called “simple”, “independent mode, displaced harmonic oscillator”
(IMDHO), and “independent mode, displaced harmonic oscillator with frequency alteration” (IMDHOFA) models.

7.41.2 Spectral Simulation Procedures: Input Structure and Model Parameters

Example: Simple Mode

This model represents the simplest approach which is conventionally used in analysis of absorption spectra. It
neglects vibrational structure of electronic transitions and approximates each individual electronic band by a stan-
dard lineshape, typically a Gaussian, Lorentzian or mixed (Voigt) function. This model can only make sense if
vibrational progressions are not resolved in electronic spectra. Upon this approximation the intensity of absorption
spectrum depends on the energy of the incident photon (𝐸𝐿), the electronic transition energy (𝐸𝑇 ), the transition
electric dipole moment (M, evaluated at the ground-state equilibrium geometry). Lineshape factors are specified
by homogeneous linewidth Γ and standard deviation parameter 𝜎 corresponding to Gaussian distribution of tran-
sition energies. The following example illustrates a simple input for simulation of absorption bandshapes using
various intensity and lineshape parameters.

7.41. Simulation and Fit of Vibronic Structure in Electronic Spectra, Resonance Raman
Excitation Profiles and Spectra with the orca_asa Program
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# example001.inp
#
# Input file to generate absorption spectrum consisting
# of 3 bands with different lineshape factors:
#
# 1. Lorentzian centered at 18000cm**-1 (damping factor Gamma= 100 cm**-1)
# 2. Gaussian centered at 20000cm**-1
# (standard deviation Sigma= 100 cm**-1)
# 3. Mixed Gaussian-Lorentzian band representing Voigt profile
# centered at 21000 cm**-1

%sim
Model Simple

# Spectral range for absorption simulation:
AbsRange 17000.0, 23000.0

# Number of points to simulate absorption spectrum:
NAbsPoints 2000

end

#---------------------------------------------------------------------------
# Transition Gamma Sigma Transition Dipole Moment (atomic unit)
# Energy (cm**-1) (cm**-1) (cm**-1) Mx My Mz
#---------------------------------------------------------------------------

$el_states
3 # number of electronic states

1 18000.0 100.00 0.0 1.0 0.0 0.0
2 20000.0 0.00 100.0 1.0 0.0 0.0
3 22000.0 50.00 50.0 1.0 0.0 0.0

The parameters of of the final electronic states reached by the respective transitions are specified in the $el_states
block. The spectral range and resolution used in the calculation are defined by the AbsRange and NAbsPoints
keywords in %sim block. The calculation of the absorption spectrum is automatically invoked if NAbsPoints>1.
After the orca_asa run you will find in your directory file example001.abs.dat containing absorption spectrum
in simple two-column ASCII format suitable to be plotted with any spreadsheet program. Absorption spectra
corresponding to individual electronic transitions are stored in file example001.abs.as.dat ( the suffix “as”
stands for “All States”).
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Fig. 7.43: Absorption spectrum generated after orca_asa run on file example001.inp. Three bands have different
lineshape pararameters. Note that although all transitions are characterized by the same transition electric dipole
moment their intensities are scaled proportionally to the transition energies.

The output of the program run also contains information about oscillator strengths and full-width-half-maximum
(FWHM) parameters corresponding to each electronic band:

----------------------------------------------
State EV fosc Stokes shift

(cm**-1) (cm**-1)
----------------------------------------------

1: 18000.00 0.054676 0.00
2: 20000.00 0.060751 0.00
3: 22000.00 0.066826 0.00

----------------------------------------
BROADENING PARAMETETRS (cm**-1)

----------------------------------------
State Gamma Sigma FWHM

----------------------------------------
1: 100.00 0.00 200.00
2: 0.00 100.00 235.48
3: 50.00 50.00 180.07

Note that although all three types of lineshape functions are symmetric this is not true for the overall shapes of
individual absorption bands since the extinction coefficient (absorption cross-section) is also proportional to the
incident photon energy. Therefore, if the linewidth is larger than 10% of the peak energy the asymmetry of the
electronic band can be quite noticeable.
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Example: Modelling of Absorption and Fluorescence Spectra within the IMDHO Model

The IMDHO model is the simplest approach that successfully allows for the prediction of vibrational structure in
electronic spectra as well as rR intensities for a large variety of real systems. This model assumes:

1. harmonic ground- and excited-state potential energy surfaces;

2. origin shift of the excited-state potential energy surface relative to the ground-state one;

3. no vibrational frequency alteration or normal mode rotation occurs in the excited state;

4. no coordinate dependence of the electronic transition dipole moment.

In addition to the parameters that enter the “Simple model” defined above it requires some information about the vi-
brational degrees of freedom. The required information consists of the ground-state vibrational frequencies {𝜔𝑔𝑚}
and (dimensionless) origin shifts {∆𝑚𝑖}, where 𝑖 and 𝑚 refer to electronic states and normal modes respectively.
∆ is expressed in terms of dimensionless normal coordinates. Accordingly, for the IMDHO model one has to
specify the following blocks

• The $el_states block contains the parameters 𝐸𝑇 ,Γ, 𝜎,M for each electronic state. By default 𝐸𝑇 is
assumed to be adiabatic minima separation energy. Alternatively, it can be redefined to denote for the vertical
transition energy.This is achieved by specifiying the keyword EnInput=EV in the %sim block.

• A $vib_freq_gs block specifies ground-state vibrational frequencies.

• A $sdnc block contains parameters {∆𝑚𝑖} in matrix form such that the 𝑖-th column represents the dimen-
sionless displacements along all normal modes for the 𝑖-th excited-state PES.

The file example002.inp provides the input for simulation of absorption and fluorescence spectra of a system
characterized by significant displacements of the excited-state origin along 5 normal coordinates.

# example002.inp
#
# Input file for simulation of vibrational structure
# in absorption and fluorescence spectra assuming
# origin shift of excited PES along 5 normal coordinates.
# The simulated spectra closely reproduce the experimental
# optical bandshapes for the tetracene molecule.
#
%sim

Model IMDHO

# spectral range for absorption simulation (cm**-1)
AbsRange 20000.0, 27000.0
NAbsPoints 2000 # number of points in absorption spectrum

# spectral range for simulation of fluorescence (cm**-1)
FlRange 22000.0, 16000.0
NFlPoints 2000 # number of points in fluorescence spectrum

# the following options require the spectra to be normalized
# so that their maxima are equal to 1.0
AbsScaleMode Rel
FlScaleMode Rel # default for fluorescence

# for absorption spectrum the default option is AbsScaleMode= Ext
# which stands for extinction coefficient

end

#---------------------------------------------------------------------------
# Transition Gamma Sigma Transition Dipole Moment (atomic unit)
# Energy (cm**-1) (cm**-1) (cm**-1) Mx My Mz
#---------------------------------------------------------------------------

(continues on next page)
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(continued from previous page)

$el_states
1

1 21140.0 50.00 100.0 1.0 0.0 0.0

# Block specifying Stokes Shift parameter for each electronic state
# This information is optional
$ss
1 # number of excited states

1 300.0 # the Stokes shift for the 1st electronic transition

# Block providing the values of VIBrational FREQuencies
# for 5 Ground-State normal modes.
# Obligatory for IMDHO and IMDHOFA models.
$vib_freq_gs
5

1 310.0
2 1193.0
3 1386.0
4 1500.0
5 1530.0

# Block specifying origin Shift of the excite-state PES
# along each normal mode in terms of the ground-state
# Dimensionless Normal Coordinates
# Obligatory for IMDHO and IMDHOFA models.
$sdnc
5 1

1
1 0.698
2 -0.574
3 0.932
4 -0.692
5 0.561

The calculation of absorption and fluorescence spectra is automatically invoked if the parameters NAbsPoints>1
and NFlPoints> 1. The input file also contains the optional block $ss which specifies the Stokes shift 𝜆 for
each electronic transition. This parameter is equal to the energy separation between the 0-0 vibrational peaks in
the absorption and fluorescence spectra as shown in Fig. 7.44 . In general 𝜆 accounts for solvent induced effects as
well as unresolved vibrational structure corresponding to low-frequency modes that are not specified in the input.
Note that we have specified parameters AbsScaleMode=Rel and FlScaleMode=Rel in %sim block in order to
ensure that the simulated spectra are normalized to unity. The calculated absorption and fluorescence spectra are
stored in example002.abs.dat and example002.fl.dat files, respectively.
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Fig. 7.44: Absorption and fluorescence spectra generated after orca_asa run on the file example002.inp. If the
homogeneous broadening is set to be Γ = 10 cm−1 one can resolve underlying vibrational structure and identify
various fundamental and combination transitions.

Example: Modelling of Absorption and Fluorescence Spectra within the IMDHOFA Model

IMDHOFA (Independent Mode Displaced Harmonic Oscillators with Frequency Alteration) is based on the same
assumptions as the IMDHO model except for vibrational frequency alteration in excited state can take place. The
file example003.inp features almost the same input parameters as example002.inp. The IMDHOFA model
is invoked by the keyword Model=IMDHOFA in the %sim block. Additionally, one has to provide the obligatory
block $vib_freq_es. It contains the excited-state vibrational frequencies {𝜔𝑒𝑚𝑖} in matrix form such that the
𝑖-th column represents the vibrational frequencies of all normal modes for the 𝑖-th excited-state PES.

# Block providing the values of VIBrational FREQuencies
# for 5 Excited-State normal modes.
# Obligatory for IMDHOFA model.

$vib_freq_es
5 1 # number of modes and number of excited states

1
1 410.0
2 1293.0
3 1400.0
4 1600.0
5 1730.0
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Fig. 7.45: Absorption and fluorescence spectra generated after orca_asa run on the file example003.inp. Also,
the high-resolution spectra corresponding to homogeneous broadening Γ = 10 cm−1 are shown.

Example: Modelling of Effective Broadening, Effective Stokes Shift and Temperature Effects in
Absorption and Fluorescence Spectra within the IMDHO Model

For the IMDHO model the orca_asa is capable to model absorption and emission spectra in the finite-temperature
approximation. While the keyword Model=IMDHO assumes the zero-temperature approximation, the value of
Model=IMDHOT invokes the calculation of the spectra for the finite temperature which is specified by the paramter
TK in the block %sim:

# example004.inp
#
#
%sim

Model IMDHOT
TK 300 # temperature (in Kelvin)

# spectral range for absorption simulation (cm**-1)
AbsRange 18000.0, 35000.0
NAbsPoints 5000 # number of points in absorption spectrum

# spectral range for simulation of fluorescence (cm**-1)
FlRange 22000.0, 10000.0
NFlPoints 5000 # number of points in fluorescence spectrum

# the following options require the spectra to be normalized

(continues on next page)
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(continued from previous page)

# so that their maxima are equal to 1.0
AbsScaleMode Rel
FlScaleMode Rel # default for fluorescence

end

#---------------------------------------------------------------------------
# Transition Gamma Sigma Transition Dipole Moment (atomic unit)
# Energy (cm**-1) (cm**-1) (cm**-1) Mx My Mz
#---------------------------------------------------------------------------

$el_states
1

1 21140.0 50.00 100.0 1.0 0.0 0.0

# Block specifying Stokes Shift parameter for each electronic state
$ss
1 # number of excited states

1 300.0 # the Stokes shift for the 1st electronic transition

# Block providing the values of VIBrational FREQuencies
# for 10 Ground-State normal modes.
$vib_freq_gs
10

1 30.0
2 80.0
3 100.0
4 120.0
5 130.0
6 140.0
7 160.0
8 200.0
9 310.0
10 1300.0

# Block specifying origin Shift of the excite-state PES
# along each normal mode in terms of the ground-state
# Dimensionless Normal Coordinates
$sdnc
10 1

1
1 2.5
2 2.0
3 1.8
4 1.9
5 1.5
6 1.9
7 2.4
8 1.9
9 2.5

10 0.9

This example illustrates a typical situation in large molecules which feature a number of low frequency modes
with significant values of dimensionless displacements for a given excited-state PES. In the case of high density
of vibrational states with frequencies below or comparable to the intrincic value of FWHM (determined by Γ and
𝜎) the vibrational progression is unresolved, whereby the spectra become very diffuse and show large separation
between the maxima of absorption and emission spectra (Fig. 7.45). Besides, upon the condition ℎ𝜈𝑖 ⩽ 𝑘𝑇 the
effective bandwidths and positions of maxima in the spectra can be strongly subject to temperature effects.
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Fig. 7.46: Absorption and fluorescence spectra for T=0 K (blue) and T=300 K (red) generated after orca_asa run
on the file example004.inp. Black lines show spectra corresponding to the case where all low-frequency modes
were excluded from the calculation.

The effective Stokes shift and linewidth parameters which are evaluated in the simple self-consistent procedure are
given in the output of the orca_asa run:

------------------------------------------------------------------------------
State E0 EV fosc Stokes shift Effective Stokes shift

(cm**-1) (cm**-1) (cm**-1) (cm**-1)
------------------------------------------------------------------------------

1: 21140.00 24535.85 0.074529 300.00 7091.70

-----------------------------------------------------------------------------------------------
BROADENING PARAMETETRS (cm**-1)

-----------------------------------------------------------------------------------------------
Intrinsic Effective

State -------------------------- --------------------------------------------------------
Sigma FWHM

Gamma Sigma FWHM --------------------------- ---------------------------
0K 298.15K 300.00K 0K 298.15K 300.00K

-----------------------------------------------------------------------------------------------
1: 50.00 100.00 293.50 1125.34 1411.13 1413.57 2703.84 3376.75 3382.48

Note that the evaluation of the effective parameters is rather approximate and these values can noticeable deviate
from those which can be directly deduced from the calculated spectra. However, such an information usually
provides the proper order of magnitude of the effective vibronic broadening and Stokes shift. As indicated in
the program output above, the effective bandshape has predominantly a Gaussian character which varies with the
temperature so that 𝜎 = 1125 cm−1 (𝑇 = 0 K) and 𝜎 = 1414 cm−1 (𝑇 = 300 K). Indeed, as shown in Fig.
7.47 the absorption spectrum at 𝑇 = 300 K can be well fitted using Gaussian lineshape with 𝜎 = 1388 cm−1
(FWHM= 3270 cm−1). One can see that at higher temperatures the deviation between the spectrum and its Gauss
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fit becomes even smaller.

In molecules the normal distribution of the electronic transition energies in the ensemble would give rise to a
Gaussian bandshape of the absorption band. However, the corresponding standard deviation is expected to be
of the order of 100 cm−1, whereby a typical Gaussian bandwidth of the order of 1000 cm−1 appears to result
from unresolved vibronic progression. In general, this statement is supported by quantum chemical calculation of
the model parameters. In principle the effective bandwidth parameters can also be used for characterization and
assignement of individual electronic bands.

Fig. 7.47: Absorption spectrum (blue) for 𝑇 = 300 K generated after orca_asa run on the file example004.inp.
Red line represents the Gauss-fit of the calculated spectrum.

Example: Modelling of Absorption and Resonance Raman Spectra for the 1-1A𝑔 → 1-1B𝑢 Transi-
tion in trans-1,3,5-Hexatriene

The hexatriene molecule is characterized by 9 totally-symmetric normal modes which dominate vibrational struc-
ture in absorption and are active in rR spectra corresponding to the strongly dipole-allowed 1 −1 𝐴𝑔 → 1 −1 𝐵𝑢
transition around 40000 cm−1 . Except for some peculiarities related to the neglect of normal mode rotations in
the excited state the optical spectra are quite satisfactorily described by the IMDHO model.

The following input exemplifies simulation of absorption spectrum and rR spectra for an arbitrary predefined num-
ber of excitation energies.

#
# example005.inp
#
# input for simulation of absorption and resonance Raman spectra
# using experimental values of transition energy and displacement
# parameters corresponding to the strongly allowed 1-1Ag 1-1Bu transition
# in trans-1,3,5-hexatriene
#

(continues on next page)
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%sim
Model IMDHO

AbsRange 38000.0, 48000.0
NAbsPoints 2000
AbsScaleMode Rel

# resonance Raman intensities will be calculated
# for all vibrational states with excitation number
# up to RamanOrder:
RamanOrder 4

# excitation energies (cm**-1) for which rR spectra will be calculated:
RRSE 39500, 39800, 41400

# full width half maximum of Raman bands in rR spectra (cm**-1):
RRS_FWHM 10

RSRange 0, 5000 # spectral range for simulation of rR spectra (cm**-1)
NRRSPoints 5000 # number of points to simulate rR spectra (cm**-1)

end

$el_states
1

1 39800.0 150.00 0.0 1.0 0.0 0.0

$vib_freq_gs
9

1 354.0
2 444.0
3 934.0
4 1192.0
5 1290.0
6 1305.0
7 1403.0
8 1581.0
9 1635.0

$sdnc
9 1

1
1 0.55
2 0.23
3 0.23
4 0.82
5 0.485
6 0.00
7 0.085
8 0.38
9 1.32

After the orca_asa run the following files will be created:

• example005abs.dat contains the simulated absorption spectrum. It is shown in Fig. 7.48.

• example005.o4.rrs.39500.dat, example005.o4.rrs.39800.dat and example005.o4.rrs.
41400.dat contain the simulated rR spectra for excitation energies at 39500, 39800 and 41400 cm−1,
respectively. The suffix “o4” stands for the order of Raman scattering specified in the input by keyword
RamanOrder=4. The rR specta are shown in Fig. 7.49.
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• example005.o4.rrs.39500.stk, example005.o4.rrs.39800.stk and example005.o4.rrs.
41400.stk provide Raman shifts and intensities for each vibrational transition. Corresponding vibrational
states are specified by the quantum numbers of excited modes.

Fig. 7.48: Absorption spectrum corresponding to 1−1𝐴𝑔 → 1−1𝐵𝑢 transition in trans-1,3,5-hexatriene generated
after orca_asa run on the file example005.inp.
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Fig. 7.49: Resonance Raman spectra for 3 different excitation energies which fall in resonance with 1 −1 𝐴𝑔 →
1−1 𝐵𝑢 transition in trans-1,3,5-hexatriene.

NOTE

• By default the program provides rR spectra on an arbitrary scale since only relative rR intensities within a
single rR spectrum are of major concern in most practical cases. However, one can put rR spectra corre-
sponding to different excitation energies on the same intensity scale by providing the keyword RSISM=ASR
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in %sim block (RSISM – Raman Spectra Intensity Scaling Mode; ASR – All Spectra Relative). By default
RSISM=SSR (SSR – Single Spectrum Relative) for which each rR spectrum is normalized so that the most
intense band in it has intensity 1.0. The relative intensities of bands in rR spectra measured for different ex-
citation energies can be compared if they are appropriately normalized relative to the intensity of a reference
signal (e.g. Raman band of the solvent). We also keep in mind the possibility to extend our methodology in
order to provide the absolute measure of rR intensities in terms of the full or differential cross-sections.

• Within the harmonic model, for a single electronic state neither relative rR intensities nor absorption band-
shapes in the case of AbsScaleMode=Rel do depend on the values of the electronic transition dipole moment
(unless it is precisely zero).

In the example above resonance Raman spectra have been generated for all vibrational transitions with total ex-
citation number up to the value specified by the parameter RamanOrder. Its is also possible to make explicit
specification of vibrational states corresponding to various fundamental, overtone and combination bands via the
$rr_vib_states block. In such a case rR spectra involving only these vibrational transitions will be generated
separately.

$rr_vib_states 5 # total number of vibrational transitions
1

modes 1
quanta 1; # final vibrational state for the fundamental band corresponding to mode 1

2
modes 9
quanta 1; # final vibrational state for the fundamental band corresponding to mode 9

3
modes 3, 4
quanta 1, 1; # final vibrational state for the combination band involving single

# excitations in modes 3 and 4
4

modes 5
quanta 3; # final vibrational state for the second overtone band corresponding to

# mode 5
5

modes 1, 5,9
quanta 1,2, 1; # final vibrational state for the combination band involving single

# excitations in modes 1 and 2, and double excitation in mode 5

Each vibrational transition is specified via the subblock which has the following structure:

k
modes m1,m2,...mn
quanta q1,q2,...qn;

This means that the 𝑘-th transition is characteriezed by excitation numbers 𝑞𝑖 for modes 𝑚𝑖 so that corresponding
Raman shift is equal to 𝜈 =

∑︀
𝑞𝑖𝜈𝑖, where 𝜈𝑖 is vibrational frequency of the mode 𝑚𝑖.

After the orca_asa run the following files will be created in addition:

• example005.us.rrs.39500.dat, example005.us.rrs.39800.dat and example005.us.rrs.
41400.dat contain the simulated rR spectra involving only vibrational transitions specified in the
$rr_vib_states block, for excitations energies at 39500, 39800 and 41400 cm−1, respectively. The suffix
“us” stands for “User specified vibrational States”.

• example005.us.rrs.39500.stk, example005.us.rrs.39800.stk and example005.us.rrs.
41400.stk provide Raman shifts and intensities for each vibrational transition specified in the
$rr_vib_states block.
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Example: Modelling of Absorption Spectrum and Resonance Raman Profiles for the 1-1A𝑔 →
1-1B𝑢 Transition in trans-1,3,5-Hexatriene

The following example illustrates an input for simulation of absorption bandshape and resonance Raman profiles
(RRP):

#
# example006.inp
#
# input for simulation of absorption and resonance Raman profiles
# using experimental values of transition energy and displacement
# parameters corresponding to the strongly allowed 1-1Ag 1-1Bu transition
# in trans-1,3,5-hexatriene
#

%sim
Model IMDHO

AbsRange 38000.0, 48000.0
NAbsPoints 2000
AbsScaleMode Rel

RRPRange 38000.0, 48000.0 # spectral range for simulation of
# rR profiles (cm**-1)

NRRPPoints 2000 # number of points for simulation of rR profiles
CAR 0.8

RamanOrder 2
end

$el_states
1

1 39800.0 150.00 0.0 1.0 0.0 0.0

$vib_freq_gs
9

1 354.000000
2 444.000000
3 934.000000
4 1192.000000
5 1290.000000
6 1305.000000
7 1403.000000
8 1581.000000
9 1635.000000

$sdnc
9 1

1
1 0.55
2 0.23
3 0.23
4 0.82
5 0.485
6 0.00
7 0.085
8 0.38
9 1.32

$rr_vib_states 5 # total number of vibrational transitions
1

(continues on next page)

7.41. Simulation and Fit of Vibronic Structure in Electronic Spectra, Resonance Raman
Excitation Profiles and Spectra with the orca_asa Program

905



ORCA Manual, Release 6.0

(continued from previous page)

modes 1
quanta 1;

2
modes 9
quanta 1;

3
modes 3, 4
quanta 1, 1;

4
modes 5
quanta 3;

5
modes 1, 5,9
quanta 1,2, 1;

The keyword RamanOrder=2will invoke generation of rR profiles for all vibrational transitions with total excitation
number up to 2 in the range of excitation energies specified by the keywords RRPRange and NRRPPoints. Likewise,
rR profiles for the vibrational states given in the $rr_vib_states block will be generated separately. Since in most
cases only relative rR intensities are important, and one would be interested to compare absorption bandshape and
shapes of individual rR profiles, the keyword CAR = 0.8 is used to scale rR profiles for all vibrational transitions
by a common factor in such a way that the ratio of the maximum of all rR intensities and the maximum of absorption
band is equal to 0.8.

After the orca_asa run the following files will be created:

• example006.abs.dat contains the simulated absorption spectrum (Fig. 7.50).

• example006.o1.rrp.dat and example006.o2.rrp.dat contain rR profiles for vibrational transitions
with total excitation numbers 1 and 2, respectively. RR profiles for all fundamental bands (from the file
example006.o1.rrp.dat) are shown in Fig. 7.50.

• example006.o1.info and example006.o1.info contain specification of vibrational transitions with to-
tal excitation numbers 1 and 2, respectively, as well as corresponding Raman shifts.

• example006.us.rrp.1.dat–example006.us.rrp.5.dat contain rR profiles for vibrational transitions
1–5 specified in the $rr_vib_states block.
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Fig. 7.50: Absorption spectrum and resonance Raman profiles of fundamental bands corresponding to 1−1𝐴𝑔 →
1−1 𝐵𝑢 transition in trans-1,3,5-hexatriene.

7.41.3 Fitting of Experimental Spectra

Example: Gauss-Fit of Absorption Spectrum

An absorption spectrum basically consists of a number of absorption bands. Each absorption band corresponds to
a transition of the ground electronic state to an excited electronic state. In molecules such transitions are usually
considerably broadened. In many cases there will be overlapping bands and one would need to deconvolute the
broad absorption envelope into contributions from individual transitions. Within the “Simple model” the orca_asa
program enables fit of an absorption spectrum with a sum of standard lineshape functions (Gaussian, Lorentzian)
or more general Voigt functions. In most cases, one simply performs a “Gauss-Fit”. That is, it is assumed that the
shape of each individual band is that of a Gaussian function. Then one applies as many (or as few) Gaussians as
are necessary for an accurate representation of the absorption envelope. In order to explain the fitting procedures
within the “Simple model” let us consider an experimental absorption spectrum in Fig. 7.51:
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Fig. 7.51: Experimental absorption spectrum. Bars indicate transition energies which were used for the initial
guess in the input for spectral fitting.

As shown in Fig. 7.51 one can identify roughly 7 electronic bands. The initial estimates of transition energies
corresponding to the maxima and shoulders in the absorption spectrum (indicated by bars in Fig. 7.51) and rather
approximate values of inhomogeneous broadening and transition dipole moment components are specified in the
$el_states block of the input file for the spectral fitting:

# example007.inp
#
# Input file for fitting of experimental absorption spectrum
#

%sim
model Simple

end

%fit
Fit true # Global flag to turn on the fit
AbsFit true # Flag to include absorption into the fit
method Simplex
WeightsAdjust true

AbsRange 0.0, 100000.0 # absorption spectral range to be included in the fit;
# in the present case all experimental points
# will be included

AbsName "absexp.dat" # name of the file containing experimental
# absorption spectrum in a simple two-column
# ASCII format

(continues on next page)
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ExpAbsScaleMode Ext # This keyword indicates that the experimental
# absorption intensity is given in terms of
# the extinction coefficient. This is important
# for the proper fitting of transition dipole
# moments and oscillator strengths

NMaxFunc 10000 # maximum number of function evaluations in simplex
# algorithm

MWADRelTol 1e-5 # Relative Tolerance of the Mean Weighted Absolute
# Difference (MWAD) function which specifies the
# convergence criterion

E0Step 500.00 # initial step for the transition energies
# in the simplex fitting

TMStep 0.5 # initial step for the transition dipole moments
# in the simplex fitting

E0SDStep 500.0 # initial step for the inhomogeneous linewidth (Sigma)
# in the simplex fitting

end

# ! Parameters specified in the $el_states block
# are used as initial guess in the fit

#---------------------------------------------------------------------------
# Transition Gamma Sigma Transition Dipole Moment (atomic unit)
# Energy (cm**-1) (cm**-1) (cm**-1) Mx My Mz
#---------------------------------------------------------------------------

$el_states
7

1 11270 0.0 1000.00 1.0000 0.0000 0.0000
2 15100 0.0 1000.00 1.0000 0.0000 0.0000
3 20230 0.0 1000.00 1.0000 0.0000 0.0000
4 27500 0.0 1000.00 1.0000 0.0000 0.0000
5 31550 0.0 1000.00 1.0000 0.0000 0.0000
6 37070 0.0 1000.00 1.0000 0.0000 0.0000
7 39800 0.0 1000.00 1.0000 0.0000 0.0000

# the integer values specified in $el_states_c block indicate parameters
# in the $el_states block to be varied
$el_states_c
7

1 1 0 1 1 0 0
2 2 0 2 2 0 0
3 3 0 3 3 0 0
4 4 0 4 4 0 0
5 5 0 5 5 0 0
6 6 0 6 6 0 0
7 7 0 7 7 0 0

The functionality of the constraint block $el_states_c should be understood as follows: 1) 0 flag indicates that
the corresponding parameter in the $el_state block will not be varied in the fitting; 2) if the number correspond-
ing to a certain parameter coincides with the number of the corresponding electronic state this parameter will be
varied independently. Thus, the block $el_states_c in the input indicates that all transition energies, inhomo-
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geneous linewidths and x-components of the transition electric dipole moment will be varied independently, while
homogeneous linewidths, y- and z-components of the transition dipole moment will be fixed to their initial values.

The following considerations are important:

• Since in conventional absorption spectroscopy one deals with the orientationally averaged absorption cross-
section, the signal intensity is proportional to the square of the transition electric dipole moment |M|2. Thus,
the intensities do not depend on the values of the individual components of M as long as |M|2 = const.
Therefore, we have allowed to vary only 𝑀𝑥 components. Otherwise there can be problems in convergence
of the fitting algorithm.

• The sum of the weights of experimental points which enter the mean absolute difference function employed
in the minimization is always kept equal to the number of experimental points. In the case of equidistant
experimental photon energies all weights are assumed to be equal. However, in experimental electronic
spectra the density of spectral points can increase significantly upon going from high- to low-energy spectral
regions, which is due to the fact that experimental absorption spectra are initially acquired on the wavelength
scale. In such a case the quality of the fit can be noticeably biased towards low-energy spectral region.
Therefore, it is advisable to adjust relative weights of experimental points according to the their density
which is controlled by the keyword WeightsAdjust in the %fit block. Although this parameter is not
crucial for the present example, in general, it will provide a more balanced fit.

• The parameters E0Step, TMStep, E0SDStep in the %fit block specify the initial dimension of the simplex
in the space of𝐸𝑇 ,M, 𝜎 and should roughly correspond to the expected uncertainty of initial guess on these
parameters in the $el_states block relative to their actual values. The quality of the fit can noticeably
deteriorate if the parameters specifying initial steps are too low or too high.

The fit run of orca_asa on file example007.inp will converge upon approximately 3600 function evaluations
(for MWADRelTol=1e-5). The results of the fit will be stored in file example007.001.inp which has the same
structure as the input file example007.inp. Thus, if the fit is not satisfactory and/or it is not fully converged it
can be refined in a subsequent orca_asa run upon which file example007.002.inp will be created, and so on.
Some model parameters in intermediate files can be be additionally modified and/or some constraints can be lifted
or imposed if so desired. The output file example007.001.inp will contain fitted model parameters stored in the
$el_states block:

$el_states
7

1 11368.24 0.00 732.50 1.6290 0.0000 0.0000
2 15262.33 0.00 495.17 -0.2815 0.0000 0.0000
3 19500.08 0.00 1023.39 0.2300 0.0000 0.0000
4 26969.01 0.00 1832.30 1.4089 0.0000 0.0000
5 31580.41 0.00 1440.87 1.8610 0.0000 0.0000
6 35769.07 0.00 1804.02 1.5525 0.0000 0.0000
7 39975.11 0.00 1909.38 2.4745 0.0000 0.0000

The overall quality of the fit is determined by the parameter MWAD which upon convergence reaches the value of
≈0.009 (MWAD stands for Mean Weighted Absolute Difference).

After the orca_asa run files absexp.fit.dat and absexp.fit.as.dat will be created. Both files contain the
experimental and fitted spectra which are shown in Fig. 7.52 . In addition, the file absexp.fit.as.dat will
contain individual contributions to the absorption spectrum corresponding to different excited states.
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Fig. 7.52: Comparison of the experimental (black curve) and fitted (red) absorption spectra corresponding to the fit
run of orca_asa on the file example007.inp. Blue curves represent individual contributions to the absorption
spectrum from each state.

Since there is a noticeable discrepancy between the fitted and experimental spectra around 13000 cm−1 (Fig. 7.52)
it is worthwhile to refine the fit after adding parameters for a new state in the file example007.001.inp:

$el_states
8

1 11368.24 0.00 732.50 1.6290 0.0000 0.0000
... ... ...

8 13280.00 0.00 1000.00 1.000 0.0000 0.0000

$el_states_c
8

1 1 0 1 1 0 0
... ... ...

8 8 0 8 8 0 0

Actually, the character of the discrepancy in the present case is very similar to that in Fig. 7.49 (section Example:
Modelling of Effective Broadening, Effective Stokes Shift and Temperature Effects in Absorption and Fluorescence
Spectra within the IMDHO Model) where a vibronically broadened absorption spectrum was fitted with a Gaussian
lineshape. Thus, the poor fit in the region around 1300 cm−1 is most likely due to the essentially asymmetric
character of the vibronic broadening rather than to the presence of another electronic band.

As shown in Fig. 7.53 the refined fit leads to much better agreement between the experimental and fitted absorption
spectra (MWAD=0.0045).
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Fig. 7.53: Comparison of the experimental (black) and fitted (red) absorption spectra corresponding to the fit run
of orca_asa on the file example007.001.inp. Blue curves represent individual contributions to the absorption
spectrum from each state.

Due to some peculiarities of the simplex algorithm for function minimization, you can still refine the fit by rerunning
orca_asa on the file example007.002.inp! This leads to an even lower value of the parameter MWAD= 0.0038,
and therefore to better agreement of experimental and fitted spectra (even though the previous run has been claimed
to be converged).

It is also possible to perform a fit using the same value of inhomogeneous linewidth for all electronic states. For
this purpose one needs to choose as a guess the same linewidth parameters in the $el_states block:

$el_states
8

1 11118.58 0.00 1000.0 1.0687 0.0000 0.0000
2 13673.38 0.00 1000.0 -0.5530 0.0000 0.0000
3 21267.40 0.00 1000.0 0.3675 0.0000 0.0000
4 27024.71 0.00 1000.0 1.4041 0.0000 0.0000
5 31414.74 0.00 1000.0 1.7279 0.0000 0.0000
6 35180.77 0.00 1000.0 1.6246 0.0000 0.0000
7 39985.52 0.00 1000.0 2.5708 0.0000 0.0000
8 11665.01 0.00 1000.0 1.2332 0.0000 0.0000

In addition the constraint block should be modified as follows:

$el_states_c
8

1 1 0 1 1 0 0
2 2 0 1 2 0 0
3 3 0 1 3 0 0
4 4 0 1 4 0 0
5 5 0 1 5 0 0

(continues on next page)
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6 6 0 1 6 0 0
7 7 0 1 7 0 0
8 8 0 1 8 0 0

The constraint parameters for the inhomogeneous broadening were chosen to be 1, which means that formally 𝜎1
corresponding to the first state is varied independently while the linewidths {𝜎𝑖} for other bands are varied in such
a way that the ratios 𝜎𝑖/𝜎1 are kept fixed to their initial values, whereby the same linewidth parameter will be used
for all states.

Fig. 7.54: Comparison of the experimental (black) and fitted (red) absorption spectra corresponding to the fit run
of orca_asa on the file example007.002.inp in which equal broadening was assumed for all electronic bands.
Blue curves represent individual contributions to the absorption spectrum from each state.

One can see (Fig. 7.54) that the assumption of equal linewidths for all electronic bands leads to a rather pronounced
deterioration of the quality of the fit in the low-energy spectral range (MWAD=0.017). Apparently, this discrepancy
can be fixed assuming more electronic states at higher energies.

NOTE

• The homogeneous linewidth parameters can also be included in the fit in a similar way. However, one can
see that in most cases they appear to be much smaller than corresponding Gaussian linewidth parameters.

• Gauss-fit of absorption spectra is coventionally performed assuming the same linewidth parameters for all
bands. However, since a large portion of Gaussian broadening is mainly due to the unresolved vibronic
structure in the spectra which can significantly vary depending on the nature of transition, the assumption of
unequal Gaussian bandwidths seems to be a physical one.
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Example: Fit of Absorption and Resonance Raman Spectra for 1-1A𝑔 → 1-1B𝑢 Transition in trans-
1,3,5-Hexatriene

Below we provide an example of the fit of the lineshape parameters and {∆𝑚} corresponding to the strongly dipole-
allowed 1-1A𝑔 →1-1B𝑢 transition in hexatriene. It is known that the most intense bands in rR spectra correspond
to the most vibronically active in absorption spectrum. For the IMDHO model this correlation is determined by
the values of {∆𝑚}. Thus, the larger ∆, the larger is the rR intensity of a given mode and the more pronounced is
the progression in the absorption spectrum corresponding to this mode. In principle, if all vibrational transitions in
absorption are well resolved it is possible to determine {∆𝑚} by a fit of the absorption spectrum alone. In practice
this task is ambiguous due to the limited resolution of the experimental absorption spectra. The observation of
a rR spectrum enables the identification of the vibrational modes that are responsible for the progression in the
absorption spectrum, as well as a quantitative analysis in terms of {∆𝑚}. The file example006.inp provides a
brute-force example on how to approach the fit employing the minimal possible experimental information: 1) An
absorption spectrum; 2) relative rR intensities of fundamental bands for a given excitation energy. The rR spectrum
upon the excitation in resonance with the 0-0 vibronic band at 39809 cm−1 is shown in Fig. 7.43.

Fig. 7.55: Experimental Resonance Raman spectrum corresponding to 1-1A𝑔 → 1-1B𝑢 transition in trans-1,3,5-
hexatriene.

The experimental rR spectrum has enabled the identification of seven vibrational modes that give rise to the most
intense resonance Raman bands. Therefore, they are expected to have the largest excited-state displacements and
the most pronounced effect on the vibrational structure of the absorption spectrum. Their vibrational frequencies
have been entered as input for the fit as shown below:

#
# example008.inp
#
# Input for fit of absorption and resonance Raman spectra
# corresponding to the strongly allowed 1-1Ag 1-1Bu transition
# in 1,3,5 trans-hexatriene.

(continues on next page)
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#
# Parameters to be varied:
# 1) adiabatic minima transiton energy
# 2) homogeneous linewidth (Gamma)
# 3) dimensionless normal coordinate displacements of the
# excited-state origin
#

%sim
Model IMDHO

end

%fit

Fit true # boolean parameter to switch on the fit

# boolean parameter to include experimental absorption
# spectrum in the fit:
AbsFit true

# boolean parameter to include experimental rR spectra
# specified in $rrs_exp block in the fit:
RRSFit true

AbsExpName "hex-abs.dat" # name of the file with experimental absorption
# spectrum

# the following value of keyword ExpAbsScaleMode
# indicates that only the shape of absorption band
# but not its total intensity will be accounted in the fit:
ExpAbsScaleMode Rel

# the weight of absorption relative to the total weight of
# rR intensities in the difference function to be minimized:
CWAR 5.0

NMaxFunc 1000 # maximum number of function evaluations in simplex
# algorithm

MWADRelTol 1e-4 # Relative Tolerance of the Mean Weighted Absolute
# Difference (MWAD) function which specifies the
# convergence criterion

SDNCStep 1.0

end

# The values specified in $el_states block serve as initial guess in the fit
$el_states
1

1 40000.0 200.00 0.0 1.0 0.0 0.0

# the integer values specified in $el_states_c block indicate parameters
# in $el_states block to be varied
$el_states_c
1

1 1 1 0 0 0 0

# 7 totally symmetric vibrations which give rise to the most
# intense bands in the rR spectra are included into analysis.

(continues on next page)
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# Experimental values of vibration frequencies are given:
$vib_freq_gs
7

1 354.0
2 444.0
3 934.0
4 1192.0
5 1290.0
6 1403.0
7 1635.0

# Initial guess for the values of dimensionless normal
# coordinate displacements of the excited-state origin
$sdnc
7 1

1
1 0.0
2 0.0
3 0.0
4 0.0
5 0.0
6 0.0
7 0.0

# the integer values specified in $sdnc_c block indicate parameters
# in $sdnc block to be varied
$sdnc_c
7 1

1
1 1
2 2
3 3
4 4
5 5
6 6
7 7

# specification of vibrational transitions and their intensities
# in experimental rR spectra:
$rrs_exp
1 # number of rR spectra
1 1 # start of the block specifying the 1st rR spectrum

Ex 39809.0 # excitation energy for the first rR spectrum
NTr 7 # number of vibrational transitions for which intensities are

# provided
1

int 10.0 1.0
modes 1
quanta 1;

2
int 5.0 1.0
modes 2
quanta 1;

3
int 1.5 1.0
modes 3
quanta 1;

4
int 21.0 1.0
modes 4

(continues on next page)

916 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

(continued from previous page)

quanta 1;
5

int 7.5 1.0
modes 5
quanta 1;

6
int 2.0 1.0
modes 6
quanta 1;

7
int 46.0 1.0
modes 7
quanta 1;

The input of rR intensities for an arbitrary number of excitation energies follows the keyword $rrs_exp block:

$rrs_exp
1 # number of rR spectra
1 1

The first “1” in the last line denotes the number of the rR spectrum for which specification starts below. If the
second number is the same as the number of the spectrum, then it means that only relative intensities for the first
rR spectrum are meaningful in the fit. If several spectra are given in the input then the second number may have a
different value, e.g.:

$rrs_exp
3 # number of rR spectra
1 2
...

This input is to be interpreted as indicating that 3 rR spectra are provided and the relative intensities for the first
spectrum are given on the same scale as the second one that will be accounted for in the fit. The value of the exci-
tation energies and the number of vibrational transitions specified are indispensable within the blocks specifying
intensities for each rR spectrum.

Following the number of vibrational transitions given by the keyword NTr one has to specify each vibrational
transition and its intensity. Thus, in the present case there are seven subblocks with the following structure:

k int I W
modes m1,m2,...mn
quanta q1,q2,...qn;

This means that the 𝑘-th transition has intensity 𝐼 and weight 𝑊 in the mean absolute difference function that is
used for the minimization (𝑊 is an optional parameter). The following 2 lines specify the vibrational transitions
by providing excitation numbers 𝑞𝑖 for modes𝑚𝑖 so that the corresponding Raman shift is equal to 𝜈 =

∑︀
𝑞𝑖𝜈𝑖

, where

𝜈𝑖 is vibrational frequency of the mode 𝑚𝑖.

The parameters that are to be varied are specified within the constraint blocks $el_states_c and $sdnc_c. Both
blocks have the same structure and number of parameters as $el_states and $sdnc, respectively. A parameter
from the $el_states block is supposed to be independently varied if its counterpart from the $el_states_c
block is equal to the number of the electronic state. Likewise, a parameter from the $sdnc block is supposed to
be independently varied if its counterpart from the $sdnc_c block is equal to the number of the normal mode.
Model parameters that are set to 0 in the corresponding constraint blocks are not varied in the fit. The values of
the following parameters may be important for the quality of the fit:

• CWAR in the %fit block specifies the weight of absorption relative to the weight of rR intensities in the
difference function to be minimized. If this parameter was not specified the fit would be almost insensitive
to the rR intensities in the input, since typically the number of experimental absorption points is much larger
than the number of rR transitions in the input. In most cases the value of CWAR in the range 1.0–5.0 is a good
choice since the error in the measured experimental intensity is expected to be much smaller for absorption

7.41. Simulation and Fit of Vibronic Structure in Electronic Spectra, Resonance Raman
Excitation Profiles and Spectra with the orca_asa Program

917



ORCA Manual, Release 6.0

than for resonance Raman.

• SDNCStep in the %fit block specifies the initial dimension of the simplex in the space of {∆𝑚} and should
roughly correspond to the expected uncertainty of initial guess on {∆𝑚} in the $sdnc block compared to
their actual values. You can notice in the present example that if this parameter is too large (>2.0) or too
small (<0.4) the quality of the fit may significantly deteriorate

• Although the default initial dimensions of the simplex have reasonable values for different types of parame-
ters it may turn out to be helpful in some cases to modify the default values:

FREQGStep 10.0 # ground-state vibrational frequencies
FREQEStep 10.0 # excited-state vibrational frequencies
E0Step 300.0 # transition energies
SSStep 20.0 # Stokes shift
TMStep 0.5 # electronic transition dipole moment
GammaStep 50.0 # homogeneous linewidth
E0SDStep 50.0 # inhomogeneous linewidth
SDNCStep 1.0 # origin shift along dimensionless normal coordinate

The fit run of orca_asa on the file example008.inp will converge upon approximately 700 function evaluations
(for MWADRelTol=1e-4). The results of the fit will be stored in file example008.001.inp which has the same
structure as the input file example008.inp. Thus, if the fit is not satisfactory and/or it is not fully converged it
can be refined in subsequent orca_asa run upon which file example008.002.inp will be created, and so on.
Some model parameters in intermediate files can be be additionally modified and/or some constraints can be lifted
if so desired. The output file example008.001.inp will contain fitted displacement parameters {∆𝑚}stored in
the $sdnc block:

$sdnc
7 1

1
1 0.675000
2 -0.194484
3 -0.217527
4 0.811573
5 0.529420
6 -0.149991
7 1.314915

In the present example, these parameters are actually in very close agreement with those published for the hexatriene
molecule!

The overall quality of the fit is determined by the parameter MWAD which upon convergence reaches the value of
≈0.027. The fitted rR intensities are presented in the commented lines next to the experimental rR intensities in
file example008.001.inp:

$rrs_exp
1

1 1 3.495285e+001
Ex 39809.00
NT 7

1
Int 10.0 1.0 # simulated intensity: 1.000982e+001
modes 1
quanta 1;

2
Int 5.0 1.0 # simulated intensity: 8.976285e-001
modes 2
quanta 1;

3
Int 1.5 1.0 # simulated intensity: 1.255880e+000
modes 3
quanta 1;

(continues on next page)
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4
Int 21.0 1.0 # simulated intensity: 1.761809e+001
modes 4
quanta 1;

5
Int 7.5 1.0 # simulated intensity: 7.499749e+000
modes 5
quanta 1;

6
Int 2.0 1.0 # simulated intensity: 6.014466e-001
modes 6
quanta 1;

7
Int 46.0 1.0 # simulated intensity: 4.600071e+001
modes 7
quanta 1;

The file hex-abs.fit.dat will contain the experimental and fitted absorption spectra in ASCII format which can be
plotted in order to visualize the quality of absorption fit (Fig. 7.56).

Fig. 7.56: Experimental (black) and fitted (red) absorption spectrum corresponding to 1-1A𝑔 → 1-1B𝑢 transition
in 1,3,5 trans-hexatriene.

NOTE

• The more experimental rR intensities are included in the analysis the more reliable is the fit. In principle it is
possible to obtain fully consistent results even if only a limited number of vibrational transitions is provided.
However, in such a case it is desirable to include into analysis at least a single Raman transition involving
the mode for which ∆ is to be determined.
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• The quality of the fit can be improved if the IMDHOFA model is invoked and excited-state vibrational fre-
quencies are allowed to vary.

• Due to the initial guess and dimension of the simplex, as well as some peculiarities of the simplex algorithm
for function minimization, you can still refine the fit by rerunning orca_asa on file example008.001.inp
that may lead to an even lower value of the parameter MWAD = 0.021, and therefore to better agreement of
experimental and fitted spectra (even though the previous run has been claimed to be converged).

• In this respect it appears to be wise to perform the fit in 3 steps:

1. Fit the preresonance region below the 0-0 vibronic band with a single Lorentzian band, from which
the adiabatic transition energy 𝐸0, and homogeneous linewidth Γ are obtained. The range for fit of the
absorption spectrum can be specified by the AbsRange keyword in the %fit block.

2. Fix 𝐸0 and Γ, and optimize {∆𝑚} fitting the entire spectral range and rR intensities.

3. Lift constraints on 𝐸0 and Γ, and reoptimize simultaneously all parameters.

Example: Single-Mode Fit of Absorption and Fluorescence Spectra for 1-1A𝑔 → 1-1B2𝑢 Transition
in Tetracene

In this section we provide an example and discuss the most important aspects of joint fit of fluorescence and
absorption spectra. Fig. 7.57 displays the experimental emission and absorption spectra corresponding to 1-1A𝑔
→ 1-1B2𝑢 transition in tetracene.

Fig. 7.57: Deconvoluted absorption (red) and fluorescence (blue) spectra of tetracene in cyclohexane upon the
assumption of a single vibronically active mode. The black solid lines represent experimental spectra.

Both spectra show pronounced effective vibrational progressions that are dominated by 3 and 5 peaks, respectively.
As can be shown on the basis of quantum chemical calculations this progression has essentially multimode char-
acter. However, the experimental spectra can be well fitted under the assumption of a single vibronically active
mode. The input has the following structure:
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#
# example009.inp
#
# Parameters to be varied:
# 1) adiabatic minima transition energy
# 2) homogeneous and inhomogeneous linewidths
# 3) normal mode frequency and corresponding dimensionless displacement of the
# excited-state origin
#

%sim
Model IMDHO
EnInput E0 # we assume adiabatic minima separation energies

end

%fit
Fit true # global flag to turn on the fit
AbsFit true # flag to include absorption spectrum into the fit
FlFit true # flag to include fluorescence spectrum into the fit

WeightsAdjust true

AbsRange 19000.0, 28000.0 # spectral range for absorption
# which will be included into the fit

FlRange 17800.0, 22300.0 # spectral range for absorption
# which will be considered in the fit

AbsName "absexp.dat" # name of the file containing experimental
# absorption spectrum in a simple two-column
# ASCII format

FlName "flexp.dat" # name of the file with experimental fluorescence spectrum

ExpAbsScaleMode Rel # flags indicating that only relative shapes of the
ExpFlScaleMode Rel # absorption and fluorescence bands will be fitted.

CWAF 1.000 # important parameter to have a balanced relative quality of fit
# of fluorescence and absorption

NMaxFunc 10000 # maximum number of function evaluations in simplex
# algorithm

MWADRelTol= 0.0001 # Relative Tolerance of the Mean Weighted Absolute
# Difference (MWAD) function which specifies the
# convergence criterion

TMStep 0.5 # initial step for the transition dipole moments
# in the simplex fitting

E0SDStep 500.0 # initial step for the inhomogeneous linewidth (Sigma)

FREQGStep 100.00 # initial step for the vibrational frequencies

E0Step 1000.0 # initial step for the transition energies

SSStep 10.0 # initial step for the Stokes shift

GammaStep 100 # initial step for the homogeneous linewidth

SDNCStep 0.5 # initial step for the displacement parameter

(continues on next page)
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end

$el_states
2

1 21100.00 100.00 100.00 1.0000 0.0000 0.0000
2 24000.00 100.00 1000.00 1.0000 0.0000 0.0000

$el_states_c
2

1 1 1 1 0 0 0
2 2 2 2 2 0 0

$abs_bool
2

1 1
2 1

$fl_bool
2

1 1
2 0

$ss
2

1 100.000000
2 0.000000

$ss_c
2

1 1
2 0

$vib_freq_gs
1

1 1500.0

$vib_freq_gs_c
1

1 1

$sdnc
1 2

1 2
1 2.0000000 0.000000

$sdnc_c
1 2

1 2
1 1 0

The parameter CWAF=1.0 in the %fit block specifies the weight of absorption relative to the weight of fluorescence
in the difference function to be minimized. If this parameter was not specified the quality of the fit would be biased
towards the spectrum with a larger number of experimental points. In some typical situations where the error in the
measured experimental intensity is expected to be smaller for absorption than for emission it is desirable to choose
the value of CWAF to be more than 1.0.

In order to account for a broad featureless background signal in the absorption spectrum above 24000 cm−1, the
second band was included into the analysis and approximated with a Voigt lineshape which means also that the
corresponding frequency in the $vib_freq_gs block and displacement parameter in the $sdnc block are fixed to
zero in the fit. Thus, the $el_states block contains an initial guess on the transition energies, transition electric
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dipole moments and linewidth parameters for 2 states:

$el_states
2

1 21100.00 100.00 100.00 1.0000 0.0000 0.0000
2 24000.00 100.00 1000.00 1.0000 0.0000 0.0000

The initial value of the adiabatic minima separation energy for the first state was approximated by the energy
corresponding to the first vibronic peak in the absorption spectrum (21100 cm−1). The transition energies and
linewidth parameters are varied independently as indicated in the $el_states_c block. Since we allow to fit only
bandshapes, but not the overall intensities of the spectra, only relative absolute values of the transition electric
dipole moments of two bands are important. Therefore it is reasonable to fix all components of the transition
moment for the first state and vary only 𝑀𝑥 component for the second one:

$el_states_c
2

1 1 1 1 0 0 0
2 2 2 2 2 0 0

Since we assume the absorption by both states and emission only from the first one, it is necessary to include
Boolean arrays $abs_bool and $fl_bool which specify states which will be included in the treatment of the absorp-
tion and fluorescence spectra, respectively:

$abs_bool
2

1 1 # 1 indicates that the corresponding state will be included in the calculation of
2 1 # absorption

$fl_bool
2

1 1
2 0 # 0 indicates that the corresponding state will be excluded from the calculation

# of emission spectrum

We need also to vary the value of vibrational frequency of the mode which determines separation of vibrational
peaks in the spectra. This is done via the constraint block $vib_freq_gs_c:

$vib_freq_gs_c
1

1 1

Note that it is meaningless to include into the treatment the Stokes shift for the second state which give rise to the
background signal in the absorption since the corresponding emission is not present. Therefore 𝜆 for the second
state is fixed to zero as indicated in the $ss block and its constraint counterpart $ss_c:

$ss
2

1 100.000000 # initialization of the Stokes shift for the 1st electronic state
2 0.000000

$ss_c
2

1 1 # the Stokes shift for the 1st electronic state will be varied in the fit
2 0 # the Stokes shift for the 2nd electronic state will be fixed in the fit

The fit run of orca_asa on file example009.inp will converge upon approximately 700 function evaluations
(for MWADRelTol=1e-4). The file example009.001.inp will contain the fitted effective values of the vibrational
frequency and dimensionless displacement: 𝜔 = 1404 cm−1, ∆ = 1.35. One can notice that the fit is rather
poor in the low- and high-energy edges of the absorption and fluorescence spectra, respectively (Fig. 7.57). The
source of this discrepancy is the single-mode approximation which was employed here. The quality of the fit can
be significantly improved assuming several modes with non-zero displacement parameters. Note that in such a case
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the proper guess on the number of active modes and corresponding dimensionless displacements can be deduced
from quantum chemical calculations.

7.41.4 Quantum-Chemically Assisted Simulations and Fits of Optical Band-
shapes and Resonance Raman Intensities

In this section we finally connect the spectra simulation algorithms to actual quantum chemical calculations and
outline a detailed approach for the analysis of absorption, fluorescence and resonance Raman spectra within the
IMDHO model. Our procedure becomes highly efficient and nearly automatic if analytical excited state derivatives
with respect to nuclear displacements are available. However, this availability is not mandatory and hence, spectral
predictions may as well be achieved by means of normal mode scan calculations for high-level electronic structure
methods for which analytic gradients have not been implemented.

Example: Quantum-Chemically Assisted Analysis and Fit of the Absorption and Resonance Ra-
man Spectra for 1-1A𝑔 → 1-1B𝑢 Transition in trans-1,3,5-Hexatriene

The following input file for an ORCA run invokes the calculation of the excited-state origin displacements along all
normal modes by means of energy and excited state gradient calculations at the ground-state equilibrium geometry.
The method is valid for the IMDHO model for which the excited-state energy gradient along a given normal mode
and corresponding origin shift are related in a very simple way.

#
# example010.inp
#
# TDDFT BHLYP Normal Mode Gradient Calculation
#
# The keyword NMGrad invokes the normal mode gradient calculation
#
! RKS BHandHLYP TightSCF SV(P) NMGrad

%cis NRoots 1
triplets false

end

%rr
# the nuclear Hessian must have been calculated before - for example by a
# DFT calculation.
HessName= "hexatriene.hess"

states 1 # Perform energy-gradient calculations for the 1st
# excited state.

Tdnc 0.005 # Threshold for dimensionless displacements to be
# included in the input file for spectral simulations
# generated at the end of the program run.
# By default Tdnc= 0.005

ASAInput true # Generate the input file for spectra simulations
end

* xyz 0 1
C -0.003374 0.678229 0.00000
H -0.969173 1.203538 0.00000
C 1.190547 1.505313 0.00000
H 2.151896 0.972469 0.00000
C 1.189404 2.852603 0.00000
H 0.251463 3.423183 0.00000
H 2.122793 3.426578 0.00000
C 0.003374 -0.678229 0.00000
H 0.969172 -1.203538 0.00000

(continues on next page)
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C -1.190547 -1.505313 0.00000
H -2.151897 -0.972469 0.00000
C -1.189404 -2.852603 0.00000
H -0.251463 -3.423183 0.00000
H -2.122793 -3.426578 0.00000

*

In the ORCA run the TDDFT excited state gradient calculations are performed on top of a TDDFT calculation.
Note, that the numbers of the excited-states which have to be included into analysis and input file for spectral
simulations must be specified after the States keyword in the %rr block. They should also be consistent with the
required number of roots in the %tddft block. The 1-1B𝑢 excited state appears to be the first root in the TDDFT
calculation. Therefore, NRoots=1 in the %tddft block, and States=1 in the %rr block. One should also provide
the name of the file containing the nuclear Hessian matrix via the HessName keyword in the %rr block. Here we
used the .hess file obtained in a frequency calculation at the BHLYP/SV(P) level of theory.

After the ORCA calculation you will find in your directory a file called example010.asa.inp that is appropriate
to be used together with the orca_asa program as defined in the preceding sections.

#
# example010.asa.inp
#
# ASA input
#
%sim

model IMDHO
method Heller
AbsRange 5000.0, 100000.0
NAbsPoints 0

FlRange 5000.0, 100000.0
NFlPoints 0

RRPRange 5000.0, 100000.0
NRRPPoints 0

RRSRange 0.0, 4000.0
NRRSPoints 4000

RRS_FWHM 10.0

AbsScaleMode Ext
FlScaleMode Rel
RamanOrder 0

EnInput E0

CAR 0.800

end

%fit
Fit false
AbsFit false
FlFit false
RRPFit fsalse
RRSFit false
method Simplex
WeightsAdjust true

AbsRange 0.0, 10000000.0

(continues on next page)
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FlRange 0.0, 10000000.0
RRPRange 0.0, 10000000.0
RRSRange 0.0, 10000000.0
AbsName ""
FlName ""

ExpFlScaleMode Rel
ExpAbsScaleMode Rel

CWAR -1.000
CWAF -1.000

NMaxFunc 100
MWADRelTol= 1.000000e-004

SFRRPSimStep= 1.000000e+002
SFRRSSimStep 1.000000e+002
FREQGStep 1.000000e+001
FREQEStep 1.000000e+001
E0Step 3.000000e+002
SSStep 2.000000e+001
TMStep 5.000000e-001
GammaStep 5.000000e+001
E0SDStep 5.000000e+001
SDNCStep 4.000000e-001

end

$el_states
1

1 42671.71 100.00 0.00 1.0725 3.3770 -0.0000

$vib_freq_gs
12

1 359.709864
2 456.925612
3 974.521651
4 1259.779018
5 1356.134238
6 1370.721341
7 1476.878592
8 1724.259894
9 1804.572974
10 3236.588264
11 3244.034359
12 3323.831066

$sdnc
12 1

1
1 -0.594359
2 0.369227
3 -0.132430
4 -0.727616
5 0.406841
6 -0.105324
7 0.177617
8 -0.090105
9 -1.412258
10 0.048788
11 0.021438

(continues on next page)
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12 0.008887

This input file can be used to construct theoretical absorption and rR spectra. In order to compare experimental
and theoretical rR spectra, it is necessary to use in both cases excitation energies that are approximately
in resonance with the same vibrational transitions in the absorption spectrum. Therefore, in the case of
the absorption spectrum with resolved or partially resolved vibrational structure it is necessary to modify
the transition energies in the %el_states such that they coincide with the experimentally observed 0-0
vibrational peaks. It is also desirable to roughly adjust homogeneous and, possibly, inhomogeneous linewidth
parameters such that the experimental and calculated absorption spectra show similar slopes in the preresonance
region (below the 0-0 transition). Then the assignment of experimental rR spectra can be done on the basis of
comparison with the theoretical rR spectra calculated for the corresponding experimental excitation energies. For
the sake of consistency and simplicity it is better to use those excitation energies which fall into the preresonace
region and/or are in resonance with the 0-0 transition. In the case of diffuse absorption spectra (i.e. those
not showing resolved vibrational structure) it is also necessary to adjust the theoretical transition energies
and linewidth parameters such that experimental and calculated positions of absorption maxima roughly
coincide, and corresponding slopes below the maxima have a similar behavior. According to above mentioned
considerations one needs to modify the %el_states block in the file example010.asa.inp:

$el_states
1

1 39808.0 150.00 0.00 1.0725 3.3770 -0.0000

The calculated absorption spectrum obtained by providing AbsScaleMode= Rel, AbsRange= 39000, 49000 and
NAbsPoints= 2000 is shown in Fig. 7.58. Upon comparison with the experimental spectrum one can notice that
the BHLYP functional gives relatively small discrepancies with somewhat lower intensity in the low-frequency
edge and larger intensity on the high-energy side of the spectrum. Besides, there is a noticeable mismatch in
the separation between individual vibronic peaks which is due to overestimation of vibrational frequencies by the
BHLYP functional (typically by ≈ 10%).

You can arbitrarily vary various normal coordinate displacements in %sdnc block within 10–30% of their values
in order to observe modifications of the calculated spectrum. This will tell you how these parameters influence the
spectrum and probably it will be possible to obtain better initial guesses for the fit. In the present example you will
find that reduction of the absolute value of the displacement parameter corresponding to the ninth mode by≈ 10%,
and reduction of vibrational frequencies by ≈ 10% can noticeably improve the spectral envelope. Such a quick
analysis suggests that experimentally observed peaks in the absorption spectrum represent different vibrational
transitions corresponding to a single electronically excited state rather than to different electronic excitations. This
conclusion will be confirmed upon establishing the fact that the absorption and rR spectra can be successfully fitted
based on the assumption of a single electronic transition.
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Fig. 7.58: Experimental and calculated at the BHLYP/SV(P) and B3LYP/SV(P) levels of theory absorption (left
panel) and rR spectra (right panel) corresponding to 1-1A𝑔 → 1-1B𝑢 transition in trans-1,3,5-hexatriene.

In order to calculate the rR spectrum for experimental excitation energies you need to specify its value through RRSE
keyword in %sim block as well as possibly to modify the parameters related to the spectral range and linewidth of
rR bands which are suitable for comparison with the experimental rR spectrum:

# excitation energies (cm**-1) for which rR spectra will be calculated:
RRSE 39808

# full width half maximum of Raman bands in rR spectra (cm**-1):
RRS_FWHM 20

RSRange 0, 4000 # spectral range for simulation of rR spectra (cm**-1)
NRRSPoints 4000 # number of points to simulate rR spectra (cm**-1)

# resonance Raman intensities will be calculated
# for all vibrational states with excitation number
# up to RamanOrder:
RamanOrder 3

The calculated rR spectrum is shown in Fig. 7.58. In the input we have invoked the calculation of rR intensities for
the transitions with up to 3 vibrational quanta in the final vibrational state (RamanOrder = 3). Make sure that the
rR intensity pattern in the given spectral range does not change noticeably upon further increase of this parameter.
Typically, the larger are the normal coordinate displacements the greater order of Raman scattering is required
in the calculation to account for all the most intense transitions in the rR spectrum. The inclusion of vibrational
transitions beyond the fundamentals is a particular feature of the orca_asa program.

Comparison of the calculated and experimental rR spectra (Fig. 7.58) mainly shows discrepancies in the values of
the Raman shifts that are mainly related to the low accuracy of the vibrational frequencies obtained at the BHLYP
level (typically overestimated by ≈ 10%). However, the intensity patterns of the calculated and experimental rR
spectra show very nice agreement with experiment that is already sufficient to assign the experimental peaks to

928 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

individual vibrational transitions. This can be done upon examination of file example010.asa.o3.rrs.39808.
stk which provides intensity, Raman shift, and specification for each vibrational transition. It is actually one of the
most consistent procedures that enables one to identify different fundamental, overtone and combination bands in
the experimentally observed rR spectrum. Such an assignment is a necessary prerequisite for the fit. The current
example is relatively straightforward since the spectral region 1–1700 cm−1 is actually dominated by fundamen-
tal bands while the most intense overtone and combination transitions occur at higher frequencies. However, in
many cases even the low-frequency spectral range is characterized by significant contributions from overtone and
combination bands that sometimes are even more intense than fundamental transitions! Thus, quantum chemical
calculations can greatly facilitate the assignment of experimental rR bands.

After having performed the assignment it is advisable to discard those modes from the analysis that are not involved
in any of the experimentally observed fundamental, overtone, or combination rR bands with noticeable intensities.
In the present example these are the modes 6, 8, 10–12 from the input file given above. For these modes it is
implied that the fitted displacement parameters are zero. You will find that the calculated displacement values are
rather small indeed. Also it is advisable to change the ground-state vibrational frequencies in the $vib_freq_gs
block to their experimental values.

Below is the modified input file for the fit run:

#
# example010-01.asa.inp
#
# ASA input
#
%sim

model IMDHO
method Heller

end

%fit

Fit true
AbsFit true
RRSFit true
AbsExpName "hex-abs.dat"
ExpAbsScaleMode Rel
CWAR 5.0

NMaxFunc 1000

SDNCStep 0.5

end

$el_states
1

1 39808.0 150.00 0.00 -0.8533 -3.3690 -0.0000

$el_states_c
1

1 1 1 0 0 0 0

$vib_freq_gs
7

1 354.0
2 444.0
3 934.0
4 1192.0
5 1290.0
6 1403.0

(continues on next page)

7.41. Simulation and Fit of Vibronic Structure in Electronic Spectra, Resonance Raman
Excitation Profiles and Spectra with the orca_asa Program

929



ORCA Manual, Release 6.0

(continued from previous page)

7 1635.0

$sdnc
7 1

1
1 -0.594359
2 0.369227
3 -0.132430
4 -0.727616
5 0.406841
6 0.177617
7 -1.412258

$sdnc_c
7 1

1
1 1
2 2
3 3
4 4
5 5
6 6
7 7

$rrs_exp
1
1 1

Ex 39809.0
NTr 11
1

int 10.0 1.0
modes 1
quanta 1;

2
int 5.0 1.0
modes 2
quanta 1;

3
int 1.5 1.0
modes 3
quanta 1;

4
int 21.0 1.0
modes 4
quanta 1;

5
int 7.5 1.0
modes 5
quanta 1;

6
int 2.0 1.0
modes 6
quanta 1;

7
int 46.0 1.0
modes 7
quanta 1;

8

(continues on next page)
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int 6.8 1.0
modes 1, 7
quanta 1, 1;

9
int 4.0 1.0
modes 2, 7
quanta 1, 1;

10
int 2.0 1.0
modes 3, 7
quanta 1, 1;

11
int 17.0 1.0
modes 7
quanta 2;

In addition to the experimental intensities of fundamental bands the input file also contains the information about
some overtone and combination transitions. Note that it is not really necessary to include all of them them into the
fit, in particular if some of the rR bands are strongly overlapping with each other.

Fitted normal coordinate displacements of the excited-state origin show nice agreement with the published values:

$sdnc
7 1

1
1 -0.638244
2 0.455355
3 -0.229126
4 -0.854357
5 0.501219
6 0.197679
7 -1.292997

NOTE

• It is not really important to employ the BHLYP/SV(P) method in the frequency calculations in order to
obtain the .hess file (this was merely done to be consistent with the TDDFT/BHLYP/SV(P) method for the
excited-state model parameters calculation). The frequency calculations can for example be carried out at
the BP86/TZVP or RI-SCS-MP2/TZVP level of theory. This will provide displacements pattern very similar
to that of the BHLYP/SV(P) method, but much more accurate vibrational frequencies which will further
facilitate the assignment of rR spectra (Fig. 7.58). However, such a procedure can be inconsistent if the
two methods give noticeably different normal mode compositions and/or vibrational frequencies. From our
experience it can lead to significant overestimation of the excited-state displacements for some low-frequency
modes.

• It is known that predicted dimensionless normal coordinate displacements critically depend on the fraction
of the “exact” Hartree-Fock exchange (EEX) included in hybrid functionals. In general no universal amount
of EEX exists that provides a uniformly good description for all systems and states. Typically, for a given
molecule either the BHLYP/TZVP (50% of EEX) or B3LYP/TZVP (20% of EEX) methods yields simulated
spectra that compare very well with those from experiment if vibrational frequencies are appropriately scaled.
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Important Notes about Proper Comparison of Experimental and Quantum Chemically Calculated
Resonance Raman Spectra

In order to compare experimental and theoretical rR spectra, it is necessary to use in both cases excitation ener-
gies that are approximately in resonance with the same vibrational transitions in the absorption spectrum.
Therefore, in the case of diffuse absorption spectra (i.e. those not showing resolved vibrational structure) one needs
to adjust the transition energies and linewidth paramters in the %el_states block such that the envelopes of the
experimental and theoretical spectra rouhgly coincide, and then to employ experimental values of excitation ener-
gies to construct theoretical rR spectra. Typically in the case of diffuse absorption spectra rR profiles are rather
smooth. Therefore, even though excitation energies are not in resonance with the same vibrational transition in the
absorption spectrum, the rR spectra are not expected to vary significantly in the case of such mismatch.

In the case of the absorption spectrum with resolved or partially resolved vibrational structure it is necessary to
modify the transition energies in the %el_states block such that the calculated and experimentally observed 0-0
vibrational peaks coincide, and modify linewidth parameters so that the low-energy slopes in the calculated and
experimental spectra have a similar behavior.

Consider a single-mode model system for which “experimental” and calculated absorption spectra are shown in
Fig. 7.59.
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Fig. 7.59: Experimental and theoretical absorption spectra for a single-mode model system. The calculated spec-
trum is adjusted such that the position of 0-0 peak coincide with the experimental one.
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Comparison of the calculated and experimental spectra shows that some adjustment of the linewidth parameters
is neceassy before construction of theoretical rR spectra. One can directly compare calculated and experimental
rR spectra upon the excitation at 16200 cm−1 which is in resonance with the 0-0 vibronic band. However, it is
not consistent to use experimental values of the excitation energy in the calculation of rR spectrum which is in
resonance with one of the other vibronic bands since the separation between vibrational peaks in the experimental
and calculated spectra is different whereby positions of the peaks in both spectra do not coincide. Instead one
should use the excitaition energy which corresponds to the same vibronic peak in the calculated absorption
spectrum as in the experimental one. Alternatively, one can adjust theoretical value of vibrational frequency
such that positions of corresponding vibronic peaks in the spectra coincide, and then use experimental values of
excitation energies for the calculation of rR spectra.

Example: Normal Mode Scan Calculations of Model Parameters for 1-1A𝑔 → 1-1B𝑢 Transition in
trans-1,3,5-Hexatriene

If excited state gradients are not available (which is the case for many of the electronic structure methods supported
by ORCA), you have to resort to a more laborious procedure – single point calculations at geometries that are
displaced along the various normal modes of the system. This roughly corresponds to taking numerical derivatives
– however, once this extra effort is invested more information can be obtained from the calculation than what would
be possible from an analytic derivative calculation.

The present example illustrates the application of normal mode scan calculations for the evaluation of excited state
harmonic parameters that are necessary to simulate optical spectra within the IMDHO model. This method can be
applied with any method like CIS, CASSCF, MRCI or TD-DFT.

The reference wavefunctions for the multireference calculations reported below are of the state-averaged CASSCF
(SA-CASSCF) type. The complete active space CAS(6,6) includes all 6 valence shell 𝜋-orbitals. The average is
taken over the first four states which was found necessary in order to include the ground state and the strongly
allowed 1-1B𝑢state.

#
# example011.inp
#
# CASSCF normal mode scan calculations
#

# first do single point RHF calculation
! RHF TZVP TightSCF

* xyz 0 1
C -0.002759 0.680006 0.000000
H -0.966741 1.204366 0.000000
C 1.187413 1.500920 0.000000
H 2.146702 0.969304 0.000000
C 1.187413 2.850514 0.000000
H 0.254386 3.420500 0.000000
H 2.116263 3.422544 0.000000
C 0.002759 -0.680006 0.000000
H 0.966741 -1.204366 0.000000
C -1.187413 -1.500920 0.000000
H -2.146702 -0.969304 0.000000
C -1.187413 -2.850514 0.000000
H -0.254386 -3.420500 0.000000
H -2.116263 -3.422544 0.000000
*

# perform SA-CASSCF calculation upon appropriate rotation of MOs
$new_job
! TZVP TightSCF

(continues on next page)
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(continued from previous page)

%scf
rotate {23,27} end

end

%casscf
nel 6
norb 6
mult 1
nroots 4

end

* xyz 0 1
C -0.002759 0.680006 0.000000
H -0.966741 1.204366 0.000000
C 1.187413 1.500920 0.000000
H 2.146702 0.969304 0.000000
C 1.187413 2.850514 0.000000
H 0.254386 3.420500 0.000000
H 2.116263 3.422544 0.000000
C 0.002759 -0.680006 0.000000
H 0.966741 -1.204366 0.000000
C -1.187413 -1.500920 0.000000
H -2.146702 -0.969304 0.000000
C -1.187413 -2.850514 0.000000
H -0.254386 -3.420500 0.000000
H -2.116263 -3.422544 0.000000
*

# do normal mode scan calculations
# to map CASSCF ground and excited-state PESs
$new_job
! TZVP TightSCF NMScan

%casscf
nel 6
norb 6
mult 1
nroots 4

end

%rr
HessName "hexatriene_bp86.hess"
NMList 10,11,18,24,26,28,29,31,32
NSteps 6
FreqAlter true
EnStep 0.0001
State 3

end

* xyz 0 1
C -0.002759 0.680006 0.000000
H -0.966741 1.204366 0.000000
C 1.187413 1.500920 0.000000
H 2.146702 0.969304 0.000000
C 1.187413 2.850514 0.000000
H 0.254386 3.420500 0.000000
H 2.116263 3.422544 0.000000
C 0.002759 -0.680006 0.000000
H 0.966741 -1.204366 0.000000
C -1.187413 -1.500920 0.000000

(continues on next page)
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H -2.146702 -0.969304 0.000000
C -1.187413 -2.850514 0.000000
H -0.254386 -3.420500 0.000000
H -2.116263 -3.422544 0.000000
*

The file containing the Hessian matrix ("hexatriene_bp86.hess") was obtained from the BP86/TZVP fre-
quency calculations. The keyword NMList provides the list of the normal modes to be scanned. These should
be only the totally symmetric vibrations, since only they can be significant for absorption and resonance Raman
spectra within the constraints of the IMDHO model. The FreqAlter flag indicates whether frequency alterations
are assumed in the post-scan potential surface fit. The Parameter EnStep is used to select the appropriate step
during the scan calculations. The value is chosen such that the average energy change (in Eh) in both directions is
not less than this parameter.

7.42 One Photon Spectroscopy

7.42.1 General Description

Introduced in Orca 6.0, the One Photon Spectroscopy (OPS) tool now takes charge of computing one-photon
absorption (OPA), emission (OPE), and natural electric circular dichroism (ECD) intensities. In each of these
processes, the intensity of the spectrum (𝐼(𝜔)) resulting from a transition between an initial state 𝐼 and a final state
𝐽 is determined by the square modulus of the transition moment 𝑇𝐼𝐽 = ⟨Ψ𝐼 |�̂�1|Ψ𝐽⟩, weighted by the populations
𝑁𝐼 and 𝑁𝐽 of states 𝐼 and 𝐽 , respectively.

𝐼(𝜔) = 𝛼𝜔−1
∑︁
𝐼𝐽

(𝑁𝐼 −𝑁𝐽)|⟨Ψ𝐼 |�̂�1|Ψ𝐽⟩|2𝛿(𝐸𝐽𝐼 ± ℏ𝜔) (7.256)

In this context, 𝛼 represents a positive constant, 𝜔 stands for photon energy, and the expression for �̂�1 hinges on
the specific modeling of photon-matter interaction.

7.42.2 Light-matter interaction approaches

Expressions for �̂�1 can be derived from different theoretical perspectives. For instructional purposes, a classical
electrodynamic approach is adopted here. By representing light classically through a vector potential (A) and a
scalar potential (𝜑 = 0), the radiation can be integrated into the Hamiltonian that models the molecular system.

�̂� =

𝑁∑︁
𝑖=1

1

2𝑚𝑒

[︁
p̂𝑖 −

𝑒

𝑐
A(r𝑖, 𝑡)

]︁2
− 𝑔𝑒

2𝑚𝑒𝑐

𝑁∑︁
𝑖=1

B(r𝑖, 𝑡) · 𝑠𝑖 + 𝑉 (r1, ..., r𝑁 )

By disregarding the coupling between the magnetic field of light and the spin, as well as the |A|2 term, and applying
Fermi’s golden rule, an expression for ⟨Ψ𝐼 |�̂�1|Ψ𝐽⟩ under the Full-Semiclassical Light-Matter interaction can be
derived.

𝑇𝐹𝐹𝑀𝐼𝑂
𝐼𝐽 =

𝑒

𝑚𝑒

𝑁∑︁
𝑖=1

⟨𝐼| ℰ ·
[︁
𝑒𝑖k·r𝑖 p̂𝑖

]︁
|𝐽⟩ (7.257)

Where 𝑇𝐹𝐹𝑀𝐼𝑂
𝐼𝐽 is the transition moment for the Full (semiclassical) Field-Matter Interaction Operator, while 𝑘

and ℰ denote the wave and polarization vectors describing the light, respectively. r𝑖 and p𝑖 represent the position
and linear momentum operators for the i-th electron.

Proceeding from eq. (7.257) and approximating the exponential term of 𝑇𝐹𝐹𝑀𝐼𝑂
𝐼𝐽 with a Taylor expansion yields

various orders of interaction. The zeroth order (𝑇 [0]
𝐼𝐽 ) results in the electric dipolar velocity formulation (𝐸𝐷 𝑣𝑒𝑙),

which, upon molecular orientational averaging, yields:

𝜖𝐸𝐷 𝑣𝑒𝑙(𝜔) =
∑︁
𝐼𝐽

(𝑁𝐼 −𝑁𝐽)
2

3𝐸𝐽𝐼
|⟨Ψ𝐼 |𝑝|Ψ𝐽⟩|2𝛿(𝐸𝐽𝐼 ± ℏ𝜔) (7.258)
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For exact solutions of the Hamiltonian, or in theories that satisfy the Hypervirial theorem by construction, equation
(7.258) can be transformed into a length formulation (7.259) (𝐸𝐷 𝑙𝑒𝑛).

𝜖𝐸𝐷 𝑙𝑒𝑛(𝜔) =
∑︁
𝐼𝐽

(𝑁𝐼 −𝑁𝐽)
2𝐸𝐽𝐼
3
|⟨Ψ𝐼 |�̂�|Ψ𝐽⟩|2𝛿(𝐸𝐽𝐼 ± ℏ𝜔) (7.259)

The absorption spectrum under 𝐸𝐷 𝑙𝑒𝑛 and 𝐸𝐷 𝑣𝑒𝑙 formulations can be obtained in all Orca modules utilizing
OPS by setting DoDipoleLength and DoDipoleVelocity to true, respectively, in the corresponding module’s block.
The results are then presented in the following tables:

-----------------------------------------------------------------------------------------------
→˓-----

ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-----------------------------------------------------------------------------------------------
→˓-----

Transition Energy Energy Wavelength fosc(D2) D2 DX DY ␣
→˓DZ

(eV) (cm-1) (nm) (au**2) (au) (au) ␣
→˓(au)
-----------------------------------------------------------------------------------------------
→˓-----
0-1Ag -> 1-1B3g 2.507275 20222.5 494.5 0.000000000 0.00000 -0.00000 0.00000 0.

→˓00000
0-1Ag -> 2-1Au 2.726731 21992.6 454.7 0.000000000 0.00000 -0.00000 0.00000 -0.

→˓00000
0-1Ag -> 3-1B2g 3.892633 31396.2 318.5 0.000000000 0.00000 0.00000 0.00000 -0.

→˓00000
0-1Ag -> 4-1B3u 4.973431 40113.4 249.3 0.301976959 2.47833 1.57427 -0.00000 -0.

→˓00025

-----------------------------------------------------------------------------------------------
→˓-----

ABSORPTION SPECTRUM VIA TRANSITION VELOCITY DIPOLE MOMENTS
-----------------------------------------------------------------------------------------------
→˓-----

Transition Energy Energy Wavelength fosc(P2) P2 PX PY ␣
→˓PZ

(eV) (cm-1) (nm) (au**2) (au) (au) ␣
→˓(au)
-----------------------------------------------------------------------------------------------
→˓-----
0-1Ag -> 1-1B3g 2.507275 20222.5 494.5 0.000000000 0.00000 0.00000 0.00000 -0.

→˓00000
0-1Ag -> 2-1Au 2.726731 21992.6 454.7 0.000000000 0.00000 0.00000 0.00000 -0.

→˓00000
0-1Ag -> 3-1B2g 3.892633 31396.2 318.5 0.000000001 0.00000 -0.00000 -0.00000 -0.

→˓00001
0-1Ag -> 4-1B3u 4.973431 40113.4 249.3 0.292852326 0.08029 -0.28335 0.00000 -0.

→˓00002

Here, transitions are denoted using spectroscopic notation, such as 1-3B3g representing 13𝐵3𝑔 . If symmetry is
not specified in the calculation (or is unavailable in the selected method), the system defaults to 𝐶1 point group
symmetry. The “fosc(D2)” and “fosc(P2)” columns indicate the computed oscillator strengths in lenght and velocity
formulations respectively. Additionally, “D2”, “P2”, “DX”, “DY”, “DZ”, “PX”, “PY”, and “PZ” represent the
square modulus of the electric transition dipole moment, square modulus of the transition linear momentum, and
its Cartesian components, respectively (with the imaginary unit in the linear momentum being implicit).

The first-order term (𝑇 [1]
𝐼𝐽 ) in the Taylor expansion of 𝑇𝐹𝐹𝑀𝐼𝑂

𝐼𝐽 gives rise to the electric quadrupole velocity for-
mulation and the magnetic dipole contributions.

⟨Ψ𝐼 |(𝑇𝐸𝑄𝑣𝑒𝑙)𝛼𝛽 |Ψ𝐽⟩ =
𝑖𝑒

2𝑚𝑒
𝑘𝛼𝜖𝛽⟨Ψ𝐼 |𝑟𝛼𝑝𝛽 + 𝑝𝛼𝑟𝛽 |Ψ𝐽⟩ (7.260)
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⟨Ψ𝐼 |𝑇𝑀𝐷|Ψ𝐽⟩ =
𝑖𝑒

2𝑚𝑒
⟨Ψ𝐼 |(𝑘 × 𝜖)(𝑟 × 𝑝)|Ψ𝐽⟩ (7.261)

Under the same conditions applied to the electric dipole transition moment, the quadrupole contribution can be
reformulated in terms of a length representation.

⟨Ψ𝐼 |(𝑇𝐸𝑄𝑙𝑒𝑛)𝛼𝛽 |Ψ𝐽⟩ =
𝑒𝐸𝐽𝐼
2𝑚𝑒

∑︁
𝑖

𝑘𝛼𝜖𝛽⟨Ψ𝐼 |𝑟𝛼𝑟𝛽 |Ψ𝐽⟩ (7.262)

By squaring the modulus of (𝑇 [0]
𝐼𝐽 + 𝑇

[1]
𝐼𝐽 ), six terms emerge in the oscillation strength intensity: the dipole

square contribution as listed previously in the dipole-approximation tables, a magnetic dipole square, an electric
quadrupole square, and three cross-product terms: electric dipole-electric quadrupole, electric dipole-magnetic
dipole, and magnetic dipole-electric quadrupole. Enabling DoHigherMoments to true allows for the estimation
of spectrum intensity by including all three squared terms in the calculation of the intensity. Similarly to the
𝐸𝐷 𝑙𝑒𝑛 and𝐸𝐷 𝑣𝑒𝑙 tables, the DoDipoleLength and DoDipoleVelocity keywords control the length and velocity
representations of the electric operators.

-----------------------------------------------------------------------------------------------
→˓---------------------------------

ABSORPTION SPECTRUM COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC␣
→˓QUADRUPOLE SPECTRUM
-----------------------------------------------------------------------------------------------
→˓---------------------------------

Transition Energy Energy Wavelength fosc(D2) fosc(M2) fosc(Q2) ␣
→˓fosc(D2+M2+Q2) D2/TOT M2/TOT Q2/TOT

(eV) (cm-1) (nm) (au) (au*1e6) (au*1e6)
-----------------------------------------------------------------------------------------------
→˓---------------------------------
0-1Ag -> 1-1B3g 2.507275 20222.5 494.5 0.00000 0.49891 0.00010 0.

→˓00000049901544 0.00000 0.99979 0.00021
0-1Ag -> 2-1Au 2.726731 21992.6 454.7 0.00000 0.00000 0.00000 0.

→˓00000000000000 0.00000 0.00000 0.00000
0-1Ag -> 3-1B2g 3.892633 31396.2 318.5 0.00000 1.12904 0.03298 0.

→˓00000116202090 0.00000 0.97162 0.02838
0-1Ag -> 4-1B3u 4.973431 40113.4 249.3 0.30198 0.00000 0.00000 0.

→˓30197695902797 1.00000 0.00000 0.00000

-----------------------------------------------------------------------------------------------
→˓---------------------------------

ABSORPTION SPECTRUM COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC␣
→˓QUADRUPOLE SPECTRUM (Velocity)
-----------------------------------------------------------------------------------------------
→˓---------------------------------

Transition Energy Energy Wavelength fosc(P2) fosc(M2) fosc(Q2) ␣
→˓fosc(P2+M2+Q2) P2/TOT M2/TOT Q2/TOT

(eV) (cm-1) (nm) (au) (au*1e6) (au*1e6)
-----------------------------------------------------------------------------------------------
→˓---------------------------------
0-1Ag -> 1-1B3g 2.507275 20222.5 494.5 0.00000 0.49891 0.00010 0.

→˓00000049901234 0.00000 0.99980 0.00020
0-1Ag -> 2-1Au 2.726731 21992.6 454.7 0.00000 0.00000 0.00000 0.

→˓00000000000006 0.99964 0.00012 0.00024
0-1Ag -> 3-1B2g 3.892633 31396.2 318.5 0.00000 1.12904 0.03441 0.

→˓00000116403924 0.00051 0.96993 0.02956
0-1Ag -> 4-1B3u 4.973431 40113.4 249.3 0.29285 0.00000 0.00000 0.

→˓29285232633663 1.00000 0.00000 0.00000

Here, the column “fosc(D2+M2+Q2)” and “fosc(P2+M2+Q2)” refer to the total oscillator strengths obtained
in length and velocity formulations, respectively, while the columns “fosc(D2)”/”fosc(P2)”, “fosc(M2)”, and
“fosc(Q2)” refer to the individual contributions of each term.

In scenarios where the dipolar contribution to the intensity is non-zero, dividing the total intensity into D2/P2, M2,
and Q2 contributions becomes challenging due to the dependence of M2 and Q2 terms on the chosen origin. To
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address this origin-dependence issue, OPS offers additional formulations to the multipolar expansion. One possible
approach devised by our group describes each transition from an origin that minimizes the contributions of M2
and Q2, thereby redistributing the intensity from these terms to all other components in the expansion of 𝑒𝑖k·r𝑖 .
This refined formulation is readily accessible in an “origin-adjusted” table, provided that DoHigherMoments is
enabled and additionally DecomposeFoscLength is set to true. [201], [200]

-----------------------------------------------------------------------------------------------
→˓---------------------------------

ABSORPTION SPECTRUM COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC␣
→˓QUADRUPOLE SPECTRUM (origin adjusted)
-----------------------------------------------------------------------------------------------
→˓---------------------------------

Transition Energy Energy Wavelength fosc(D2) fosc(M2) fosc(Q2) ␣
→˓fosc(D2+M2+Q2) D2/TOT M2/TOT Q2/TOT

(eV) (cm-1) (nm) (au) (au*1e6) (au*1e6)
-----------------------------------------------------------------------------------------------
→˓---------------------------------
0-1Ag -> 1-1B3g 2.507275 20222.5 494.5 0.00000 0.49891 0.00010 0.

→˓00000049901544 0.00000 0.99979 0.00021
0-1Ag -> 2-1Au 2.726731 21992.6 454.7 0.00000 0.00000 0.00000 0.

→˓00000000000000 0.00000 0.00000 0.00000
0-1Ag -> 3-1B2g 3.892633 31396.2 318.5 0.00000 1.12904 0.03298 0.

→˓00000116202090 0.00000 0.97162 0.02838
0-1Ag -> 4-1B3u 4.973431 40113.4 249.3 0.30198 0.00000 0.00000 0.

→˓30197695902797 1.00000 0.00000 0.00000

Alternatively, the intensity described through a truncated expansion of 𝑒𝑖k·r𝑖 be achieved in an origin-independent
manner. In this scenario, the cross-terms between the electric dipole moment and the electric octupole, as well as
between the electric dipole moment and the magnetic quadrupole moments, arise from the second-order expansion
(𝑇 [2]
𝐼𝐽 ), resolving the origin dependence on the D2, M2, and Q2 contributions. This formulation is provided in

both length and velocity representations for the electric operators by setting the keywords DecomposeFoscLength
and DecomposeFoscVelocity to true, and the results are presented in the tables “Origin Independent, Length” and
“Origin Independent, Velocity,” respectively.”

-----------------------------------------------------------------------------------------------
→˓---------------------------------

ABSORPTION SPECTRUM COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC␣
→˓QUADRUPOLE SPECTRUM (Origin Independent, Length)
-----------------------------------------------------------------------------------------------
→˓---------------------------------

Transition Energy Energy Wavelength fosc(D2) fosc(M2) fosc(Q2)␣
→˓fosc(D2+M2+Q2+DM+DO) D2/TOT M2/TOT Q2/TOT

(eV) (cm-1) (nm) (au) (au*1e6) (au*1e6)
-----------------------------------------------------------------------------------------------
→˓---------------------------------
0-1Ag -> 1-1B3g 2.507275 20222.5 494.5 0.00000 0.49891 0.00010 0.

→˓00000049901544 0.00000 0.99979 0.00021
0-1Ag -> 2-1Au 2.726731 21992.6 454.7 0.00000 0.00000 0.00000 0.

→˓00000000000000 0.00000 0.00000 0.00000
0-1Ag -> 3-1B2g 3.892633 31396.2 318.5 0.00000 1.12904 0.03298 0.

→˓00000116202090 0.00000 0.97162 0.02838
0-1Ag -> 4-1B3u 4.973431 40113.4 249.3 0.30198 0.00000 0.00000 0.

→˓30197506344159 1.00001 0.00000 0.00000

-----------------------------------------------------------------------------------------------
→˓----------------------------------

ABSORPTION SPECTRUM COMBINED ELECTRIC DIPOLE + MAGNETIC DIPOLE + ELECTRIC␣
→˓QUADRUPOLE SPECTRUM (Origin Independent, Velocity)
-----------------------------------------------------------------------------------------------
→˓----------------------------------

Transition Energy Energy Wavelength fosc(P2) fosc(M2) fosc(Q2)␣

(continues on next page)
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(continued from previous page)

→˓fosc(P2+M2+Q2+PM+PO) P2/TOT M2/TOT Q2/TOT
(eV) (cm-1) (nm) (au) (au*1e6) (au*1e6)

-----------------------------------------------------------------------------------------------
→˓----------------------------------
0-1Ag -> 1-1B3g 2.507275 20222.5 494.5 0.00000 0.49891 0.00010 0.

→˓00000049901234 0.00000 0.99980 0.00020
0-1Ag -> 2-1Au 2.726731 21992.6 454.7 0.00000 0.00000 0.00000 0.

→˓00000000000006 0.99962 0.00012 0.00024
0-1Ag -> 3-1B2g 3.892633 31396.2 318.5 0.00000 1.12904 0.03441 0.

→˓00000116403924 0.00051 0.96993 0.02956
0-1Ag -> 4-1B3u 4.973431 40113.4 249.3 0.29285 0.00000 0.00000 0.

→˓29285049443551 1.00001 0.00000 0.00000

Finally, intensity computation directly using 𝑇𝐹𝐹𝑀𝐼𝑂
𝐼𝐽 is achievable in OPS through the utilization of the keyword

DoFullSemiclassical set to true. In this scenario, the orientational average is computed semi-numerically due to
the absence of available analytical expressions.

-----------------------------------------------------------------------------
ABSORPTION SPECTRUM VIA FULL SEMI-CLASSICAL FORMULATION

-----------------------------------------------------------------------------
Transition Energy Energy Wavelength fosc(FFMIO)

(eV) (cm-1) (nm)
-----------------------------------------------------------------------------

0-1Ag -> 1-1B3g 2.507275 20222.5 494.5 0.00000049901134
0-1Ag -> 2-1Au 2.726731 21992.6 454.7 0.00000000000260
0-1Ag -> 3-1B2g 3.892633 31396.2 318.5 0.00000116403914
0-1Ag -> 4-1B3u 4.973431 40113.4 249.3 0.29285049449335

The tables presented in this section can be generated using the following input example:

!B3LYP def2-TZVPP UseSym

%sym SymThresh 1.0e-2 end

%CIS
Nroots 4
Tda false
DoDipoleLength true
DoDipoleVelocity true
DoHigherMoments true
DoFullSemiclassical true
DecomposeFoscLength true
DecomposeFoscVelocity true

END

* xyz 0 1
C -0.03361342468929 0.00165373985356 -0.01949461738929
C 0.00156939445126 0.00011912087577 1.46272959096597
C 1.15884465742251 0.00010247651897 2.13104196345420
C 2.45992795249087 0.00152015393852 1.42032876326693
C 2.42474592208737 0.00010359895701 -0.06189678799337
C 1.26746963770198 0.00012121580349 -0.73020920027406
H -0.96132586605922 -0.00069823088896 1.95925560299438
H 1.20967888389840 -0.00071666462249 3.21322810501222
O 3.51487697965937 -0.00034474583300 2.02878006087658
H 3.38764113128475 -0.00071842966522 -0.55842278191419
H 1.21663501697728 -0.00069837665390 -1.81239534279079
O -1.08856228522528 -0.00044385828375 -0.62794535620861

*
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7.42.3 Natural electric circular dichroism

In the case of ECD modeling, intensity is determined by computing the difference between two absorption spectra:
one acquired using left-circularly polarized light and the other utilizing right-circularly polarized light.

∆𝐼(𝜔) = 𝐼𝑙𝑒𝑓𝑡(𝜔)− 𝐼𝑟𝑖𝑔𝑡ℎ(𝜔)

To initiate these calculations, the keyword DoCD should be set to true. There are three available implementa-
tions, which involve utilizing the length or velocity representations for the electric dipole moment, and also using
the FFMIO, selected by including the keywords DoDipoleLength, DoDipoleVelocity, and DoFullSemiclassical
respectively.

------------------------------------------------------------------------------------------
CD SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

------------------------------------------------------------------------------------------
Transition Energy Energy Wavelength R MX MY MZ

(eV) (cm-1) (nm) (1e40*cgs) (au) (au) (au)
------------------------------------------------------------------------------------------

0-1A -> 1-1A 5.858500 47252.0 211.6 -9.15001 -0.01149 0.10351 -0.06803
0-1A -> 2-1A 6.859736 55327.5 180.7 -10.82714 0.13087 0.17869 0.25077
0-1A -> 3-1A 7.025193 56662.0 176.5 10.05878 -0.00526 -0.09041 -0.13618
0-1A -> 4-1A 7.837041 63210.0 158.2 33.15402 0.02541 -0.23067 0.15096

------------------------------------------------------------------------------------------
CD SPECTRUM VIA TRANSITION VELOCITY DIPOLE MOMENTS

------------------------------------------------------------------------------------------
Transition Energy Energy Wavelength R MX MY MZ

(eV) (cm-1) (nm) (1e40*cgs) (au) (au) (au)
------------------------------------------------------------------------------------------

0-1A -> 1-1A 5.858500 47252.0 211.6 -10.85364 -0.01149 0.10351 -0.06803
0-1A -> 2-1A 6.859736 55327.5 180.7 -15.54410 0.13087 0.17869 0.25077
0-1A -> 3-1A 7.025193 56662.0 176.5 12.44178 -0.00526 -0.09041 -0.13618
0-1A -> 4-1A 7.837041 63210.0 158.2 38.90662 0.02541 -0.23067 0.15096

--------------------------------------------------------------------
CD SPECTRUM VIA FULL SEMI-CLASSICAL FORMULATION

--------------------------------------------------------------------
Transition Energy Energy Wavelength R

(eV) (cm-1) (nm) (1e40*cgs)
--------------------------------------------------------------------

0-1A -> 1-1A 5.858500 47252.0 211.6 -10.85394
0-1A -> 2-1A 6.859736 55327.5 180.7 -15.54405
0-1A -> 3-1A 7.025193 56662.0 176.5 12.44211
0-1A -> 4-1A 7.837041 63210.0 158.2 38.90630

The following input example may be used to generate the CD tables presented in this section:

!B3LYP def2-QZVPP

%CIS
Nroots 4
Tda false
Docd true
DoDipoleLength true
DoDipoleVelocity true
DoFullSemiclassical true

END

* xyz 0 1
O 0.00292203187063 -0.00094788357265 0.00607763745451
H -0.01058222980812 0.00702286262037 0.97110447138368

(continues on next page)
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O 1.43049571483128 -0.00638910838156 -0.24427444074129
H 1.54056670040621 -0.87944353346616 -0.64068822569690

*

7.42.4 SOC and SSC corrected spectrum

All the OPS keywords and tables listed above are available for the cases in which spin-orbit coupling and spin-spin
coupling effects are taken into account by a QDPT formulation (when the method is available in the selected ORCA
module). In those cases, ORCA 6.0 does not provide symmetry after the relativistic correction; therefore,𝐶1 group
symmetry transitions are reported. Additionally, the multiplicity of the relativistically corrected roots are not well
defined anymore; therefore, the average value is reported.

For the last case example presented in this section, when DoSOC is set to true in the input, OPS reports:

-----------------------------------------------------------------------------------------------
→˓---------

SOC CORRECTED ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-----------------------------------------------------------------------------------------------
→˓---------

Transition Energy Energy Wavelength fosc(D2) D2 |DX| |DY| ␣
→˓ |DZ|

(eV) (cm-1) (nm) (au**2) (au) (au) ␣
→˓ (au)
-----------------------------------------------------------------------------------------------
→˓---------
0-1.0A -> 1-3.0A 4.620455 37266.5 268.3 0.000000105 0.00000 0.00079 0.00024␣

→˓ 0.00049
0-1.0A -> 2-3.0A 4.620460 37266.5 268.3 0.000000009 0.00000 0.00003 0.00024␣

→˓ 0.00016
0-1.0A -> 3-3.0A 4.620491 37266.8 268.3 0.000000126 0.00000 0.00093 0.00034␣

→˓ 0.00035
0-1.0A -> 4-3.0A 5.626046 45377.1 220.4 0.000003140 0.00002 0.00043 0.00397␣

→˓ 0.00261
0-1.0A -> 5-3.0A 5.626322 45379.4 220.4 0.000000070 0.00000 0.00056 0.00020␣

→˓ 0.00040
0-1.0A -> 6-3.0A 5.626327 45379.4 220.4 0.000000003 0.00000 0.00002 0.00013␣

→˓ 0.00009
0-1.0A -> 7-1.0A 5.858722 47253.8 211.6 0.003490904 0.02432 0.01409 0.12986␣

→˓ 0.08520
0-1.0A -> 8-3.0A 6.537246 52726.4 189.7 0.000000006 0.00000 0.00017 0.00005␣

→˓ 0.00008
0-1.0A -> 9-3.0A 6.537246 52726.5 189.7 0.000000225 0.00000 0.00011 0.00099␣

→˓ 0.00065
0-1.0A -> 10-3.0A 6.537257 52726.5 189.7 0.000000032 0.00000 0.00004 0.00037␣

→˓ 0.00025
0-1.0A -> 11-1.0A 6.859693 55327.2 180.7 0.002900797 0.01726 0.12934 0.02129␣

→˓ 0.00891
0-1.0A -> 12-1.0A 7.025210 56662.1 176.5 0.011980549 0.06961 0.23240 0.08590␣

→˓ 0.09066
0-1.0A -> 13-3.0A 7.448215 60073.9 166.5 0.000000040 0.00000 0.00018 0.00022␣

→˓ 0.00037
0-1.0A -> 14-3.0A 7.448216 60073.9 166.5 0.000000003 0.00000 0.00002 0.00011␣

→˓ 0.00006
0-1.0A -> 15-3.0A 7.448231 60074.0 166.5 0.000000533 0.00000 0.00116 0.00078␣

→˓ 0.00098
0-1.0A -> 16-1.0A 7.837071 63210.2 158.2 0.012389093 0.06452 0.02426 0.21144␣

→˓ 0.13867

In this case, due to the complex nature of the relativistically-corrected wave functions, dipole moments are not
necessarily real values, and their modulous are reported in the “|DX|”, “|DY|”, and “|DZ|” columns. Real and
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imaginary components may be obtained in extended tables by increasing the selected print level. In this instance,
selecting Printlevel 4 in the %CIS block.

-----------------------------------------------------------------------------------------------
→˓------------------------------------------------------------------------------

SOC CORRECTED ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS (- Extended -)
-----------------------------------------------------------------------------------------------
→˓------------------------------------------------------------------------------

Transition Energy Energy Wavelength fosc(D2) D2 ␣
→˓DX(re) DX(im) DY(re) DY(im) DZ(re) DZ(im)

(eV) (cm-1) (nm) (au**2) ␣
→˓(au) (au) (au) (au) (au) (au)
-----------------------------------------------------------------------------------------------
→˓------------------------------------------------------------------------------
0-1.0A -> 1-3.0A 4.620455 37266.5 268.3 1.05e-07 9.31e-07 4.10e-

→˓04 6.80e-04 -1.22e-04 -2.02e-04 -2.55e-04 -4.24e-04
0-1.0A -> 2-3.0A 4.620460 37266.5 268.3 9.18e-09 8.11e-08 -2.25e-

→˓05 1.30e-05 2.05e-04 -1.18e-04 -1.35e-04 7.78e-05
0-1.0A -> 3-3.0A 4.620491 37266.8 268.3 1.26e-07 1.11e-06 4.17e-

→˓04 -8.35e-04 1.51e-04 -3.01e-04 1.58e-04 -3.17e-04
0-1.0A -> 4-3.0A 5.626046 45377.1 220.4 3.14e-06 2.28e-05 -4.31e-

→˓04 5.49e-07 3.97e-03 -5.06e-06 -2.61e-03 3.32e-06
0-1.0A -> 5-3.0A 5.626322 45379.4 220.4 7.04e-08 5.11e-07 1.13e-

→˓04 5.45e-04 -4.10e-05 -1.98e-04 -8.13e-05 -3.92e-04
0-1.0A -> 6-3.0A 5.626327 45379.4 220.4 3.42e-09 2.48e-08 -1.52e-

→˓05 -1.15e-07 1.31e-04 9.97e-07 -8.58e-05 -6.51e-07
0-1.0A -> 7-1.0A 5.858722 47253.8 211.6 3.49e-03 2.43e-02 -1.41e-

→˓02 -2.11e-05 1.30e-01 1.94e-04 -8.52e-02 -1.28e-04
0-1.0A -> 8-3.0A 6.537246 52726.4 189.7 6.35e-09 3.97e-08 -1.24e-

→˓04 1.22e-04 3.61e-05 -3.56e-05 5.89e-05 -5.80e-05
0-1.0A -> 9-3.0A 6.537246 52726.5 189.7 2.25e-07 1.40e-06 1.10e-

→˓04 1.07e-06 -9.87e-04 -9.61e-06 6.46e-04 6.29e-06
0-1.0A -> 10-3.0A 6.537257 52726.5 189.7 3.24e-08 2.02e-07 -4.25e-

→˓05 -5.39e-08 3.73e-04 4.74e-07 -2.47e-04 -3.13e-07
0-1.0A -> 11-1.0A 6.859693 55327.2 180.7 2.90e-03 1.73e-02 4.49e-

→˓02 1.21e-01 7.39e-03 2.00e-02 3.09e-03 8.35e-03
0-1.0A -> 12-1.0A 7.025210 56662.1 176.5 1.20e-02 6.96e-02 -2.18e-

→˓01 8.17e-02 -8.04e-02 3.02e-02 -8.49e-02 3.19e-02
0-1.0A -> 13-3.0A 7.448215 60073.9 166.5 3.95e-08 2.17e-07 6.65e-

→˓05 -1.67e-04 -8.19e-05 2.05e-04 -1.37e-04 3.42e-04
0-1.0A -> 14-3.0A 7.448216 60073.9 166.5 2.93e-09 1.61e-08 -2.09e-

→˓05 6.86e-07 1.12e-04 -3.68e-06 -5.57e-05 1.83e-06
0-1.0A -> 15-3.0A 7.448231 60074.0 166.5 5.33e-07 2.92e-06 -6.54e-

→˓04 -9.63e-04 -4.40e-04 -6.48e-04 -5.48e-04 -8.07e-04
0-1.0A -> 16-1.0A 7.837071 63210.2 158.2 1.24e-02 6.45e-02 -2.40e-

→˓02 3.67e-03 2.09e-01 -3.20e-02 -1.37e-01 2.10e-02

7.42.5 OPS Full list of keywords

The folowing list of keywords may be included directly in the correcponding module block to trigger OPS compute
the corresponding intensities.

**DoCD** (to request circular dichroism calculation)
**DoDipoleLength** (to request the use of electric moments in a length formulation)
**DoDipoleVelocity** (to request the use of electric moments in a velocity formulation)
**DoHigherMoments** (to request the calculation of electric quadrupole and magnetic␣
→˓dipole moments contributions)
**DoFullSemiclassical** (to request the calculation of complete semiclassical multipolar␣
→˓moments)
**DecomposeFoscLength** (to request the decomposition of the oscillator strengths in a␣
→˓multipolar expansion under a length formulation)

(continues on next page)
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**DecomposeFoscVelocity** (to request the decomposition of the oscillator strengths in a␣
→˓multipolar expansion under a velocity formulation)

In Orca 6.0 the modules in which OPS is avaylable are: %cis/%tddft, %rocis, %casscf, %mrci, %mdci, %lft,
%mcrpa and %xes.

7.42.6 Notes

1. All values in the OPS tables are expressed in atomic units unless otherwise specified.

2. Keyword corrections are done internally when necessary.

3. IMPORTANT: Input keywords have been standardized across all OPS-utilizing modules; Orca 5 keywords
are no longer valid.

4. IMPORTANT: In CASSCF and MRCI, keywords controlling the absorption and ECD spectrum no longer
belong in the “%rel” block.

5. Origin-adjusted formulation is approximated in SOC/SSC formulations.

6. OPS is not available for sTDDFT and sTDADFT.

7. The MDCI module reports spectra using left, right, and both solutions.

8. ADC2 and EOM-CCSD methods exclusively utilize ED length tables.

7.43 Magnetic properties through Quasi Degenerate Perturbation
Theory

7.43.1 Quasi Degenerate Perturbation Theory (QDPT) in a nutshell

Quasi Degenerate Perturbation Theory offers a versatile and accurate approach to to a number of magnetic prop-
erties for basically every wavefunction based excited states method.

In a nutshell at the non relativistic limit for every excited state single or multireference wavefunction based method,
bearing a CASSCF, MRCI, or a ROCIS type of zeroth order wavefunction one can set up an excitation prob-
lem that is a combination of the zeroth order wavefunction and excited spin-adapted configuration state functions
(CSFs)

⃒⃒
Φ𝑆𝑆𝜇

⟩︀
.

That takes the form: ⃒⃒
Ψ𝑆𝑆𝐼

⟩︀
=
∑︁

𝜇
𝐶𝜇𝑙

⃒⃒
Φ𝑆𝑆𝜇

⟩︀
(7.263)

Here the upper indices 𝑆𝑆 stand for a wave function of the spin quantum number 𝑆 and spin projection 𝑀𝑆 = 𝑆.
Since the BO Hamiltonian does not contain any complex-valued operator, the solutions

⃒⃒
Ψ𝑆𝑆𝐼

⟩︀
may be chosen to

be real-valued.

By obtaining a solution to the above eigenvalue problem provides the coefficients with which the CSFs enter into the
chosen wavefunction as well as the eigenstates of the spin-free operator. These eigenstates maube used to expand
towards the respective relativistic eigenstates by setting up the relevant quasi-degenerate eigenvalue problem. In
fact the spin-orbit coupling (SOC), the spin-spin coupling (SSC) effects along with the Zeeman interaction can be
included by means of the quasi-degenerate perturbation theory (QDPT). In this approach the SOC, the SSC, and
the Zeeman operators are calculated in the basis of pre-selected solutions of the BO Hamiltonian

{︀
Ψ𝑆𝑀𝐼

}︀
.⟨

Ψ𝑆𝑀𝐼

⃒⃒⃒
�̂�BO + �̂�SOC + �̂�SSC + �̂�Z

⃒⃒⃒
Ψ𝑆

′𝑀 ′

𝐽

⟩
= 𝛿𝐼𝐽𝛿𝑆𝑆′𝛿𝑀𝑀 ′𝐸

(𝑆)
𝐼 +

⟨
Ψ𝑆𝑀𝐼

⃒⃒⃒
�̂�SOC + �̂�SSC + �̂�Z

⃒⃒⃒
Ψ𝑆

′𝑀 ′

𝐽

⟩
(7.264)

Diagonalization of this matrix yields the energy levels and eigenvectors of the coupled states. These eigenvectors
in fact represent linear combinations of the solutions of �̂�BO with complex coefficients.
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The effective one-electron SOC operator in second quantized form can be written as [611]:

�̂�SOMF =
1

2

∑︁
𝑝𝑞

𝑧−𝑝𝑞�̂�
↑
𝑝�̂�𝑞 + 𝑧+𝑝𝑞 �̂�

↑
𝑝�̂�𝑞 + 𝑧0𝑝𝑞

[︁
�̂�↑𝑝�̂�𝑞 − �̂�↑𝑝�̂�𝑞

]︁
(7.265)

Here �̂�↑𝑝 and �̂�↑𝑝 stand for creation of 𝛼 and 𝛽 electrons respectively; �̂�𝑝 and �̂�𝑝 represent the corresponding annihila-
tion operators. The matrix elements 𝑧−𝑝𝑞 = 𝑧𝑥𝑝𝑞−𝑖𝑧𝑦𝑝𝑞 , 𝑧+𝑝𝑞 = 𝑧𝑥𝑝𝑞+𝑖𝑧

𝑦
𝑝𝑞 , and 𝑧0𝑝𝑞 = 𝑧𝑧𝑝𝑞 (upper 𝑥, 𝑦, 𝑧 indices denote

the Cartesian components) are constructed from the matrix elements described in section Zero-Field-Splitting.

In this concept the SOC Hamiltonian reads:⟨
Ψ𝑆𝑀𝐼

⃒⃒⃒
�̂�SOC

⃒⃒⃒
Ψ𝑆

′𝑀 ′

𝐽

⟩
=

∑︁
𝑚=0,±1

(−1)
(︂
𝑆′ 1
𝑀 ′ 𝑚

⃒⃒⃒⃒
𝑆
𝑀

)︂⟨︀
Ψ𝑆𝑆𝐼 ||𝐻𝑆𝑂𝐶

−𝑚 ||Ψ𝑆𝑆𝐽
⟩︀⏟  ⏞  

𝑌 𝑆𝑆′
𝐼𝐼′ (𝑚)

(7.266)

where 𝑚 represents the standard vector operator components.
(︂
𝑆′ 1
𝑀 ′ 𝑚

⃒⃒⃒⃒
𝑆
𝑀

)︂
is a Clebsch–Gordon coefficient

that has a single numer- ical value that is tabulated. It satisfies certain selection rules and contains all of the M-
dependence of the SOC matrix elements. The quantity 𝑌 𝑆𝑆′

𝐼𝐼′ (𝑚) is a reduced matrix element. It only depends on
the standard components of the two states involved. There are only three cases of non-zero 𝑌 𝑆𝑆′

𝐼𝐼′ (𝑚) which arise
from state pairs that either have the same total spin or differ by one unit.[622]

The SSC Hamiltonian reads:

�̂�SSC = −3𝑔2𝑒𝛼
2

8

∑︁
𝑖 ̸=𝑗

∑︁
𝑚=0,±1,±2

(−1)𝑚

𝑟5𝑖𝑗
[r𝑖𝑗 × r𝑖𝑗 ]

(2)
−𝑚 [S (𝑖)× S (𝑗)]

(2)

𝑚

(7.267)

For matrix elements between states of the same multiplicity it can be simplified to⟨
𝑎𝑆𝑀

⃒⃒⃒
�̂�SSC

⃒⃒⃒
𝑎′𝑆𝑀 ′

⟩
=

√
(𝑆+1)(2𝑆+3)√
𝑆(2𝑆−1)

×
∑︀
𝑚

(−1)𝑚
(︂
𝑆′ 2
𝑀 ′ 𝑚

⃒⃒⃒⃒
𝑆
𝑀

)︂∑︀
𝑝𝑞𝑟𝑠𝐷

(−𝑚)
𝑝𝑞𝑟𝑠

⟨︀
𝑎𝑆𝑆

⃒⃒
𝑄0
𝑝𝑞𝑟𝑠

⃒⃒
𝑎′𝑆𝑆

⟩︀ (7.268)

Here

𝑄(0)
𝑝𝑞𝑟𝑠 =

1

4
√
6

{︂
𝐸𝑝𝑞𝛿𝑠𝑟 − 𝑆𝑧𝑝𝑠𝑆𝑧𝑟𝑞 +

1

2

(︀
𝑆𝑧𝑝𝑞𝑆

𝑧
𝑟𝑠 − 𝐸𝑝𝑞𝐸𝑟𝑠

)︀}︂
(7.269)

represents the two-electron quintet density. The operators 𝐸𝑝𝑞 = �̂�↑𝑝�̂�𝑞 + �̂�↑𝑝�̂�𝑞 and 𝑆𝑧𝑝𝑞 = �̂�↑𝑝�̂�𝑞 − �̂�↑𝑝�̂�𝑞 symbolize
here the one-electron density operator and the spin density operator accordingly. The spatial part

𝐷(0)
𝑝𝑞𝑟𝑠 =

1√
6

∫︁∫︁
𝜙𝑝 (r1)𝜙𝑟 (r2)

3𝑟1𝑧𝑟2𝑧 − r1r2
𝑟512

𝜙𝑞 (r1)𝜙𝑠 (r2) 𝑑r1𝑑r2 (7.270)

denotes the two-electron field gradient integrals. These two-electron integrals can be evaluated using the RI ap-
proximation.

Finally, the Zeeman Hamiltonian is included in the form of:

�̂�Z = 𝜇𝐵

(︁
L̂+ 𝑔𝑒Ŝ

)︁
B (7.271)

with L̂ representing the total orbital momentum operator, and Ŝ being the total spin operator.

In this concept solution of a selected relativistic Hamiltonian provide access to a numerous magnetic properties
namely EPR properties EPR and NMR properties as well as Magnetization and Susceptibility properties Mag-
netization and Magnetic Susceptibility In addition monitoring the impact of an external Magnetic Field to the
relativistic eigenstates and eigenvectors Addition of Magnetic Fields becomes straightforward.

Collectively within the QDPT framework the following magnetic properties become available

1) G-Tensor/Matrix

2) Zero Field Splitting
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3) Hyperfine A-Tensor/Matrix

4) Electric Field Gradient

5) Magnetization

6) Susceptibility

7) Inclusion of Magnetic Fields

7.43.2 Magnetic properties through the Effective Hamiltonian

Since both the energies and the wavefunction of the low-lying spin-orbit states are available, the effective Hamil-
tonian theory can be used to extract EPR parameters such as the full G, Zero Field Splitting (ZFS) and hyperfine
A tensors.

Provided that the ground state is non-degenerate. By applying this Hamiltonian on the basis of the model space,
i.e. the |𝑆,𝑀𝑆⟩ components of the ground state, the interaction matrix is constructed.

The construction of effective Hamiltonian relies on the information contained in both the energies and the wavefunc-
tions of the low-lying spin-orbit states. Following des Cloizeaux formalism, the effective Hamiltonian reproduces
the energy levels of the “exact” Hamiltonian 𝐸𝑘 and the wavefunctions of the low-lying states projected onto the
model space Ψ̃:

�̂�eff|Ψ̃𝑘⟩ = 𝐸𝑘|Ψ̃𝑘⟩

These projected vectors are then symmetrically orthonormalized resulting in an Hermitian effective Hamiltonian,
which can be written as:

�̂�eff|Ψ̃⟩ =
∑︁
𝑘

|𝑆− 1
2 Ψ̃𝑘⟩𝐸𝑘⟨𝑆−

1
2 Ψ̃𝑘|

The effective interaction matrix obtained by expanding this Hamiltonian into the basis of determinants belonging
to the model space, is the compared to the matrix resulted from expanding the model Hamiltonian. Based on a
singular value decomposition procedure, all 9 elements of the G, A and/or ZFS tensors may be extracted.

7.43.3 Organization of QDPT Magnetic Properties Computation

Starting from ORCA 6.0 the calculation of the magnetic properties through the Quasi Degenerate Perturbation The-
ory (QDPT) in all available correlation type modules is unified and simplified. Following the general architecture
design of ORCA 6.0 the computation of all the involved magnetic properties are centrally performed by a driver
data structure called the QDPT Driver. The Driver takes into account all the specific variables that are populated
by the involved module and proceeds accordingly to calculated and represent the requested property in a uniform
fashion. This presently involves the casscf, mrci, rocis and lft modules

In this way

1) Results analysis process from the user’s perspective is simplified

2) Cross module correlation and comparisons are also easily accessible

The general keywords that activate the generation of QDPT properties are:

%method (casscf, mrci, lft, ...)
relativistic block (soc, rel, ...)
DoSOC true # include the SOC contribution
DoSSC true # include the SSC contribution

end
end

In a first step SOC contributions will be computed for any level of theory that is available
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----------------------------------
QDPT WITH CASSCF/NEVPT2/MRCI... DIAGONAL ENERGIES
----------------------------------

*************************************
COMPUTING QDPT HAMILTONIAN
*************************************

*************************************
Doing QDPT with ONLY SOC!
*************************************

Upon request the non-zero SOC Matrix Elemnts will be printed

------------------------------------
NONZERO SOC MATRIX ELEMENTS (cm**-1)
------------------------------------

Bra Ket
<Block Root S Ms | HSOC | Block Root S Ms> = Real-part Imaginary part
--------------------------------------------------------------------------------------

0 2 1.0 1.0 0 1 1.0 1.0 0.000 -71.172
0 3 1.0 1.0 0 2 1.0 1.0 0.000 1.542
0 4 1.0 1.0 0 0 1.0 1.0 0.000 50.048
0 5 1.0 1.0 0 0 1.0 1.0 0.000 -48.827
0 5 1.0 1.0 0 4 1.0 1.0 0.000 -40.119
0 6 1.0 1.0 0 1 1.0 1.0 0.000 -0.197
0 6 1.0 1.0 0 3 1.0 1.0 0.000 8.724
0 7 1.0 1.0 0 1 1.0 1.0 0.000 -2.695

followed by printing of the SOC Hamiltonian

Note: In the following the full <I|HBO+SOC|J> are printed in the CI Basis.
I,J are compound indices for |Block/Mult, Ms, Root>, where the states
are ordered first by MultBlock, then Ms and finally Root.

-----------------
SOC MATRIX (A.U.)
-----------------

leading to the printout of the relativistically corrected eigenvalues and eigenvectors

Lowest eigenvalue of the SOC matrix: -149.86223277 Eh
Energy stabilization: -2.54512 cm-1
Eigenvalues: cm-1 eV Boltzmann populations at T = 300.000 K

0: 0.00 0.0000 3.36e-01
1: 2.37 0.0003 3.32e-01
2: 2.37 0.0003 3.32e-01
3: 7757.65 0.9618 2.33e-17
4: 7757.66 0.9618 2.33e-17
5: 11913.81 1.4771 5.15e-26

...

The threshold for printing is 0.0100
Eigenvectors:

Weight Real Image : Block Root Spin Ms
STATE 0: 0.0000

0.388265 0.410320 -0.468937 : 0 0 1 1
0.223270 -0.000000 0.472514 : 0 0 1 0
0.388265 0.410320 0.468937 : 0 0 1 -1

STATE 1: 2.3703

(continues on next page)
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0.310686 0.534586 0.157809 : 0 0 1 1
0.378606 0.000017 -0.615309 : 0 0 1 0
0.310706 0.534623 -0.157747 : 0 0 1 -1

STATE 2: 2.3703
0.300970 -0.214003 -0.505146 : 0 0 1 1
0.398078 -0.000007 -0.630934 : 0 0 1 0
0.300949 -0.214019 0.505119 : 0 0 1 -1

...

Then in following all the relevant QDPT properties will be printed:

*************************************
COMPUTING QDPT PROPERTIES
*************************************

1) for G-Tensor/Matrix
----------------------------------------------
ELECTRONIC G-MATRIX FROM EFFECTIVE HAMILTONIAN
----------------------------------------------

2) for ZFS, on the basis of the 2nd Order and Effective Hamiltonian approximations

--------------------------------------------
ZERO-FIELD SPLITTING

2ND ORDER SOC CONTRIBUTION
--------------------------------------------
--------------------------------------------------------

ZERO-FIELD SPLITTING
EFFECTIVE HAMILTONIAN SOC CONTRIBUTION
--------------------------------------------------------

3) for A-Tensor/Matrix
-------------------------
QDPT HFC A-MATRICES
-------------------------

4) for Electric Field Gradient Tensor

---------------------------------------
EFG TENSOR
---------------------------------------

5) For Mahnetization/Susceptibility

-------------------------------------------------
SOC CORRECTED MAGNETIZATION AND/OR SUSCEPTIBILITY
-------------------------------------------------

6) For External Magnetic Fields Contributions

-----------------------------------------------------------------------------------------------
→˓-----------

SOC TRANSITION MAGNETIC DIPOLE CONTRIBUTIONS IN EXTERNAL MAGNETIC FIELD
Magnetic field Bx = 1.00 Gauss By = 0.00 Gauss Bz = 0.00 Gauss

-----------------------------------------------------------------------------------------------
→˓-----------
States Energy Energy Osh.Str M2 MX MY ␣
→˓ MZ

(cm-1) (eV) (au) (au**2) (au) (au) ␣
→˓ (au)

(continues on next page)
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-----------------------------------------------------------------------------------------------
→˓-----------
0 0 0.00 0.0000 0.00000000 0.00000145 0.00090159 0.00061858 ␣
→˓ 0.00050413
0 1 20.20 0.0025 0.00000000 0.00000126 0.00042808 0.00067630 ␣
→˓ 0.00078545
1 1 0.00 0.0000 0.00000000 0.00000000 0.00003430 0.00002347 ␣
→˓ 0.00001909
-----------------------------------------------------------------------------------------------
→˓-----------

Following this as Discussed in One Photon Spectroscopy Section {ref}`sec:ops.detailed` all␣
→˓relativistically corrected optical spectra will also printed under the same correction␣
→˓scheme

-----------------------------------------------------------------------------------------------
→˓---------

SOC CORRECTED ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS
-----------------------------------------------------------------------------------------------
→˓---------

Transition Energy Energy Wavelength fosc(D2) D2 |DX| |DY| ␣
→˓ |DZ|

(eV) (cm-1) (nm) (*population) (au**2) (au) (au) ␣
→˓ (au)
-----------------------------------------------------------------------------------------------
→˓---------

...

If requested in a second step Spin-Spin Coupling contributions will be generated and wiil be added to the SOC
Hamiltonian to generate SOC+SSC contributions

-------------------------------------------
Calculating Spin-Spin Coupling Integrals
-------------------------------------------

The the program will undergo the exact same analysis as above printing the SOC+SSC analysis

***********************************************************
* DOING EVERYTHING A SECOND TIME: THIS TIME INCLUDING SSC *
***********************************************************

*************************************
COMPUTING QDPT HAMILTONIAN
*************************************

*************************************
Doing QDPT with SOC AND SSC!
*************************************

------------------------------------
NONZERO SOC and SSC MATRIX ELEMENTS (cm**-1)
------------------------------------

Bra Ket
<Block Root S Ms | HSOC + HSSC | Block Root S Ms> = Real-part Imaginary part
--------------------------------------------------------------------------------------

0 2 1.0 1.0 0 1 1.0 1.0 -0.000 -71.172
0 3 1.0 1.0 0 1 1.0 1.0 -0.001 0.000
0 3 1.0 1.0 0 2 1.0 1.0 0.020 1.542
0 4 1.0 1.0 0 0 1.0 1.0 -0.222 50.048

(continues on next page)
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0 5 1.0 1.0 0 0 1.0 1.0 -0.228 -48.827
0 5 1.0 1.0 0 4 1.0 1.0 0.332 -40.119
0 6 1.0 1.0 0 1 1.0 1.0 -0.030 -0.197

for both the Magnetic properties e.g. the ZFS

--------------------------------------------------------
ZERO-FIELD SPLITTING

EFFECTIVE HAMILTONIAN SOC and SSC CONTRIBUTION
--------------------------------------------------------

as well as the Optical properties

-----------------------------------------------------------------------------------------------
→˓---------
SOC+SSC CORRECTED ABSORPTION SPECTRUM VIA TRANSITION ELECTRIC DIPOLE MOMENTS

-----------------------------------------------------------------------------------------------
→˓---------

Transition Energy Energy Wavelength fosc(D2) D2 |DX| |DY| ␣
→˓ |DZ|

(eV) (cm-1) (nm) (*population) (au**2) (au) (au) ␣
→˓ (au)
-----------------------------------------------------------------------------------------------
→˓---------

7.44 Simulation of (Magnetic) Circular Dichroism and Absorption
Spectra

7.44.1 General description of the program

ORCA can now simulate optical spectra that include spin-orbit coupling contributions at all levels of theory by
using a common implementation. [269]

Following the energy-loss approach, the absorption cross section for a transition between states 𝑃 and �̃� can be
expressed as:

𝜎𝑃�̃� =
4𝜋2

𝑐(𝐸�̃� − 𝐸𝑃 )
|𝑇𝑃�̃�|

2,

where c is the speed of light; 𝐸𝑃 and 𝐸�̃� are the energy of the states 𝑃 and �̃�, respectively; 𝑇𝑃�̃� is the tran-
sition moment between states 𝑃 and �̃� and it can be computed with different expressions based on the applied
approximation.

Under a dipolar approximation to the light-matter interaction, the transition moment takes the form:

𝑇𝑃�̃� =

𝑁∑︁
𝑖=1

⟨𝑃 | ℰ · p̂𝑖 |�̃�⟩,

where the sum runs over all electrons 𝑖; p̂𝑖 is the linear momentum operator; and ℰ is the polarization vector of the
incident light.

In order to take into account all the electric and magnetic mechanisms in the transition, it is necessary to use the
full field-matter interaction operator (FFMIO). For transition moment, it leads to the equation (7.272).

𝑇𝑃�̃� =
𝑒

𝑚𝑒

𝑁∑︁
𝑖=1

⟨𝑃 | ℰ ·
[︁
𝑒𝑖k·̂r𝑖 p̂𝑖

]︁
|�̃�⟩ (7.272)
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where 𝑟𝑖 is the position operator of i-th electron and k is the wave vector that points in the direction of the light
propagation whose magnitude is related to the wavelength by 𝜆 = 2𝜋/|k|.

For free-rotating molecules, it is necessary to consider all possible orientations of the molecule with respect to
the direction of the incident light. In some cases, such as the absorption of linear-polarized light under a dipolar
approximation, the effect of the orientation can be averaged analytically. However, numerical integration over some
selected molecular orientations, labeled as 𝑜 in equation (7.273), is generally necessary.

< 𝜎𝑃�̃� >=
∑︁
𝑜

𝑤𝑜
4𝜋2

𝑐(𝐸�̃�(𝑜)− 𝐸𝑃 (𝑜))
|𝑇𝑃�̃�(𝑜)|

2 (7.273)

where 𝑤𝑜 is the weight of the orientation in the quadrature.

The implementation has been designed to compute the absorption of circularly-polarized light on systems under the
effect of an additional external magnetic field, B, which modifies the states 𝑃 and �̃� for each orientation 𝑜 through
a Zeeman perturbation. The computed results are presented as the difference in the absorption of the left (-) and
right (+) circularly-polarized light (∆f𝑜𝑠𝑐) and as the sum of the oscillator strength (f𝑜𝑠𝑐), which corresponds to
the linearly-polarized light absorption. The molecular orientations are constructed by using rotation matrices with
three Euler angles: 𝜒, 𝜃, and 𝜑. Herein, 𝜒 (the rotation angle on a plane perpendicular to the direction of external
magnetic field/incident light) is integrated analytically whereas 𝜃 and 𝜑 are taken on a grid.

Finally, the states 𝑃 and �̃� are obtained from QDPT by expanding the states over non-relativistic eigenstates of �̂�0

({𝐼, 𝐽}) and the coefficients of the expansion (𝑑𝐼�̃�) are obtained from the diagonalization of the complex matrix,
which contains �̂�0 as well as the SOC and Zeeman contributions (and SSC, if it is implemented in the selected
electronic structure theory) expressed in {𝐼, 𝐽}.

⟨Ψ𝑆𝑀𝐼 | �̂�0 + �̂�𝑆𝑂𝐶 + �̂�𝑍𝑒𝑒𝑚𝑎𝑛 |Ψ𝑆
′𝑀 ′

𝐽 ⟩ = 𝛿𝐼𝐽𝛿𝑆𝑆′𝛿𝑀𝑀 ′𝐸𝑆𝐼 + ⟨Ψ𝑆𝑀𝐼 | �̂�𝑆𝑂𝐶 + �̂�𝑍𝑒𝑒𝑚𝑎𝑛 |Ψ𝑆
′𝑀 ′

𝐽 ⟩ (7.274)

7.44.2 Running and analyzing MCD calculations in TDDFT module

A minimum input to compute the Magnetic Circular Dichroism (MCD) requires setting the keyword DoMCD to
true and to include an intensity for the external magnetic field B (in Gauss). An example input for the TD-DFT
module is as follows:

! B3LYP def2-QZVPP

%tddft
TDA False
NROOTS 10
DoSOC True
DoMCD True
B 50000.0

end

*xyz 0 1
O 0.24287127056830 0.00033994295362 0.29479344369591
C 0.13113617562040 0.00013705972874 1.65093880501262
C 1.35780003491446 -0.00017874911331 2.22574232397512
C 2.30247996517358 -0.00017814489451 1.14947275232337
C 1.57300244613625 0.00013652073221 0.00793218434497
H -0.86951534119903 0.00025858475406 2.04160438459058
H 1.56899490845286 -0.00038874637444 3.28047030533440
H 3.37570289422870 -0.00038632501973 1.22171814100713
H 1.83015664610447 0.00025985723335 -1.03506234028415
*

In the output file of this job, the estimated oscillator strengths (f𝑜𝑠𝑐) and the difference between left and right
circularly polarized light absorption (∆f𝑜𝑠𝑐) are provided:
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------------------------------------------------------------------------------
MCD Transitions via transition electric dipole moments

B = 50000.00 Gauss T = 300.000 K
------------------------------------------------------------------------------

dfosc fosc dfosc/fosc

0 -> 1 -0.0000000000 0.0000000003 -0.0663180503
0 -> 2 0.0000000000 0.0000000005 0.0000209714
0 -> 3 0.0000000000 0.0000000003 0.0661609417
0 -> 4 -0.0000000001 0.0000000004 -0.2991916107
0 -> 5 -0.0000000000 0.0000000006 -0.0009270335
0 -> 6 0.0000000001 0.0000000004 0.2984154405
0 -> 7 0.0000000003 0.0000000008 0.3721777693
0 -> 8 -0.0000000000 0.0000000009 -0.0002960328
0 -> 9 -0.0000000003 0.0000000008 -0.3689867758
0 ->10 -0.0000050986 0.1741092913 -0.0000292840

These results may not be accurate when the energetic order of the states changes with respect to the relative orien-
tation between the molecule and the external magnetic field. To obtain accurate results, it is necessary to perform
a post-processing step for all orientations using the orca_mapspc program, which saves the results in a file that
has the .cis-el.dipole-length.1.mcd extension:

orca_mapspc fur-mcd.cis-el.exact.1.mcd MCD -x050000 -x155000 -n10000 -w2000

In this example, we generate the spectrum (M−1) between 50000 and 55000 cm−1 (-x050000 -x155000), using
10000 points (-n10000) and including a broadened normalized Gaussian function with a full width at half maximum
of 2000cm−1 (-w2000).

Multiple MCD calculations can be performed in one run by setting multiple values for B. Transition moments can
be also obtained through ED velocity formulation and FFMIO operator by setting the keywords DoVelocity and
DoQuadrupole to true, respectively:

! B3LYP def2-QZVPP

%tddft
TDA False
nroots 10
DoSOC True
DoMCD True
DoDipoleVelocity True
DoFullSemiClassical True
B 50000.0, 0.0

end

The results are printed separately in the output file for each setting:

------------------------------------------------------------------------------
MCD Transitions via transition electric dipole moments

B = 50000.00 Gauss T = 300.000 K
------------------------------------------------------------------------------

dfosc fosc dfosc/fosc

0 -> 1 -0.0000000000 0.0000000003 -0.0663180503
.
.
.
------------------------------------------------------------------------------

MCD Transitions via transition velocity dipole moments
B = 50000.00 Gauss T = 300.000 K

------------------------------------------------------------------------------
(continues on next page)
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dfosc fosc dfosc/fosc

0 -> 1 -0.0000000001 0.0000000013 -0.0477214281
.
.
.

------------------------------------------------------------------------------
MCD Transitions via full Semi-classical formulation

B = 50000.00 Gauss T = 300.000 K
------------------------------------------------------------------------------

dfosc fosc dfosc/fosc

0 -> 1 -0.0000000001 0.0000000016 -0.0731029604
.
.
.

Post-processing results are saved in the files having the .cis-el.dipole-length.1.mcd, .cis-el.
dipole-vel.1.mcd, and .cis-el.exact.1.mcd extensions.

NOTE: It is worth enphasizing that the computed values of ∆f𝑜𝑠𝑐 correspond to the difference in absorption
between left and right circularly polarized light for the selected transition moments. In the case of both ED ap-
proximations, ∆f𝑜𝑠𝑐 corresponds to the MCD signal. The sum of natural circular dichroism and magnetic-induced
circular dichroism is obtained when the FFMIO is requested. To obtain only the MCD spectrum in an FFMIO
scheme, it is necessary to subtract the natural circular dichroism by setting B to 0.0.

7.44.3 Running MCD calculations in other modules

The MCD implementation can also be used in other modules such as STEOM-CCSD, CAS, ROCIS, and MRCI
(see the input file examples given below) by using the same keywords as those described for the TDDFT module.
In the case of CAS, ROCIS, and MR-CI modules, it is necessary to include the keyword NewMCD True; otherwise,
the previous MCD implementation will be called instead.

%mrci
soc

DoSOC True
DoVelocity True
DoQuadrupole True
DoMCD True
newMCD True
B 50000.0

end
end

%casscf
DoDipoleVelocity True
DoFullSemiClassical True
rel

DoSOC True
DoMCD True
B 50000.0
Temperature 300.0

end
end
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%rocis
SOC True
DoMCD True
B 50000.0
DoDipoleVelocity True
DoFullSemiClassical True

end

%mdci
DoSOC True
DoMCD True
DoVelocity True
DoQuadrupole True
B 50000.0
Temperature 300.0

end

It is important to keep in mind that the calculation of the MCD relies on the proper description of the transition
moments and angular momentum for calculating the Zeeman perturbation. Therefore, the user is responsible for
selecting the proper electronic structure method.

7.44.4 List of related keywords

%selected module
DoMCD False # Enables the use of the MCD module
DoDipoleVelocity True # Use the electric dipolar velocity formulation

# for the light-matter interaction
DoFullSemiClassical False # Use the full semiclasical ligth-matter

# interaction transition moments
MCDGridtype 1 # Grid for the molecular orientational average

# 1 = Lebedev grid (default)
# 2 = Regular grid

MCDLebedev 14 # Number of points if Lebedev grid is selected
# 6, 12, 14(default), 26, 50, 110, 194, 302, 434, 590, 770

NPOINTSPHI 10 # Number of points for phi angle if regular grid is selected
NPOINTSTHETA 10 # Number of points for theta angle if regular grid is selected
B 3000.0 # Magnetic field in Gauss
Temperature 300.0 # Self-explanatory. One temperature must be defined

# for each B value
end

7.45 More on the Excited State Dynamics module

ORCA has now a module designed to calculate properties related to excited states named ORCA_ESD. It can be
used to predict absorption/emission spectra, transition rates, resonant Raman, and MCD spectra, based on a path
integral approach to the dynamic process [199]. It has some of the functionalities of ORCA_ASA and even more,
as it will be discussed. What we do here is NOT a conventional dynamics with trajectories along time points, we
rather solve the equation for the transition rates or intensities depending on the different cases considered.

This formulation works because there is an analytic solution to the path integral of the Multidimensional Harmonic
Oscillator and the assumption of Harmonic nuclear movement is critical. In many cases that approximation does
hold and the results are in very good agreement with the experiment. The general usage of the ORCA_ESD module
and some examples are already presented on Sec. Excited State Dynamics and it is recommended to read that
before going into the details here. We now will discuss the specifics and keywords related to of each part of the
module. A complete keyword list can be found at the end of this section.
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7.45.1 Absorption and Emission Rates and Spectrum

General Aspects of the Theory

The idea behind calculating the absorption or emission rates starts with the equation from the quantization of the
electromagnetic field for the transition rates between and initial and a final state:

𝑘(𝜔)𝑖𝑓 =
4𝜔3𝑛2

3ℏ𝑐3
|⟨Ψ𝑖|̂︀𝜇|Ψ𝑓 ⟩|2𝛿(𝐸𝑖 − 𝐸𝑓 ± ℏ𝜔) (7.275)

with ℏ𝜔 being the energy of the photon, ̂︀𝜇 the dipole operator and 𝑛 the refractive index of the solvent, as suggested
by Strickler and Berg [831].

One way to obtain 𝑘(𝜔) is to compute it in the frequency domain, by calculating the Franck-Condon Factors
between all initial and final states that satisfy the Dirac delta in Eq. (7.275), considering the thermally accessible
initial states with the appropriate weight,

𝑘𝑜𝑏𝑠 =

∫︁
𝑘(𝜔)𝑑𝜔, 𝑘(𝜔) =

∑︁
𝑖𝑓

𝑃𝑖(𝑇 )𝑘𝑖𝑓 (𝜔), (7.276)

where 𝑃𝑖(𝑇 ) = 𝑒
− 𝜖𝑖

𝑘𝐵𝑇 /𝑍 is the Boltzmann population of a given initial state at temperature 𝑇 , 𝜖𝑖 is the total
vibrational energy of state 𝑖 and 𝑍 is the vibrational partition function. However, this can lead to a very large
number of states to be included, particularly if there are low frequency modes. In this work we will take the a
different approach and switch to the time domain, by using the Fourier Transform representation of the Dirac delta,

𝛿(𝜔) =
1

2𝜋

∫︁ +∞

−∞
𝑒𝑖𝜔𝑡𝑑𝑡, (7.277)

so that the equation to solve, in atomic units, is:

𝑘(𝜔) =
2𝜔3

3𝜋𝑐3𝑍

∑︁
𝑖𝑓

𝑒
− 𝜖𝑖

𝑘𝐵𝑇 ⟨Θ𝑖|�⃗�𝑒|Θ̄𝑓 ⟩⟨Θ̄𝑓 |�⃗�𝑒|Θ𝑖⟩
∫︁
𝑒𝑖(𝐸𝑖−𝐸𝑓−𝜔)𝑡𝑑𝑡,

with �⃗�𝑒 being the “electronic transition dipole” and |Θ⟩ the vibrational wavefunction of the initial or final state.

After some extra steps, redefinition of the time variable and insertion of a resolution of identity, it can be shown
that this equation is ultimately simplified to a Discrete Fourier Transform (DFT) of a correlation function 𝜒(𝑡) with
a timestep ∆𝑡, multiplied by a prefactor 𝛼 [199]:

𝑘(𝜔) = 𝛼

∫︁
𝑇𝑟(�⃗�𝑒𝑒−𝑖

̂︀𝐻𝜏𝜇𝑒𝑒−𝑖̂︀𝐻𝜏 )𝑒𝑖Δ𝐸𝑡𝑒−𝑖𝜔𝑡𝑑𝑡
= 𝛼

∫︁
𝜒(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

= 2𝛼 Re

∫︁ ∞
0

𝜒(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

≃ 2𝛼∆𝑡 Re 𝐷𝐹𝑇{𝜒(𝑡)},

and this correlation function is then calculated using path integrals analytically at each time point 𝑡.

If one considers that the electronic part of the transition dipole varies with nuclear displacements and we allow for
it to depend on the normal coordinates (Q), such as:

�⃗�𝑒(Q) = �⃗�𝑒0 +
∑︁
𝑖

𝜕�⃗�𝑒

𝜕𝑄𝑖

⃒⃒⃒⃒
Q=0

𝑄𝑖 + . . . , (7.278)

we can even include vibronic coupling or the so-called Herzberg-Teller (HT) effect. The Frank-Condon (FC)
approximation keeps only the coordinate-independent term. The correlation function for the HT cases can then be
derived recursively from the FC one and the calculation is done quite efficiently. It is important to say the one must
choose ONE set of coordinates in order to expand the transition dipole. In our formulation, it is always that of the
FINAL state and that has some implications discussed below.
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Other important aspect of this theory is that, in order to solve the path integrals, one has to work in one set of
coordinates, the initial (Q) or the final state ones (Q̄, with the bar indicating final coordinates). As we have a
transition matrix element, one set of coordinates have to be transformed into the other and it is easy to show that
they are related by

Q = JQ̄+K. (7.279)

That was first proposed by Duschinsky in the late 1930s[228] with the Duschinsky rotation matrix J and the
displacement vector K defined as

J = LT
𝑥L̄𝑥, K = LT

𝑥(q̄0 − q0),

with L𝑥 being the matrix containing the normal modes, here described in Cartesian coordinates (𝑥), and q0 begin
mass weighted coordinates (𝑞𝑖 =

√
𝑚𝑖𝑥𝑖).

The program runs by first reading and obtaining the initial and final state geometries and Hessians, then computes
the Duschinsky rotation matrix and displacement vector, calculates the derivatives for the transition dipoles and
computes the correlation function. After that, the DFT is done and the rates are obtained and printed when nec-
essary. As the intensities observed experimentally are proportional to the rates, the spectrum is also calculated
and printed on a BASENAME.spectrum file. If PRINTLEVEL HIGH is requested under %ESD, the correlation
function is also printed on a BASENAME.corrfunc file.

OBS: The units for the Emission spectra are rather arbitrary, but for Absorption they are the experimental “molar
absorptivity (𝜀)” in L mol−1cm−1 [199]. Be aware that these are dependent on the line width of the curves.

Approximations to the excited state PES

As already mentioned in Sec. Excited State Dynamics, in order to predict the rates we need at least a ground state
(GS) and an excited state (ES) geometry and Hessian. In ORCA, we have seven different ways to approximate this
ES PES: AHAS, VH, VG, HHBS, HHAS, UFBS and UFAS. Those can can be choosen by setting the HESSFLAG
under %ESD. If you actually optimize the ES geometry and input the Hessian, that will be called an Adiabatic
Hessian (AH) method an no keyword must be given on the input.

OBS: In the present version, these approximations are only available for Absorption, Fluorescence and resonant
Raman. They cannot be directly used for phosphorescence and ISC rate calculations. However, one can do the
latter calculations by generating approximate ES Hessians from “fake” fluorescence or absorption runs, and then
using the ES Hessians in AH calculations (vide infra).

The idea behind these approximations is to do a geometry update step (ΔS = −gH−1 for Quasi-Newton and
ΔS = −g(H+ S)−1 for Augmented Hessian) to obtain the ES structure and somehow approximate the ES Hes-
sian. The gradient (g) and Hessian (H) used on the step are on column Step of Table Table 7.28 below, with a
description of the final ES Hessian:

Table 7.28: Methods used to estimate the ES PES

Method Step ES Hessian
AHAS ES grad + GS Hessian calculated on the ES geometry
VH ES grad + ES Hessian at GS geometry calculated on the GS geometry
VG (de-
fault)

ES grad + GS Hessian equal to GS Hessian

VGFC ES grad + GS Hessian equal to GS Hessian (+ APPROXADEN
TRUE)

HHBS ES grad + Hybrid ES Hessian on GS geometry Hybrid Hessian on GS geometry
HHAS ES grad + GS Hessian Hybrid Hessian on ES geometry
UFBS ES grad + Updated frequencies ES Hessian on GS

geometry
Updated frequencies ES Hessian on GS
geometry

UFAS ES grad + GS Hessian Updated frequencies ES Hessian on ES ge-
ometry
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OBS: Always use the GS geometry on the input file, equal to the one in the GSHESSIAN! If you asked for OPT
FREQ at the input, a .xyz file is generated with the same geometry found on the .hess. If you picked the geometry
from the .hess file, remember that it is in atomic units, so you have to use BOHRS on the main input.

After the calculation of the ES PES, a file named BASENAME.ES.hess is printed and can be used in future calcu-
lations. For example, one can use it in a separate AH calculation, as if the file contains the optimized ES geometry
and the exact ES Hessian (of course, in reality both are approximate). This allows one to perform e.g. phosphores-
cence and ISC rate calculations with approximate ES PESs even though ESD does not support these calculations
directly. For example, the phosphorescence rate from a triplet state to the 𝑆0 state, with the VG approximation for
the triplet PES and the ES gradient computed at the TDDFT level, can be computed as follows:

• Run an ESD fluorescence calculation using the VG approximation, but where “IROOTMULT TRIPLET”
is added to the %TDDFT block. The resulting rate and spectrum are not meaningful, but the BASE-
NAME.ES.hess file generated from this calculation is the correct VG approximation to the triplet PES.

• Run an ESD phosphorescence calculation using the AH method, with the aforementioned BASE-
NAME.ES.hess file as the TSHESSIAN.

This way, the first ESD calculation only uses the information of the scalar triplet state in computing the VG step,
while the second ESD calculation only uses the SOC-corrected states. The same ES Hessian file can therefore be
used in the calculations of all three spin sublevels of the triplet state.

In addition to the BASENAME.ES.hess file, if there was any updates on the GS Hessian, like transition dipole
derivatives, a BASENAME.GS.hess is also printed.

• The step can be controlled with the GEOMSTEP flag, with QN or AUGHESS options.

• Currently all ES Hessians are calculated numerically, if you want to change the parameters related to the
frequency calculations, you can do that under %FREQ (Sec. Vibrational Frequencies). The numerical
gradient settings are under %NUMGRAD (Sec. Numerical Gradients).

• The ES hybrid Hessian is calculated in the same way as described in Sec. Hybrid Hessian, except that the
“model” Hessian is the GS one.

• The ES Hessian with updated frequencies is recalculated from the same GS normal modes, after an update
on the frequencies, as H𝑢𝑝 = L𝜔2

𝑢𝑝L
𝑇 . With L being the normal modes and 𝜔𝑢𝑝 the updated frequencies,

with negative sign being kept after the square.

• The frequencies are updated depending on a calculation of the energy after a given step. If the ES modes
are equal to the GS, then a step over a coordinate 𝛿𝑞𝑖 that would result in an energy difference 𝛿𝐸 is given
by 𝛿𝑞𝑖 = (− 𝑔𝑖√

𝜔𝑖
+

√
𝑔2𝑖
𝜔𝑖

+ 2𝛿𝐸𝜔𝑖)/𝜔𝑖. The default 𝛿𝐸 used is 10−4 Eh, in general above the error of the
methods. If the error in energy after the step is larger than a threshold given by the UPDATEFREQERR flag
(default 0.20 or 20%), the gradients are calculated and the frequency recomputed. If not not, that mode and
frequency are assumed to be the same.

• The Updated Frequencies method can greatly accelerate the calculation of the Hessian, for much fewer gra-
dient calculation are necessary, although you do not correct the modes. Also, the derivatives over the modes
are already computed simultaneously.

• The expected energy error 𝛿𝐸 can be changed using the UF_DELE flag.

• The default method is the VG, but the AHAS is more trustworthy for unknown systems, although a lot heavier
(Sec. A better model, Adiabatic Hessian After a Step (AHAS) and [199]).

• Always check the sum of 𝐾2
𝑖 printed on the output. If that number is too high (above 8 or so), it means that

the geometries are too displaced and the theory might not work on these cases (check for different coordinate
systems then, Sec. Normal modes coordinate systems).

• Also check for RMSD between the geometries after a step. If the difference is too big, there might be
problems with the step.
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Mixing methods

In principle, it is possible to use different methods to compute different parts needed for the ORCA_ESD module.
You could, for instance use (TD)DFT analytical gradients for the ground/excited state geometries and Hessians and
a more elaborate method such as STEOM-CCSD to get the energies and transition dipoles. If you want to do that,
just input the Hessians and use the DELE flag for the energy difference between the states - at their own geometry!
- and TDIP x,y,z to input the transition dipole. If there is SOC and the transition dipole is complex, use TDIP
x.real, x.imag, y.real, y.imag, z.real, z.imag. The program will automatically detect each case. If you don’t input
these, they will be obtained by the module during the run, so you can set the excited method you want and let the
program figure out DELE and TDIP.

OBS: It is not advisable to mix different levels of theory during a geometry step though. If you obtained a GS
Hessian from DFT, doing a step based on a CASSCF ES numerical gradient might not lead to reasonable results.
The same would be problematic even for different DFT functionals.

Removal of frequencies

If, after calculating an ES Hessian you end up with negative frequencies, the calculation of the correlation function
might run into trouble. The default for the module is to turn all negative frequencies positive, printing a warning
if any of them was lower than -300 cm−1. If that is the case, you are probably on a saddle point and not even a
minimum, so results should be taken with care,

You can also choose to completely remove the negative frequencies (and the corresponding from the GS), by setting
IFREQFLAG REMOVE or leave them as negative with IFREQFLAG LEAVE under %ESD.

Sometimes, low frequencies have displacements that are just too large (check on the K vector), or the experimental
low frequency modes are too anharmonic and you might want to remove them. It is also possible to do that setting
the TCUTFREQ flag (in cm−1), and all frequencies below the given threshold will be removed.

Normal modes coordinate systems

When working with systems with weak bonds, such as hydrogen bonds and 𝜋 stacking, or with biphenyls and
similar planar molecules it is common that there will be low frequency-high amplitude modes related to the angular
bending. It has been shown that, in some cases, the normal modes transformed from Cartesian coordinates might
be not sufficient to describe systems with these large amplitude motion [149]. In those, the definition of normal
modes in terms of some curvilinear set of coordinates such as the internal ones are more suitable.

The first order transformation from Cartesian (x) to internal (s) coordinates is given by Wilson’s B matrix[426] as

s = B(x− x0), (7.280)

and here we use Baker’s[68] delocalized internal coordinates as default. First, a redudant set is build and an
singular value decomposition of the G = BB𝑇 matrix is performed to obtain the non-redundant set. The latter
can be generated by B′ = U

𝑇
B, where U are the eigenvectors correponding to non-zero eigenvalues of G. Then

an orthogonal set is contructed from B′′ = G′
−1/2

U𝑇B. As the eigenvectors are not conitnuous functions of
the coordinates, in order to avoid using an arbitrary selection, we will follow the work of Reimers[715] and set
G−1/2U𝑇 = Ḡ−1/2Ū𝑇 , or use the same transformation for the initial an final coordinates. Please note that this
may lead to numbers larger than 1 on the Duschinsky rotation matrix, for it is an approximation and the calculated
rates may vary a little. The normal modes in internal coordinates (L𝑠) are then obtained from those in Cartesian
ones (L𝑥) as

L𝑠 = B′′M
1/2

L𝑥, (7.281)

and the Duschinsky relation ((7.279)) still holds[149], with the displacement vector being simply

K𝑠 = L𝑇𝑠 (̄s− s). (7.282)

The options available for coordinate systems can be set under COORDSYS, and can be CARTESIAN, INTERNAL
(for Baker delocalized - default), WINT (for weighted internals following Swart and Bickelhaupt [838]), FCWL
(force constant weighted following Lindh [526]) and FCWS (same as before, but using Swart’s model Hessian).
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OBS: Calculating in internal coordinates is usually better but not necessarily. If something goes wrong, you may
also want to try the Cartesian option.

Geometry rotation and Duschinsky matrices

The electronic transition should not to take place simultaneously with translations and rotations[747] of the molec-
ular structure. Before further calculations take place, the initial and final state structures are superimposed to
satisfy Eckart’s conditions by obtaining a rotation matrix B that ensures

∑︀
𝑚𝑖(BRi × R̄i) = 0 [239], with R

being Cartesian coordinates. As the initial geometry is rotated, so must be the corresponding normal modes L𝑥
also. This can be turned of by setting the flag USEB FALSE.

By the default the Duschinsky rotation matrix is set to Identity, to take advantage of our much faster algorithm.
To turn that on, just set USEJ TRUE. You can check the “diagonality” of this matrix by looking at the Diagonality
Index (DI), here defined as

√︁∑︀
𝑖 J

2
𝑖𝑖/
∑︀
𝑖𝑗 J

2
𝑖𝑗 . A DI=1 would be a perfectly diagonal matrix. The amount of

mixing between modes is rpresented by the Mixing Index, with is here is given by ⟨|𝐽𝑚𝑎𝑥|⟩, or the average value
of the maximum 𝐽𝑖 of each line. If DI=1, it means each normal coordinate from the initial state is equal to a mode
of the final state. When USEJ=TRUE, the largest components of the J matrix are printed along with the K vector,
so you can have a better idea of how the mixing is occuring.

Derivatives of the transition dipole

The derivatives of the transition dipoles with respect to the normal coordinates of the final state can be obtained
directly from the derivatives with respect to the Cartesian coordinates as

U(Q̄) = L̄𝑇𝑥M
−1/2U(R̄), (7.283)

U being the matrix of the x,y and z components of the derivative, M a 3𝑁 × 3𝑁 matrix with the atomic masses
along the diagonal. Also, in case one already has the derivatives with respect to the initial state , those can be
transformed into the derivatives with respect to the final state by using the Duschinsky relation, assuming that
�⃗�𝑒0(Q̄) +

∑︀
𝑖
𝜕�⃗�𝑒

𝜕�̄�𝑖
�̄�𝑖 = �⃗�𝑒0(Q) +

∑︀
𝑖
𝜕�⃗�𝑒

𝜕𝑄𝑖
𝑄𝑖, so that

𝜕�⃗�𝑒

𝜕�̄�𝑘
=
∑︁
𝑗

J𝑗𝑘
𝜕�⃗�𝑒

𝜕𝑄𝑗
. (7.284)

By default, this transformation is NOT done, since Eq. (7.284) is an approximation. If you want to turn it on, set
CONVDER TRUE under %ESD.

OBS: Remember that, if you already have the Cartesian derivatives over the final state, like if you use AHAS for
an absorption spectrum, the conversion should be exact (although there might be numerical issues, always use a
larger GRAD for frequencies!).

Alternatively, these can be calculated numerically from displacements over each normal mode. In this case, it is
convenient to use the dimensionless normal coordinates 𝑞𝑖 = 𝜔

1/2
𝑖 𝑄𝑖 which represent proportional displacements

on the PES [678]. We use ∆𝑞 = 0.01 by default, but this can be changed setting the DER_DELQ flag.

• Again, DO NOT MIX different coordinates systems. If the derivatives were calculated over one coordinate
set and you decide to change it, it has to be recalculated. You can manually delete them from the BASE-
NAME.ES.hess file.

• For hybrid functionals, you can choose to use DFT for the gradient, energy and transition dipole, and the fast
simplified TDA (Sec. Simplified TDA and TD-DFT ) only for the derivatives by seting STDA TRUE under
%ESD.

• A simple trick can be used to accelerate the computation of derivatives. If the first displacement gives a
transition dipole that is too close to the reference, then the derivative can be assumed to be small and just the
plus displacement may be taken to compute the derivative (with an usually small error). If it is large enough,
then the minus displacement is also done and central differences is used. This is the default method and can
be turned off by setting FASTDER to FALSE.

• The central differences option can be altogether turned off by setting CENTRALDIFF FALSE under %ESD.
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• If you are having problems, set a larger PRINTLEVEL to check the individual calculation of the derivatives,
you might be having some kind of root flipping during the displacement, or some other issue.

The Fourier Transform step

After the calculation of the correlation function, it is necessary to do a Fourier Transform (FT) step. To do that
numerically, it is needed to correctly choose the grid in wich the time points will be computed, for that affects how
the results will be obtained in the frequency domain. We have developed a method to generate an optimal set of
parameters, depending on the final spectral resolution desired [199] and it will be used by default. Even so, you
can choose your own grid by setting the NPOINTS and MAXTIME (in atomic units!) flags under %ESD. There
are a few comments related to that:

• Because we solve the FT using a very efficient Cooley-Tukey algorithm, the NPOINTS should be always
multiple of two. You can put any number on the input, but the next larger multiple of two will be calculated
and set.

• The MAXTIME should be enough so that the correlation function goes to zero. If anything goes wrong,
please check the BASENAME.corrfunc file for that.

• The finer the spectral resolution chosen with SPECRES, the largest MAXTIME must be.

• If you have a larger MAXTIME, you also must increase NPOINTS, otherwise the grid will be too sparse and
many oscillations will be skipped.

Spectrum options

The final spectrum is saved in a BASENAME.spectrum file, with the total spectrum, the FC and HT parts discrim-
inated, as explained in Sec. Excited State Dynamics. He are some detailed about it:

• The range for which the spectrum is saved is given by default, but it can be set using SPECRANGE flag
under %ESD, as SPECRANGE 10000,70000.

• All of the INPUT units should always be in CM-1, but you can choose the OUTPUT units by setting the
UNIT flag to CM-1, NM or EV.

• In order to better converge the correlation function and approximate experimental spectra, a lineshape func-
tion can be used instead of the delta. The default is to use a LOREZENTIAN lineshape, but LINES can be
set to DELTA, LORENTZ, GAUSS or VOIGT.

• The DELTA lineshape might lead to a correlation function that oscillates forever, so please take care with
that option.

• The default line widths are LINEW 50 and INLINEW 250.

• If you use a VOIGT lineshape, the Gaussian width can be controlled separately using the INLINEW flag.
By default, it will be proportial to the Lorezntian to reach the same FWHM.

• The LINEW and INLINEW are NOT the full width half maximum (𝐹𝑊𝐻𝑀 ) of these curves. However
they are related to them by: 𝐹𝑊𝐻𝑀𝑙𝑜𝑟𝑒𝑛𝑡𝑧 = 2×𝐿𝐼𝑁𝐸𝑊 and 𝐹𝑊𝐻𝑀𝑔𝑎𝑢𝑠𝑠 = 2.355× 𝐼𝑁𝐿𝐼𝑁𝐸𝑊 .
For the VOIGT curve, it is a little more complicated but in terms of the other FWHMs, it can be aproximated
as 𝐹𝑊𝐻𝑀𝑣𝑜𝑖𝑔𝑡 = 0.5346× 𝐹𝐻𝑊𝑀𝑙𝑜𝑟𝑒𝑛𝑡𝑧 +

√︁
(0.2166× 𝐹𝑊𝐻𝑀2

𝑙𝑜𝑟𝑒𝑛𝑡𝑧 + 𝐹𝑊𝐻𝑀2
𝑔𝑎𝑢𝑠𝑠).

• The resolution of the spectrum can be modified with the SPECRES flag. By default it is a fraction of the
LINEW. Please be aware that higher resolution (smaller SPECRES), mean a larger grid for the correlation
function and more time points to calculate on.
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General

• The temperature is accounted for exactly on Absorption and Emission [199] and can be set using the TEMP
flag.

• PRINTLEVEL can be set to HIGH in order to print more details, including Huang-Rhys factors which are
useful for rationalizing the contribution of different vibrational modes to the rate/spectrum.

• The frequencies read from the Hessian files can be scaled by any number by setting the SCALING flag under
%ESD. The default is 1.0.

• If necessary, the transition dipole can also be scaled by setting the TDIPSCALING flag.

• If you just want to compute an ES PES and stop, set WRITEHESS to TRUE and the correlation function
will be skipped.

• In order to make use of the fastest algorithm, set SAMEFREQ to TRUE and the DO method will be used,
assuming equal Hessians between initial and final states and maximizing the efficiency when calculating the
correlation function.

• If you want to calculate phosphorescence rates, you MUST input the adiabatic energy difference DELE
manually (the energy difference between each state at its own geometry). And, of course, don’t forget to set
the SOC module to true.

7.45.2 Intersystem crossing rates

General Aspects of the Theory

Intersystem crossing (ISC) rates between a given initial state 𝑖 and a final state 𝑓 can be calculated from Fermi’s
Golden rule:

𝑘(𝜔)𝑖𝑓 =
2𝜋

ℏ
|⟨Ψ𝑓 | ̂︀𝐻𝑆𝑂|Ψ𝑖⟩|2𝛿(𝐸𝑖 − 𝐸𝑓 ), (7.285)

which is quite similar to the Eq. (7.275) for Fluorescence, except for the frequency term. The same trick used there
can be applied here to swtich to the time domain. Then, we are left with a simple time integration, which is not
anymore difficult to solve than the equations above.

One can use all of the infrastructure already presented to compute these ISC rates, including Duschisnky rota-
tion, vibronic coupling effects, use of different coordinate systems and so on. Right now, its use is optimized for
CIS/TDDFT, as explained in Section ISC, TD-DFT and the HT effect, but it can be applied in general by combining
simpler methods to obtain the geometries and Hessians with more advanced methods to compute the SOC matrix
elements, when needed.

Tips and Tricks

• The DELE must be given when using ESD(ISC), it is not automatically computed.That is the energy of the
initial state minus the energy of the final state, each at its own geometry.

• A SOC matrix element calculated from any method can be given on the input using the SOCME Re, Im flag,
where these are the real and imaginary parts of that number.

• The SOCMEs from TD-DFT are not bad, maybe except for those between the ground singlet and the triplets.
In that case, a multireference calculation might be the preferred option.

• If the final state is higher in energy than then initial state, the DELE is a negative number. In that case, there
is barrier to go up when doing the ISC and the rates becomes more sensitive to the temperature.

• In contrast to Fluorescence, the ISC rates depend strongly on the inclusion of Duschisnky rotations, please
take care when using USEJ FALSE.

• The default LINES is GAUSS, and the default INLINEW of 250 𝑐𝑚−1 might be too large. One should
always investigate it by varying the width a bit. Other LINES can increase the error, please take care when
changing it.
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7.45.3 Resonant Raman Spectrum

General Aspects of the Theory

Raman intensities can be obtained in many different ways, depending on the experimental set up. As discussed
extensively by D. A. Long [197, 533], the part of it that is “set up independent” is the Scattering Factor (or Raman
activity), given by:

𝑆 = 45𝑎2 + 7𝛾

(︂
𝐶2𝑚2

𝑎𝑚𝑢𝑉 2

)︂
, (7.286)

where the 𝑎 is related to the isotropic part of the “transition polarizability” between an initial state and a final state
with a different vibrational quantum number ⟨Ψ𝑓 |�̂�|Ψ𝑖⟩ = 𝛼𝑖𝑓 :

𝑎 =
1

3
|(𝛼𝑥𝑥 + 𝛼𝑦𝑦 + 𝛼𝑧𝑧)|

and 𝛾 is also related to its off-diagonal elements:

𝛾 =
1

2
[|(𝛼𝑥𝑥 − 𝛼𝑦𝑦)|2 + |(𝛼𝑦𝑦 − 𝛼𝑧𝑧)|2 + |(𝛼𝑧𝑧 − 𝛼𝑥𝑥)|2 + 6(|𝛼𝑥𝑦|2 + |𝛼𝑦𝑧|2 + |𝛼𝑥𝑧|2)].

This transition polarizability itself can be computed using Kramers, Heisenberg and Dirac (KHD) formalism and
it can be shown that each of its Cartesian components can be calculated as a sum-over-states:

𝛼𝑖𝑓𝜌𝜎 =
1

ℏ
∑︁
𝑛 ̸=𝑖,𝑓

(︂
⟨Ψ𝑓 |𝜇𝜌|Ψ𝑛⟩⟨Ψ𝑛|𝜇𝜎|Ψ𝑖⟩
∆𝐸𝑛𝑖 − 𝜔𝑙𝑎𝑠𝑒𝑟 + 𝑖𝛾𝑙𝑡

+
⟨Ψ𝑓 |𝜇𝜌|Ψ𝑛⟩⟨Ψ𝑛|𝜇𝜎|Ψ𝑖⟩
∆𝐸𝑛𝑖 + 𝜔𝑙𝑎𝑠𝑒𝑟 + 𝑖𝛾𝑙𝑡

)︂
(7.287)

In (7.287), the sum is over any number of electronic excited states 𝑛, ∆𝐸𝑖𝑛 is the energy difference between the
initial state and the excited, 𝜔𝑙𝑎𝑠𝑒𝑟 is the laser energy and 𝛾𝑙𝑡 is the lifetime broadening to avoid a zero on the
denominator. If we work with a laser for which the frequency is close to the excited state energy difference, the
first term is much larger than the second and can approximate alpha by

𝛼𝑖𝑓𝜌𝜎 ≃
1

ℏ
∑︁
𝑛 ̸=𝑖,𝑓

(︂
⟨Ψ𝑓 |𝜇𝜌|Ψ𝑛⟩⟨Ψ𝑛|𝜇𝜎|Ψ𝑖⟩
∆𝐸𝑛𝑖 − 𝜔𝑙𝑎𝑠𝑒𝑟 + 𝑖𝛾𝑙𝑡

)︂
. (7.288)

This equation can be solved using a path integral approach by switching to the integral form of 1/𝑥:

1

𝑥
=
𝑖

ℏ

∫︁ ∞
0

𝑒−𝑖𝑥𝑡/ℏ𝑑𝑡 (7.289)

So that the components of 𝛼𝑖𝑓 can be given by:

𝛼𝑖𝑓𝜌𝜎 ≃
∑︁
𝑛 ̸=𝑖,𝑓

𝑖

ℏ2

∫︁ ∞
0

⟨Ψ𝑓 |𝜇𝜌|Ψ𝑛⟩⟨Ψ𝑛|𝜇𝜎|Ψ𝑖⟩𝑒−𝑖𝑡(Δ𝐸𝑖𝑛−𝜔𝑙𝑎𝑠𝑒𝑟−𝑖𝛾𝑙𝑡)𝑑𝑡 (7.290)

From here on, it is possible to show that the 𝛼𝑖𝑓𝜌𝜎 can be calculated as an integral of a correlation function [197],
which is similar to the one previously discussed. In order to calculate that, a path integral scheme is also used
and a geometry and Hessian for the ES are needed. The ORCA_ESD module predicts the ES PES (if not inputed),
computes the 𝛼𝑖𝑓 and then prints the Scattering factor on a spectrum named BASENAME.spectrum.LASERE.

OBS.: The actual Raman Intensity collected with any polarization at 90 degrees, the I(𝜋/2; ‖𝑠 + ⊥𝑠,⊥𝑖 [533]),
can be obtained by setting RRINTENS to TRUE under %ESD.

OBS2.: In the current implementation, if a multistate calculation is requested, Eq. (7.288) is solved for each state
and all spectra are summed up afterwards.
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Specific Keywords and Details

In order to solve Eq. (7.290), the same information as for Absorption/Emission is needed and to compute the
ES PES all of the above approximations are also valid. The main difference here is that a laser energy, given by
the LASERE flag, should be given. If it is not given, the default is to set it to the 0-0 energy difference between
the ground and the excited state. As mentioned before, more information can be found on Sec. Resonant Raman
Spectrum.

• You can choose more than one laser energy by setting LASERE 1,2,3,4 and etc. If so, each spectrum will be
saved on a different BASENAME.spectrum.LASERE file.

• You can also choose more than one excited state to be accounted for with the flag STATES 1,2,3, etc. and the
final spectrum will be the sum of all of Scattering Factors given by the 𝛼𝑖𝑓 s. You can NOT choose several
states and laser energies currently.

• The automatic selection for the integral grid is also done based on the same ideas as mentioned before.

• The default lineshape for resonant Raman is VOIGT.

• The lineshape of the RR spectra will be taken from the RRSLINEW flag. In this case, LINEW and INLINEW
are used only in the calculation of the correlation function.

• Currently the only temperature for which this model works is at 0K.

• In terms of which vibrationally excited states to be considered, currently it goes up to Raman Order 2, which
means fundamentals, first overtones and combination bands (up to a total quantum number of 2). You can
reduced that using RORDER flag.

• It is also possible to include HT effect here for weak transitions, but be aware the calculation is much more
costly. Due to technical reasons, the data is saved only on memory so, if you plan to go being 300 modes
and do HT, there should be A LOT of memory available, about 8×𝑁𝑀𝑂𝐷𝐸𝑆4. Also, you should expect
a VERY long time for the computation of the correlation function. We are currently working on ways to
accelerate this particular case.

• As it is explained on the reference paper [197], the calculations using both Duschinsky rotation and HT effect
can be greatly accelerated setting cutoffs for the derivatives and J matrix elements. The RRTCUTDER is a
ratio with respect to the transition dipole moment below which the derivatives will be ignored and RRTCUTJ
is a cutoff for J matrix elements. As the paper suggests, RRTCUTDER = 0.001 and RRTCUTJ = 0.01 are
in general good numbers. We do recommend using these, but please be aware of the specific needs of your
system.

7.45.4 Circular Polarized Spectroscopies

General Aspects of the Theory

Starting from ORCA 6, the ESD module has been expanded to include calculations of CP rates and spectra for chem-
ical system. This enables the computation of the vibronic effect on ECD, CPF, and CPP spectra. The methodology
is generally similar to the interaction of unpolarized light with matter, including absorption and photoluminescence.
However, when a CP photon interacts with an optically active system, the electric field of the photon induces a linear
displacement of the charge (transition electric dipole), while the magnetic field induces a circulation of the charge
(transition magnetic dipole). These combined interactions cause an electron to be excited in a helical motion,
involving both translation and rotation, along with their associated operators.

In a commonly use practice by defining a laboratory frame in which the z-axis defines the direction of the light
trajectory, CP light interactions can be generated with the use of the complex vectors ℰ± = 1√

2
(�̂�± 𝑖𝑦)

In this framework the FFMIO operator transforms as:

T±IF = 1/2

𝑁∑︁
𝑗=1

⟨︀
I
⃒⃒
e−ikrj (𝜀∙p̂x)

⃒⃒
F
⟩︀
±
⟨︀
I
⃒⃒
e−ikrj (𝜀∙p̂y)

⃒⃒
F
⟩︀

(7.291)
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In both ECD and CPL (CPF or CPP) spectroscopies the measured intensities are related to the difference of ab-
sorption or luminescence of the left and right polarized transition moments given by:

∆𝐿±𝑅
𝐼𝐹 (𝑘, 𝜖) = |𝑇−𝐼𝐹 |

2
± |𝑇+

𝐼𝐹 |
2 (7.292)

which leads to the following expressions for the sum and the difference of the square moduli |𝑇±𝐼𝐹 |
2:

∆𝐿+𝑅
𝐼𝐹 (𝑘, 𝜖) = 1/2

⟨
𝐼

⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑗=1

𝑒−𝑖𝑘𝑟𝑗 (𝜀 ∙ 𝑝𝑥)

⃒⃒⃒⃒
⃒⃒𝐹
⟩⟨

𝐼

⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑗=1

𝑒−𝑖𝑘𝑟𝑗 (𝜀 ∙ 𝑝𝑦)

⃒⃒⃒⃒
⃒⃒𝐹
⟩

(7.293)

∆𝐿−𝑅
𝐼𝐹 (𝑘, 𝜖) = −Im

⎛⎝⟨𝐼
⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑗=1

𝑒−𝑖𝑘𝑟𝑗 (𝜀 ∙ 𝑝𝑥)

⃒⃒⃒⃒
⃒⃒𝐹
⟩⟨

𝐼

⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑗=1

𝑒−𝑖𝑘𝑟𝑗 (𝜀 ∙ 𝑝𝑦)

⃒⃒⃒⃒
⃒⃒𝐹
⟩⎞⎠ (7.294)

Hence within the ED approximation, ECD and CPL radiative transition rates can be calculated through the orien-
tational average of Equation (4), employing the Fermi’s Golden rule:

𝑘𝐸𝐶𝐷 (𝜔) =
16𝜋2𝜔𝐸𝐶𝐷

3

∑︁
𝐹

Im (|⟨Ψ𝐼 |�̂�| Ψ𝐹 ⟩ ⟨Ψ𝐹 |�̂�| Ψ𝐼⟩ |) 𝛿 (𝐸𝐹𝐼 ± 𝜔𝐸𝐶𝐷) (7.295)

𝑘𝐶𝑃𝐿 (𝜔) =
16𝜔𝐶𝑃𝐿

3𝑛2

3ℏ𝑐3
∑︁
𝐹

Im (|⟨Ψ𝐼 |�̂�| Ψ𝐹 ⟩ ⟨Ψ𝐹 |�̂�| Ψ𝐼⟩ |) 𝛿 (𝐸𝐹𝐼 ± 𝜔𝐶𝑃𝐿) (7.296)

where 𝜔𝐸𝐶𝐷/𝐶𝑃𝐿 are the excitation and emission CP photon energies, respectively while 𝜔𝐹𝐼 are the energies
between the initial and final states reached in the absorption or the photoluminescent processes. Similarly 𝐸𝐹𝐼
is the transition energy and 𝛿 refers to the line-broadening mechanism arising from the lifetimes of the relevant
final states and c is the speed of light. In the above expressions �̂� defines electric dipole operator while �̂� is the
respective magnetic dipole operator �̂� = 1

2𝑚𝑒𝑐

∑︀
𝑖 𝑟𝑖 × ̂︀𝑝𝑖 and 𝑚𝑒 is the electron mass. In the above expressions

Im (|⟨Ψ𝐼 |�̂�| Ψ𝐹 ⟩ ⟨Ψ𝐹 |�̂�| Ψ𝐼⟩ |) represents the rotatory strength (𝑅𝐼𝐹 ). As discussed above the transition rates
including the vibronic coupling, on the Frank-Condon (FC) and Herzenberg-Teller (HT) limits, can be efficiently
proceed through the path integral approach[199] in which it is possible to calculate 𝑘𝑜𝑏𝑠𝐸𝐶𝐷/𝐶𝑃𝐿 from the Fourier
Transform (FT) of the respective correlation function 𝜒(𝑡) that is computed from the path integral of the multidi-
mensional harmonic oscillator according to[785]:

𝑘𝑜𝑏𝑠𝐸𝐶𝐷/𝐶𝑃𝐿(𝜔) = 2𝛼ℛ𝑒
∫︁ ∞
0

𝜒(𝑡)𝑒
±𝑖𝜔𝑡𝑑𝑡 (7.297)

with 𝛼 being a collection of constants and for CP transition one-photon rates (ECD, CPL) considering electric
dipole and magnetic dipole interactions in the expression of the rotatory strengths it takes the form:[785]

𝜒(𝑡) = 𝑒±𝑖𝜔𝑡[Im [𝜇𝑒𝑚
*
𝑒] 𝜌

𝐹𝐶 (𝑡) +
∑︁
𝑘

Im

[︂
𝜇𝑒
𝜕𝑚*𝑒
𝜕�̄�𝑘

]︂
𝜌

𝐻𝑇
𝐹𝐶

𝑘 (𝑡) +
∑︁
𝑘

Im

[︂
𝜕𝜇𝑒
𝜕�̄�𝑘

𝑚*𝑒

]︂
𝜌

𝐻𝑇
𝐹𝐶

𝑘 (𝑡) +
∑︁
𝑘𝑙

Im

[︂
𝜕𝜇𝑒
𝜕�̄�𝑘

𝜕𝑚*𝑒
𝜕�̄�𝑙

]︂
𝜌𝐻𝑇𝑘 (𝑡)]

(7.298)

where 𝜇𝑒 and𝑚𝑒 represent the respective transition dipole ⟨Ψ𝐼 |�̂�| Ψ𝐹 ⟩ and magnetic dipole ⟨Ψ𝐹 |�̂�| Ψ𝐼⟩ moment
integrals between initial and final states 𝐼, 𝐹 while:

𝜌𝐹𝐶 = 𝑇𝑟(𝑒−𝑖�̂�𝜏𝑒−𝑖�̂�𝜏 ) (7.299)

𝜌
𝐻𝑇/𝐹𝐶
𝑘 = 𝑇𝑟(�̄�𝑘𝑒

−𝑖�̂�𝜏
𝑒−𝑖�̂�𝜏 ) (7.300)

𝜌𝐻𝑇𝑘𝑙 = 𝑇𝑟(�̄�𝑘𝑒
−𝑖�̂�𝜏

�̄�𝑙𝑒
−𝑖�̂�𝜏 ) (7.301)

where, these traces can be evaluated following the approach discussed in Ref[199].

Finally, it is quite commonly that the ECD and CPL spectral intensities are represented against normalized absorp-
tion and photoluminescent intensities defining, similar expressions for, the dissymmetry factors 𝑔𝑎𝑏𝑠 and 𝑔𝑙𝑢𝑚:

𝑔𝑎𝑏𝑠/𝑙𝑢𝑚 = 2
𝐼𝐿𝐶𝑃 − 𝐼𝑅𝐶𝑃
𝐼𝐿𝐶𝑃 + 𝐼𝑅𝐶𝑃

4𝑅

𝐷

⃒⃒⃒⃒
𝐺𝑆/𝐸𝑆 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒

; −2 < 𝑔𝑎𝑏𝑠/𝑙𝑢𝑚 < 2 (7.302)

Implying that the associated dissymmetry spectra can also be calculated, where D and R the square of the transition
dipole and the rotatory strength, respectively.
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7.45.5 Magnetic Circular Dichroism

General Aspects of the Theory

The formulation presented for the calculation of the absorption spectrum may be extended to the absorption of
circularly polarized light (CPL) of a system under the effect of an external magnetic field in order to compute
the MCD spectrum.[268] By assuming an electric dipolar approximation under a length formulation for the light-
matter interaction, the molar absorptivity contribution by the transition between an initial state i and a final state f
of one fixed oriented molecule may be expressed as:

𝜖(𝜔)𝑖𝑓 = 𝛼𝜔|ℰ · ⟨Ψ𝑖|�̂�|Ψ𝑓 ⟩|2𝛿(𝐸𝑖 − 𝐸𝑓 ± ℏ𝜔) (7.303)

where ℰ is the polarization vector of the incident light, and 𝛼 is a positive collection of constants.

By considering the case in which the light is propagating in the laboratory fixed 𝑧′′ direction, the circularly polarized
light is described by ℰ = 1√

2
(�̂�′′ ± 𝑖𝑦′′) where the “−” sign corresponds to the left circularly polarized light and

the “+” to the right circularly polarized light.

Similarly, as the MCD calculations presented in section Simulation of (Magnetic) Circular Dichroism and Absorp-
tion Spectra, the total absorptivity may be obtained by summing over all possible transitions and averaging the
molecular orientations by using 3 rotation angles 𝜃, 𝜑, and 𝜒.

𝜖(𝜔) = 𝛼𝜔

∫︁ 2𝜋

0

∫︁ 2𝜋

0

∫︁ 𝜋

0

∑︁
𝑖𝑓

𝑒
− 𝜖𝑖

𝑘𝐵𝑇

𝑍
|ℰ · ⟨Ψ𝑖|�̂�|Ψ𝑓 ⟩|2𝑠𝑖𝑛(𝜃)𝛿(𝐸𝑖 − 𝐸𝑓 ± ℏ𝜔)𝑑𝜃𝑑𝜑𝑑𝜒 (7.304)

Considering 𝜒 the angle which rotates the molecule in the plane perpendicular to the magnetic field perturbation
(which is colinear with the incident light propagation direction), the integrals of eq. (7.304) may be computed
conveniently in a seminumerical scheme by using an intermediate 𝑟′ frame.

𝜖(𝜔) = 𝛼𝜔
∑︁
𝑝

𝑤𝑝
∑︁
𝑖𝑓

𝑒
− 𝜖𝑖

𝑘𝐵𝑇

𝑍

∑︁
𝛽𝛾=𝑥′,𝑦′

ℰ𝛽𝛾⟨Ψ𝑖|�̂�𝛽 |Ψ𝑓 ⟩⟨Ψ𝑓 |�̂�𝛾 |Ψ𝑖⟩𝛿(𝐸𝑖 − 𝐸𝑓 ± ℏ𝜔) (7.305)

where 𝜃 and 𝜑 values are defined by a point p in a numerical grid, 𝑥′, and 𝑦′ are determined by 𝜃 and 𝜑 values
according to eq. (7.306), and 𝜒 has been integrated analytically in the ℰ𝛽𝛾 values.

�̂�𝑥′ = 𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜑)𝜇𝑥′′ + 𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜑)𝜇𝑦′′ − 𝑠𝑖𝑛(𝜃)𝜇𝑧′′
�̂�𝑦′ = −𝑠𝑖𝑛(𝜑)𝜇𝑥′′ + 𝑐𝑜𝑠(𝜑)𝜇𝑦′′

(7.306)

ℰ
±
𝛽𝛾 =

∫︁ 2𝜋

0

ℰ±𝛽 ℰ
±*
𝛾 𝑑𝜒 (7.307)

Finally, by applying the Bohr-Oppenheimer approximation and writing the Dirac delta function in the time domain,
we get:

𝜖(𝜔) = 𝛼𝜔
∑︁
𝑝

𝑤𝑝
∑︁
𝑖𝑓

𝑒
− 𝜖𝑖

𝑘𝐵𝑇

𝑍

∑︁
𝛽𝛾=𝑥′,𝑦′

ℰ𝛽𝛾⟨Θ𝑖|�̂�𝑒𝛽 |Θ𝑓 ⟩⟨Θ𝑓 |�̂�𝑒𝛾 |Θ𝑖⟩
∫︁
𝑒𝑖(𝐸𝑖−𝐸𝑓−𝜔)𝑡𝑑𝑡 (7.308)

and by taking the difference of absorbance between left and right CPL produce we reach an expression of the MCD
intensities:

∆𝜖(𝜔) = 𝜖−(𝜔)− 𝜖+(𝜔) = −2𝛼
𝑍
𝜔
∑︁
𝑖𝑓

∑︁
𝑝

𝑤𝑝𝐼𝑚
[︁ ∫︁ ∞
−∞

�̃�(𝑡, 𝑥′, 𝑦′)𝑒−𝑖ℏ𝜔𝑡𝑑𝑡
]︁

(7.309)

where �̃� under a first-order approximation of the transitions moments with respect to the nuclear displacement is:

�̃�(𝑡, 𝛽, 𝛾) = 𝑒𝑖Δ𝐸𝑡
[︁
�̂�0𝛽�̂�

*
0𝛾𝜌

𝐹𝐶(𝑡) +
∑︁
𝑘

𝜕�̂�𝛽
𝜕𝑄𝑘

�̂�*0𝛾𝜌
𝐹𝐶/𝐻𝑇 (𝑡) +

∑︁
𝑘

�̂�0𝛽

𝜕�̂�*𝛾
𝜕𝑄𝑘

𝜌𝐹𝐶/𝐻𝑇 (𝑡) +
∑︁
𝑘𝑙

𝜕�̂�𝛽
𝜕𝑄𝑘

𝜕�̂�*𝛾
𝜕𝑄𝑙

𝜌𝐻𝑇 (𝑡)
]︁

(7.310)

Similarly, as section Simulation of (Magnetic) Circular Dichroism and Absorption Spectra, the transition moments
under the effect of an external magnetic field perturbation may be estimated by using a QDPT (eq. (7.274)), and
the derivatives are approximated numerically in a similar way as the ESD-Absorption case.
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Specific Keywords and recommendations

Once selected the ESD(MCD) calculation two variables need to be defined in the %esd block:

• The intensity of the magnetic field in Gauss “B”

• The grid to make the molecular orientational average “LEBEDEVINTEGRATIONPOINTS”

The MCD signals use to be much more sensitive than the corresponding absorption intensities. As result, the
MCD calculations are much more sensitive to errors in the electronic structure. So it is highly recommended to
first fully understand the electronic structure problem and verify there are no important problems. In this direction
we suggest the following recommendations:

• Be sure the obtained electronic states are in the correct order by assigning point group symmetry labels and
comparing them with better electronic structure methods. Due to the MCD intensities emerging as a result
of the interaction of states by the magnetic field perturbation, a wrong-located state in energy may affect the
MCD intensities, even if it is not in the energy range you are computing. We do not recommend using the
method as a black box.

• It is recommended to do first an ESD-absorption calculation on the exact same level of theory, verify the
intensities and also solve any problem related to the PES representation.

• The lineshape for the best agreement of the MCD intensities compared against the experimental measure-
ments may differ for the best value for absorption intensities.

7.45.6 Complete Keyword List for the ESD Module

%ESD #The booleans are the defaults
ESDFLAG ABS (default) #Which calculation to make?

ECD
FLUOR (default)
CPF/CPFLUOR
PHOSP
CPP/CPPHOSP
MCD #Only available with TDDFT
RR
ISC
IC

GSHESSIAN "BASENAME.hess" #The ground state Hessian
ESHESSIAN "BASENAME_S1.hess" #The excited state Hessian
TSHESSIAN "BASENAME_T.hess" #The triplet state Hessian

HESSFLAG AHAS #How to obtained the ES PES?
VH
VG (default)
VGFC # VG + APPROXADEN TRUE
HHBS
HHAS
UFBS
UFAS

STATES 1,2,3,4 #IROOTS to compute

MODELIST 4,5,6 # only include the 4th, 5th and 6th vibrational modes
# in the ESD calculation

SINGLEMODE 1,5,10 # run three ESD calculations, each considering only
# one of the 1st, 5th and 10th vibrational modes

DOHT FALSE #Do HT effect?
FASTDER TRUE #Use the fast derivatives algorithm?
DELQ 0.01 (default) #Dimensionless displacemente for derivatives

(continues on next page)
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(continued from previous page)

STDA FALSE #Use sTDA during derivatives?

APPROXADEN FALSE #Compute the DELE by extrapolating info from
#the Hessians, avoiding second single-point
#at the ES geometry

USEJ FALSE #Consider Duschinsky rotations?
USEB TRUE #Rotate the initial state?
SAMEFREQ TRUE #Use DO method and J=1.

DELE 12000 #Custom energy difference
TDIP x,y,z #Custom transition electric dipole

x.re,x.im,y.re,y.im,z.re,z.im
TMDIP x,y,z #Custom transition magnetic dipole

x.re,x.im,y.re,y.im,z.re,z.im
SOCME x.re,x.im #Custom spin-orbit coupling matrix elements, in a.u.
LASERE 34000 #The laser energy for RR

B 3000.0 #Magnetic field in Gauss for MCD
LEBEDEVINTEGRATIONPOINTS 14 #Lebedev Grid for MCD molecular

#orientational average

GEOMSTEP AUGHESS (default) #Geometry step?
QN

STEPSCALING 1.0 #A number for scaling the steps
STEPCONSTR 0,2,5 #A list of atoms that will not be moved
COORDSYS CART #Coordinate system for the normal modes?

INT (default)
WINT
FCWL
FCWS

TCUTFREQ 100 #Cutoff for frequencies
IFREQFLAG POSITIVE (default) #What to do with negative frequencies?

LEAVE
REMOVE

UF_DELE 1E-4 #Energy difference for updated freq.
UFFREQERR 0.2 #Tolerated percentual error

TEMP 298.15 (default) #Temperature to consider
UNIT WN #wavenumbers (Output units - input still in cm-1!)

NM #nanometers
EV #electron volts

CENTRALDIFF TRUE #Central differences?
CONVDER FALSE #Convert derivatives between state
SCALING 1.0 (default) #Scaling for frequencies
TDIPSCALING 1.0 (default) #Scaling for the transition dipole

LINES DELTA #The lineshape function
LORENTZ (default)
GAUSS
VOIGT (default for RR)

LINEW 50 (default)
INLINEW 250 (default)
RRSLINEW 10 (default)

RORDER 2 (default) #The Raman Order for RR
RRINTENS false #Calculate the intensities instead
RRTCUTDER 0 (default) #A cutoff for derivatives
RRTCUTJ 0 (default) #A cutoff for J matrix elements

(continues on next page)
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WRITEHESS FALSE #Make ES PES and leave

MAXTIME 12000 #Max time (atomic units!) for the FT
NPOINTS 131072 #Total number of points

SPECRANGE 10000,50000 #Spectral range
SPECRES 1.0 #Spectral resolution

PRINTVIB FALSE #Save a .xyz file per each vibational mode.
#(Requires DOHT true)

PRINTLEVEL 0 #If set to 1 (or 2, 3, ...), prints additional
#details of the calculation

END

7.46 More details on the ORCA DOCKER

ò Note

The content here will assume you already have some basic knowledge from The ORCA DOCKER: An Auto-
mated Docking Algorithm, if not, please check that section first!

7.46.1 Underlying theory

The basic idea behind the DOCKER is to use a type of swarm intelligence [787] to find local minima for where the
HOST would best be positioned, based on the energies and gradients of a given Potential Energy Surface (PES).

Swarm intelligence algorithms were invented trying to mimic the behavior of animals such as bees and ants, and
it actually fits the problem here quite well (as shown below). The basic steps needed for the algorithm are:

1. Optimize HOST and GUEST.

2. Create a spacial grid around the HOST.

3. Initialize a possible set of random solutions.

4. Let the swarm intelligence find local minima.

5. Collect a fraction of the best solutions found on 4. and fully optimize them.

6. The structure with the lowest energy is considered the best solution.

To quickly demonstrate how the initial set of solutions “evolve” to find different local minima, take as an example
the substituted biphenyl as HOST below. The figure below demonstrates how a water molecule (GUEST) is docked
onto the initial HOST.

Each gray ball represents one possible placing of the water molecule (ignoring here its rotation angle). At the
start, they are all distributed over the HOST without any bias. As the iterations go by, the algorithm starts to detect
that both sides of the molecule have lower energy solutions than the aromatic rings, as expected, and the possible
solutions start to converge to those points.

In the end, solutions containing water molecules binding to both sides are taken, the system is then fully optimized
and one finds that the best biding occurs with the hydroxy group to the right.
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Fig. 7.60: The docking process of a water molecule on the substituted biphenyl.

s Important

Right now the DOCKER can only be used together with the fast GFN-XTB methods, it will be generalized
later. It is also not fully exploring the parallelization potential yet, and can be much faster for the next versions.

7.46.2 Looking Deeper into the Output

The details related to the grid and the swarm optimization can be found on the output, here is one example taken
from the water dimer example from the earlier section:

Creating spatial grid
Grid Max Dimension 5.50 Angs
Angular Grid Step 32.73 degrees
Cartesian Grid Step 0.50 Angs
Points per Dimension 11 points

Initializing workers
Population Density 0.50 worker/Ang^2
Population Size 57

Evolving structures
Minimization Algorithm mutant particle swarm
Min, Max Iterations (3 , 10)

The Population Density here defines how many solutions will be placed on the initial grid around the HOST
and can be controlled by %DOCKER POPDENSITY 0.50 END, while the population size is a direct consequence of
that, unless specified by POPSIZE under %DOCKER.

Another important piece of information is the Min, Max Iterations, which define the minimum number of
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iterations before checking for convergence, and the maximum possible number of iterations. These can be changed
by setting MINITER and MAXITER under the %DOCKER.

Then during the swarm search itself (here called the “evolution step”), the HOST and GUEST are partially optimized
using the same criteria as from !SLOPPYOPT, and their energy at convergence is taken as a convergence criteria.
The printing, still for the previous example, reads:

ò Note

All of the optimizations respect constraints and/or wall potentials given on the %GEOM block. The HOST can be
easily frozen with %DOCKER FIXHOST TRUE END.

Iter Emin avDE stdDE Time
(Eh) (kcal/mol) (kcal/mol) (min)

-------------------------------------------------------

1 -10.147462 2.756033 1.821981 0.03
2 -10.147462 2.121389 1.610208 0.03
3 -10.148583 2.313606 1.365227 0.03
4 -10.148583 1.846998 1.188680 0.02
5 -10.148583 1.587332 1.168207 0.02

No new minimum found after 3 (MinIter) steps.

Here we have the number of iterations, the energy of the best solution found during the process, the average energy
difference from the lowest solutions and its standard deviation. The first number shows if the system is evolving
towards a lower energy solutions and the later two give an idea of the “spread” of the energies found.

If no new minimum is found over MINITER iterations, the algorithm is considered to be converged and the best
solutions are taken to the final optimization step.

7.46.3 The final steps

After the evolution step, a total of𝑚𝑎𝑥(𝑠𝑞𝑟𝑡(𝑃𝑜𝑝𝑆𝑖𝑧𝑒), 5) structures are taken from the set of solutions for a final
full optimization. The output looks like:

Running final optimization
Maximum number of structures 7
Minimum energy difference 0.10 kcal/mol
Maximum RMSD 0.25 Angs
Optimization strategy regular
Coordinate system redundant 2022
Fixed host false

To avoid redundant solutions being optimized here, a check is made such that only structures with an energy
difference of at least a Minimum energy difference and Maximum RMSD (obtained after an optimal rotation
using the quaternion approach) are taken. The coordinate system might also be automatically set to Cartesian if
the number of atoms is above 300 to speedup.

If some optimizations fail during the process, they will be flagged as optimization failed, as in the example
below:

Struc Eopt Interaction Energy Time
(Eh) (kcal/mol) (min)

------------------------------------------------

1 -10.149006 -4.968378 0.01
2 -10.149005 -4.967965 0.01
3 optimization failed 0.01
4 -10.149007 -4.968641 0.01
(...)
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That only means some of the solutions failed to fully optimize at the end, and on the printed file their energy is set
to 1000 Eh to show the job was not completed. If you want to increase the number of iterations, or change the final
convergence criteria, just change them using the %GEOM block as usual.

7.46.4 General Tips

1. In order to quick change the PES of the docking process, you can use !DOCK(GFN2-XTB), !
DOCK(GFN1-XTB), !DOCK(GFN0-XTB) or !DOCK(GFN-FF).

2. For a quicker and less accurate docking the input !QUICKDOCK is also available.

3. There are four levels of “docking” procedure, from simple to more elaborate: SCREENING, QUICK, NORMAL
(default) and COMPLETE, which can be given as %DOCK DOCKLEVEL COMPLETE END.

4. To increase the final number of structures optimized in the end, just change NOPT under %DOCKER.

5. If the guest topology is somehow changed during the docking process, that structure will be discarded. This
can be turned off by setting %DOCK CHECKGUESTTOPO FALSE END.

s Important

By the time of the ORCA6 release, this algorithm was still not published. Publications are under preparation.

7.46.5 Complete Keyword List

!QUICKDOCK # simple keyord to set DOCKLEVEL QUICK
!NORMALDOCK # simple keyord to set DOCKLEVEL NORMAL
!COMPLETEDOCK # simple keyord to set DOCKLEVEL COMPLETE

!DOCK(GFN-FF) # simple keyord to set EVPES GFNFF
!DOCK(GFN0-XTB) # simple keyord to set EVPES GFN0XTB
!DOCK(GFN1-XTB) # simple keyord to set EVPES GFN1XTB
!DOCK(GFN2-XTB) # simple keyord to set EVPES GFN2XTB

%DOCKER

#
# general options
#

GUEST "filename.xyz" # an .xyz file (can be multistructure), from where
# the guest(s) will be read. can contain different
# charges and multiplicities for each guests on the
# comment line. will only be read if exactly two
# integer numbers are given, otherwise ignored.

DOCKLEVEL SCREENING # defines a general strategy for docking.
QUICK # will alter things like that population density
NORMAL # and final number of optimized structrures.
COMPLETE # default is NORMAL.

PRINTLEVEL LOW
NORMAL # default
HIGH # will print many extra files!

NREPEATGUEST 1 # number of times to repeat the content of the "GUEST" file
CUMULATIVE TRUE # add the contents of the "GUEST" file one on

# top of each other?
# default is FALSE, meaning each will be done independently.

(continues on next page)
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GUESTCHARGE 0 # can be used to defined a charge for the guest (default 0)
GUESTMULT 3 # same for multiplicty (default 1)

# both can also be given via the comment line of the
# "filename.xyz", see above.

RAMDOMSEED TRUE # whether to allow for the process to be trully random and
# will give different results everytime (default FALSE)

FIXHOST TRUE # freeze coordinatef for the HOST during all steps?
# (default FALSE)

CHECKGUESTTOPO FALSE # make sure that the topolgy of the GUEST is always kept
# (default TRUE)

#
# evolution step
#

MAXITER 10 # maximum number of iterations
MINITER 3 # minimum number to check for convergence

# and minimum required of equal steps
# to signal convergence

POPDENSITY 0.5 # the population density based on the HOST grid
POPSIZE 150 # a fixed number for the swarm population size

EVOPTLEVEL NORMALOPT # use default optimization criteria during the evolution step
# instead of the !SLOPPYOPT? more accurate, but slower.

EVPES GFNFF # which PES to use **only** during the evolution step.
GFN0XTB # can be different from the final optimization.
GFN1XTB
GFN2XTB

#
# final optimization
#

NOPT 10 # a fixed number of structures to be optimized
NOOPT FALSE # do not optimize any structure at all? (default FALSE)

7.47 More on the ORCA SOLVATOR

Here we will present a few more technical details about the SOLVATOR that were too specific to be presented
on the more general section. This section presumes that the section ORCA SOLVATOR: Automatic Placement of
Explicit Solvent Molecules was already read. If not, please return here after that.
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7.47.1 The Simpler Stochastic Mode

The CLUSTERMODE STOCHASTIC, as the name suggests, uses random trial and error to assign the placing of the
solvents. Well, it is actually more complicated than that.

The algorithm actually uses information from self-consistent EEQ charges [132] as part of an extremely simplistic
potential to guide the placing of polar molecules in a more reasonable way.

After trying to distribute the solvent molecule somewhere and checking for clashes, we first compute the electro-
static energy between solvent and solute:

𝐸𝑒𝑙𝑒𝑐 =

𝑠𝑜𝑙𝑢𝑡𝑒∑︁
𝐴

𝑠𝑜𝑙𝑣𝑒𝑛𝑡∑︁
𝐵

𝑄𝐴𝑄𝐵
𝑅𝐴𝐵4𝜋𝜖𝑠𝑜𝑙𝑣

, (7.311)

and define our target function to be minimized (𝑉 ) as a damped version of that, using the minimum distance𝑅𝑚𝑖𝑛
between the solute and solvent atoms:

𝑉 = 𝐸𝑒𝑙𝑒𝑐𝑒
−𝑅2

𝑚𝑖𝑛 if 𝐸𝑒𝑙𝑒𝑐 < 0

= 𝑅𝑚𝑖𝑛 otherwise,
(7.312)

The STOCHASTIC mode then consists of finding the correct solvent placement that minimizes 𝑉 for a given solute.
The damping function is there to ensure that:

1. The electrostatic interaction decays strongly with distance,

2. Repulsive energies will be so unfavorable that only the distance will matter.

The result is such that solvent molecules are placed as close as possible to the solute and maximizing electrostatic
interactions. This helps to create the solvent shell such that is does look like the actual result one would expect
from a more elaborate calculation, but with essentially zero cost.

The best value for 𝑉 found after each solvent was added is what is printed in the output as Target function:

Iter Target function Time
(min)

-------------------------------
1 -4.342597e-07 0.00
2 -3.166857e-07 0.00
3 -4.814590e-08 0.00

When using the DROPLET mode, the 𝑅𝑚𝑖𝑛 is defined as the distance to the centroid of the solute, instead of that of
the closest atom pair instead.

If you don’t want to include the electrostatic component for any reason, just set %SOLVATOR USEEEQCHARGES
FALSE END. In the future other charge models will be available as well.

7.47.2 Adding Explicit Solvents with the Docker

The Wall Potential

If one uses the default approach using the DOCKER, a fictitious wall potential is added to guarantee that the solvents
are added such that they fill most of the first solvation sphere around the solute before being placed further.

ò Note

This resembles to some extent what was published recently by the group of Prof. Stefan Grimme (called
“quantum cluster growth”), but here only a single outer wall potential is used [813]. Otherwise, the present
algorithm is independent and unrelated to it.

As one can see from the output of the Histine example of the before mentioned section, by default an ellipsoid
potential is built:
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Ellipsoid potential radii: .... 8.37, 6.28, 5.76 Angs

with dimensions such that it will enclose the solute plus at least one molecule of the solvent in all directions.

Fig. 7.61: A simple scheme to show how the wall potential is built to keep the solvent molecules close to the solute
space.

A single parameter controlled by SOLVWALLFAC under the %SOLVATOR block defines how further this wall is built
outside the solute. Its default value is 1.0, and increasing it to larger values will increase the default initial wall by
about half the sum of the maximum dimensions of solute plus solvent for each unit.

The initial wall potential is by default not changed, unless a) the algorithm can not place a solvent, or b) the energy
of the placed solvent is higher than before. Only then the walls will be updated to help allocating the next solvent
molecule, and a message will be printed with the current scaling factor.

The DOCKER

All options related to the docking process can be controlled as usual via the %DOCKER block. Please check the
section The ORCA DOCKER: An Automated Docking Algorithm for more info.

Also, all options given under the %GEOM block such as constraints and etc., will be respected during the docking of
the solvent, as with the general docking, but these can only be given for the solute.

7.47.3 Controlling True Randomness

Both these algorithms are intrinsically dependent on random numbers, but ORCA sets a fixed random seed such
that the same results are always obtained on the same machine if calculations are repeated.

In order to make both fully random, please set %SOLVATOR RANDOMSOLVATION TRUE END.
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7.47.4 Vacuum Search

One option that might come in handy under certain conditions is to use the SOLVATOR to add the explicit solvent
based on the implicit solvation information, but actually not use any implicit solvation while trying to place them.

That is useful for instance when trying to generate aggregates of solute plus solvents that can form in gas-phase only,
where there will be no other solvent molecules around. That can be set with %SOLVATOR VACUUMSEARCH TRUE
END and the implicit solvation method will be ignored to compute energies and gradients. In the STOCHASTIC
method, the 𝜖𝑠𝑜𝑙𝑣 will be set to 1.0.

s Important

By the time of the ORCA6 release, this algorithm was still not published. Publications are under preparation.

7.47.5 Complete Keyword List

%SOLVATOR

#
# general options
#

NSOLV 10 # number of explicit solvent molecules to be added.

SOLVENTFILE "solvent_file_name.xyz" # a file for custom solvents.
# NOT needed for the regular
# solvents available via
# ALPB(solvent). charge and
# multipl. can be give on the comment.

CLUSTERMODE STOCHASTIC # method for adding new solvent molecules.
DOCKING # default

PRINTLEVEL LOW
NORMAL # default
HIGH

RANDOMSOLV TRUE # make it completely random? default FALSE.

FIXSOLUTE FALSE # keep the solute constrained? default TRUE.

#
# stochastic method
#

USEEEQCHARGES FALSE # use EEQ charges during the STOCHASTIC mode?
# default is TRUE

DROPLET FALSE # create a spherical droplet? default FALSE

RADIUS 10 # a radius in Angstroem for the droplet.
# solvent molecules will be added until the
# target radius is reached.

#
# docking method
#

WALLFAC 1.0 # factor use to define the initial

(continues on next page)
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# size of the wall potential.

# all other docking options are controlled
# as usual via the %DOCKER block.
# flags such as !NORMALDOCK and
# !COMPLETEDOCK will apply here as well

7.48 Ab initio Molecular Dynamics Simulations

A few years ago, we included an ab initio molecular dynamics (AIMD) module into ORCA.1 As a plethora of
different electron structure methods with analytical gradients is already implemented, all these methods are now
available also for MD simulations, offering a wide range of accuracy/performance trade-offs.

Despite the relatively short history inside of the ORCA package, the MD module has grown considerably over the
last years. A few features found in other MD codes are still missing. In future releases, many more new features
and methods will (hopefully) be added to this part of the program. We will always do our best to keep a strict
backward compatibility, such that the sample inputs from this section will remain valid in all future releases.

For some more information as well as input examples for the ORCA MD module, please visit

https://brehm-research.de/orcamd

7.48.1 Changes in ORCA 5.0

• Added a Metadynamics module with many features and options:

– Can perform one-dimensional and two-dimensional Metadynamics simulations [487] to explore free
energy profiles along reaction coordinates, called collective variables (“Colvars”).

– Colvars can be distances (including projections onto vectors and into planes), angles, dihedrals, and
coordination numbers [408]. The latter allows, e. g., to accurately compute p𝐾A values of weak acids
[855, 856].

– For all Colvars, groups of atoms (e. g., centers of mass) can be used instead of single atoms.

– Metadynamics simulations can be easily restarted and split over multiple runs.

– Ability to run well-tempered Metadynamics [73] for a smoothly converging free energy profile.

– Ability to run extended Langrangian Metadynamics [408], where a virtual particle on the bias profile
is coupled to the real system via a spring. The virtual particle can be thermostated.

• Added two modern and powerful thermostats (both available as global and massive):

– The widely used Nosé–Hoover chain thermostat (NHC) with high-order Yoshida integrator [563, 564];
allows for a very accurate sampling of the canonical ensemble.

– The stochastical “Canonical Sampling through Velocity Rescaling” (CSVR) thermostat [129] which
has become quite popular recently.

• Can define harmonic and Gaussian restraints for all Colvars (distance, angle, dihedral, coordination
number). This allows for umbrella sampling [430, 482], among other methods. Can also define one-sided
restraints which act as lower or upper wall.

• Can now print the instantaneous and average force on constraints and restraints; this allows for ther-
modynamic integration [430].

• The target value for constraints and restraints can now be a ramp, so that it can linearly change during
the simulation.

1 Strictly speaking, these simulations are Born–Oppenheimer molecular dynamics simulations (BOMD), because they approximately solve
the time-independent Schrödinger equation to compute gradients and then move the atoms according to these gradients.
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• Can now keep the system’s center of mass fixed during MD runs.

• Can now print population analyses, orbital energies, and .engrad files in every MD step if requested.

7.48.2 Changes in ORCA 4.2 (Aug 2019)

• Added a Cartesian minimization command to the MD module, based on L-BFGS and simulated annealing.
Works for large systems (> 10 000) atoms and also with constraints. Offers a flag to only optimize hydrogen
atom positions (for crystal structure refinement). See Minimize command.

• The MD module can now write trajectories in DCD file format (in addition to the already implemented XYZ
and PDB formats), see Dump command.

• The thermostat is now able to apply temperature ramps during simulation runs.

• Added more flexibility to region definition (can now add/remove atoms to/from existing regions). Renamed
the Define_Region command to Manage_Region.

• Added two new constraint types which keeps centers of mass fixed or keep complete groups of atoms rigid,
see Constraint command.

• Ability to store the GBW file every 𝑛-th step during MD runs (e.g. for plotting orbitals along the trajectory),
see Dump command.

• Can now set limit for maximum displacement of any atom in a MD step, which can stabilize dynamics with
poor initial structures. Runs can be cleanly aborted by “touch EXIT”. See Run command.

• Better handling/reporting of non-converged SCF during MD runs.

• Fixed an issue which slowed down molecular dynamics after many steps.

• Stefan Grimme’s xTB method can now be used in the MD module, allowing fast simulations of large systems.

7.48.3 Changes in ORCA 4.1 (Dec 2018)

• Molecular dynamics simulation can now use Cartesian, distance, angle, and dihedral angle constraints. These
are managed with the Constraint command.

• The MD module now features cells of several geometries (cube, orthorhombic, parallelepiped, sphere, ellip-
soid), which can help to keep the system inside of a well-defined volume. The cells have repulsive harmonic
walls.

• The cells can be defined as elastic, such that their size adapts to the system. This enables to run simulations
under constant pressure.

• Trajectories can now be written in XYZ and PDB file format.

• A restart file is written in each simulation step. With this file, simulations can be restarted to seamlessly
continue (useful for batch runs or if the job crashed). Restart is handled via the Restart command; see
below.

• Introduced regions (i. e., subsets of atoms), which can be individually defined. Regions can be used to
thermostat different parts of the system to different temperatures (e. g., cold solute in hot solvent), or to
write subset trajectories of selected atoms.

• The energy drift of the simulation is now displayed in every step (in units of Kelvin per atom). Large energy
drift can be caused by poor SCF convergence, or by a time step length chosen too large.

• Physical units in the MD input are now connected to their numeric values via underscore, such as 350_pm.
A whitespace between value and unit is no longer acceptable. This slightly breaks backward compatibility
– sorry.

• Fixed a bug in the time integration of the equations of motion, which compromised energy conservation.

• Fixed crashes for semiempirics and if ECPs were employed. You can now run MD simulations with methods
such as PM3 and with ECPs.
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7.48.4 Input Format

The molecular dynamics module is activated by specifying “MD” in the simple input line. The actual MD input
which describes the simulation follows in the “%md” section at some later position in the input file. The contents
of this section will subsequently be referred to as “MD input”.

! MD BLYP D3 def2-SVP
%md

Timestep 0.5_fs # This is a comment
Initvel 350_K
Thermostat NHC 350_K Timecon 10.0_fs
Dump Position Stride 1 Filename "trajectory.xyz"
Run 200

end
* xyz 0 1
O -4.54021 0.78439 0.09307
H -3.64059 0.38224 -0.01432
H -4.63463 1.39665 -0.67880
*

Please note that the MD input is not processed by ORCA’s main parser, but by a dedicated parser in the MD module.
Therefore, the MD input is not required to obey the general ORCA syntax rules. The syntax will be described in
the following.

In contrast to general ORCA input, the MD input is not based on keywords, but on commands, which are executed
consecutively on a line-by-line basis starting at the top (like, e. g., in a shell script). This means that identical com-
mands with different arguments may be given, coming into effect when the interpreter reaches the corresponding
line. This enables to perform multiple simulations (e. g., pre-equilibration and production run) within a single
input file:

%md
Timestep 1.0_fs
Run 200
Timestep 2.0_fs
Run 500

end

Work is already under way to add variable definitions, loops, and conditional branching to the MD input.2 This
will enable even larger flexibility (e. g., to run a simulation until a certain quantity has converged). The MD input
is written in the SANscript language (“Scientific Algorithm Notation Script”), which is under development. A first
glimpse can be found at

https://brehm-research.de/sanscript

As in standard ORCA input, comments in the MD input are initiated by a “#” sign and span to the end of the
current line. Commands can be started both at the beginning of a line and after a command. The only place where
a “#” is not treated as start of a comment is inside of a string literal (e. g., in file names).

%md
# Comment
Timestep 0.5_fs # Comment
Dump Position Filename "trajectory#1.xyz"

end

Some more MD input syntax rules:

• The MD input is generally not case-sensitive. The only exception are file names on platforms with case-
sensitive file systems (such as GNU Linux).

• Empty lines are allowed.
2 Technically speaking, ORCA will then be a Turing-complete script interpreter, such that any computational problem can be solved with

ORCA :-)
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• Commands and options are separated by space or tabulator characters. Any combination of these characters
may be used as separator.

• Both DOS and UNIX line break style is acceptable.

Commands

As already noted above, the central item of the MD input is a command. Each input line contains (at most) one
command, and these commands are executed in the given order. A command typically takes one or more arguments,
which are given behind the command name, separated by whitespaces, tabulator characters, or commas (optional).
The order of the arguments for a command is fixed (see command list in section Command List. Commands may
have optional arguments, which are always specified at the end of the argument list, after the last non-optional
argument. If there exist multiple optional arguments for a command, not all of them need to be specified; however,
they need to be specified in the correct order and without gaps:

%md
Command Arg1 Arg2 Arg3 # fine
Command Arg1, Arg2, Arg3 # fine
Command Arg1 Arg2 Arg3 Optarg1 # fine
Command Arg1 Arg2 Arg3 Optarg1 Optarg2 # fine
Command Arg1 Arg2 Arg3 Optarg2 # will not work

end

Apart from arguments and optional arguments, commands can also have modifiers. These can be considered as
“sub-commands”, which modify a given command, and may possess their own argument lists. Modifiers generally
follow after all non-optional and optional arguments, and they may not possess optional arguments on their own.
If a command has multiple modifiers, the order in which they are given is not important.

In the following input example, “Mod1” and “Mod2” are modifiers of “Command”. “Mod1” takes one argument,
“Mod2” does not take arguments:

%md
Command Arg1 # fine
Command Arg1 Optarg1 # fine
Command Arg1 Mod1 Modarg1 Mod2 # fine
Command Arg1 Mod2 # fine
Command Arg1 Mod2 Mod1 Modarg1 # fine
Command Arg1 Optarg1 Mod1 Modarg1 Mod2 # fine

end

To make this abstract definition a little more illustrative, please consider again one line from the input sample at
the beginning of this section:

%md
Dump Position Stride 1 Filename "trajectory.xyz"

end

Here, “Dump” is the command, which takes one non-optional argument to specify which quantity shall be dumped
– in this case, “Position”. The “Dump” command has two modifiers, namely “Stride” and “Filename”. The
former takes one integer argument, the latter a string argument. Swapping the two modifiers (together with their
respective arguments, of course) would not change the behavior.
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Separating Arguments

As shown above, the arguments which are passed to a command do not need to be separated by commas. However,
it is allowed (and recommended) to still use commas. First, it can increase the readability of the input file. Secondly,
there exist a few ambiguous cases in which commas (or parentheses) should be used to clarify the intended meaning.
One of these cases is the arithmetic minus operator. It can either be used as binary operator (subtracting one number
from another), or as unary operator (returning the negative of a number). By default, the minus operator will be
considered as binary operator (if possible).

Consider the case in which you want to pass two integer arguments “10” and “-10” to a command. Without
commas (or parentheses), the minus is mistreated as binary operator, and only one argument will be passed to the
command:

Command 10 -10 # Pitfall: treated as "Command (10 - 10)", i.e., "Command 0"
Command 10, -10 # Two arguments, as intended
Command 10 (-10) # Also works

Physical Units

In many cases, it is required to specify quantities which bear a physical unit in an input file (e. g., temperature,
time step lengths, . . . ). For many quantities, there are different units in widespread use, which always leads to
some confusion (just consider the “kcal vs kJ” case). ORCA handles this problem by defining default units for
each quantity and requiring that all quantities are given in their default unit. ORCA’s default units are the atomic
units, which are heavily used in the quantum chemistry community, but not so much in the molecular dynamics
community. As an ab initio molecular dynamics module exists in the small overlap region of both communities,
some “unit conflicts” might arise. To prevent those from the beginning, it is allowed to specify units of personal
choice within ORCA’s MD input.

Luckily, this is as simple and convenient as it sounds. The parser of the MD module checks if a unit is given after
a numeric constant, and automatically converts the constant to the internal default unit. If no explicit unit is given,
the default unit is assumed. Please note that the default units within the MD module are not necessarily atomic
units (see table below). Units are connected to the preceding numerical value by an underscore:

%md
Timestep 1.0_fs
Timestep 41.3_au # identical
Timestep 1.0 # identical, as default time unit in MD module is fs

end

In the following, all units which are currently known to the MD module’s parser are listed, sorted by physical
quantities. The default unit for each quantity is printed in bold letters. Additive constant and factor are applied
to convert a unit into the default unit. The additive constant is applied before the factor. A “−” means that the
constant/factor is not applied. More units will be probably added in the future.
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Unit Symbol Additive Constant Factor
— Length Units —

Angstrom − −
A − −
Bohr − 0.5291
pm − 0.01
nm − 10.0
— Time Units —

fs − −
ps − 1000
au − 0.02419
— Temperature Units —

Kelvin − −
K − −
Celsius 273.15 −
C 273.15 −
— Angle Units —

Deg − −
Rad − 180/𝜋

7.48.5 Discussion of Features

Restarting Simulations

Ab initio molecular dynamics simulation are computationally expensive, and will typically run for a long time
even in the case of medium-sized systems. Often, it is desirable to perform such a simulation as a combination
of multiple short runs (e. g., if the queuing system of the cluster imposes a maximum job time). The ORCA MD
module writes a restart file in each simulation step, which allows for the seamless continuation of simulations.
This restart file has the name “basename.mdrestart”, where basename is the project’s base name. To load an
existing restart file, use the Restart command (see command list below).

In the first run of a planned sequence of runs, no restart file exists yet. for this case, the Restart command offers
the IfExists modifier. The restart file is only loaded if it exists. If not, the restart is simply skipped, and no
error is thrown. By using this modifier, you can have the Restart command already in place in the first run of a
sequence (where no restart file exists in the beginning), and do not need to modify the input after the first run has
finished.

Concerning the Dump command, it is good to know that trajectory files are appended (not overwritten) by default.
If you ever want to overwrite an existing trajectory file by a Dump command, use the Replace modifier.

Please note that only the positions, velocities, thermostat internal state (only for NHC), Metadynamics hills, and
time step counters are restarted when executing a Restart command. All other properties (thermostats, regions,
trajectory dumps, constraints, cells, etc.) are not restarted. They should all remain in the input file, as executed in
the first run of a sequence. Just add the Restart command after all other relevant commands have been executed,
directly before the Run command.

To conclude this discussion, a short example is given. If the MD input file

%md
Timestep 0.5_fs
Initvel 300_K
Thermostat NHC 300_K Timecon 10.0_fs
Dump Position Stride 1 Filename "trajectory.xyz"

(continues on next page)
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(continued from previous page)

Restart IfExists
Run 100

end

is subsequently executed ten times (without any modification), the resulting trajectory file will be identical (apart
from numerical noise) to that obtained if the following input is executed once:

%md
Timestep 0.5_fs
Initvel 300_K
Thermostat NHC 300_K Timecon 10.0_fs
Dump Position Stride 1 Filename "trajectory.xyz"
Run 1000

end

Regions

In the ORCA MD module, regions can be defined. This concept does not refer to regions in space, but rather to
subsets of atoms in the system. A region is nothing more than a list of atoms. Regions may overlap, i. e., atoms
can be part of more than one region at a time. The atoms which are part of a certain region remain the same until
the region is manually re-defined, i. e., regions are fixed and do not adapt to any changes in the system. There exist
a few pre-defined regions which have a name. User-defined regions, in contrast, only carry an integer identifier.
The following regions are pre-defined in any case:

• all: Contains all atoms of the system. This is the default if no region is specified in some commands, so by
default, these commands will always act on the whole system.

• active: This region contains all movable (“non-frozen”) atoms. By default, it is identical to the all region.
Atoms inside of this region are updated by the time integration in a molecular dynamics run, displaced in a
minimization, and are considered for computing the kinetic energy.

• inactive: This region contains all atoms which are not part of the active region. These atoms are
“frozen”; they are ignored by the time integration / minimization, and also not considered for the com-
putation of the kinetic energy. They simply remain on their initial positions. This is in principle identical to
applying Cartesian constraints to the atoms; however, it is much faster. As constraints have to be solved iter-
atively (see below), Cartesian constraints become quite computationally demanding if applied to thousands
of atoms.

From these three pre-defined regions, only the active region can be manually modified. Changes in the com-
position of the active region automatically modify the inactive region. The all region obviously cannot be
changed.

In case of a QM/MM simulation, the following four additional regions can be used:

• qm: This is the “quantum mechanics” region – it contains all atoms which are treated by the electron structure
method.

• mm: This is the “molecular mechanics” region – it contains all atoms which are treated by a force-field
approach. It exactly contains those atoms which are not part of the qm region.

• active_qm: Contains exactly those atoms which are part of both the qm and the active regions.

• active_mm: Contains exactly those atoms which are part of both the mm and the active regions.

These regions can not be modified in the MD input. The MD module just reads the region definitions from the
QM/MM module, but is not able to make any changes here.

Regions can be useful for many purposes. For example, a “realistic” wall of atoms can be built around the system
by defining the active region such that it only contains the non-wall atoms. The wall atoms will then be frozen.
Apart from that, trajectories of regions can be written to disk, only containing the “interesting” part of a simulation.
Furthermore, velocity initialization can be applied to regions, enabling to start a simulation in which different sets
of atoms possess different initial temperatures. Thermostats can be attached to regions to keep different sets of
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atoms at different temperatures during the whole simulation. This allows for sophisticated simulation setups (cold
solute in hot solvent, temperature gradient through the system, etc).

Regions are defined or modified by the Manage_Region command. Many other commands take regions as optional
arguments. Please see the command list below.

Metadynamics

Metadynamics is a powerful tool to analyze free energy profiles of reactions and other processes (solvation, ag-
gregation, conformer change, dissociation) based on molecular dynamics simulations. It has been developed by
Laio and Parrinello in 2002 [487]. In principle, the frequency of observing a certain process in MD simulations is
directly related to the free energy barrier of the process. However, many interesting processes (such as chemical
reactions) possess such a high free energy barrier that they will never occur on the time scales typical for AIMD
simulations (100 ps). To increase the frequency at which such processes happen, so-called rare event sampling
methods can be employed. Metadynamics is one among those. It works by building up a bias potential as a sum
of Gaussian hills, so that free energy minima are slowly filled up and the system is gradually pushed away from its
resting points.

Please note that there is also a method with the same name for exploring conformation space that has been pub-
lished by Grimme in 2019 [330]. It is in principle based on the original “Parrinello” Metadynamics, but with
several modifications and extensions. The ORCA MD module contains the original Parrinello variant of Metady-
namics [487], together with several extensions such as well-tempered Metadynamics [73] and extended Lagrangian
Metadynamics [408]. The Grimme method for conformer search will probably be implemented in the future.

In Metadynamics, one has to define one or more “collective variables” (Colvars) along which the free energy profile
of the system will be sampled. A Colvar is in principle nothing more than a continuous function of all atom positions
which returns a real number. A simple example of a Colvar is the distance between two atoms, which could be
used to explore the free energy profile of a bond formation or cleavage. In the ORCA MD module, Colvars can be
defined via the Manage_Colvar command. Available Colvar types are distances (including projections onto lines
or into planes), angles, dihedral angles, and coordination numbers [408]. The latter allows, e. g., to accurately
compute p𝐾A values of weak acids in solvent [855, 856]. For the distances, angles, and dihedral angles, atom
groups instead of single atoms can be specified, so that, e. g., the distance between the centers of mass of two
molecules can be defined as a Colvar.

Based on one or two Colvars (ORCA supports one-dimensional and two-dimensional Metadynamics), a Metady-
namics simulation can be set up. There are many parameters to choose, which are described in the section of the
Metadynamics command. After all parameters have been set, the actual simulation is simply started via the Run
command. It is also possible to restart Metadynamics simulations so that they can be split into multiple succes-
sive runs; see the Restart command. A full example for a two-dimensional well-tempered extended Lagrangian
Metadynamics simulation can be found on below.

Note that Metadynamics simulations typically require very much computational time (at least several 10 000 MD
steps for a roughly converged result, depending on the Colvar choice). So this is by no means a method to “shortly
try out”. However, there are no cheaper methods for predicting free energy profiles (apart from very simple ap-
proximations such as the harmonic oscillator), and the predictive power of computing free energy profiles comes
at a price.

7.48.6 Command List

In the following, an alphabetical list of all commands currently known to the MD module is given. The description
of each command starts with a small box which contains the command’s name and a table of arguments and
modifiers. The last-but-one column in the table specifies the type of each argument. Possible types are “Integer”,
“Real”, “String”, and “Keyword”. In the latter case, the last column contains a list of allowed keyword values in
{ braces }. If the type is “Real” and is a physical quantity with unit, the quantity is given in the last column in
[square brackets]. Each such box is followed by a textual description of the corresponding command.
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7.48.7 Command Overview

Command Description
Cell Defines and modifies cells
Constraint Manages constraints
Dump Controls trajectory output
Initvel Randomly initializes atom velocities
Manage_Colvar Manages collective variables (“Colvars”)
Manage_Region Manages regions
Metadynamics Sets parameters for Metadynamics runs
Minimize Performs a Cartesian energy minimization
PrintLevel Controls the output verbosity
Randomize Sets the random seed
Restart Restarts a simulation to seamlessly continue
Restraint Manages restraints on Colvars
Run Performs a molecular dynamics run
SCFLog Controls the ORCA log file output
Screendump Prints current MD state to screen
Thermostat Manages thermostats
Timestep Sets the integrator time step ∆𝑡

Cell

Manadory Arguments: -
Optional Arguments: -
Modifiers: Cube . . . . . . see text

Rect . . . . . . see text
Rhomb . . . . . . see text
Sphere . . . . . . see text
Ellipsoid . . . . . . see text
None — — —
Spring 𝑘 Real see text
Elastic 𝑡avg Real [time]

𝑐response Real see text
Anisotropic — — —
Pressure . . . . . . see text
Fixed — — —

Defines a harmonic repulsive wall around the system (the wall is “soft” with a spring constant and atoms can
slightly penetrate; “hard” repulsive walls are not supported). This helps to keep the molecules inside of a well-
defined volume, or to keep a constant pressure in the system. In the latter case, the cell can be defined as elastic,
such that it exerts a well-defined pressure (see below). Please note that ORCA does not feature periodic bound-
ary conditions, and therefore, all cells are non-periodic (just repulsive walls). There are several cell geometries
available (only one type of cell can be active at a time):

• Cube: Defines a cubic cell. If two real values 𝑝1 and 𝑝2 are specified as coordinates, the cell ranges from(︀
𝑝1, 𝑝1, 𝑝1

)︀
to
(︀
𝑝2, 𝑝2, 𝑝2

)︀
. If only one real value 𝑝 is supplied, the cell ranges from

(︀
−𝑝2 ,−

𝑝
2 ,−

𝑝
2

)︀
to(︀

𝑝
2 ,

𝑝
2 ,

𝑝
2

)︀
, i. e. it is centered at the origin with edge length 𝑝.

• Rect: Defines an orthorhombic cell. Six real values 𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, and 𝑧2 have to be specified as
coordinates (in this order). The cell will range from

(︀
𝑥1, 𝑦1, 𝑧1

)︀
to
(︀
𝑥2, 𝑦2, 𝑧2

)︀
.

• Rhomb: Defines a parallelepiped-shaped cell (also termed as rhomboid sometimes). You have to specify
twelve real values in total. The first three define one corner point 𝑝 of the cell, and the remaining nine define
three cell vectors 𝑣1, 𝑣2, and 𝑣3, each given as Cartesian vector components. The cell is then defined as the
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set of points
{︀
𝑝 + 𝑐1𝑣1 + 𝑐2𝑣2 + 𝑐3𝑣3 | 0 ≤ 𝑐1, 𝑐2, 𝑐3 ≤ 1

}︀
The vectors 𝑣1, 𝑣2, and 𝑣3 do not need to be

orthogonal to each other, but they may not all lie within one plane (cell volume would be zero).

• Sphere: Defines a spherical cell. You need to specify four real values 𝑐𝑥, 𝑐𝑦 , 𝑐𝑧 , and 𝑟. The cell will then
be defined as a sphere around the central point

(︀
𝑐𝑥, 𝑐𝑦, 𝑐𝑧

)︀
with radius 𝑟.

• Ellipsoid: Defines an ellipsoid-shaped cell. As first three arguments, you have to specify three real values
𝑐𝑥, 𝑐𝑦 , 𝑐𝑧 , which define the center of the ellipsoid to be

(︀
𝑐𝑥, 𝑐𝑦, 𝑐𝑧

)︀
. As fourth argument, a keyword has to

follow, which may either be “XYZ” or “Vectors”. In the “XYZ” case, three more real values 𝑟𝑥, 𝑟𝑦 , and 𝑟𝑧
have to be specified, which define the partial radii of the ellipsoid along the X, Y, and Z coordinate axes. If
instead “Vectors” was given, nine more real values 𝑣1𝑥, 𝑣1𝑦 , 𝑣1𝑧 , 𝑣2𝑥, 𝑣2𝑦 , 𝑣2𝑧 , 𝑣3𝑥, 𝑣3𝑦 , 𝑣3𝑧 have to follow after the
keyword. These values define three vectors 𝑣1 :=

(︀
𝑣1𝑥, 𝑣

1
𝑦, 𝑣

1
𝑧

)︀
, 𝑣2 :=

(︀
𝑣2𝑥, 𝑣

2
𝑦, 𝑣

2
𝑧

)︀
, and 𝑣3 :=

(︀
𝑣3𝑥, 𝑣

3
𝑦, 𝑣

3
𝑧

)︀
,

which are the principal axes of the ellipsoid. These vectors have to be strictly orthogonal to each other. The
length of each vector defines the partial radius of the ellipsoid along the corresponding principal axis.

All cell types define a harmonic potential 𝐸cell (𝑟) := 𝑘 · 𝑟2 which acts on all atoms in the system outside of the
cell, where 𝑟 is the closest distance from the atom’s center to the defined cell surface. Atoms whose center is inside
of the cell or directly on the cell surface do not experience any repulsive force. Following from the definition, the
force which acts on an atom outside of the cell is always parallel to the normal vector of the cell surface at the point
which is closest to the atom center. This is trivial in case of cubic, rectangular, rhombic, and spherical cells, but
not so trivial for ellipsoid-shaped cells.

The spring constant 𝑘 in the above equation (i. e., the “steepness” of the wall) can be specified by the “Spring”
modifier, which expects one real value as argument. The spring constant has to be specified in the unit kJ mol−1
Å−2, other units cannot be specified here. The default value is 10 kJ mol−1 Å−2. Larger spring constants re-
duce the penetration depth of atoms into the wall, but may require shorter integration time steps to ensure energy
conservation. If jumps in the total energy occur, try to use a smaller spring constant (e. g., the default value).

The command “Cell None” disables any previously defined cell.

If you want to perform simulations under constant pressure, you can define an elastic cell. Then, ORCA accumulates
the force which the cell exerts on the atoms in each time step, and divides this total force by the cell surface area
to obtain a pressure. As this momentarily pressure heavily fluctuated, a running average is used to smooth this
quantity. If the averaged pressure is larger than the external pressure which was specified, the cell will slightly
grow; if it was smaller, the cell will slightly shrink. In the beginning of a simulation, the cell size will not vary
until at least the running average history depth of steps have been performed.

An elastic cell is enabled by using the “Elastic” modifier after the cell geometry definition. Subsequently, two real
values 𝑡avg and 𝑐response are required. While 𝑡avg defines the length of the running average to smooth the pressure (in
units of physical time, not time steps), the 𝑐response constant controls how fast the cell size will change at most. More
specific, 𝑐response is the fraction of the cell volume growth per time step if the ratio of averaged and external pressure
would be infinite, and at the same time the fraction of the cell volume reduction per step if the aforementioned ratio
is zero. Put into mathematical form, the cell volume change per time step is

𝑉new :=

⎧⎪⎨⎪⎩
𝑉old ·

𝑐response· ⟨𝑝⟩𝑝ext
+1

𝑐response+1 if ⟨𝑝⟩𝑝ext
≤ 1,

𝑉old ·
(𝑐response+1)· ⟨𝑝⟩𝑝ext

⟨𝑝⟩
𝑝ext

+𝑐response
if ⟨𝑝⟩𝑝ext

> 1,
(7.313)

where ⟨𝑝⟩ represents the averaged pressure the system exerts on the walls, and 𝑝ext is the specified external pressure.
Good starting points are 𝑡avg = 100 fs and 𝑐response = 0.001. Please note that larger values of 𝑐response or smaller
values of 𝑡avg may lead to uncontrolled fluctuations of the cell size. An already defined fixed cell can be switched
to elastic by the command “Cell Elastic ...” (the dots represent the two real arguments).

By default, the size change of an elastic cell due to pressure is performed isotropically, i. e., the cell is scaled
as a whole, and exactly retains its aspect ratio. By specifying the “Anisotropic” modifier after switching on
an elastic cell, the cell pressure is broken down into individual components, and the size of the cell is allowed to
change independently in the individual directions. This, of course, only makes sense for the cell geometries Rect,
Rhomb, and Ellipsoid. An already defined isotropic cell can be switched to anisotropic by simply executing
“Cell Anisotropic”.

In case of an elastic cell, the external pressure is defined by the modifier “Pressure”, which expects either one or
three real values as arguments. If one argument is given, this is the isotropic external pressure. If three arguments
are supplied, these are the components of the pressure in X, Y, and Z direction (in case of orthorhombic cells)

7.48. Ab initio Molecular Dynamics Simulations 985



ORCA Manual, Release 6.0

or along the direction of the three specified vectors (in case of parallelepiped-shaped and ellipsoid-shaped cells).
This allows for anisotropic external pressure (probably only useful for solid state computations). Both the pressure
and the pressure components have to specified in units of bar (= 105 N m−2), other units cannot be used. If this
modifier is not used, the default pressure will be set to 1.0 bar (isotropic) if an elastic cell is used. The external
pressure of an already defined cell can be changed by the command “Cell Pressure ...” (the dots represent
the real argument(s)).

As all cells are non-elastic by default, there is no keyword to explicitly request this at the time of cell definition.
However, possible applications might require to use an elastic cell during equilibration period, and then “freeze”
this cell at the final geometry for the production run. This can be achieved by using the “Cell Fixed” command
(without any additional arguments).

If the cell is elastic, there is a volume work term which contributes to the total energy of the system. ORCA
computes this term in every step and adds it to the potential energy. Without this contribution, the conserved
quantity would drift excessively in elastic cell runs.

To completely switch off a previously defined cell, simply use “Cell None”.

Please note that cells are not automatically restarted by using the Restart command.

Examples:

Cubic cell with edge length 10 Å centered around origin:
Cell Cube 10

Spherical cell with radius 5 Å centered around origin and 20 kJ mol−1 Å−2 wall steepness:

Cell Sphere 0, 0, 0, 5 Spring 20

Elastic orthorhombic cell from
(︀
−2,−2, 0

)︀
to
(︀
12, 12, 10

)︀
, 𝑡avg = 100 fs, 𝑐response = 0.001:

Cell Rect -2, -2, 0, 12, 12, 10 Elastic 100, 0.001

Ellipsoid-shaped cell centered on origin with partial radii 5, 10, 15 Å along the X, Y, Z axes:

Cell Ellipsoid 0, 0, 0 XYZ 5, 10, 15

The commas are optional, but make sure to use them with negative numbers. By default, the minus operator will
act as binary operator if possible (see discussion above).

Constraint

Mandatory Arguments: opera-
tion

Key-
word

{ Add, Remove, List }

type Key-
word

{ Cartesian, Distance, Angle, Dihedral, Center,
Rigid }

atom(s) Integer —
Optional Arguments: —
Modifiers: Target value(s) Real —

Ramp value(s) Real —
Weights . . . . . . see text
All —
Noprint —

Manages constraints in the molecular dynamics simulation. Unlike Restraints, constraints are geometric rela-
tions which are strictly enforced at every time (i. e., they do not fluctuate around their target value). All atoms
involved in constraints have to be included in the active region. In principle, constraints also work in Cartesian
geometry optimizations with the Minimize command, but the performance together with L-BFGS may be poor
(except for Cartesian constraints, which work flawlessly in L-BFGS). In these cases, try to use the simulated an-
nealing method instead.

The simplest possibility is to constrain the Cartesian position of an atom to some value. A zero-based atom index is
required. The command Constraint Add Cartesian 3would fix the fourth atom in the simulation at its current
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position in space. If the desired position shall be explicitly given, it can be specified via the Target modifier, e.
g., Constraint Add Cartesian 3 Target 5.0 1.0 1.0. To determine which dimensions to fix, one of the
XYZ, XY, XZ, YZ, X, Y, or Z modifiers can be added. For example, Constraint Add Cartesian 3 X Target
1.0 would constrain the X coordinate of atom 3 to the absolute value 1.0, but would not influence movement along
the Y and Z coordinate at all.

By using the Distance keyword, distances between atoms can be fixed. The command Constraint Add
Distance 3 5 would fix the distance between atom 3 and 5 to its current value. You need to specify exactly
two atom indices; multiple distance constraints are entered via multiple Constraint commands. Also here, a
desired distance value can be given via the Target modifier, such as Constraint Add Distance 3 5 Target
350_pm.

Similarly, angles and dihedral angles between atoms can be fixed with the Angle and Dihedral keywords. Angles
are defined by three atom indices, and dihedral angles by four atom indices. Also here, target values may be
specified. Any combination of Cartesian, distance, angle, and dihedral constraints may be used simultaneously,
and may even be applied to the same group of atoms. A molecule can be made completely rigid by constraining
all its bonds, angles, and torsions. Please make sure that your constraints are not over-determined, and do not
contradict each other. Otherwise, they can’t be enforced and the simulation will print warnings or crash.

A different and powerful class of constraints can be defined with the Center argument. Directly after the keyword,
a list of integer atom numbers is expected. This list can be a combination of numbers and ranges, e. g., “1, 3,
5..11, 14”. The weighted average position of this subset of atoms is then constrained to a fixed position in
Cartesian space. By default, the weights are taken as the atom masses, such that the center of mass of the selected
atoms is kept fixed. This allows, e. g., to run a MD simulation of two molecules with fixed center of mass, such that
their center of mass distance remains constant. Custom weights for the definition of the center can be entered by
using the Weights modifier after the atom list. It expects exactly the same number of real arguments as the length
of the specified atom list. The geometric center of a group of atoms can be held fixed by setting all weights to 1.0,
for example “Constraint Add Center 2, 5..7 Weights 1.0 1.0 1.0 1.0”. If desired, a Target for the
center position can be given, which expects three real numbers for the X, Y, and Z coordinate after the keyword.
If no target is specified, the current center position is held fixed.

With the Rigid type of constraints, complete groups of atoms can be kept rigid, i. e., keep all their distances and
angles relative to each other, but move as a whole. After the Rigid keyword, a list of atom numbers is expected.
More than one group of atoms can be kept rigid at the same time – just call the Constraint Add Rigid command
multiple times with different atom lists. Internally, the rigid constraint is realized by defining the correct number of
distance constraints. Such a large number of distance constraints is hard to converge; therefore, warning messages
that RATTLE did not converge will not be shown if a rigid constraint is active. Almost planar (or even linear)
groups of atoms are hard to keep rigid by using only distance constraints. It might help do add a dummy atom
outside of the plane and include this into the constraint.

ORCA supports constraints with linearly changing target value during the simulation. To define such a constraint,
write “Ramp” directly after the “Target” modifier. After “Ramp”, twice the number of real numbers that would
have been required for “Target” follows (two instead of one for distances, angles, and dihedrals; six instead of
three for “Cartesian XYZ”, and so on). The first half of these arguments are the starting values, the second half
are the final target values. For example, “Constraint Add Distance 3 5 Target Ramp 300_pm 400_pm”
will define a distance constraint with a target value rising from 300 pm to 400 pm. The ramp will be performed
once during the Run command which follows next after the constraint definition. Therefore, the number of steps
specified in this Run command also specifies the rate at which the constraint target is modified. After the ramp has
been completed once, the final (constant) target value(s) will be used for all subsequent Run commands.

If an already defined constraint is defined again, it is overwritten, i. e., the old version of the constraint is automat-
ically deleted first.

Constraints are removed with the Remove keyword. You can either remove single constraints, e. g., Constraint
Remove Distance 3 5, or groups of similar constraints. To remove all angle constraints, use Constraint
Remove Angle All. To remove all restraints, enter Constraint Remove All.

The List argument prints all currently active constraints to the screen and log file. No additional arguments can
be specified.

By default, the external force acting on each constraint is computed in every MD step and written to a file named
“basename-constraints.csv” (one column per constraint). This can be useful – the average force acting on a
constraint can be, e. g., used for thermodynamic integration [430]. If a large number of constraints is defined, this
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might waste computer time if it is not required. In these cases, the constraints can be defined with the Noprint
modifier. For such constraints, the acting forces are not computed and not written to the file. Note that constraints
which have been pre-defined (e. g., by the force field for rigid molecules such as TIP3P water) automatically have
this modifier.

Please note that each constraint decreases the number of the system’s degrees of freedom (DoF) by one. This effect
is included, e. g., in the temperature computation, where the DoF count enters. From this consideration, it can also
be understood that a constraint behaves significantly different from a restraint with very large spring constant: In
the former case, the DoF is removed from the system; in the latter case, the DoF is still there, but can only move in
a tiny interval.

It is computationally inefficient to define a large number of Cartesian constraints if a subset of atoms simply shall be
fixed. A more efficient approach is to define an active region which only contains the atoms which shall be movable
(see Manage_Region command). All atoms outside of the active region will not be subject to time integration and
therefore keep their positions. However, please note that these atoms may not be involved in any other (distance,
angle, dihedral) constraint.

Dump

Mandatory Arguments: quantity Keyword { Position, Velocity, Force, GBW, EnGrad }
Optional Arguments: —
Modifiers: Format fmt Keyword { XYZ, PDB, DCD }

Stride n Integer —
Filename fname String —
Region region . . . . . .
Replace —
None —

Specifies how to write the output trajectory of the simulation. The quantity argument can be one of the keywords
Position, Velocity, Force, GBW, and EnGrad. While the velocities are written in Angstrom/fs, the unit of the
forces is Hartree/Angstrom. The following paragraphs only apply to the first three quantities. Dumping GBW and
EnGrad files works differently, and is described at the very end of this section.

The Stride modifier specifies to write only every 𝑛-th time step to the output file (default is 𝑛 = 1, i. e., every
step). A stride value of zero only writes one frame to the trajectory at the time when the Dump command is called
– no further frames will be written during the run. This can be helpful, e. g., to write an initial PDB snapshot for
DCD trajectories, or to keep a single GBW file at some point.

The Format modifier sets the format of the output file. Currently, only the XYZ, PDB, and DCD formats are im-
plemented. Please note that the DCD format is not well-defined, and different programs use different formats with
this extension. Furthermore, DCD files do not store atom type information and are only valid together with a PDB
snapshot of the system (a single PDB snapshot can be written via “Dump Position Format PDB Stride 0”).
If not specified, ORCA tries to deduce the format from the file extension of the specified file name. If also no file
name is given, trajectories will be written in XYZ format by default.

The Filename modifier sets the output file name. If not specified, the default file name will have the form
“proj-qty-rgn.ext”, where proj is the base name of the ORCA project, qty is one of postrj, veltrj, or
frctrj, rgn specifies the name or number of the region for which the dump is active, and ext is the file extension
selected by the Format modifier.

If the trajectory file already exists at the beginning of a Run command, new frames will be appended to its end
by default. If you want to overwrite the existing file instead, use the Replace modifier. The old existing file is
erased only once after a dump with this modifier has been specified. If multiple Run commands follow after the
dump definition, the trajectory will not be replaced before each of these runs, only before the first one among them.
To overwrite the file another time, simply re-define the dump with the Replace modifier. If the file does not yet
exist at the beginning of a run, this modifier has no effect. Appending frames to DCD trajectories is not possible
(because they store the total frame count in the header). Therefore, Replace is automatically switched on if the
format is DCD.
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With the Region modifier, the trajectory output can be restricted to a specific region (i. e., subset of atoms). This
modifier expects one argument, which is either the name of a pre-defined region or the number of a user-defined
region (see above). If not specified, the trajectory of the whole system will be written. Multiple dump commands
for multiple regions can be active at the same time, but each pair of region and quantity (position/velocity/force)
can have only one attached dump command at a time (re-defining will overwrite the dump settings).

Use the None modifier to disable writing this quantity to an output file. The command “Dump Position None”
will disable writing of all position trajectories for all regions. To disable only the dump for a specific region, use
“Dump Position Region r None”, where r is the name or number of the region.

The default is to write a position trajectory with Stride 1 and Format XYZ to a file named “proj-postrj-all.
xyz”, where “proj” is the base name of the ORCA project. If you want to create no output trajectory at all, use
“Dump Position None” as described above.

The Dump GBW command keeps a copy of the GBW file every 𝑛 steps, which can be used for computing prop-
erties along the MD trajectory, e. g., plotting orbitals. This does not yield a trajectory, as all the GBW files are
stored individually. The value of 𝑛 is controlled by the Stride modifier. The file names are formed by append-
ing the step number (six digits with leading zeros) followed by “.gbw” to the Filename argument. Therefore,
this argument should not contain the “.gbw” extension by itself. If the Filename modifier is not specified, the
default will be “proj-step”, where “proj” is the base name of the ORCA project. This will lead to files such as
“proj-step000001.gbw”, etc. The Format and Region modifiers can not be used for Dump GBW.

In a very similar way, Dump EnGrad stores an ORCA .engrad file (energy and gradient) every 𝑛 steps. All the
.engrad files are stored individually (not as a continuous trajectory). The value of 𝑛 is controlled by the Stride
modifier. By default file names such as “proj-step000001.engrad” will be used.

Initvel

Mandatory Arguments: temp Real [temperature]
Optional Arguments: —
Modifiers: Region region . . . . . .

No_Overwrite —

Initializes the velocities of the atoms by random numbers based on a Maxwell–Boltzmann distribution, such that
the initial temperature matches 𝑡𝑒𝑚𝑝 (see also section 1.5.2). Please note that this overwrites all velocities, so do
not call this command when your system is already equilibrated (e. g., to change temperature – use a thermostat
instead).

The total linear momentum of the initial configuration is automatically removed, such that the system will not start
to drift away when the simulation begins. This only concerns the initial configuration. Total linear momentum
might build up during the simulation due to numeric effects.

With the Region modifier, the initialization of velocities can be performed for a specific region (i. e., subset of
atoms). This modifier expects one argument, which is either the name of a pre-defined region or the number of a
user-defined region (see above). If not specified, the command acts on the whole system.

The No_Overwrite modifier only initializes the velocities if no atom velocities have been defined/read before.
This is useful in combination with the Restart command: After reading an existing restart file, the velocities
are already known, and the initialization will be skipped if this modifier is used. The following combination of
commands in a MD input would initialize the velocities only upon first execution, and restart the positions and
velocities on all following executions of the same input:

Restart IfExists
Initvel 350_K No_Overwrite

If neither the Initvel command nor a Restart command is not invoked before a Run call, the atom velocities
will be initialized to zero before starting the run.
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Manage_Colvar

Mandatory Arguments: operation Keyword { Define }
id Integer —
type Keyword { Distance, Angle, Dihedral, CoordNumber }

Optional Arguments: —
Modifiers: Atom atom Integer —

Group atomlist Integers —
Weights weights Reals —
Cutoff cutoff Real [length]
Noprint —

Defines collective variables (“Colvars”) which are used for Metadynamics or to impose Restraints on the
system. In a general sense, a Colvar is simply a continuous function of all the atom positions which returns a real
number. As Colvars don’t have any effect on the simulation by themselves, they can currently only be defined or
re-defined; there is no requirement for deleting them. The second argument of the Manage_Colvar command is
the number of the Colvar. This number is used to address the Colvar later. Allowed numbers are within the range
of 1 . . . 10000. If a Colvar number which had previously been defined is defined again, it is simply overwritten
(and all restraints based on the old Colvar are deleted!). The third mandatory argument is the type of the Colvar,
which can be Distance, Angle, Dihedral, and CoordNumber. More Colvar types will probably be added in the
future (feel free to make suggestions in the forum!).

Distance Colvars are defined between two points in space. Each point can either be a single atom (expressed
by “Atom”) or the weighted average (center) of the positions of a group of atoms (expressed by “Group”). For
example, the command “Manage_Colvar Define 1 Distance Atom 0 Atom 7” defines Colvar 1 to be the
distance between atoms 0 and atom 7 (as always, the atom count starts at zero). On the other hand, the command
“Manage_Colvar Define 2 Distance Group 0 1 2 Group 3 4 5” sets Colvar 2 to be the distance between
the centers of atoms 0, 1, 2 and atoms 3, 4, 5. If many atoms shall be selected, the range syntax “Group 0..2” can
be used, including multiple such ranges if required, such as in “Group 0..2, 5, 7..11” (see also discussion
of the Manage_Region command). By default, the center of mass is used for groups. However, weights can be
manually specified if required by using the “Weights” modifier directly after the atom list for the center is finished.
“Weights” expects as many real numbers as the group possesses atoms, for example “Manage_Colvar Define
2 Distance Atom 0 Group 1 2 3 Weights 1.0 1.0 1.0”. The “Atom” and “Group” syntax can be mixed,
e. g., to define the distance between a single atom and a center of mass. When defining distance Colvars, one of
the modifiers X, Y, Z, XY, XZ, YZ, and XYZ may be specified directly after “Distance”. The first three among them
denote that the positions shall be projected onto the corresponding Cartesian vector before computing the distance.
The following three modifiers require that the two positions are projected into the corresponding Cartesian plane
prior to computing the distance. The last one is the default (just measure the standard distance in 3D space) and
does not need to be specified explicitly.

In a very similar manner, angle Colvars can be defined. Instead of two points in space, an angle Colvar is defined via
three points in space, each of which can either be an “Atom” or a “Group” (see above). For example, the command
“Manage_Colvar Define 3 Angle Group 0 1 2 Atom 3 Atom 4” defines Colvar 3 to be the angle spanned
by the mass center of atoms 0, 1, 2, atom 3, and atom 4, respectively.

Dihedral Colvars are defined through four points in space, each of which can either be an “Atom” or a “Group”
(see above). For example, the command “Manage_Colvar Define 4 Dihedral Atom 0 Group 1..5 Atom
6 Atom 7” defines Colvar 4 to be the dihedral angle spanned by atom 0, the mass center of atoms 1, 2, 3, 4, 5,
atom 6, and atom 7, respectively.

The Colvar type “CoordNumber” has been suggested in literature [408] to measure the coordination number of
some atom species around some other atom. An example where this type of Colvar has been successfully applied
is the calculation of p𝐾A values of weak acids in solvent via Metadynamics [855, 856]. The Colvar is defined by
the following equation

𝐶 :=
1
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where 𝑁𝐴 is the set of atoms which is coordinated (typically only one atom), 𝑁𝐵 is the set of coordinating atoms,
𝑟𝑖𝑗 is the distance between atoms 𝑖 and 𝑗, and 𝑟cut is a constant cutoff distance which specifies a threshold for co-
ordination. After “CoordNumber”, two atoms or groups of atoms must follow, which correspond to 𝑁𝐴 and 𝑁𝐵 ,
respectively. The distance cutoff is specified after the “Cutoff” modifier which should follow the two group defini-
tions. For example, the command “Manage_Colvar Define 5 CoordNumber Atom 0 Group 1..10 Cutoff
200_pm” defines Colvar 5 as the coordination number of the group of atoms 1 to 10 around atom 0 with a distance
cutoff of 𝑟cut = 200 pm.

For every defined Colvar, the temporal development of the position and the external force acting on the Colvar is
written to a text file named “basename-colvars.csv” in every MD step by default. If a large number of Colvars
are defined, this might be a waste of time and disk space. In these cases, the “Noprint” modifier can be specified
when defining the Colvar. Colvars defined with this modifier will not appear in the text file, and the force acting
on the Colvar will not be computed (if not required otherwise, e. g., for restraints).

Manage_Region

Mandatory Arguments: identifier Keyword/Integer . . .
operation Keyword { Define, AddAtoms, RemoveAtoms }
atomlist Integer(s) —

Optional Arguments: —
Modifiers: Element elem String —

Defines or modifies regions. Regions are just subsets of atoms from the system – see [Section
1.3](#moldyn:sec_regions) above.

As described above, there exist several pre-defined regions which are identified by names. The only such pre-
defined region which can be re-defined by the user is the active region. All atoms in this region are subject to
time integration in molecular dynamics and displacement in minimization runs. All other atoms are simply ignored
and remain on their initial positions. Please note that the active region may never be empty.

To re-define the active region, use the command “Manage_Region active Define 1 5 7 ...”. The integer
arguments after active are the numbers of the atoms to be contained in the region, in the order given in the ORCA
input file. Atom numbers are generally zero-based in ORCA, i. e., counting starts with 0.

Apart from that, user-defined regions are supported. These are identified with an integer number instead of a name.
The integer numbers do not need to be sequential, i. e., it is fine to define region 2 without defining region 1. To
give an example, the command “Manage_Region 1 Define 17 18 19” defines region 1, and adds atoms 17, 18,
and 19 to this newly defined region. Using Define without an atom list, such as in “Manage_Region 1 Define”,
deletes the user-defined region, as it will be empty then. Atoms can be added to or removed from previously defined
regions (including the active region) with the AddAtoms and RemoveAtoms operations. The atom numbers
specified after the operation name are added to or removed from the region. For example, “Manage_Region
active RemoveAtoms 15 16 17” will remove atoms 15 to 17 from the active region (and add them to the
inactive region instead).

If you want to specify a range of atoms, you can use the syntax “a..b” to include all atom numbers from a to
b. If you want only, e. g., every third atom in a range, you can use “a..b..i” to add the range from a to b with
increment i. As an example, “2..10..3” will expand to the list 2, 5, 8. You can mix atom numbers and ranges,
as shown in the following two examples (as always, the commas are optional):

Manage_Region active Define 1, 4, 5..11, 14, 17..30..2
Manage_Region active RemoveAtoms 4, 15..17

Instead of an atom list, the Element modifier can be used, followed by a string which represents an element label.
This will have the same effect as specifying an atom list with all atoms of this element type instead. Don’t forget the
double quotes around the element label string. For example, Manage_Region active RemoveAtoms Element
"H" removes all hydrogen atoms from the active region.
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Metadynamics

Mandatory Arguments: —
Optional Arguments: —
Modifiers: Off —

Reset —
Colvar colvar Integer —
Scale scale Real . . .
Wall side Keyword { Lower, Upper }

target Real phys. unit
k Real kJ mol−1 phys. unit−2

HillSpawn frequency Integer —
height Real kJ mol−1
sigma Real phys. unit

Range from Real phys. unit
to Real phys. unit
resolution Integer —

Store store Integer —
Temperature temp Real [temperature]
WellTempered biastemp Real [temperature]
Lagrange mass Real a.m.u.

k Real kJ mol−1 scaleunit−2
target_temp Real [temperature]
tau Real [time]

Sets the parameters for a Metadynamics simulation [487]. After all parameters have been set, the actual simulation
can be started by a Run command. The parameters can either all be set in a single call to the Metadynamics
command, or distributed over multiple such calls to avoid very long lines. In both cases, there are some rules for
the order of parameter settings. All Colvars for the Metadynamics need to be specified before setting any other
parameters. Modifiers which are related to Colvars (such as Scale, Wall, or Range) only apply to the Colvar that
was specified last before them in the Metadynamics command.

The Colvar modifier specifies a Colvar to be used in the Metadynamics simulation. It expects one integer argu-
ment, which is the number of the Colvar, as defined before via the Manage_Colvar command. The ORCA MD
module supports one- and two-dimensional Metadynamics, so either one or two Colvar modifiers can be given.
The number of Colvar modifiers specified defines the dimensionality of the Metadynamics simulation. Please
note that modifiers which are related to Colvars (such as Scale, Wall, or Range) only apply to the Colvar that
was specified last before them, so after specifying the first Colvar, these should be set before specifying the second
Colvar.

Colvars can have different physical units, such as Angstrom for distances and degree for angles. In a multi-
dimensional Metadynamics run, the different numerical magnitude of the corresponding numbers can be an issue:
Angles span over a range of 180 degree, while distances will often be within an interval of only 10 Angstrom. To
bring all Colvars to a similar scale, the Metadynamics module internally divides every Colvar by a user-supplied
constant. These internal values are dimensionless, they will be referred to as “scale units”. For a previously spec-
ified Colvar, the scale constant can be set via the Scale modifier. It expects one real argument which has to
be specified in physical units of the Colvar (length units for distance Colvars, angle units for angle and dihedral
Colvars). Coordination number Colvars are dimensionless anyway. If not specified, reasonable default values for
the scale are used, which are 1.0 Angstrom for distance Colvars, 20.0 degree for angle and dihedral Colvars, and
0.2 for coordination number Colvars. Note that the Scale modifier only applies to the Colvar given last before it
in the Metadynamics command.

As an example, consider the following commands to set up a two-dimensional Metadynamics simulation:

Manage_Colvar Define 1 Distance Atom 0 Atom 1
Manage_Colvar Define 2 Angle Atom 0 Atom 1 Atom 2
Metadynamics Colvar 1 Scale 1.0_A Colvar 2 Scale 10.0_Deg
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To keep Colvars within the region of interest during Metadynamics simulations, harmonic walls can be imposed
on Colvars. This is achieved via the Wall modifier. As a first argument, it expects the direction of the wall,
which can be Lower or Upper. The second argument is the position of this wall – given in physical units of the
Colvar (e. g., Angstrom for distance Colvars), not in scale units. As an optional third real argument, the spring
constant of the harmonic wall can be specified in kJ mol−1 unit−2, where unit is the default physical unit of the
Colvar (Angstrom for distances, degree for angles). If omitted, a spring constant of 50 kJ mol−1 Angstrom−2 for
distances, 0.5 kJ mol−1 degree−2 for angles, and 250.0 kJ mol−1 for coordination numbers is used (a reasonable
choice). Both lower and upper wall can be defined after one Wall modifier, such as in “Metadynamics Colvar
1 Wall Lower 3.0_A 50.0 Upper 10.0_A 50.0”. Note that one-sided harmonic walls can also be imposed
on Colvars via the Restraint command. For standard Metadynamics, this is redundant. However, for extended
Lagrangian Metadynamics (see below), it makes a difference: Restraints act on the Colvar and therefore on the real
atomistic system, whereas the walls defined in the Metadynamics command act directly on the virtual particle.
Again, note that the Wall modifier only applies to the Colvar given last before it in the Metadynamics command.

The last modifier which applies to Colvars is the Rangemodifier. It has no influence on the Metadynamics run itself,
and only controls the output of the free energy profiles. The Range modifier expects three arguments. The first
two have to be real numbers and define the lower and upper interval borders for which the free energy profile with
respect to this Colvar shall be output. The third argument is of integer type and controls the number of grid points
to produce for this interval. In two-dimensional Metadynamics, both Colvars can have associated Rangemodifiers,
which then control the interval and resolution of the 2D grid for the free energy profile. In this case, the grid should
not be much finer than 100×100; otherwise, the evaluation of the grid points will become quite slow. If no Range
modifier is given, default values are used (range of 0 . . . 20 Angstrom for distance Colvars, 0 . . . 180 degree for
angle Colvars, −180 . . . 180 degree for dihedral Colvars, and 0 . . . 3 for coordination number Colvars). As above,
note that the Range modifier only applies to the Colvar given last before it in the Metadynamics command.

Addition of new Gaussian hills to the bias potential is controlled via the HillSpawn modifier. It expects three
arguments. The first argument has to be of integer type and defines the hill spawning frequency, i. e., every how
many MD steps a new hill is added (typically every 10 – 50 fs). The second argument is a real number and specifies
the height of each new hill in units of kJ mol−1 (typically 0.1 – 1.0 kJ mol−1). The third argument sets the width
of the Gaussian hills 𝜎 (which is the standard deviation, not the variance 𝜎2) in “scale units” – see the Scale
modifier above. In two-dimensional Metadynamics simulations, the width applies for both dimensions at the same
time, and the scales of the two Colvars need to be adjusted to obtain the correct “aspect ratio” of the hill width.
Standard choices for 𝜎 are 0.1 – 1.0 scale units. The hill spawning parameters can be changed at any point during
a Metadynamics simulations, not modifying the hills which are already present. If spawning of new hills shall be
temporarily suspended during a Metadynamics simulations, “Metadynamics HillSpawn Off” can be specified.
If you want do delete all hills, consider the Reset modifier described below.

The Store modifier controls how often the current intermediate free energy profile is saved to disk.
It expects one integer argument which specifies the number of MD simulation time steps between two
such stores. In case of one-dimensional Metadynamics, these free energy profiles have the file names
“basename-metadynamics_profile_###.csv”, where “###” indicates the step number after which the pro-
file was written. In addition to that, a file “basename-metadynamics_profile_history.csv” is writ-
ten, which contains all the previously computed free energy profiles as columns, so that they can easily
be printed in one single plot. For two-dimensional Metadynamics, Gnuplot source files with file names
“basename-metadynamics_2d_profile_###.gp” are written, which can be converted into contour plots with
the freeware tool Gnuplot (runs both on Windows and GNU Linux). The raw data for these contour plots can be
found in corresponding files named “basename-metadynamics_2d_profile_###.gp.csv”. Note that in both
cases, the free energy scale origin is set to the deepest free energy well, so that all numbers are positive. If the
Store modifier is not specified, the free energy profiles are stored every 1000 MD steps per default.

The WellTempered modifier switches on well-tempered Metadynamics [73]. In contrast to standard Metadynam-
ics, the free energy profile converges towards a limit for long runs with this approach. In short terms, this approach
scales down the hill size at positions where already many hills have been spawned before, so that the changes in the
bias potential become smaller over time (convergence). The WellTempered modifier expects one real argument,
which is the so-called bias temperature, specified in temperature units. The bias temperature should be chosen in
a way so that 1

2 · 𝑘B · 𝑇Bias is around the same size as the largest barrier which the simulation shall overcome.
For example, a bias temperature of 12 000 K is well-suited to overcome barriers of around 100 kJ mol−1. Note
that the Metadynamics module needs to know the simulation temperature in order to reconstruct the free energy
profile in a well-tempered Metadynamics run. Typically, a thermostat should be active during a Metadynamics run,
keeping the simulation temperature constant. In this case, the temperature is simply obtained from the thermostat.
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However, if no thermostat for the region all is specified, the simulation temperature has to be specified manually
for well-tempered Metadynamics. This can be achieved by the temperature modifier, which expects one real
argument – the simulation temperature in temperature units.

The Lagrange modifier switches on extended Lagrangian Metadynamics [408]. In this variant, a virtual particle
(with mass and velocity) moves in the space spanned by the Colvars, and the only connection between this particle
and the real atomistic system is a harmonic spring. The bias potential (the Gaussian hills) only acts on the virtual
particle. The first argument is the mass of the virtual particle in a.m.u. The second argument is the harmonic
spring constant in units of kJ mol−1, which is evaluated in scale units – see the Scale modifier above. Typical
values depend on the system and Colvars, but might be 100 a.m.u. and 10 kJ mol−1. Optionally, a third and
fourth parameter can be given to switch on thermostating of the virtual particle. A simple Berendsen thermostat
is applied here. The third argument is the target temperature of the virtual particle, and the fourth argument is the
thermostat time constant 𝜏 . A good choice would be a target temperature of 100 K and 𝜏 = 10 fs. Note that in
contrast to the normal Berendsen thermostat, the virtual particle is only cooled, but never heated. In other words,
the thermostat only becomes active if the instantaneous temperature of the virtual particle becomes larger than the
target temperature. This is to ensure that the virtual particle can change its direction – otherwise, it might happen
that it is driven in the same direction for very long time intervals.

The Reset modifier resets the bias profile, i. e., it deletes all hills which had been spawned, so that the bias profile
becomes flat again. All other parameters of the Metadynamics simulation are not modified. If, for example, hill
spawning is still on, then new hills will be spawned in the next simulation run.

The Off modifier completely switches off Metadynamics. It deletes all hills and turns off the Metadynamics
module. It also resets the choice of Colvars for Metadynamics, so you will need to use this first if you want to
set up a second different Metadynamics run within the same input script. This modifier can only be given as first
argument to the Metadynamics command, and no further arguments can follow.

A restart file for the Metadynamics module (file name “basename.metarestart”) is written each time a new hill
has been spawned. The Restart command detects this file and automatically restarts the Metadynamics run (i. e.,
loads all hills and the positions and velocities of the extended Lagrangian virtual particle if active). However, this
only happens when Metadynamics is active and set up at the time when the Restart command is invoked. The
parameters for the Metadynamics simulation are not restarted. Therefore, leave all parameter settings via calls to
the Metadynamics command in place in your input file, and simply call the Restart command after all those,
directly before the Run command.

Please see also the discussion on Metadynamics in [Section 1.3](#moldyn:sec_metadynamics).

This section is concluded with a full example for a two-dimensional well-tempered extended Lagrangian Metady-
namics run with restart ability (just run the same input again to continue the simulation where it ended last). The
two Colvars are defined as distances between atoms. You need to adapt all parameters in blue to your question and
system:

Timestep 0.5_fs
Initvel 350_K
Thermostat NHC 350_K Timecon 100.0_fs
Dump Position Stride 1 Filename "trajectory.xyz"
Manage_Colvar Define 1 Distance Atom 0 Atom 1
Manage_Colvar Define 2 Distance Atom 2 Atom 3
Metadynamics Colvar 1 Scale 1.0_A Wall Lower 3.0 50.0 Upper 10.0 50.0 Range 0.0 15.0 100
Metadynamics Colvar 2 Scale 1.0_A Wall Lower 1.0 50.0 Upper 8.0 50.0 Range 0.0 13.0 100
Metadynamics HillSpawn 40 0.5 0.5 Store 2000
Metadynamics WellTempered 6000_K
Metadynamics Lagrange 100.0 10.0 200.0_K 10.0_fs
Restart IfExists
Run 100000
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Minimize

Mandatory Arguments: —
Optional Arguments: method Keyword { Combined, LBFGS, Anneal }
Modifiers: Steps n Integer —

MaxGrad thres Real [kJ mol−1 Å−1]
RMSGrad thres Real [kJ mol−1 Å−1]
TempConv thres Real [temperature]
Accel value Real —
Damp value Real —
StepLimit value Real [length]
History n Integer —
Noise value Real [length]
OnlyH —

Performs a Cartesian energy minimization of the system. For molecules, this is less efficient than ORCA’s built-in
geometry optimization in internal coordinates (i. e., requires more steps to converge). However, the algorithms
employed here also work with large atom counts (e. g., 50 000) as sometimes encountered in QM/MM simulations,
which is absolutely out of scope of ORCA’s primary optimization module. Furthermore, the minimization also
works under all types of constraints (which some limitations in the case of L-BFGS) that have been set with the
Constraint command, and also includes the effect of the repulsive simulation cell if activated. Only atoms
contained in the active region are displaced, while all other atoms are kept at their positions.

The simplest way of performing a minimization is simply calling the Minimize command without arguments.
This defaults to the L-BFGS method, which is fairly robust and efficient. If the minimization seems unstable, try to
reduce the History or StepLimit parameters. L-BFGS may sometimes show poor performance with constraints
other than Cartesian type. Apart from that, there is also a simulated annealing method implemented, which can
be selected by specifying Anneal as the first argument. In contrast to L-BFGS, the simulated annealing method
works equally well with all types of constraints. There is also a Combined method, which is a combination of
some L-BFGS steps in the beginning, followed by a simulated annealing run until the temperature falls below a
threshold, and another final L-BFGS run until the convergence criteria are reached.

With the Steps modifier, the maximum number of minimization steps can be specified. If this number of steps has
been performed, the minimization finishes, no matter if the convergence criteria are fulfilled or not. The default
value is 500.

The MaxGrad and RMSGrad modifiers control the convergence thresholds for the largest gradient on some atom and
the root mean square average of the gradients. The default values are currently set to 5.0 and 1.0 kJ mol−1 Å−1,
respectively, which is about the same criterion as the default setting in the primary ORCA geometry optimization.

If the TempConv modifier is given, a simulated annealing run finished after the temperature was monotonously
decreasing within 5 successive steps, and dropped below the specified value. Note that the simulated annealing
run will finish if either this condition is reached, or the gradient thresholds are observed. It is not required to fulfill
both criteria.

The Accel modifier specifies the acceleration factor for simulated annealing runs (has no effect on L-BFGS). As
long as the angle between velocity vector and gradient vector of some atom is below 90 degrees, the gradient is
multiplied by this factor and the velocity is multiplied by a fraction of this factor. This helps to enforce a faster
movement in gradient direction. The default value is 4.0. If this feature is not desired, use Accel 1.0 to switch it
off (1.0 means “no artificial acceleration”).

The Damp modifier is the damping factor for simulated annealing runs (has no effect on L-BFGS). Atom velocities
are multiplied by this factor in every integration step. The default value is 0.98. Smaller values will make the
algorithm more stable and less prone to oscillations and overshoots, but will also require significantly more steps
to converge. Don’t use values ≥ 1, as then it won’t be an “annealing” anymore :-)

The StepLimit modifier specifies the maximum displacement of any atom (in length units) that can happen in
one step of a minimization run. This can help to avoid large, unreliable steps which could lead to abrupt jumps in
geometry and very high potential energies. This modifier concerns both L-BFGS and simulated annealing runs.
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Negative values disable the step limit. The step limit is disabled by default. If you need to switch it on, try something
in the order of 0.1 Å.

The Historymodifier controls the depth of gradient and position vector history that is used in the L-BFGS method
to approximate the inverse Hessian. The default value is 20. Smaller values can help to stabilize the algorithm.

With the Noisemodifier, small random numbers can be added to the atom positions before the minimization starts.
This can help to escape local maxima and saddle points in the minimization. For example, a minimization of an
initially linear water molecule would not be able to leave this maximum – but with some random “noise”, it will
be possible. The modifier expects one real argument which specifies the maximum atom displacement in length
units (something like 0.01 Å will be reasonable). This feature is switched off by default.

If the OnlyH modifier is given, all non-hydrogen atoms are removed from the active region before the minimization
starts. After the minimization has finished, the original active region is restored. This is helpful if only hydrogen
positions shall be optimized, e. g., to refine experimental crystal structures.

PrintLevel

Mandatory Arguments: value Keyword { Low, Medium, High, Debug }
Optional Arguments: —
Modifiers: —

Controls the amount of information which is printed to the screen during the simulation. Debug should be used
only in rare cases, because it might slow the simulation down heavily.

The default value is Medium.

Randomize

Mandatory Arguments: —
Optional Arguments: seed Integer —
Modifiers: —

There are a few algorithms in the ORCA MD module which rely on random numbers, e. g., the initialization of
atom velocities with the Initvel command. These random numbers are so-called “pseudo-random numbers”,
produced by a deterministic generator. This generator has a state, which is simply an integer number. If initialized
to the same state, the generator will always create the same sequence of “random” numbers. This sounds like a
deficiency at first thought, but is a very important feature for scientific reproducibility and for debugging purposes.
If you start the same MD input file with “random” velocity initialization a couple of times, the trajectory will be
exactly identical in all runs.

However, there are cases in which this behavior is not desired, e. g., if you want to average a property over multiple
trajectories of the same system. In these cases, call the Randomize command in the beginning of the input. If no
argument is given, the random number generator is initialized with the current system time as a seed. MD runs
started at different times will have different random velocities in the beginning. If you want more control over
this process, you can also specify a positive integer number as argument, which is used as initial random seed.
Simulations started with the same seed argument will have identical initial random velocities (if all other system
parameters such as atom count, atom types, . . . remain identical).

Without a call to Randomize, a seed of 1 is always used.
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Restart

Mandatory Arguments: —
Optional Arguments: fname String —
Modifiers: IfExists —

Reads a restart file to continue a previous molecular dynamics run. Such a restart file is written after every simu-
lation step, such that a crashed simulation may easily be recovered. The file name of the restart file may be given
via fname; otherwise, it is deduced from the project’s base name as <basename>.mdrestart.

If the IfExists modifier is specified, a restart is only performed if the restart file exists. The error and abort that
would normally occur in case of a non-existent restart file are suppressed by this flag. This is useful in the first of
a series of batch runs, where the restart file does not yet exist in the beginning.

Please note that the following quantities are stored to/loaded from restart files:

• Atom Positions

• Atom Velocities

• Thermostat internal state (only for NHC)

• Metadynamics hills and extended Lagrangian internal state

• Simulation step number and elapsed physical time

All other quantities (timestep, regions, thermostat, constraints, cells, etc.) are not restarted and need to be set in
the input file, typically before the Restart command. It is safe to just call the Restart command immediately
before the Run command.

Please see also the discussion on restarting simulations in [Section 1.3](#moldyn:sec_restart).

Restraint

Mandatory Arguments: operation Keyword { Add, Reset }
Keyword Colvar

colvar Integer —
Optional Arguments: —
Modifiers: Harmonic —

Gaussian —
Spring —
Sigma Gaussian Sigma Real . . .
Height Gaussian Height Real kJ mol−1
Target target Real . . .
Lower lower wall Real . . .
Upper upper wall Real . . .
Ramp initial target Real . . .

final target Real . . .
Noprint —

This command imposes restraints on collective variables (“Colvars”) defined before via the Manage_Colvars
command. As a first argument, it expects the kind of operation to perform, which can be Add and Reset. The
second argument needs to be the keyword “Colvar”, and the third argument is an integer number specifying the
Colvar on which the operation shall be performed.

If the first argument is “Add”, a new restraint is added to the specified Colvar. Note that an arbitrary number
of restraints of different types can be active on a Colvar at the same time. The next argument after the Colvar
number needs to be the type of the restraint. Currently, Harmonic and Gaussian are allowed. When adding
harmonic restraints, the Spring modifier can be given, specifying the harmonic spring constant of the restraint in
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kJ mol−1 unit−2, where unit is the default physical unit of the Colvar (Angstrom for distances, degree for angles).
If not specified, a value of 50 kJ mol−1 unit−1 is used. When adding Gaussian restraints, the Height and Sigma
modifiers are allowed. The former sets the height of the Gaussian hill in kJ mol−1, while the latter sets the width
of the Gaussian function in physical Colvar units (𝜎 is the standard deviation, not the variance 𝜎2). The height
can be either positive or negative, allowing for both Gaussian hills and Gaussian wells. If not specified, the default
values of −10 kJ mol−1 for the height (i. e., Gaussian well) and 10 Colvar units (e. g., Angstrom or degree) for
sigma are used.

The position of the new restraint is controlled via the Target modifier, which expects one real argument in Colvar
units. If the restraint shall be an one-sided wall, the modifiers Lower and Upper can be used instead of Target. It
is also possible to specify both Lower and Upper in order to define a lower and an upper wall at different positions
in one command. If Ramp is given directly after Target, Lower, or Upper, a restraint with linearly moving target
position over time is defined. Ramp expects two arguments, which are the initial restraint position, and the final
restraint position after the next subsequent Run command.

The following example shows how to assign a harmonic two-sided restraint with different lower and upper wall pa-
rameters to a distance Colvar with number 7 that has been previously defined via the Manage_Colvars command:

Restraint Add Colvar 7 Harmonic Lower 400_pm Spring 50.0
Restraint Add Colvar 7 Harmonic Upper 800_pm Spring 80.0

By default, some additional data (current position, potential energy, external force, internal force) for each restraint
is printed to a file with the name “basename-restraints.csv” in every MD step. This data can be used, e. g.,
for thermodynamic integration. If a large number of restraints is defined, this can waste time and disk space. To
switch this off for a restraint, specify the Noprint modifier when defining it.

If the first argument was “Reset”, all restraints imposed on the specified Colvar are deleted. No further arguments
or modifiers (apart from the three mandatory arguments described above) can be given.

Run

Mandatory Arguments: n Integer —
Optional Arguments: —
Modifiers: StepLimit value Real [length]

CenterCOM —

Performs a molecular dynamics run over 𝑛 time steps with the current settings, applying the velocity Verlet al-
gorithm to solve the equations of motion (see section 1.5.1). You might want to call commands like Timestep,
Initvel, Thermostat, and Dump before. Please note that only atoms within the active region will be subject
to time integration. All other atoms will be skipped, and will therefore retain their initial positions.

The StepLimit modifier can be used to limit the maximum displacement of any atom in a MD time integration
step. In addition to the displacement, also the velocities will be limited to a maximum of value·∆𝑡. This can help
to stabilize the dynamics if the initial geometry is poor and large forces are acting (close atoms, etc.). The keyword
expects one real argument in distance units. A reasonable choice would be 0.1 Å.

If the CenterCOM modifier is given, the center of mass (CoM) of the total system is kept fixed. Normally, the
CoM should not drift anyway, because the velocity initialization is performed in a way which gives the CoM a zero
initial velocity, and the conservation of momentum should keep it like that. However, numerical errors and massive
Thermostats (among other factors) can break this momentum conservation, leading to a drift of the CoM over
time. If this shall be avoided, specify this modifier.

If no call to Initvel occurred before this command, the atom velocities are initialized to zero. If no call to
Timestep occurred before this command, a default time step of 0.5 fs is set.

You can cleanly end a MD run by creating an empty file with the name “EXIT” (note the all-uppercase letters
on case-sensitive file systems). On Unix operating systems such as GNU Linux, this can easily be achieved by the
command “touch EXIT”. will detect the file, abort the MD run, and delete the file. You will still get the remaining
output (such as the timing statistics), and you don’t have to delete all the remaining “.tmp” files, which both would
not be the case if you would have killed the process instead.
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SCFLog

Mandatory Arguments: value Keyword { Discard, Last, Append, Each }
Optional Arguments: —
Modifiers: —

Controls how/if the detailed output from the electron structure calculation (i. e., integrals, scf, gradient, . . . ) will
be written to log files. Discard completely discards the output. Last only keeps the last output for each program
call (useful to read error message if simulation aborts). Append redirects all the output into one single log file
(“basename.scf.log”, “basename.int.log”, “basename.grad.log”, . . . ), appending each step at the end of the file.
Each writes the output for each step and each program to different log files, which have the step number in their
file names.

The amount of information which is printed to the SCF log file can be controlled by the standard ORCA print
flags, such as “%output PrintLevel Maxi end”. Note that by default, ORCA reduces the print level after the
first SCF. Due to this, properties such as orbital energies and population analyses will only be printed once by
default. If you want to keep the print level constant for subsequent SCF runs, disable this feature via “%method
ReducePrint false end” in the ORCA input.

The default value is Append. Note that this can lead to large log files in long runs.

Screendump

Mandatory Arguments: —
Optional Arguments: —
Modifiers: —

Prints the current state of the MD module (atom positions, velocities, potential and kinetic energy, cell properties,
etc.) to the screen and log file in a well-defined and “grepable” format. This is mostly useful for unit testing, e. g.,
to verify if the system state after a MD run equals the state obtained from some other ORCA binary distribution.

Thermostat

Mandatory Arguments: type Keyword { Berendsen, CSVR, NHC, None }
Optional Arguments: temperature Real [temperature]
Modifiers: Timecon tau Real [time]

Ramp target_temp Real [temperature]
Chain chain_length Integer —
MTS mts Integer —
Yoshida yoshida Integer —
Region region . . . . . .
Massive —

Changes the atom thermostat settings for subsequent simulation runs. “Type” sets the thermostat type. Currently,
three thermostat types are implemented: Berendsen [92], Nosé–Hoover chains (NHC) [563, 564], and “Canonical
Sampling through Velocity Rescaling” (CSVR) [129]. The very basic and robust Berendsen thermostat should
only be used for early pre-equilibration runs, as it does not sample the canonical ensemble and leads to problems
such as the flying ice cube effect. Both the NHC and the CSVR thermostats are very sophisticated, and correctly
sample the canonical ensemble. One of these two should be used in all standard NVT simulations. Use None as
type to disable the thermostat.

The optional temperature argument sets the target temperature to which the system is thermostated. If this argument
is omitted, the temperature from the last call to the Initvel command is used (if no such call was invoked before,
the simulation is aborted).
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The Timecon modifier sets the coupling strength of the thermostat (large time constants correspond to weak cou-
pling). The default value is 10 fs, which is a relatively strong coupling. For a production run, 100 fs would be
appropriate. Values in the range of 10 . . . 100 fs are reasonable (see also section 1.5.3).

If the Ramp modifier is used, a temperature ramp can be applied during a MD run. The final temperature at the
end of the ramp has to be specified directly after the modifier. The initial temperature at the beginning of the ramp
is taken from the temperature argument (or from the last Initvel command if this argument is missing). The
temperature ramp is applied only to the Run command which first follows the ramp definition. The slope of the
ramp is chosen such that the final temperature is reached at the end of the run. Any subsequent Run command
will simply use the final temperature for thermostating. To apply another temperature ramp, you need to explicitly
define it again.

The Chain, MTS, and Yoshida modifiers only apply to NHC thermostats. They specify the chain length of the
Nosé–Hoover chain (default: 3), the number of multiple time steps in which the thermostat integration is performed
(default: 2), and the order of the Yoshida integrator used (default: 3, allowed: 1, 3, 5, 7), respectively. Normally,
there is little need to modify one of these parameters. For more information, refer to the original publications [563,
564].

The Massive modifier activates massive thermostating, which means that each degree of freedom is assigned to an
independent thermostat. This is useful for pre-equilibration runs (helps to reach energy equipartition) and should
not be used during production runs, as it might heavily distort the dynamics. Note that massive thermostats also
break the conservation of momentum (both linear and angular), so better specify the CenterCOM modifier for the
run command if this is an issue. Please also note that massive NHC thermostats of large systems can be quite slow,
because each NHC thermostat is a dynamical system on its own which needs to be time integrated.

With the Region modifier, the thermostat can be attached to a specific region (i. e., subset of atoms). This modifier
expects one argument, which is either the name of a pre-defined region or the number of a user-defined region (see
above). If not specified, the thermostat acts on the whole system. Multiple thermostats for multiple regions can be
active at the same time, but each region can have only one attached thermostat at a time (re-defining will overwrite
the thermostat settings).

The command “Thermostat None” will remove all thermostats from all regions. If you want to disable a ther-
mostat for a specific region only, use “Thermostat None Region r”, where r is the name or number of the
region.

Please note that all three implemented thermostat types will show no effect (or unexpected effects) if the system’s
temperature is close to 0 K, as they all work by multiplying the velocities with a (more or less complicated) factor.

Timestep

Mandatory Arguments: dt Real [time]
Optional Arguments: —
Modifiers: —

Sets the simulation time step ∆𝑡 used to integrate the equations of motion for all following runs to 𝑑𝑡. If your
system contains hydrogen atoms, a time step not above 0.5 fs is recommended. If only heavier atoms are present,
a larger time step may be chosen. A good estimate for a time step that still allows for an accurate simulation is
∆𝑡 =

√
𝑚 · 0.5fs, where 𝑚 is the mass of the lightest atom in the system (in a.m.u.). This is one reason why some

scientists perform simulations with fully deuterated compounds: It allows to increase the time step by a factor of
≈ 1.4 :-)

If this command is not invoked before a Run call, a default time step of 0.5 fs will be set before starting the run.
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7.48.8 Scientific Background

In this section, some of the methods and algorithms used within ORCA’s MD module are described in some more
depth, with a focus on the scientific background.

Time Integration and Equations of Motion

The central concept of molecular dynamics simulations is to solve Newton’s equations of motion (at least as long
as the atom cores are treated classically). These read

�̈�𝑖 (𝑡) =
𝐹𝑖

(︁
�⃗� (𝑡)

)︁
𝑚𝑖

, 𝑖 = 1 . . . 𝑁,

where 𝑥𝑖 (𝑡) denotes the position of the 𝑖-th degree of freedom at time 𝑡, 𝑚 the corresponding mass, and 𝐹𝑖 the
force acting upon this degree of freedom. As the force may depend on all positions, this is a coupled system of 𝑁
ordinary differential equations (ODEs). In the general case, it is not possible to obtain an analytical solution of this
system, and therefore numerical solution methods are applied. These are almost always based on discretizing the
time variable and approximately solving the system by taking finite time steps.

Of all different methods to numerically solve coupled systems of ODEs, the symplectic integration schemes for
Hamiltonian systems attained special attention in the field of molecular dynamics. They possess a very good
conservation of energy. In contrast to many other methods, they show a reasonable behavior when investigating the
long-term evolution of chaotic Hamiltonian systems (like, e. g., MD simulations). Three popular such symplectic
integration schemes are the Leapfrog algorithm, the Verlet method, and the Velocity Verlet integrator. Despite
their different names, they are very similar. It can be easily seen that the Verlet and Velocity Verlet methods are
algebraically equivalent (by eliminating the velocities from the Velocity Verlet algorithm), and it can be shown
that, eventually, all three methods are identical.3 All three methods are explicit integration methods with a global
error of order 2, and therefore one order better than the semi-implicit Euler method, which is also a symplectic
integration scheme. As the Velocity Verlet algorithm is the only of these three methods which yields velocities and
positions at the same point in time, many popular molecular dynamics packages (CP2k, CPMD, LAMMPS) use
this scheme. For the same reasons, the ORCA MD module uses the Velocity Verlet algorithm as time integration
method.

The general equations of the Velocity Verlet scheme read

�⃗� (𝑡+∆𝑡) = �⃗� (𝑡) + �⃗� (𝑡)∆𝑡+
1

2
�⃗� (𝑡)∆𝑡2,

�⃗� (𝑡+∆𝑡) = �⃗� (𝑟) +
�⃗� (𝑡) + �⃗� (𝑡+∆𝑡)

2
∆𝑡.

By inserting

�⃗�𝑖 (𝑡) =
𝐹𝑖 (𝑡)

𝑚𝑖
, 𝑖 = 1 . . . 𝑁,

one arrives at the two-step method

�⃗�𝑖 (𝑡+∆𝑡) = �⃗�𝑖 (𝑡) + �⃗�𝑖 (𝑡)∆𝑡+
𝐹𝑖 (𝑡)

2𝑚𝑖
∆𝑡2, 𝑖 = 1 . . . 𝑁,

�⃗�𝑖 (𝑡+∆𝑡) = �⃗�𝑖 (𝑟) +
𝐹𝑖 (𝑡) + 𝐹𝑖 (𝑡+∆𝑡)

2𝑚𝑖
∆𝑡, 𝑖 = 1 . . . 𝑁,

which is implemented in ORCA’s MD module.
3 Hairer, Lubich, Wanner, “Geometric Numerical Integration”, Springer 2006.
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Velocity Initialization

In the beginning of a MD simulation, it is often the case that only the initial positions of the atoms are known, but
not the velocities. As MD simulations are performed at some finite temperature, it is a good idea to initialize the
velocities in a way such that the desired simulation temperature is already present in the beginning. In statistical
mechanics, it is often assumed that the velocity distribution of atoms is given by a Maxwell–Boltzmann distribution
(which is strictly only the case in idealized gases). Therefore, it is a reasonable choice to initialize the atom’s
velocities according to the Maxwell–Boltzmann equation in the beginning of a MD simulation. The goal is to find
an initial velocity distribution in which each degree of freedom possesses a similar amount of energy, such that the
equipartition theorem is approximately fulfilled.

The scalar Maxwell–Boltzmann velocity distribution (leaving out the normalization factor) at temperature 𝑇 is
given by

𝑓 (𝑣) = 𝑣2 exp
(︁
− 𝑚𝑣2

2𝑘𝐵𝑇

)︁
.

To initialize the particle’s velocities such that this distribution function is fulfilled, one starts with a series of normal-
distributed random numbers with mean 0 and variance 1, denoted by𝒩 (0, 1). The Cartesian velocity components
for each atom are then computed by

𝑣𝑖,𝛼 :=

√︂
𝑘𝐵𝑇

𝑚𝑖
𝒩 (0, 1) , 𝛼 ∈ {𝑥, 𝑦, 𝑧}, 𝑖 = 1 . . . 𝑁.

As the C++98 standard does not offer a platform-independent way of obtaining normal-distributed random num-
bers, these are internally computed from uniformly distributed random numbers by applying the Box–Muller trans-
form [115]: Assuming that 𝑢1 and 𝑢2 are two uniformly distributed random numbers from the interval [0, 1], the
equations

𝑧1 :=
√︀
−2 log (𝑢1) cos (2𝜋𝑢2) ,

𝑧2 :=
√︀
−2 log (𝑢1) sin (2𝜋𝑢2)

yield two new random numbers 𝑧1 and 𝑧2 which obey a normal distribution with mean 0 and variance 1.

After the velocities have been initialized, the total linear momentum of the system will probably have some finite
value other than zero. As the linear momentum is (approximately) conserved within a molecular dynamics simu-
lation, this would result in the system drifting away into one direction during the course of the simulation, which
is probably not desired. Therefore, the total momentum is explicitly set to zero after the Maxwell–Boltzmann
initialization:

𝑃tot :=

𝑁∑︁
𝑖=1

𝑚𝑖�⃗�𝑖,old,

�⃗�𝑖,new := �⃗�𝑖,old −
𝑃tot

𝑚𝑖𝑁
, 𝑖 = 1 . . . 𝑁.

This, of course, might change the initial temperature. Therefore, a final step is performed, in which all velocity
vectors are multiplied with a factor that is determined such that the initial temperature exactly matches the target
value.

Thermostats

After the initial velocities have been initialized to some finite temperature, it might be assumed that one can simply
start the time integration of the dynamical system (equivalent to the NVE ensemble), and the starting temperature
would be approximately preserved. In a real system, however, there are (at least) two reasons why the temperature
will strongly deviate from the initial value already after a few steps. First, the initial velocity distribution only
considers the kinetic energy of the particles, but some amount of energy will be exchanged with the potential
energy contribution (e. g., bond stretching) immediately, altering the temperature. Secondly, the numerical errors
introduced due to the finite time step (and in case of ab initio MD, also due to the approximate forces) will lead to
a drift in energy and therefore in temperature. To counter these effects, it is often desirable to have a temperature
control during the course of the simulation (which then runs in the NVT ensemble), which is called a thermostat.
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There exist many different kinds of thermostats, ranging from simple expressions up to highly complex dynamical
systems on their own. But all of them share a common issue: If the thermostat is coupled only weakly to the
system, the temperature will change anyway. However, if the thermostat is coupled more strongly to the system
(i. e., intervenes stronger), then the dynamics of the simulation will change, no longer resembling the undisturbed
original dynamics which one wants to investigate. Therefore, it is always a tradeoff between temperature stability
and disturbed dynamics to decide how strong a thermostat should be coupled to the system.

In ORCA, currently three thermostats are implemented: The Berendsen thermostat [92], the Nosé–Hoover chain
thermostat (NHC) [563, 564], and the “Canonical Sampling through Velocity Rescaling” thermostat (CSVR) [129].

Berendsen Thermostat

The Berendsen thermostat [92] is similar to the simple velocity rescaling scheme, but enhanced by a time constant
𝜏 to control the coupling strength. Let 𝑇0 be the desired target temperature and 𝑇 the current temperature of the
system. Then the temperature gradient caused by the thermostat can be expressed as

𝑑𝑇

𝑑𝑡
=
𝑇0 − 𝑇
𝜏

.

Considering the fact that discrete time steps ∆𝑡 are used, the correction factor for the velocities in each time step
is determined by

𝑓 :=

√︂
1 +

∆𝑡 (𝑇0 − 𝑇 )
𝑇𝜏

The new velocities are then easily obtained as

�⃗�𝑖,new := 𝑓 · �⃗�𝑖,old, 𝑖 = 1 . . . 𝑁.

Let’s consider some special cases. If 𝜏 = ∆𝑡, the whole temperature deviation from 𝑇0 is corrected immediately,
such that the temperature is always exactly kept at the target value. This is identical to simple velocity rescaling
(without any time constant), which is known to work poorly for most systems (a single harmonic oscillator would,
e. g., simply explode). With a larger time constant 𝜏 > ∆𝑇 , the coupling strength is reduced, leading to reasonable
results. Typically, a value of 𝜏 in the range of 20 . . . 200 ·∆𝑇 will be applied. For 𝜏 →∞, the coupling strength
goes to zero, such that the thermostat is no longer active. Values of 𝜏 < ∆𝑇 are not allowed.

From the formula, it becomes clear that a Berendsen thermostat will have no effect if the system has a temperature
of 0 K (or in the “massive” case: if the considered degree of freedom has 0 K), because it is based on multiplying
the velocities by a factor to modify the temperature. Therefore, this type of thermostat can’t be used to heat a
system up starting from 0 K.

Constraints

Unlike restraints, constraints are geometric relations which are strictly enforced at every time (i. e., they do not
fluctuate around their target value). Many molecular dynamics techniques make use of geometric constraints (e. g.,
to keep water molecules rigid, or to fix some reaction coordinate). Standard BOMD describes the nuclei as point
charges in space, such that the motion of the atoms is governed by the laws of classical mechanics. Systems in
classical mechanics can be described by the Lagrange formalism, which contains a well established sub-formalism
for holonomic constraints, namely the method of Lagrange multipliers.

However, molecular dynamics discretizes time to solve the equations of motions with finite time steps, often using
a Verlet integrator. With discretized time, it is slightly more involved to enforce and keep exact constraints. Within
the last decades, algorithms have been developed to do so. One famous among them is the SHAKE algorithm.
However, it comes with the disadvantage of only enforcing the constraints in the positions, not in the velocities. This
may lead to problems such as artificially high temperature values due to “hidden” velocities along the constrained
directions. An extension of SHAKE which also enforces the constraints for the velocities is the RATTLE algorithm,
which is implemented in the AIMD module of ORCA.

The RATTLE scheme is a generalization of the Velocity Verlet integrator to allow for constraints. This means that
RATTLE is not applied in addition to the Velocity Verlet integrator, but replaces it. In case of no active constraints,
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both methods are identical. A system of coupled constraints cannot be solved exactly in one step, and RATTLE
uses an iterative approach to enforce all constraints simultaneously. This is often a matter of concern with respect
to performance. However, in AIMD, the energy and gradient calculations typically take seconds or even minutes
per step, such that the additional computation time for iteratively solving the constraints can be totally neglected.

As an iterative procedure, RATTLE is not able to give exact solutions, but only converged up to a given tolerance.
In the ORCA MD module, the tolerance is currently set to 10−2 pm for distances, and 10−4 degree for angles
and dihedral angles. This tolerance is typically reached within a few dozen iterations. In some cases, it might
happen that the RATTLE iterations do not converge to the required tolerance. This is typically the case if the set
of constraints is over-determined or contradictory.

The mathematical and technical details of RATTLE are not described here, they can be found in the literature.
The general concept of RATTLE was suggested by Andersen [35]. The original article only covered distance
constraints. A follow-up work describes how to handle any holonomic constraints, in particular how to constrain
angles and dihedral angles [483]. The Wilson vectors (i. e., derivatives of angles and dihedral angles with respect
to Cartesian atom positions) are taken from Wilson’s original work [890].

7.49 Fast Multipole Method

The Fast Multipole Method (FMM) algorithm was proposed in the 1980s[317], to reduce the computation time
for two-centre interactions in large systems, by moving from a quadratic relationship (O(𝑁2)) to a quasi-linear
relationship (O(𝑁𝑙𝑜𝑔(𝑁))) of the computation time with the number 𝑁 of particles (atoms, point charges, etc.).
This algorithm is particularly useful for long-range interactions that are difficult to ignore, such as the Coulombic
interaction (1/r) which is fundamental to any system but grows quadratically with the number of centers.

The FMM is used in ORCA for accelerating QMMM calculations in the scope of electrostatic embedding: FMM-
QMMM (cf. Embedding Types).

7.49.1 The Octree hierarchy

There exists a lot of detailed and pedagogical literature on the subject (we recommend for instance [49] and [377]).
In the following we will only describe the main parameters.

The idea of the algorithm is to divide space to handle differently short- and long-range interactions. The latter will
be approximated (cf. Approximation of the Far Field interactions). To do so, the whole system is placed in a cubic
box which is iteratively divided in 8 children boxes (forming levels L: L = 0→ L = Lmax) so as to form a structure
called an Octree (see Fig. Fig. 7.62).
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Fig. 7.62: Division of the system into boxes, schematic representation in 2D.

At the deepest level, L = Lmax, for every box, we can define a layer of nearest neighbours boxes (NN) which will
be responsible for the Near-Field (NF, i.e.short-range). The electrostatic potential due to the rest of the boxes is
define as the Far-Field (FF, i.e. long-range).

∀𝐵 , V𝐵 = VNF
𝐵 + VFF

𝐵

As visible on Figure Fig. 7.62, one can divide the FF area between a Local Far Field (LFF, green) area and a Remote
Far Field area (RFF, grey), so that a recursive scheme between levels appears:

∀𝐵 VFF
𝐵 = VLFF

𝐵 + VRFF
𝐵

= VLFF
𝐵 + W𝑇

𝑃𝑎𝑟𝑒𝑛𝑡(𝐵)→𝐵VFF
𝑃𝑎𝑟𝑒𝑛𝑡(𝐵)

The LFF boxes are the boxes in the NF of the parent but not in the NF of the children, that represents a maximum
of 189 boxes. The RFF potential is due to boxes which actually represent the FF area of the parent box of B. This
means that one needs to calculate only the LFF term at every level, the rest of the potential will be inherited from
the parent box.

The number of levels, Lmax, can be setup in the input directly (FMMQMMM_Levels), or will be deduced from
the provided box dimension (FMMQMMM_BoxDimInp, dimension of the box at Lmax). The second option
(default) is recommended, with a box dimension around 9.0 Bohr (FMMQMMMM_BoxDimInp 9.0 ). If FM-
MQMMM_DoBoxDimOpt option is turned to TRUE (default), the box dimension will be reduced as much as
possible while keeping the same value of Lmax, this to ensure the algorithm works optimally regarding both accu-
racy and efficiency.

%method
DOFMMQMMM True #turn ON the use of the FMM
FMMQMMM_BoxDimInp 9.0 #Higher boundary to set up the dimension (in Bohr!)
FMMQMMM_DoBoxDimOpt True #Optimize the box dimension

end

The higher Lmax, the bigger the number of boxes: at L = 2 one has 64 boxes only but for L = 6 the code generates
more than 200,000 boxes (86). For Lmax ≥ 7, more than 2 millions boxes are generated, this can start leading to
memory issues, so that the user should ensure enough memory is available (cf. Global memory use ).
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7.49.2 Approximation of the Far Field interactions

In a space of origin O(0,0,0), let P (r𝑃 ) be the center of a charge distribution (e.g. a Gaussian overlap or a distribu-
tion of point charges). Let’s consider a point A in the vicinity of P, such that A = (q𝐴; r𝐴), with q𝐴 the charge of a
point charge or q𝐴 = −1 if we consider a Gaussian overlap. In that case, the charge would indeed be the one of the
electron situated at a position r𝐴𝑃 = r𝐴− r𝑃 from the center of the Gaussian overlap. Similarly, let Q (r𝑄) be the
center of a charge distribution and B, a point in the vicinity of Q, such that B = (q𝐵 ; r𝐵). We note r𝑄𝑃 = r𝑄− r𝑃 .

The Coulomb interaction between A and B can be expressed as:

𝑈𝐴𝐵 = 𝑓
(︁ 1

|r𝑎 − r𝑏|

)︁
,

The name of the algorithm comes from the way the FF interactions are evaluated. It is done through a mutlipole
expansion of the 1

|r𝑎−r𝑏| term, leading to the following expression:

1

|r𝐴 − r𝐵 |
=

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

∞∑︁
𝑗=0

𝑗∑︁
𝑘=−𝑗

(−1)𝑗𝑅𝑙,𝑚(r𝐴𝑃 )𝐼𝑙+𝑗,𝑚+𝑘(r𝑄𝑃 )𝑅𝑗,𝑘(r𝐵𝑄),

This series converges for well separated centers only, that is why a NF layer is required. 𝑅𝑙,𝑚 and 𝐼𝑙,𝑚 are regular
and irregular solid scaled harmonics [707]:

𝑅𝑙,𝑚(r) = 1√︀
(𝑙 −𝑚)!(𝑙 +𝑚)!

r𝑙
√︂

4𝜋

2𝑙 + 1
𝑌𝑙,𝑚(r)

𝐼𝑙,𝑚(r) =
√︀

(𝑙 −𝑚)!(𝑙 +𝑚)!
1

r𝑙+1

√︂
4𝜋

2𝑙 + 1
𝑌𝑙,𝑚(r)

𝑌𝑙,𝑚 are spherical harmonics of degree 𝑙 and order 𝑚. For details on the derivation of this equation see [49].

We can now introduce the multipole expansion centered in P (r𝑃 ), of a charge distribution Q(r, 𝑃 ), as:

Q(r, 𝑃 ) = 𝑓
(︁ ∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑅𝑙,𝑚(r− r𝑃 )
)︁

In practise:

Q(r, 𝑃 ) ≈ 𝑓
(︁𝑀𝐴𝑀∑︁

𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑅𝑙,𝑚(r− r𝑃 )
)︁

Q is a vector, with elements 𝑄𝑙,𝑚 defined by the pair of values (𝑙,𝑚). In the case of a point charge A (q𝐴,r) we
have:

𝑄𝐴𝑙,𝑚(r, 𝑃 ) = 𝑞𝐴 ×𝑅𝑙,𝑚(r− r𝑃 ),

while for a Gaussian overlap distribution ⟨𝜇|𝜈⟩ it becomes:

𝑄𝜇𝜈𝑙,𝑚(r, 𝑃 ) = ⟨𝜇|𝑅𝑙,𝑚(r− r𝑃 ) |𝜈⟩

=

∫︁
𝜇(r’)𝑅𝑙,𝑚(r− r𝑃 )𝜈(r’)𝑑r’

So that we can approximate the electrostatic interaction between a Gaussian overlap ⟨𝜇|𝜈⟩ with center in r𝐵 and a
point charge A (q𝐴,r𝐴) in the FF, through the following expansion:∫︀

𝑞𝐴𝜇(r)𝜈(r)𝑑r
|r𝐴 − r𝐵 |

≈ Q𝜇𝜈(r𝑏, 𝑃 ′)I(r𝑃𝑃 ′)Q𝐴(r𝐴, 𝑃 ),

with 𝑃 and 𝑃 ’ the respective center of the multipole expansions, and I the interaction matrix.

The truncation parameter of the expansion, MAM, is the Maximum Angular Momentum of the underlying solid
scaled harmonics. In our setup, it is the same value for the expansion of the point charges in the embedding or
the Gaussian overlaps in the QM part. It can be setup through the keyword FMMQMMM_MAM. We recommend
FMMQMMM_MAM = 20 to ensure a good accuracy, in the order of 0.0001-0,0001 Ha. With a lower value of
MAM=15, one can usually expect a mHa (0.63 kcal.mol−1) precision. However it is system dependent, so that we
recommend you to start with MAM=20 and see how it behaves if you decrease it to a value of 15. The available
values for MAM are in the range 1-25.
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%method
DOFMMQMMM True #turn ON the use of the FMM
FMMQMMM_MAM 20 #Default Maximum Angular Momentum

end

7.49.3 The “Very” Fast Multipole Method (VFMM)

Due to the recursive scheme between levels, the FF felt in the center of a box is built by only calculating interactions
with the LFF boxes at every level. The evaluation of 𝑉 𝐿𝐹𝐹 becomes the bottleneck of the algorithm. To accelerate
it, an option has been implemented in which different MAM truncation parameters will be used for all the (>189)
boxes in the LFF area. This option FMMQMMMM_DoVFMM is turned ON by default, but should be switched
OFF whenever the MAM is smaller than 15, that would impact to much the accuracy without improving much the
efficiency.

%method
DOFMMQMMM True #turn ON the use of the FMM
FMMQMMM_DoVFMM True #Use the Very Fast Multipole Method

end

7.49.4 Recommended input

Whenever there is an electrostatic embedding, for systems containing more than 10,000 point charges (ECM)
or MM atoms (QMMM), it is recommended to turn on the FMM in order to accelerate the calculation of the
electrostatic potential. However, when using heavy parallelization with more than 24 processors, the impact of
enabling the Fast Multipole Method (FMM) may be negligible for small embedding size.

³ Caution

FMM-QMMM does not replace the QMMM keyword.

The two elements one can play on are the truncation parameter of the expansion, MAM, and the box dimension
at the deepest level (Lmax). Recommended/default parameters can be called in the keyword line directly using
FMM-QMMM or by setting the parameters accordingly in the %method block:

#keyword line
! FMM-QMMM

#OR through method block

%method
DOFMMQMMM True #turn ON the use of the FMM
USEFMMQMMM True #turn ON the use of the FMM
###parameters:
FMMQMMM_DoVFMM True #Use the Very Fast Multipole Method
FMMQMMM_MAM 20 #Maximum Angular Momentum
FMMQMMM_Levels 0 #Number of levels set to 0, will be set automatically by box dim
FMMQMMM_BoxDimInp 9.0 #Higher boundary to set up the dimension (in Bohr!)
FMMQMMM_DoBoxDimOpt True #Optimize the box dimension

end

The parameters used by the algorithm are printed in the output by default, we recomend you to check them in your
first calculations:

----------------------
SHARK INTEGRAL PACKAGE
----------------------

(continues on next page)
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(continued from previous page)

[...]

Use FMM for one center integrals with PCs

- - - - - - - FMM PARAMETERS- - - - - - -
num PCs 75894
VFMM USED
MAM 20
Input box dim 9.000
Refined box dim 5.197
Tree depth/levels 6
- - - - - - - - - - - - - - - - - - - - -

This can be turned off by modifying the relative printing options.

%method
FMMQMMM_Printing 1 # remove FMM PARMETERS printing, default value is 2
end

7.49.5 Some examples

Call the recommanded FMM parameters through the keyword line:

!QMMM wB97X-D3BJ RIJCOSX FMM-QMMM

%qmmm
ORCAFFFilename "file.prms"
Embedding Electrostatic
ChargeAlteration CS
QMAtoms {2016:2026} end
end

*pdbfile 0 1 file.pdb

Change the MAM from 20 (value when one uses the keyword line) to 15, and use 5 levels:

!QMMM wB97X-D3BJ RIJCOSX

%method
DOFMMQMMM True #turn ON the use of the FMM
USEFMMQMMM True #turn ON the use of the FMM
###parameters:
FMMQMMM_DoVFMM True #Use the Very Fast Multipole Method
FMMQMMM_MAM 15 #Maximum Angular Momentum
FMMQMMM_Levels 5 #number of levels

end

%qmmm
ORCAFFFilename "file.prms"
Embedding Electrostatic
ChargeAlteration CS
QMAtoms {2016:2026} end
end

*pdbfile 0 1 file.pdb

Specify the box dimension without optimizing it:
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!QMMM wB97X-D3BJ RIJCOSX

%method
DOFMMQMMM True #turn ON the use of the FMM
USEFMMQMMM True #turn ON the use of the FMM
###parameters:
FMMQMMM_DoVFMM True #Use the Very Fast Multipole Method
FMMQMMM_MAM 15 #Maximum Angular Momentum
FMMQMMM_Levels 0 #number of levels
FMMQMMM_BoxDimInp 9.0 #Higher boundary to set up the dimension (in Bohr!)
FMMQMMM_DoBoxDimOpt False #Does not optimize the box dimension

end

%qmmm
ORCAFFFilename "file.prms"
Embedding Electrostatic
ChargeAlteration CS
QMAtoms {2016:2026} end
end

*pdbfile 0 1 file.pdb

Specifying the box dimension and ask to optimize it:

!QMMM wB97X-D3BJ RIJCOSX

%method
DOFMMQMMM True #turn ON the use of the FMM
USEFMMQMMM True #turn ON the use of the FMM
###parameters:
FMMQMMM_DoVFMM True #Use the Very Fast Multipole Method
FMMQMMM_MAM 15 #Maximum Angular Momentum
FMMQMMM_Levels 0 #number of levels
FMMQMMM_BoxDimInp 9.0 #Higher boundary to set up the dimension (in Bohr!)
FMMQMMM_DoBoxDimOpt True #Optimize the box dimension

end

%qmmm
ORCAFFFilename "file.prms"
Embedding Electrostatic
ChargeAlteration CS
QMAtoms {2016:2026} end
end

*pdbfile 0 1 file.pdb

7.50 Implicit Solvation Models

Implicit solvation models play an important role in quantum chemistry. Without resorting to placing multiple
solvation shells of solvent molecules implicit solvent models are able to mimic the effect of a specific solvent on
the solute.

The implicit solvent models available in ORCA are

1. C-PCM[76] : The Conductor-like Continuum Polarization Model

2. SMD[559] : The Solvation Model based on Density

3. OpenCOSMO-RS[293] : Interface to the open source implementation of the COSMO-RS model
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4. ALPB/ddCOSMO/CPCM-X : The solvation models available in XTB

Regarding C-PCM and SMD, they are natively implemented in ORCA. Points 1, 2 and 3 are covered in this section.
For more information on point 4, check Section ONIOM Methods.

7.50.1 The Conductor-like Polarizable Continuum Model (C-PCM)

The conductor-like polarizable continuum model (C-PCM) is an implementation of the conductor-like apparent
surface charge methods. In these models the solute is placed in a cavity of roughly molecular shape. The solvent
reaction field is described by apparent polarization charges on the cavity surface, which are in turn determined by
the solute. These charges can be treated as punctual (point charges) or be modelled as spherical Gaussians [905].
The cavity in ORCA is constructed differently depending on how the charges are treated. In the case of using point
charges, the cavity is generated through the GEPOL[650, 651, 652] algorithm, either as solvent-excluding surface
(SES), or solvent-accessible surface (SAS). When Gaussian charges are considered, the user can choose between a
scaled vdW surface or the GEPOL SES, and the charge positions are determined following a Lebedev quadrature
approach. This scheme is known as Gaussian Charge Scheme[287] and more details on how to use it are given in
Section Use of the Gaussian Charge Scheme.

The ORCA C-PCM implementation closely follows the C-PCM[76] paper. The molecular Hamiltonian of the
isolated system is perturbed by the solvent:

�̂� = �̂�0 + 𝑉

where �̂�0 is the Hamiltonian of the isolated molecule, whereas 𝑉 describes the solute – solvent interactions. The
SCF procedure leads to the variational minimization of the free energy of the solute, 𝐺:

𝐺 =
⟨
Ψ
⃒⃒⃒
�̂�0
⃒⃒⃒
Ψ
⟩
+

1

2

⟨
Ψ
⃒⃒⃒
𝑉
⃒⃒⃒
Ψ
⟩

Using the conductor-like boundary condition the electrostatic potential can be determined by

𝑉 (�⃗�) +

𝑁𝑞∑︁
𝑖

𝑉𝑞𝑖(�⃗�) = 0

where 𝑉 and 𝑉𝑞𝑖 are the electrostatic potential due to the solute and to the polarization charges, �⃗� is a point on
the cavity surface, and 𝑁𝑞 is the total number of solvation charges. The vector of polarization charge can then be
determined by

AQ = −V (7.314)

where the vector V contains the electrostatic potential due to the solute at the position of the charges. The elements
of the matrix A have a different functional form depending on how the charges are treated. If we use point charges:

𝐴𝑖𝑖 = 1.07

√︂
4𝜋

𝑆𝑖

𝐴𝑖𝑗 =
1

𝑟𝑖𝑗
(7.315)

in which 𝑆𝑖 is the area of the surface element 𝑖, and 𝑟𝑖𝑗 = |�⃗�𝑖 − �⃗�𝑗 |. When Gaussian charges are considered:

𝐴𝑖𝑖 =
𝜁𝑖
√︀
2/𝜋

𝐹𝑖

𝐴𝑖𝑗 =
erf (𝜁𝑖𝑗𝑟𝑖𝑗)

𝑟𝑖𝑗

Here, 𝜁𝑖 is the exponent of the Gaussian charge 𝑖 (𝑖 belongs to sphere 𝐼). This quantity is calculated as 𝜁𝑖 =
𝜁/(𝑅𝐼

√
𝑤𝑖), where𝑅𝐼 is the radius of sphere 𝐼 , 𝑤𝑖 is the weight of the Lebedev point 𝑖, and 𝜁 is a width parameter

optimized for each particular Lebedev grid [905]. On the other hand, 𝜁𝑖𝑗 = 𝜁𝑖𝜁𝑗/
√︁
𝜁2𝑖 + 𝜁2𝑗 . The function 𝐹𝑖,
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known as switching function, measures the contribution of the Gaussian charge 𝑖 to the solvation energy. This
function is calculated as

𝐹𝑖 =

atoms∏︁
𝐽,𝑖/∈𝐽

𝑔(�⃗�𝑖, �⃗�𝐽)

where 𝑔(�⃗�𝑖, �⃗�𝐽) is the elementary switching function. In ORCA we use the improved Switching/Gaussian (ISWIG)
function for 𝑔(�⃗�𝑖, �⃗�𝐽) proposed in ref. [494]:

𝑔(�⃗�𝑖, �⃗�𝐽) = 1− 1

2
{erf [𝜁𝑖 (𝑅𝐽 − 𝑟𝑖𝐽)] + erf [𝜁𝑖 (𝑅𝐽 + 𝑟𝑖𝐽)]}

If 𝑔(�⃗�𝑖, �⃗�𝐽) < 10−7 the value of 𝑔 is set equal to 0.

If we consider a solvent with a dielectric constant 𝜀, eq. (7.314) reads as

AQ = −𝑓(𝜀)V (7.316)

where 𝑓(𝜀) = (𝜀− 1)/(𝜀+ 𝑥) is a scaling function, and 𝑥 is in the range 0-2. In C-PCM 𝑥 is equal to 0.

The C-PCM model can be used via

! CPCM(solvent)

where solvent is one of the available solvents in Table 7.29

Table 7.29: List of available solvents for the different implicit solvation methods in ORCA. The data for the dielec-
tric constant used within C-PCM is that at 293.15,[368] except for ammonia, which has a boiling point of 239.81
K. For the rest of solvation models, see the corresponding sources.[559][815]

Solvent C-PCM SMD COSMO-RS ALPB ddCOSMO CPCM-X
1,1,1-trichloroethane X X
1,1,2-trichloroethane X X
1,2,4-trimethylbenzene X X X
1,2-dibromoethane X X X
1,2-dichloroethane X X X X
1,2-ethanediol X X
1,4-dioxane / dioxane X X X X X
1-bromo-2-methylpropane X X
1-bromooctane / bromooctane X X X
1-bromopentane X X
1-bromopropane X X
1-butanol / butanol X X X X
1-chlorohexane / chlorohexane X X X X
1-chloropentane X X
1-chloropropane X X
1-decanol / decanol X X X X
1-fluorooctane X X X X
1-heptanol / heptanol X X X X
1-hexanol / hexanol X X X X
1-hexene X X
1-hexyne X X
1-iodobutane X X
1-iodohexadecane / hexadecyliodide X X X X
1-iodopentane X X
1-iodopropane X X
1-nitropropane X X
1-nonanol / nonanol X X X X

continues on next page
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Table 7.29 – continued from previous page
Solvent C-PCM SMD COSMO-RS ALPB ddCOSMO CPCM-X
1-octanol / octanol X X X X X X
1-pentanol / pentanol X X X X
1-pentene X X
1-propanol / propanol X X X X
2,2,2-trifluoroethanol X X
2,2,4-trimethylpentane / isooctane X X X X
2,4-dimethylpentane X X
2,4-dimethylpyridine X X
2,6-dimethylpyridine X X X X
2-bromopropane X X
2-butanol / secbutanol X X X X
2-chlorobutane X X
2-heptanone X X
2-hexanone X X
2-methoxyethanol / methoxyethanol X X X X
2-methyl-1-propanol / isobutanol X X X X
2-methyl-2-propanol X X
2-methylpentane X X
2-methylpyridine / 2methylpyridine X X X X
2-nitropropane X X
2-octanone X X
2-pentanone X X
2-propanol / isopropanol X X X X
2-propen-1-ol X X
e-2-pentene X X
3-methylpyridine X X
3-pentanone X X
4-heptanone X X
4-methyl-2-pentanone / 4methyl2pentanone X X X X
4-methylpyridine X X
5-nonanone X X
acetic acid / aceticacid X X X X
acetone X X X X X
acetonitrile / mecn / ch3cn X X X X X X
acetophenone X X X X
ammonia X X
aniline X X X X X X
anisole X X X X
benzaldehyde X X X X X
benzene X X X X X X
benzonitrile X X X X
benzyl alcohol / benzylalcohol X X X X
bromobenzene X X X X
bromoethane X X X X
bromoform X X X X
butanal X X
butanoic acid X X
butanone X X X X
butanonitrile X X
butyl ethanoate / butyl acetate / butylacetate X X X X
butylamine X X
n-butylbenzene / butylbenzene X X X X
sec-butylbenzene / secbutylbenzene X X X X
tert-butylbenzene / tbutylbenzene X X X X
carbon disulfide / carbondisulfide / cs2 X X X X X X

continues on next page
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Table 7.29 – continued from previous page
Solvent C-PCM SMD COSMO-RS ALPB ddCOSMO CPCM-X
carbon tetrachloride / ccl4 X X X X
chlorobenzene X X X X
chloroform / chcl3 X X X X X X
a-chlorotoluene X X
o-chlorotoluene X X
conductor X X
m-cresol / mcresol X X X X
o-cresol X X
cyclohexane X X X X
cyclohexanone X X X X
cyclopentane X X
cyclopentanol X X
cyclopentanone X X
decalin X X X X
cis-decalin X X
n-decane / decane X X X X
dibromomethane X X X
dibutylether X X X X
o-dichlorobenzene / odichlorobenzene X X X X
e-1,2-dichloroethene X X
z-1,2-dichloroethene X X
dichloromethane / ch2cl2 / dcm X X X X X X
diethyl ether / diethylether X X X X X X
diethyl sulfide X X
diethylamine X X
diiodomethane X X
diisopropyl ether / diisopropylether X X X X
cis-1,2-dimethylcyclohexane X X
dimethyl disulfide X X
n,n-dimethylacetamide / dimethylacetamide X X X X
n,n-dimethylformamide / dimethylformamide / dmf X X X X X X
dimethylsulfoxide / dmso X X X X X X
diphenylether X X X X
dipropylamine X X
n-dodecane / dodecane X X X X
ethanethiol X X
ethanol X X X X X X
ethyl acetate / ethylacetate / ethanoate X X X X X X
ethyl methanoate X X
ethyl phenyl ether / ethoxybenzene X X X X
ethylbenzene X X X X
fluorobenzene X X X X
formamide X X
formic acid X X
furan / furane X X X
n-heptane / heptane X X X X
n-hexadecane / hexadecane X X X X X X
n-hexane / hexane X X X X X X
hexanoic acid X X
iodobenzene X X X X
iodoethane X X
iodomethane X X
isopropylbenzene X X X X
p-isopropyltoluene / isopropyltoluene X X X
mesitylene X X X X

continues on next page
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Table 7.29 – continued from previous page
Solvent C-PCM SMD COSMO-RS ALPB ddCOSMO CPCM-X
methanol X X X X X X
methyl benzoate X X
methyl butanoate X X
methyl ethanoate X X
methyl methanoate X X
methyl propanoate X X
n-methylaniline X X
methylcyclohexane X X
n-methylformamide / methylformamide X X X X
nitrobenzene / phno2 X X X X
nitroethane X X X X
nitromethane / meno2 X X X X X X
o-nitrotoluene / onitrotoluene X X X
n-nonane / nonane X X X X
n-octane / octane X X X X
n-pentadecane / pentadecane X X X X
octanol(wet) / wetoctanol / woctanol X X
pentanal X X
n-pentane / pentane X X X X
pentanoic acid X X
pentyl ethanoate X X
pentylamine X X
perfluorobenzene / hexafluorobenzene X X X X
phenol X X X X
propanal X X
propanoic acid X X
propanonitrile X X
propyl ethanoate X X
propylamine X X
pyridine X X X X
tetrachloroethene / c2cl4 X X X X
tetrahydrofuran / thf X X X X X X
tetrahydrothiophene-s,s-dioxide / X X X
/ tetrahydrothiophenedioxide / sulfolane X X X
tetralin X X X X
thiophene X X
thiophenol X X
toluene X X X X X X
trans-decalin X X
tributylphosphate X X X X
trichloroethene X X
triethylamine X X X X
n-undecane / undecane X X X X
water / h2o X X X X X X
xylene X X X
m-xylene X X
o-xylene X X
p-xylene X X

The parameters can be more accurately defined using the %cpcm block input. The available options are as follows

%cpcm epsilon 80.0 # Dielectric constant
refrac 1.0 # Refractive index
rsolv 1.3 # Solvent probe radius
rmin 0.5 # Minimal GEPOL sphere radius

(continues on next page)
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(continued from previous page)

pmin 0.1 # Minimal distance between two surface points
fepstype cpcm # Epsilon function type: cpcm, cosmo
xfeps 0.0 # X parameter for the feps scaling function
surfacetype vdw_gaussian # Cavity surface: gepol_ses, gepol_sas

vdw_gaussian, gepol_ses_gaussian
ndiv 5 # Maximum depth for recursive sphere generation
num_leb 302 # Lebedev points for the Gaussian charge scheme
radius[N] 1.3 # Atomic radius for atomic number N in Angstrom
AtomRadii(N,1.4) # Atomic radius for the Nth atom in Angstrom
scale_gauss 1.2 # Scaling factor for the atomic radii in the

Gaussian charge scheme
cut_area 0.0 # Cutoff for the area of a surface segment in a.u.

Only valid for the Gaussian charge scheme
cut_swf 1e-7 # Cutoff for the switching function

Only valid for the Gaussian charge scheme
thresh_h 5.0 # Threshold for the charge density on a hydrogen

atom in charges/Å^2 (isodensity scheme)
thresh_noth 5.0 # Threshold for the charge density on non-hydrogen

atoms in charges/Å^2 (isodensity scheme)
CPCMccm 0 # Coupled-cluster/C-PCM scheme
cds_cpcm 0 # Use of the GVDW_nel or GSES_nel scheme
end

Regarding the parameters shown above, some of them can be just used within a given type of cavity surface and
charge scheme, as it is mentioned in subsections Use of the Gaussian Charge Scheme, and Use of the Point Charge
Scheme. ORCA supports two types of solvation charge schemes: (i) the point charge scheme, (ii) the Gaussian
charge scheme. The default solvation scheme from ORCA 5.0 on is the Gaussian charge scheme with a vdW-type
cavity (”surfacetype vdw_gaussian”). Older ORCA versions considered “surfacetype gepol_ses” and
the point charge scheme as defaults. So, if one wants to reproduce the results obtained with ORCA versions older
than ORCA 5.0, please use the tag “surfacetype gepol_ses” in the “%cpcm” block.

The different charge schemes are described in the subsections Use of the Gaussian Charge Scheme, and Use of
the Point Charge Scheme. The availability of the analytical gradient and Hessian for the different combinations of
charge scheme and surface is shown in Table Table 7.30.

Table 7.30: Available type of gradients and Hessians within the C-PCM in ORCA. The tag “YES” means that
the feature is implemented, and “NO” that it isn’t. For clarity, we denote by “*” the default scheme in ORCA
(surfacetype vdw_gaussian).

surfacetype Charge type Gradient Hessian

Analytical Numerical Analytical Numerical

gepol_ses Point Yes Yes Yes Yes
gepol_sas Point Yes Yes Yes Yes
vdw_gaussian^* Gaussian Yes Yes Yes Yes
gepol_ses_gaussian Gaussian No Yes No Yes

Note: If the user wants to turn off the C-PCM, one has to write the following tag in the simple input:

! NOCPCM

This is needed, for instance, in the context of concatenated calculations using the $new_job feature, where the
previous calculation involved solvation, but one wants to turn it off for the next one.
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Use of the Gaussian Charge Scheme

The Gaussian charge scheme avoids the Coulomb singularity present in conventional point charge surface element
models. This approach, when applied together with a switching function, results in a smooth solvation potential
and, more importantly, on smooth derivatives of this quantity with respect to external perturbations. Then, it is
highly recommended to adopt this approach within the C-PCM. The Gaussian charge scheme can be used with
two types of solute cavity surfaces: (1) a scaled vdW surface, (2) a solvent-excluded surface (SES). To assign the
radii for the different atoms we follow the scheme proposed in ref. [494]. That is, we use Bondi radii [114] for
all elements, except for hydrogen where we adopt 1.1 Å. For 16 of the main-group elements in the periodic table,
where Bondi’s radii are not defined, we adopt the radii proposed in ref. [553] by Mantina et al. This is the case
for elements: Be, B, Al, Ca, Ge, Rb, Sr, Sb, Cs, Ba, Bi, Po, At, Rn, Fr, Ra. For the elements that are not covered
neither by Bondi nor by Mantina, we consider a radius of 2 Å.

• Scaled vdW cavity

The Gaussian charge scheme with a scaled vdW-type cavity is now the default in ORCA, so one just needs to add
the C-PCM tag in the %cpcm block in the input file. That would correspond to (although the user does not need to
write that, as it is internally processed by ORCA):

%cpcm
surfacetype vdw_gaussian
end

In this case, the radius 𝑅𝐼 of atom 𝐼 for the scaled vdW cavity is calculated as

𝑅𝐼 = 𝑓𝑠𝑐𝑎𝑙𝑅
vdW
𝐼

where 𝑅vdW
𝐼 is the vdW radius of atom 𝐼 and 𝑓𝑠𝑐𝑎𝑙 is a scaling factor. This parameter is by default equal to 1.2,

as suggested in ref. [494]. However, the user can modify its value through the scale_gauss tag in the %cpcm
block in the input file. The number of C-PCM charges per atom is such that we have an approximate density of
5.0 charges/Å2 on the surface of the cavity. This number corresponds approximately to 110 points on a hydrogen
atom (110/(4𝜋 × 1.322) ≈ 5.0Å−2). ORCA will choose then different levels of discretization (Lebedev grids)
depending on the radii of the atoms. This scheme is called isodensity scheme. The threshold for the number of
charges per unit of area on hydrogens and non-hydrogen atoms can be specified by the user via thresh_h and
thresh_noth, respectively. Alternatively, the user can request a fixed number of Lebedev points per sphere in the
cavity (independent of the radius of the sphere). This can be done via the num_leb tag. This parameter can adopt
the following values: 50, 110, 194, 302, 434, 590, 770, 974, and 1202. ORCA versions older than ORCA 6.0 use
this last scheme.

The analytical gradient, as well as the analytical Hessian are available for this solvation method.

• Solvent-excluded surface

The GEPOL-generated SES can be used together with the Gaussian charge scheme. In this case, the Gaussian
charges are not only placed on the surface of the atomic spheres but also on the surface of the new spheres generated
through the GEPOL algorithm. To use this approach we should modify the ORCA input file as follows

%cpcm
surfacetype gepol_ses_gaussian
end

The SES is in general recommended when the solute is explicitly solvated by few solvation layers. In this case, the
additional GEPOL spheres prevent the solvent to fill the space between explicit solvent molecules or between those
molecules and the solute. The radius of the solvent sphere that rolls over the solute vdW-type surface to generate
the SES is controlled by the parameter “rsolv”. This radius has a default value of 1.30 Å, but the user can change
it by specifying another value for “rsolv” in the %cpcm block. The minimum radius for an added GEPOL sphere
is controlled by “rmin”.

Neither the analytical gradient nor the analytical Hessian are available for this strategy. They should be computed
numerically. Due to the interdependency between GEPOL spheres and the atoms present in our system, the analyt-
ical gradient computed using the SES does not converge as smooth as compared to that using the vdW-type cavity
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(see ref. [287]) and can lead to wrong minima. The Hessian is affected in the same way. Then, ORCA 6.0 does
not support anymore the analytical gradient/Hessian for such surface to prevent inaccurate results.

Use of the Point Charge Scheme

Within this scheme, the solvation charges are treated as punctual and no switching function is used to accept/discard
charges in the intersection between the spheres that form the solute cavity. These two facts lead to a discontinuous
potential energy surface (numerical instabilities in the SCF energy and its derivatives). Then, the point charge
scheme is not recommended within the C-PCM. If the user still wants to use this charge scheme it can be used
together with two different type of surfaces for the solute cavity: (1) the SES, and (2) the SAS.

• Solvent-excluded surface

In the same way as for the Gaussian charge scheme with the SES, this surface is generated for the point charge
scheme through the GEPOL algorithm. However, while for the case of surfacetype gepol_ses_gaussian,
the surface is discretized using Lebedev-type grids, in the point charge scheme, the surface is divided in spherical
triangles called “tesserae”. The level of tesselation is controlled by the tag ndiv. The radii used for the solute
atoms in order to construct the GEPOL cavity are those optimized for the COSMO-RS model[445] for H, C, N, O,
F, S, Cl, Br, and I, while for the rest of elements scaled Bondi radii are used.

In order to use the point charge scheme with the SES, we should add the following tag in the %cpcm block:

%cpcm
surfacetype gepol_ses
end

• Solvent-accessible surface

Here, the surface of the solute cavity is generated by following the center of a sphere with radius “rsolv” (repre-
senting the solvent molecule) rolling over the surface of the vdW surface of the solute. The discretization of the
resulting surface is done via tesserae, as done for the SES. In order to use the point charge scheme together with
the SAS, one should add the following tag in the %cpcm block:

%cpcm
surfacetype gepol_sas
end

• How to circumvent the numerical instabilities in the point charge scheme

Numerical instabilities are implicit in the point charge scheme due to the “punctual” nature of the charges and to
the fact that no switching function is considered in the intersection between the spheres that form the solute cavity.
At the same time, there is no way to predict, in advance if there will be discontinuities in the SCF energy and/or
in its derivatives. However, if the user still wants to use this charge scheme, no matter with which type of surface
(SES or SAS), there are two things that one can try to minimize the aforementioned problems:

• Change ndiv : The parameter “ndiv” controls the number of triangles per sphere in the solute cavity. By
changing the number of triangles, it also changes the number of triangles in the intersection between spheres
and, then, this can solve those situations where two point charges get too close making the elements 𝐴𝑖𝑗 in
eq (7.315) to diverge (and the solvation charges to suddenly have very large values). However, this strategy
can be a solution for a particular case, but will never ensure that for the same system with another geometry
the discontinuities in the SCF energy do not show (as it does not prevent point charges to be too close from
each other).

• Increase pmin : This parameter removes those charges that are at a distance lower than pmin from each
other. The default value for pmin is of 0.1 a.u. (≈ 0.0529 Å). Then, by incrasing pmin one removes all
pairs of charges that are too close from each other in the intersection between the spheres. Note: Be careful
when increasing pmin. Although this prevents sudden jumps in the SCF energy, it can lead to “biasing” the
solute-solvent interaction, as one is removing a significant number of charges that represent the effect of the
solvent.
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Calculation of the free energy of solvation within the C-PCM

The solvation free energy, ∆𝐺𝑠𝑜𝑙𝑣, is defined as the free energy of transfer of a solute from the gas phase to the
condensed phase. This quantity can be written as (see eq 27 in ref. [287])

∆𝐺𝑠𝑜𝑙𝑣 = 𝐸𝑠𝑜𝑙𝑣(�⃗�𝑙, �⃗�𝑣) + ∆𝐺𝑒𝑙 +∆𝐺𝑐𝑎𝑣 +∆𝐺𝑑𝑖𝑠𝑝 (7.317)

The first term, 𝐸𝑠𝑜𝑙𝑣(�⃗�𝑣, �⃗�𝑙), corresponds to the difference between the liquid-phase expectation value of the
gas-phase Hamiltonian, 𝐸(�⃗�𝑙), and the gas-phase potential energy surface 𝐸(�⃗�𝑣)

𝐸𝑠𝑜𝑙𝑣(�⃗�𝑣, �⃗�𝑙) = 𝐸(�⃗�𝑙)− 𝐸(�⃗�𝑣)

The second term in eq (7.317) accounts for the electronic-polarization contribution to ∆𝐺𝑠𝑜𝑙𝑣 and is calculated
from the charges spread over the surface of the solute cavity (vdW-type or the SES). Finally, ∆𝐺𝑐𝑎𝑣 is the cavitation
energy, that is, the reversible work required to create a cavity inside the bulk of the solvent in order to accommodate
the solute, while ∆𝐺𝑑𝑖𝑠𝑝 accounts for the changes in the dispersion energy occuring when solvating the solute. The
sum of these last two terms correspond to the non-electrostatic contribution, ∆𝐺𝑛𝑒𝑙, to ∆𝐺𝑠𝑜𝑙𝑣

∆𝐺𝑛𝑒𝑙 = ∆𝐺𝑐𝑎𝑣 +∆𝐺𝑑𝑖𝑠𝑝

In ORCA, if a system is solvated within the C-PCM (defining !CPCM(solvent name) in the input file, within
either the point charge scheme or the Gaussian charge scheme) there is no “non-electrostatic solvation contribution”
neither to the SCF energy, nor to its derivatives. In order to have a rough idea of the value of ∆𝐺𝑛𝑒𝑙, one can
estimate this quantity through empirical equations available in the literature obtained from experimental data. For
instance, ∆𝐺𝑛𝑒𝑙 can be estimated from the free energy of hydration for linear-chain alkanes[853]

∆𝐺nel = 1.321 + 0.0067639× SASA (7.318)

where SASA is the solvent-accessible surface area. However, although eq (7.318) may give a good estimation
of ∆𝐺𝑛𝑒𝑙 for organic molecules in water, it is a bad approximation for non-electrostatic solvation effects when
considering solvents different than water (as well as for many solutes in water). There are two alternatives to this
approximation that one can adopt in order to include non-electrostatic solvation effects in ORCA calculations:

1. The use of the SMD model in combination with the C-PCM (see section The SMD Solvation Model).

2. The use of Gaussian charges to compute the electrostatic contribution to ∆𝐺𝑠𝑜𝑙𝑣 together with an equation
for ∆𝐺nel calculated from the contribution of the solute atoms to the SASA.[287]

Focusing on the second strategy, the cavitation energy, ∆𝐺𝑐𝑎𝑣 is calculated through the equation proposed by
Pierotti and Claverie.[180, 681] In this case, ∆𝐺𝑐𝑎𝑣 is expanded in powers of the ratio R between the radius of the
solute sphere 𝑅𝐼 and that of the solvent spheres 𝑅𝑆 . Then, the cavitation energy for the solute sphere centered at
atom 𝐼 reads as,

∆𝐺𝑐𝑎𝑣,𝐼 = −ln(1− 𝑦) +
(︂
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3
𝑆/6, being 𝜌𝑆 the density of the solvent, R = 𝑅𝐼/𝑅𝑆 , 𝑇 the temperature and 𝑃 the pressure. If

we consider the solvent-accessible surface (SAS), then, the total ∆𝐺𝑐𝑎𝑣 is the sum of the ∆𝐺𝑐𝑎𝑣,𝐼 weighted by a
factor that depends on the exposed SASA𝐼 of sphere 𝐼

∆𝐺𝑐𝑎𝑣 =

𝑁sph∑︁
𝑖=1

SASA𝐼
4𝜋𝑅2

𝐼

∆𝐺𝑐𝑎𝑣,𝐼 =

𝑁𝑒𝑙∑︁
𝑖=1

SASA𝑖
4𝜋𝑅2

𝐼

∆𝐺𝑐𝑎𝑣,𝑖 (7.319)

Here, the summation over the total number of spheres (𝑁sph) that conform the SAS is replaced by a summation
over the total number of surface elements (𝑁el) in which the SAS is divided into.

With respect to ∆𝐺𝑑𝑖𝑠𝑝, this quantity is assumed to depend linearly on the contribution of each surface element to
the SASA

∆𝐺𝑑𝑖𝑠𝑝 =

𝑁el∑︁
𝑖=1

𝜎𝐼SASA𝑖 (7.320)

1018 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

Here, the factor 𝜎𝐼 is the atomic surface tension of the sphere 𝐼 to which the surface element 𝑖 belongs to.

This strategy, that considers eqs (7.319) and (7.320) to compute ∆𝐺𝑛𝑒𝑙 assumes the use of Gaussian charges for
the calculation of ∆𝐺𝑒𝑙 in eq (7.317). When a vdW-type cavity is used to account for electrostatic solvation effects,
then the solvation approach is called GVDW_nel, while when a SES-type cavity is used we refer to the solvation
approach as GSES_nel (“G” for Gaussian charges and “nel” because of the inclusion of non-electrostatic solvation
effects). Details on the GVDW_nel and GSES_nel models can be found in ref. [287].

The GVDW_nel and GSES_nel models have been parametrized for solutes containing H, C, N and O atoms in
the following solvents: benzene, chloroform, cyclohexane, octanol, toluene and water. The parameters for the 𝜎𝐼
atomic surface tensions in eq (7.320) together with the radius of the solvent molecules 𝑅𝑆 used to generate the
SAS are provided in ref. [287]. The use of the GVDW_nel and GSES_nel is controlled by the string cds_cpcm to
add in the %cpcm block. This flag should be equal to 2 within these two models (by default, when we use C-PCM
together with the Gaussian Charge Scheme without non-electrostatic solvation effects, cds_cpcm is equal to 0). In
order to calculate ∆𝐺𝑠𝑜𝑙𝑣 for the GVDW_nel scheme one has to do the following steps:

1. Optimize the geometry of the solute (anisole in this case) in vacuum. For a DFT calculation at the
B3LYP/def2-TZVP level of theory (with RIJCOSX), our input file would read like:

! B3LYP def2-TZVP D3BJ tightopt

%maxcore 4000

* xyz 0 1
C 0.66588156410505 1.19833878437922 -0.02647672759883
C 1.95470174000504 0.69483871574862 -0.01927812843331
C 2.17893173780041 -0.68097630146538 0.00933914777704
C 1.09270919891774 -1.54252176637089 0.03141990372830
C -0.21073409652496 -1.05179390481975 0.02471602253843
C -0.42517201252444 0.32533458015547 -0.00499572635290
H 0.47565631823749 2.26336213776820 -0.05012843684387
H 2.79210971512409 1.38085300778245 -0.03749594945361
H 3.18771596563920 -1.07149825338966 0.01433233618265
H 1.25061585302875 -2.61357041387417 0.05495238973649
H -1.03877793934640 -1.74453554370491 0.04346162651229
O -1.65366310927299 0.90979347913477 -0.01693978807213
C -2.79791686738707 0.07370821312998 0.01117694976431
H -2.83142307710305 -0.58944196707467 -0.85867919998175
H -3.65619850989594 0.74176224021803 -0.00958531946332
H -2.82883648080292 -0.53125300761732 0.92288089996024
*

2. Use the resulting structure (anisole.xyz) as input structure for the subsequent geometry optimization in
solution. In this case, we consider water as the solvent. The input file looks like:

! B3LYP def2-TZVP D3BJ tightopt CPCM(Water)

%cpcm
cds_cpcm 2
end

%maxcore 4000

* xyzfile 0 1 anisole.xyz

3. Search for the “FINAL SINGLE POINT ENERGY” in the output file for the solvated system (we call it 𝐸𝑠):

------------------------- --------------------
FINAL SINGLE POINT ENERGY -346.723542928530
------------------------- --------------------

4. Search for the “FINAL SINGLE POINT ENERGY” in the output file for the system in vacuum (we call it 𝐸0):
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------------------------- --------------------
FINAL SINGLE POINT ENERGY -346.719657762242
------------------------- --------------------

5. Calculate ∆𝐺𝑠𝑜𝑙𝑣 = 𝐸𝑠 − 𝐸0 = −0.003885 a.u. If we convert it to kcal/mol and round it to two decimal
digits, we have ∆𝐺𝑠𝑜𝑙𝑣 = −2.44 kcal/mol. This quantity is in very good agreement with its experimental
counterpart (-2.45 kcal/mol[559]).

6. In case the user is interested in the value of ∆𝐺𝑛𝑒𝑙, this quantity is printed in the “CPCM Solvation Model
Properties” block:

CPCM Solvation Model Properties:
Surface-charge : -0.02580685887229
Corrected charge : 0.00000000000000
Outlying charge corr. : 0.00005046198558 Eh 0.00137 eV
Free-energy (cav+disp) : 0.00272597237192 Eh 0.07418 eV

Here, ∆𝐺𝑛𝑒𝑙 corresponds to “Free-energy (cav+disp) “ and is calculated through eqs (7.319) and (7.320).
The term called “Surface-charge” corresponds to the solute net charge that lies outside the C-PCM cavity. It
is basically the sum of the C-PCM charges (without the scaling by 𝑓(𝜀)). The effect of this excess of charge on
the energy and the C-PCM charges themselves can be corrected by the so-called outlying charge correction. In
ORCA, this correction is calculated through a Lagrangian-based algorithm,[706] but only printed for information
purposes. That is, the outlying charge effect is neither added to the SCF energy nor to its derivatives. In any case,
the corrected total charge is printed in “Corrected charge”, while the correction term for the energy is printed
in “Outlying charge corr.”. To further help the user, ORCA also prints a file with extension .cpcm_corr,
where the corrected C-PCM charges are provided.

If we want to use, instead, the GSES_nel model, one just needs to add surfacetype gepol_ses_gaussian in
the %cpcm block.

Note: The analytical Hessian is not available for the GVDW_nel and GSES_nel models as the second derivative
of ∆𝐺𝑛𝑒𝑙 with respect to nuclear displacements is not implemented.

7.50.2 The Conductor-like Screening Solvation Model (COSMO)

ò Note

The COSMO solvation model has been removed from ORCA v4.0.0 !!!

Please use the C-PCM solvation model in combination with the COSMO epsilon function if required!
As a short form to use the C-PCM model with the COSMO epsilon function, you can specify the solvent via
!CPCMC(solvent) .

7.50.3 The SMD Solvation Model

The SMD solvation model has been proposed by the Cramer and Truhlar groups,[559] and is based on the quantum
mechanical charge density of a solute molecule interacting with a continuum description of the solvent. In the model
the full solute electron density is used without defining partial atomic charges and the solvent is not represented
explicitly but rather as a dielectric medium with the surface tension at the solute–solvent boundary. SMD is a
universal solvation model, in the sense that it is applicable to any charged or uncharged solute in any solvent
or liquid medium for which a few key descriptors are known. In particular, these descriptors are the dielectric
constant, refractive index, bulk surface tension, and acidity and basicity parameters. Neglecting the concentration
contribution, the model separates the observable solvation free energy into two main components,

∆𝐺S = ∆𝐺ENP +∆𝐺CDS. (7.321)
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In ORCA, the first component is the bulk electrostatic contribution arising from a self-consistent reaction field
treatment that involves the electrostatic interaction using the Conductor-like Polarizable Continuum Model (C-
PCM). However, the radii are set to “intrinsic atomic Coulomb radii”. The second component, called the cavity-
dispersion solvent-structure (CDS) term, is the contribution resulting from short-range interactions between the
solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional
(with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible sur-
face areas of the individual atoms of the solute. The CDS contribution to the free energy of solvation is given
by

∆𝐺CDS =

atoms∑︁
𝑘

𝜎𝑘𝐴𝑘(R, 𝑅𝑍𝑘
+ 𝑟𝑠) + 𝜎[M]

atoms∑︁
𝑘

𝐴𝑘(R, 𝑅𝑍𝑘
+ 𝑟𝑠),

where 𝜎𝑘 and 𝜎[M] are the atomic surface tension of atom 𝑘 and the molecular surface tension, respectively, and
𝐴𝑘 is the solvent-accessible surface area (SASA). The SASA depends on the geometry R, the set𝑅𝑍𝑘

of all atomic
van der Waals radii, and the solvent radius 𝑟𝑠, which is added to each of the atomic van der Waals radii. In the
program Bondi radii are used for CDS contribution.

More details can be found in the original paper of Marenich et al. [559], which should be cited in publications
using results of SMD calculations.

SMD can be employed in single point calculations and geometry optimizations, using single-determinant SCF (HF
and DFT) and CASSCF methods. In post-SCF methods the result is corrected in the reference wave function. The
SMD solvation model is invoked in the input file via

! SMD(solvent)

where solvent is one of the 179 solvents in the SMD library (see Table Table 7.29). Alternatively, one can request
the SMD model via the %cpcm block by writing:

%cpcm smd true # turn on SMD
SMDsolvent "solvent" # specify the name of solvent from the list

end

Independently on the way the user invokes the SMD model, ORCA automatically sets a number of default SMD
parameters for the chosen solvent. If required, the user can also manually specify the solvent descriptors used in
an SMD calculation in the %cpcm block.

%cpcm soln # index of refraction at optical frequencies at 293 K
soln25 # index of refraction at optical frequencies at 298 K
sola # Abraham's hydrogen bond acidity
solb # Abraham's hydrogen bond basicity
solg # relative macroscopic surface tension
solc # aromaticity, fraction of non-hydrogenic solvent atoms

# that are aromatic carbon atoms
solh # electronegative halogenicity, fraction of non-hydrogenic

# solvent atoms that are F, Cl, or Br
end

Let’s consider the following input for a water molecule solvated by water,

! B3LYP def2-SVP tightscf SMD(water)

* xyz 0 1
O -0.00000018976103 0.00606010894837 0.00000000004527
H 0.76098169249695 -0.58891312953082 -0.00000000000022
H -0.76098151333900 -0.58891299029372 -0.00000000000022
*

Before the SCF part starts, the program prints the SMD information. This part reads as:
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--------------------
CPCM SOLVATION MODEL
--------------------
CPCM parameters:

Epsilon ... 78.3550
Refrac ... 1.3328
Rsolv ... 1.3000
Surface type ... GAUSSIAN VDW
Discretization scheme ... Constant charge density
Threshold for H atoms ... 5.0000 (charges/Ang^2)
Threshold for non-H atoms ... 5.0000 (charges/Ang^2)

Epsilon function type ... CPCM
Solvent: ... WATER
SMD-CDS solvent descriptors:

Soln ... 1.3328
Soln25 ... 1.3323
Sola ... 0.0000
Solb ... 0.0000
Solg ... 0.0000
Solc ... 0.0000
Solh ... 0.0000

Radii:
Scheme ... Element-dependent radii
Radius for O used is 2.8724 Bohr (= 1.5200 Ang.)
Radius for H used is 2.2677 Bohr (= 1.2000 Ang.)

Calculating surface ... done! ( 0.0s)
Cavity surface points ... 244
Cavity Volume ... 130.0616
Cavity Surface-area ... 129.3354
Calculating surface distance matrix ... done! ( 0.0s)
Performing Cholesky decomposition & store ... done! ( 0.0s)
Overall time for CPCM initialization ... 0.0s

After the SCF is converged, the SMD contribution to the total energy is printed (this term is labelled as “SMD
CDS” term).

*****************************************************
* SUCCESS *
* SCF CONVERGED AFTER 10 CYCLES *
*****************************************************

Recomputing exchange energy using gridx3 ... done ( 0.056 sec)
Old exchange energy : -1.791736873 Eh
New exchange energy : -1.791694663 Eh
Exchange energy change after final integration : 0.000042211 Eh
Total energy after final integration : -76.335230273 Eh

SMD CDS free energy correction energy : 1.44927 Kcal/mol
Total Energy after SMD CDS correction = -76.332920707 Eh

**** ENERGY FILE WAS UPDATED (water.en.tmp) ****

----------------
TOTAL SCF ENERGY
----------------

Total Energy : -76.33292070695327 Eh -2077.12437 eV

Components:
Nuclear Repulsion : 9.11286213981824 Eh 247.97359 eV
Electronic Energy : -85.43200537714571 Eh -2324.72305 eV
One Electron Energy: -123.06209110061025 Eh -3348.68974 eV
Two Electron Energy: 37.63008572346453 Eh 1023.96669 eV

(continues on next page)

1022 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

(continued from previous page)

CPCM Dielectric : -0.01612924659271 Eh -0.43890 eV
SMD CDS (Gcds) : 0.00230956608299 Eh 0.06285 eV

Notes:

• If one is interested in the calculation of free energies of solvation using the SMD model, one just needs to
compute ∆𝐺S according to eq (7.321). However, here one should take into account that the SMD model
considers the same concentration (1 mol/L) in both the gaseous and solution phases. Then, if a gas-phase
standard state of 1 atm is considered, and we want to compare the calculated ∆𝐺S with its experimental
counterpart, a concentration term equal to 1.89 kcal/mol has to be added to the calculated ∆𝐺S.

7.50.4 Dynamic Radii Adjustment for Continuum Solvation (DRACO)

The DRACO scheme is an approach that improves the performance of implicit solvation models, in particular the
accuracy of the calculated solvation free energies.[689] It is based on a dynamic scaling of the original static radii
used to describe the atoms/spheres that define the cavity of the solute.

In this approach, the original radii 𝑟𝑖 of an atom 𝑖 is scaled according to

𝑟𝑖scale = 𝑓𝑖scale𝑟𝑖 (7.322)

with the scaling factor 𝑓𝑖scale determined from

𝑓𝑖scale = erf(𝑎𝑍(𝑞eff,𝑖 − 𝑏𝑍)) + 1 (7.323)

Here, 𝑞eff,𝑖 corresponds to the effective partial charge and is defined as

𝑞eff,𝑖 = 𝑞𝑖 + 𝑘𝑍𝑞𝑖CN𝑖 (7.324)

where 𝑞𝑖 is the atomic partial charge. The parameters 𝑎𝑍 , 𝑏𝑍 and 𝑘𝑍 are element-specific parameters, and CN𝑖 is
the fractional coordination number.

For oxygen atoms, the 𝑓𝑖scale is corrected via a term that depends on the Abraham’s hydrogen bond acidity (𝛼):

𝑓O
𝑖scale = 𝑓𝑖scale + 𝑐O(0.43− 𝛼) (7.325)

with 𝑐O a parameter that is different for pure C-PCM or SMD. The correction in eq (7.325) is only applied for
solvents with 𝛼 < 0.43.

DRACO is parametrized for C-PCM and SMD for the following solvents: acetonitrile, DMSO, methanol, and
water. The element-specific parameters in eqs (7.323),(7.324), and (7.325) are available in https://github.com/
grimme-lab/DRACO.

The use of DRACO with C-PCM or SMD is triggered via the following tags in the simple input:

! CPCM(solvent) DRACO

or

! SMD(solvent) DRACO

Alternatively, it can also be requested in the %cpcm block:

%cpcm
DRACO true
end

In ORCA, the default scheme to calculate the partial charges in eq (7.324) is the electronegativity-equilibration
(EEQ) charge model (D4 case),[132]. However, one can also request the Charge Extended Hückel (CEH)
model.[541] The charge scheme within DRACO is controlled by the following tag in the %cpcm block:
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%cpcm
draco_charges ceh # default = eeq
end

If CEH charges are requested, ORCA needs to run an XTB calculation to generate them. Here, one should have
at least the version 6.7.1 of XTB (older versions will not generate the CEH charges, see section Program Compo-
nents). Regarding the fractional coordination number in eq (7.324), it is calculated as described in GFN2-XTB
calculations.[70]

Note: DRACO can only be used, for the moment, in single-point energy calculations.

7.50.5 OpenCOSMO-RS

ORCA is interfaced to openCOSMO-RS,[293, 542] an open source implementation of the COSMO-RS
model.[447, 448] This model is widely used in both academia and industry to predict fluid phase thermodynamics.

The main idea behind COSMO-RS is that the interaction between molecules in the liquid phase can de depicted
as an ensemble of interacting surface segments. The properties on the surface segments are calculated via QM
calculations of the solute and the solvent in a perfect conductor (𝜖 =∞), and the interaction free energies between
segments are functions of a set of descriptors. Among them, the most relevant one is the screening charge density
(𝜎).

A complete description of the COSMO-RS model used in ORCA is provided in refs [293, 542], and the code is avail-
able in https://github.com/TUHH-TVT. In particular, the parametrization for ORCA 6.0 is called openCOSMO-RS
24a. The corresponding the executable is shipped together with the ORCA 6.0 binaries and called openCOSMORS.
ORCA will then call internally this executable whenever it is needed.

COSMO-RS calculations within ORCA are a special type of calculation. By requesting COSMO-RS, ORCA runs
a set of single-point-energy calculations for both the solute and the solvent and then calls the openCOSMO-RS
executable, which expects an input geometry for the solute and the solvent and calculates the free energy of solvation
of the solute in the solvent. A workflow of a calculation requesting COSMO-RS in ORCA is the following:

1. Single-point-energy calculation of the solute in the gas-phase

2. Single-point-energy calculation of the solute in a conductor (𝜖 =∞)

3. Single-point-energy calculation of the solvent in a conductor (𝜖 =∞)

4. Do COSMO-RS via the openCOSMO-RS executable and compute solvation properties

Points 1 to 3 correspond to DFT calculations at the BP86/def2-TZVPD level. This is the level of theory used to
parametrize COSMO-RS for ORCA 6.0. As it is shown later, the user can change the functional and basis set, but
this is not recommended!

Regarding calculations 2 and 3, to produce smooth 𝜎 profiles, ORCA discards the surface segments with an area <
0.01 Å2. For these two calculations, the radii of several elements used to construct the cavity of solute and solvent
are different than the defaults employed within non-COSMO-RS calculations (using C-PCM). This is due to the
fact that the provided openCOSMO-RS binaries involve a special parametrization of COSMO-RS for ORCA 6.0,
and this does not only affect the COSMO-RS parameters, but also the radii of several elements used in the C-PCM
part.

After point 4 is done, the free energy of solvation (∆𝐺S) of the solute in the solvent is printed in the ORCA output
file. In ORCA 6.0 the use of openCOSMO-RS is restricted to the calculation of ∆𝐺S.
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How to Run a ORCA/COSMO-RS Calculation

ORCA/COSMO-RS calculations are controlled through the %cosmors block. These type of calculations require
two input structures, one for the solute and one for the solvent. The solute coordinates are provided in the input file
as done for any other type of calculation. However, regarding the structure for the solvent, there are two options:

1. Retrieve the structure of the solvent from a database

2. Provide the structure in a separate file

To use strategy 1, we need to request the solvent via:

COSMORS(Solvent)

in the simple input or using the %cosmors block:

%cosmors
solvent "Solvent"
end

The list of internal solvents available in ORCA are shown in Table 7.29. For instance, for a water molecule solvated
by acetonitrile, the input file looks like:

!COSMORS(Acetonitrile)
* xyz 0 1

O 0.00000006589375 0.00157184228646 0.00000000004493
H 0.77316868532439 -0.58666889665624 -0.00000000000005
H -0.77316876182122 -0.58666895650640 -0.00000000000005

*

If the user wants to provide a structure for the solvent (strategy 2), then a separate file with extension .cosmorsxyz
should be available. The name of this file (without extension) is controlled by the tag solventfilename in the
%cosmors block. For instance, if we want to calculate the free energy of solvation of acetone in water, the ORCA
input file would look like this:

%cosmors
solventfilename "water"
end

* xyz 0 1
H 1.99757808828569 0.25022586507917 0.72957579847856
C 1.44666788654273 0.06088176074125 -0.18975506731892
H 1.67115809398389 0.82690156694531 -0.93346420198265
H 1.76410010378270 -0.89580894800398 -0.61702931492419
C -0.03218812888253 -0.00668250402989 0.08117960952503
O -0.47126229461002 -0.06383203315654 1.21590571064657
C -0.93671505604705 -0.00759565576779 -1.12174123739234
H -0.88761294036774 0.97611724740670 -1.59852429171257
H -0.58940208311204 -0.73299176093053 -1.85998395179737
H -1.96332366957567 -0.22151553828368 -0.83026305352213

*

The structure of the solvent (water) is the one in the water.cosmorsxyz file:

3
0 1

O 0.00000006589375 0.00157184228646 0.00000000004493
H 0.77316868532439 -0.58666889665624 -0.00000000000005
H -0.77316876182122 -0.58666895650640 -0.00000000000005

where the first line corresponds to the number of atoms, and in the second line the charge and multiplicity are
provided.
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The output for COSMO-RS is printed in the ORCA output file after the line that reads OPENCOSMO-RS
CALCULATION. First of all, the information regarding the level of theory, the solute and the solvent is printed.
For the example above (acetone in water), it reads as,

------------------------------------------------------------------------------
OPENCOSMO-RS CALCULATION

------------------------------------------------------------------------------

----------------------
GENERAL INFORMATION
----------------------
Calculation method ... DFT
Functional ... BP86
Basis set ... DEF2-TZVPD

----------------------
SOLUTE INFORMATION
----------------------
Number of atoms ... 10
Total charge ... 0
Multiplicity ... 1

CARTESIAN COORDINATES (ANGSTROEM)
H 1.997578 0.250226 0.729576
C 1.446668 0.060882 -0.189755
H 1.671158 0.826902 -0.933464
H 1.764100 -0.895809 -0.617029
C -0.032188 -0.006683 0.081180
O -0.471262 -0.063832 1.215906
C -0.936715 -0.007596 -1.121741
H -0.887613 0.976117 -1.598524
H -0.589402 -0.732992 -1.859984
H -1.963324 -0.221516 -0.830263

----------------------
SOLVENT INFORMATION
----------------------
Solvent name ... water
Number of atoms ... 3
Total charge ... 0
Multiplicity ... 1

CARTESIAN COORDINATES (ANGSTROEM)
O 0.000000 0.001572 0.000000
H 0.773169 -0.586669 -0.000000
H -0.773169 -0.586669 -0.000000

After these lines, ORCA prints the final single point energy for each of the QM calculations, together with the
output file to which the ORCA output is redirected:

----------------------------------------------
Single Point Calculation (solute / gas-phase)
----------------------------------------------
Output single point calculation redirected to >test.solute_vac.lastout

FINAL SINGLE POINT ENERGY (Solute-gas-phase) -193.233975714789

----------------------------------------------
Single Point Calculation (solute / CPCM)
----------------------------------------------
Output single point calculation redirected to >test.solute_cpcm.lastout

(continues on next page)
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(continued from previous page)

FINAL SINGLE POINT ENERGY (Solute-CPCM) -193.243987123912

----------------------------------------------
Single Point Calculation (solvent / CPCM)
----------------------------------------------
Output single point calculation redirected to >test.solvent_cpcm.lastout

FINAL SINGLE POINT ENERGY (Solvent-CPCM) -76.479155022866

Once this information is printed, ORCA calls the openCOSMO-RS executable and ∆𝐺S is printed in the following
block:

----------------------
SOLVATION DATA
----------------------
Reference temperature : 298.15 K
Free energy of solvation (dGsolv) : -0.006626234385 Eh -4.158026 kcal/mol

Note: In order to calculate the free energy of the solvated solute (Gsolv), one should add
the computed dGsolv to the "Final Gibbs free energy" (Gvac = H-T*S) of the solute in gas-

→˓phase.
That is: Gsolv = Gvac + dGsolv. Here, the Gvac has been calculated previously after a␣

→˓frequency
calculation of the solute at a certain level of theory and printed in the

→˓"THERMOCHEMISTRY" block.

As pointed out in the last paragraph of the COSMO-RS output, to calculate the Gibbs free energy of the solute
solvated by the given solvent, one should add the calculated∆𝐺S to the Final Gibbs free energy of the solute
in the gas-phase.

The parameters that can be defined in the %cosmors block in the ORCA input file are the following:

%cosmors
aeff 5.92500 # Effective contact area between surface segments (Å^2)
lnalpha 0.20200 # Logarithm of the misfit prefactor
lnchb 0.16600 # Hydrogen bond (HB) strength parameter
chbt 1.50 # Parameter for the temperature dependence of the HB
sigmahb 9.61e-3 # HB threshold parameter (e/Å^2)
rav 0.50 # Radius to average ideal screening charges in Å
fcorr 2.40 # Parameter adjusted from dielectric screening energies
ravcorr 1.00 # Additional radius to calculate the misfit energy in Å
astd 41.6240 # Standard surface area (normalization factor) in Å^2
zcoord 10.0 # Coordination number
dgsolv_eta -4.44800 # Offset for the solv. energy calculation
dgsolv_omegaring 0.26300 # Correction for solv. energy of molecules with rings
temp 298.15 # Reference temperature in Kelvin
dftfunc "BP86" # String for the DFT functional
dftbas "def2-TZVPD" # String for the basis set
solvent "THF" # Solvent from the internal database
solventfilename "water" # Name of the .cosmorsxyz solvent file

end

It is not recommended to change the defaults of the COSMO-RS parameters.

Note: The workflow explained above for ORCA/openCOSMO-RS calculations involves the same structure for the
solute in the gas-phase and in solution. However, these structures may differ substantially depending on the type
of solute and solvent. In ORCA, it is possible to optimize the structures for each of the three calculations needed
in the ORCA/openCOSMO-RS workflow. That is, (1) the solute in gas-phase, (2) the solute in a conductor, and
(3) the solvent in a conductor. To do that, one needs to add the level of optimization via the dftfunc tag, which is
exclusive for the DFT functional, but as an exception, can be extended with the optimization tag:
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%cosmors
dftfunc "BP86 tightopt"

end

7.50.6 Implicit Solvation in Coupled-Cluster Methods

The coupled-cluster Lagrangian, ℒ, for a system implicitly solvated reads as follows,[133, 142, 285]

ℒ(Λ, 𝑇 ) = ⟨𝜓0|(1 + Λ)e−𝑇𝐻0e
𝑇 |𝜓0⟩+

1

2
Q̄(Λ, 𝑇 ) · V̄(Λ, 𝑇 ) (7.326)

where 𝜓0 is the reference wave function, and 𝐻0 is the Hamiltonian for the isolated molecule. The operator 𝑇 for
CCSD is defined in terms of single and double excitations (𝑇 = 𝑇1 + 𝑇2), and Λ is the de-excitation operator,
defined in terms of the Lagrange multipliers:

𝑇 = 𝑇1 + 𝑇2 =
∑︁
𝑖𝑎

𝑡𝑖𝑎𝑎
+
𝑎 𝑎𝑖 +

∑︁
𝑖𝑗𝑎𝑏

𝑡𝑖𝑗𝑎𝑏𝑎
+
𝑎 𝑎

+
𝑏 𝑎𝑗𝑎𝑖 (7.327)

Λ =
∑︁
𝑖𝑎

𝜆𝑎𝑖 𝑎
+
𝑖 𝑎𝑎 +

1

2

∑︁
𝑖𝑗𝑎𝑏

𝜆𝑎𝑏𝑖𝑗 𝑎
+
𝑖 𝑎𝑎𝑎

+
𝑗 𝑎𝑏 (7.328)

Here, 𝑡𝑖𝑎 and 𝑡𝑖𝑗𝑎𝑏 are the singles and doubles wave function amplitudes and 𝑎𝑖 and 𝑎+𝑎 are standard fermion anni-
hilation and creation operators, respectively. Canonical occupied orbitals are denoted by the symbols 𝑖, 𝑗, 𝑘, . . .,
virtual orbitals by the symbols 𝑎, 𝑏, 𝑐, . . ., and we use the symbols 𝑝, 𝑞, 𝑟 . . . for general orbital indices.

The quantities Q̄ and V̄ are the CC expectation values of the C-PCM operators Q and V, which are the solvation
charges vector and solute potential vector defined at the position the charges, respectively.

Q̄(Λ, 𝑇 ) = ⟨𝜓0|(1 + Λ)e−𝑇Qe𝑇 |𝜓0⟩ (7.329)

V̄(Λ, 𝑇 ) = ⟨𝜓0|(1 + Λ)e−𝑇Ve𝑇 |𝜓0⟩ (7.330)

Equation (7.326) can be rewritten by introducing the normal product form of an operator:

𝑋𝑁 = 𝑋 − ⟨𝜓0|𝑋|𝜓0⟩ = 𝑋 −𝑋0 (7.331)

If one uses this result in eq (7.326), together with the fact that Q and V are related through eq (7.316), then eq
(7.326) reads as,

ℒ(Λ, 𝑇 ) =⟨𝜓0|𝐻0|𝜓0⟩+ ⟨𝜓0|(1 + Λ)e−𝑇𝐻0𝑁e𝑇 |𝜓0⟩+
1

2
Q0 ·V0 +Q0 · V̄𝑁 (Λ, 𝑇 ) +

1

2
Q̄𝑁 (Λ, 𝑇 ) · V̄𝑁 (Λ, 𝑇 ) =

= 𝐸0 + ⟨𝜓0|(1 + Λ)e−𝑇𝐻0𝑁e𝑇 |𝜓0⟩+Q0 · V̄𝑁 (Λ, 𝑇 ) +
1

2
Q̄𝑁 (Λ, 𝑇 ) · V̄𝑁 (Λ, 𝑇 )

(7.332)

Here, Q0 and V0 are the Q and V vectors calculated with the 𝜓0 wave function, and 𝐸0 is the reference energy
(𝐸0 = ⟨𝜓0|𝐻0|𝜓0⟩ + 1

2Q0 ·V0). Different approximations can be adopted in eq (7.332) depending on how one
calculates its last term 1

2Q̄𝑁 (Λ, 𝑇 ) · V̄𝑁 (Λ, 𝑇 ).

In ORCA there are three different CCSD/CPCM approaches: (i) the PTE scheme, (ii) the PTE(S) scheme, and the
(iii) the PTES scheme, being the last one the default. Here, the acronym PTE stands for “perturbation theory and
energy” and “S” for singles. The choice of any of these approaches is controlled via the tag “CPCMccm”. Information
about which CCSD/C-PCM is used by ORCA in a calculation is printed in the “ORCA-MATRIX DRIVEN CI” block
in the output file in the line starting by “CPCM scheme”:

--------------------------------------------------------------------------------
ORCA-MATRIX DRIVEN CI

--------------------------------------------------------------------------------

--------------------------------

(continues on next page)
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(continued from previous page)

AUTOMATIC CHOICE OF INCORE LEVEL
--------------------------------

Memory available ... 2000.00 MB
Memory needed for S+T ... 9.26 MB
Memory needed for J+K ... 18.57 MB
Memory needed for DIIS ... 129.61 MB
Memory needed for 3-ext ... 72.69 MB
Memory needed for 4-ext ... 486.14 MB
Memory needed for triples ... 0.00 MB
-> Final InCoreLevel ... 5

Wavefunction type
-----------------
Correlation treatment ... CCSD
Single excitations ... ON
Orbital optimization ... OFF
Calculation of Lambda equations ... ON
Calculation of Brueckner orbitals ... OFF
Perturbative triple excitations ... OFF
CPCM scheme ... PTE(S)
Calculation of F12 correction ... OFF

In the following subsections, we describe the different CCSD/C-PCM approaches available in ORCA and how to
use them.

PTE scheme

In the “perturbation theory energy” (PTE) scheme, the last term in eq (7.332) is equal to zero (this term does not
depend on Λ and 𝑇 ),

ℒ(Λ, 𝑇 ) = 𝐸0 + ⟨𝜓0|(1 + Λ)e−𝑇𝐻0𝑁e𝑇 |𝜓0⟩+Q0 · V̄𝑁 (Λ, 𝑇 ) (7.333)

The potential V̄𝑁 can be written as follows:

V̄𝑁 (Λ, 𝑇 ) = ⟨𝜓0|(1 + Λ)e−𝑇
∑︁
𝑝𝑞

v𝑝𝑞{𝑝+𝑞}e𝑇 |𝜓0⟩ =
∑︁
𝑝𝑞

v𝑝𝑞⟨𝜓0|(1 + Λ)e−𝑇 {𝑝+𝑞}e𝑇 |𝜓0⟩ =
∑︁
𝑝𝑞

v𝑝𝑞Γ𝑝𝑞

(7.334)

where we have used that V𝑁 =
∑︀
𝑝𝑞 v𝑝𝑞{𝑝+𝑞} (second-quantized form of a normal ordered operator), with v𝑝𝑞

the components of the solute potential in the MO basis. The matrix Γ is the CCSD relaxed one-electron density
matrix. Then, the contribution to the equations for the 𝑇 amplitudes comes from the derivative of V̄𝑁 (Λ, 𝑇 ) with
respect to the Λ amplitudes (Q0 does not depend on the Lagrange multipliers). In this context, the Hamiltonian
𝐻0𝑁 contains a term that depends on the elements of the Fock matrix (

∑︀
𝑝𝑞 𝑓𝑝𝑞{𝑝+𝑞}) and that has the same

functional form as V𝑁 . As the Fock matrix is updated in the reference calculation with a C-PCM term that reads
as (in AO basis) 𝐹CPCM

𝜇𝜈 = Q0 ·V𝜇𝜈 , then the term Q0 · V̄𝑁 (Λ, 𝑇 ) is added implicitly to eq (7.333).

Once the 𝑇 amplitudes are obtained, the total energy, 𝐸, is calculated as

𝐸 = 𝐸0 + ⟨𝜓0|e−𝑇 (𝐻0𝑁 +Q0 ·V𝑁 )e𝑇 |𝜓0⟩ = 𝐸0 +
∑︁
𝑖𝑎

𝐹𝑖𝑎𝑡
𝑖
𝑎 +

1

4

∑︁
𝑖𝑗𝑎𝑏

⟨𝑖𝑗||𝑎𝑏⟩
(︁
𝑡𝑖𝑗𝑎𝑏 + 2𝑡𝑖𝑎𝑡

𝑗
𝑏

)︁
(7.335)

Then, the C-PCM contribution to the CC energy within the PTE scheme occurs through the term 1
2Q0 ·V0 in 𝐸0

and implicitly through the Fock matrix elements 𝐹𝑖𝑎 (𝐹𝑖𝑎 = 𝐹 0
𝑖𝑎 +Q0 · v𝑖𝑎).

The PTE scheme corresponds to “CPCMccm 0”, and is implemented for canonical-CCSD (RHF and UHF) and
DLPNO-CCSD (RHF and UHF). For instance, for a DLPNO-CCSD calculation (closed-shell reference) of a system
solvated by water using the PTE scheme, the input file looks like:
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! DLPNO-CCSD cc-pVTZ cc-PVTZ/C TightSCF CPCM(Water)

%cpcm
CPCMccm 0
end

* xyzfile 0 1 water.xyz

PTE(S) scheme

In this scheme (where the “S” stands for singles), the last term in eq (7.332) depends on the 𝑇 amplitudes, but not
on the Λ amplitudes,

ℒ(Λ, 𝑇 ) = 𝐸0 + ⟨𝜓0|(1 + Λ)e−𝑇𝐻0𝑁e𝑇 |𝜓0⟩+Q0 · V̄𝑁 (Λ, 𝑇 ) +
1

2
Q̄𝑁 (𝑇 ) · V̄𝑁 (𝑇 ) (7.336)

Again, in the same way as for the PTE scheme, the C-PCM contribution to the equations for the 𝑇 amplitudes
comes from the term Q0 · V̄𝑁 (Λ, 𝑇 ) in eq (7.336), which is implictly added to the Fock matrix elements in the
MO basis. The last term in eq (7.336) does not depend on the Λ amplitudes and then does not contribute to the
equations for the 𝑇 amplitudes. However, this term depends on the 𝑇 amplitudes through the elements 𝛾𝑎𝑖 of the
density matrix Γ,

𝛾𝑎𝑖 = 𝑡𝑖𝑎 +
∑︁
𝑚𝑒

(︀
𝑡𝑖𝑚𝑎𝑒 − 𝑡𝑖𝑒𝑡𝑚𝑎

)︀
𝜆𝑒𝑚 −

1

2

∑︁
𝑚𝑛𝑒𝑓

𝜆𝑒𝑓𝑚𝑛
(︀
𝑡𝑖𝑛𝑒𝑓 𝑡

𝑚
𝑎 + 𝑡𝑚𝑛𝑎𝑓 𝑡

𝑖
𝑒

)︀
(7.337)

and then it contributes to the final energy 𝐸 in the following way:

1

2
Q̄𝑁 (𝑇 ) · V̄𝑁 (𝑇 ) =

1

2

(︃∑︁
𝑎𝑖

𝑡𝑖𝑎q𝑎𝑖

)︃
·

(︃∑︁
𝑎𝑖

𝑡𝑖𝑎v𝑎𝑖

)︃
(7.338)

That gives the final equation for the total energy of our system,

𝐸 = 𝐸0 + ⟨𝜓0|e−𝑇 (𝐻0𝑁 +Q0 ·V𝑁 )e𝑇 |𝜓0⟩+
1

2

(︃∑︁
𝑎𝑖

𝑡𝑖𝑎q𝑎𝑖

)︃
·

(︃∑︁
𝑎𝑖

𝑡𝑖𝑎v𝑎𝑖

)︃
=

= 𝐸0 +
∑︁
𝑖𝑎

𝐹𝑖𝑎𝑡
𝑖
𝑎 +

1

4

∑︁
𝑖𝑗𝑎𝑏

⟨𝑖𝑗||𝑎𝑏⟩
(︁
𝑡𝑖𝑗𝑎𝑏 + 2𝑡𝑖𝑎𝑡

𝑗
𝑏

)︁
+

1

2

(︃∑︁
𝑎𝑖

𝑡𝑖𝑎q𝑎𝑖

)︃
·

(︃∑︁
𝑎𝑖

𝑡𝑖𝑎v𝑎𝑖

)︃ (7.339)

Therefore, the CC energy for a solvated system within the PTE(S) scheme involves three C-PCM contributions:
(1) the term 1

2Q0 ·V0 included in 𝐸0, (2) the term
∑︀
𝑖𝑎Q0 · v𝑖𝑎𝑡𝑖𝑎 that occurs implicitly through

∑︀
𝑖𝑎 𝐹𝑖𝑎𝑡

𝑖
𝑎 and

(3) the term 1
2

(︀∑︀
𝑎𝑖 𝑡

𝑖
𝑎q𝑎𝑖

)︀
·
(︀∑︀

𝑎𝑖 𝑡
𝑖
𝑎v𝑎𝑖

)︀
.

This scheme is available in ORCA for canonical-CCSD (RHF and UHF) and DLPNO-CCSD (RHF and UHF). In
order to use it, the user needs to add the tag “CPCMccm 1” in the %cpcm block.

! DLPNO-CCSD cc-pVTZ cc-PVTZ/C TightSCF CPCM(Water)

%cpcm
CPCMccm 1
end

* xyzfile 0 1 water.xyz
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PTES scheme

In this scheme, both Q̄𝑁 and V̄𝑁 in the last term in eq (7.332) depend on the 𝑇 amplitudes but just one of them
depends on the Λ amplitudes,

ℒ(Λ, 𝑇 ) = 𝐸0 + ⟨𝜓0|(1 + Λ)e𝑇𝐻0𝑁e𝑇 |𝜓0⟩+Q0 · V̄𝑁 (Λ, 𝑇 ) +
1

2
Q̄𝑁 (𝑇 ) · V̄𝑁 (Λ, 𝑇 ) (7.340)

The C-PCM terms enter these equations on the one hand, implicitly, through the elements of the Fock matrix (like
for the PTE and PTE(S) schemes), and on the other hand, explicitly through the derivatives of 1

2Q̄𝑁 (𝑇 )·V̄𝑁 (Λ, 𝑇 )
with respect to Λ. If we call ℒCPCM the last C-PCM term in eq (7.340), then the contribution from this term to the
𝑇 amplitudes equations read as:

𝜕ℒCPCM

𝜕𝜆𝑎𝑖
=

1

2

(︃∑︁
𝑎𝑖

𝑡𝑖𝑎q𝑎𝑖

)︃
·

⎡⎣−∑︁
𝑗

𝑡𝑗𝑎v𝑗𝑖 +
∑︁
𝑏

𝑡𝑖𝑏v𝑎𝑏 + v𝑖𝑎 +
∑︁
𝑏𝑗

(︁
𝑡𝑗𝑖𝑏𝑎 − 𝑡

𝑗
𝑎𝑡
𝑖
𝑏

)︁
v𝑏𝑗

⎤⎦ (7.341)

𝜕ℒCPCM

𝜕𝜆𝑎𝑏𝑖𝑗
=

1

2

(︃∑︁
𝑎𝑖

𝑡𝑖𝑎q𝑎𝑖

)︃
·

[︃
−1

2

∑︁
𝑘

𝑡𝑘𝑗𝑎𝑏v𝑘𝑖 +
1

2

∑︁
𝑐

𝑡𝑖𝑗𝑎𝑐v𝑏𝑐 −
1

2

∑︁
𝑐𝑘

(︁
𝑡𝑘𝑗𝑎𝑏𝑡

𝑖
𝑐 + 𝑡𝑖𝑗𝑐𝑏𝑡

𝑘
𝑎

)︁
v𝑐𝑘

]︃
(7.342)

The contribution to the energy is the same as that for the PTE(S) scheme, but with different values for the 𝑇
amplitudes (as the equations to calculate them differ slightly from those for the PTE(S) scheme).

𝐸 = 𝐸0 + ⟨𝜓0|e−𝑇 (𝐻0𝑁 +Q0 ·V𝑁 )e𝑇 |𝜓0⟩+
1

2

(︃∑︁
𝑎𝑖

𝑡𝑖𝑎q𝑎𝑖

)︃
·

(︃∑︁
𝑎𝑖

𝑡𝑖𝑎v𝑎𝑖

)︃
=

= 𝐸0 +
∑︁
𝑖𝑎

𝐹𝑖𝑎𝑡
𝑖
𝑎 +

1

4

∑︁
𝑖𝑗𝑎𝑏

⟨𝑖𝑗||𝑎𝑏⟩
(︁
𝑡𝑖𝑗𝑎𝑏 + 2𝑡𝑖𝑎𝑡

𝑗
𝑏

)︁
+

1

2

(︃∑︁
𝑎𝑖

𝑡𝑖𝑎q𝑎𝑖

)︃
·

(︃∑︁
𝑎𝑖

𝑡𝑖𝑎v𝑎𝑖

)︃ (7.343)

This scheme is the default CCSD/C-PCM approach in ORCA and is available in ORCA for canonical-CCSD (RHF
and UHF) and DLPNO-CCSD (RHF and UHF). In this case, the tag “CPCMccm” in the %cpcm block is equal to 2.
However, as the PTES scheme is the default in ORCA, the user just needs to add the information about the solvent
in the input file, in order to use this approach.

! DLPNO-CCSD cc-pVTZ cc-PVTZ/C TightSCF CPCM(Water)

* xyz 0 1
O -0.00000018976103 0.00606010894837 0.00000000004527
H 0.76098169249695 -0.58891312953082 -0.00000000000022
H -0.76098151333900 -0.58891299029372 -0.00000000000022
*

Notes regarding the use of the CCSD/C-PCM schemes:

• For calculations within the PTE(S) and the PTES schemes, the explicit C-PCM contribution to the total en-
ergy (see eqs. (7.339) and (7.343)) is printed in the “COUPLED CLUSTER ENERGY” block after the equations
for the “T” amplitudes converge. In this case, this energy is labelled as “C-PCM corr. term” and is already
included in the correlation energy, “E(CORR) “. For the input example from above, this information looks
like:

----------------------
COUPLED CLUSTER ENERGY
----------------------

E(0) ... -76.066903687
E(CORR)(strong-pairs) ... -0.267203798
E(CORR)(weak-pairs) ... -0.000106106
E(CORR)(corrected) ... -0.267309904
C-PCM corr. term (included in E(CORR)) ... -0.000003158
E(TOT) ... -76.334213591
Singles Norm <S|S>**1/2 ... 0.017784967
T1 diagnostic ... 0.006287935
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This contribution does not represent the whole C-PCM contribution to the correlation energy, as this one
also occurs, implicitly, through the “T” amplitudes.

• The C-PCM contribution to the Λ equations is implemented in ORCA for the PTE(S) and PTES schemes.
Then, the user can request unrelaxed densities.

7.51 Calculation of Properties

7.51.1 Electric Properties

Calculation of first order (electric dipole and quadrupole moments) and second order (polarizabilities) electric
properties can be requested in the %elprop input block. The second order properties can be calculated through the
solution of the CP-SCF (see CP-SCF Options) or CP-CASSCF (see CASSCF Linear Response) equations. Details
are shown below:

%elprop
Dipole true
Quadrupole true
Polar true
PolarVelocity true # polarizability w.r.t. velocity perturbations
PolarDipQuad true # dipole-quadrupole polarizability
PolarQuadQuad true # quadrupole-quadrupole polarizability
freq_r 0.00 # purely real frequency (default: static calculation)
freq_i 0.00 # purely imaginary frequency (default: static calculation)
Solver CG # CG(conjugate gradient)

# other options: DIIS or POPLE(default)
MaxDIIS 5 # max. dimension of DIIS method
Shift 0.2 # level shift used in DIIS solver
Tol 1e-3 # Convergence of the CP-SCF equations

# (norm of the residual)
MaxIter 64 # max. number of iterations in CPSCF
PrintLevel 2
Origin CenterOfElCharge # center of electronic charge

CenterOfNucCharge # center of nuclear charge
CenterOfSpinDens # center of spin density
CenterOfMass # center of mass (default)
N # position of atom N (starting at 0)
X,Y,Z # explicit position of the origin

# in coordinate input units (Angstrom by default)
end

The most efficient and accurate way to calculate the polarizability analytically is to use the coupled-perturbed SCF
method. The most time consuming and least accurate way is the numerical second derivative of the total energy.
Note that the numerical differentiation requires: (a) tightly or even very tightly converged SCF calculations and (b)
carefully chosen field increments. If the field increment is too large then the truncation error will be large and the
values will be unreliable. On the other hand, if the field increment is too small the numerical error associated with
the finite difference differentiation will get unacceptably large up to the point where the whole calculation becomes
useless.
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7.51.2 The Spin-Orbit Coupling Operator

Several variants of spin-orbit coupling operators can be used for property calculations [611]. They are based on
effective potential and mean-field approaches, and have various parameters that can be selected via the %rel block.
Note that the SOMF operator depends on the density matrix, so the operator itself can differ for example between
a CASSCF and an MRCI calculation.

Note: The defaults have slightly changed in ORCA 5.0, see SOCFlags in the following.

%rel
# ---------------------------------------------------
# SPIN ORBIT COUPLING OPERATORS
# ---------------------------------------------------
SOCType 0 # none

1 # effective nuclear charge
2 # mean-field with atomic densities read from

# disk; similar to SOCType=4
3 # mean-field/effective potential (default)
4 # mean-field with atomic densities generated

# on the fly; see bellow
# ---------------------------------------------------
# Flags for construction of potential; operative
# only for SOCType 3.
# ---------------------------------------------------
SOCFlags 1,4,3,0 # default if nothing is specified

# 1,3,3,0 default if RI is applied and AuxJ available
# e.g. when using !RIJCOSX (default for DFT) or !RIJONX

# Flag 1 = 0 - do not include 1-electron terms
# = 1 - do include 1-electron terms
# Flag 2 = 0 - do not include Coulomb terms
# = 1 - compute Coulomb terms fully numeric
# = 2 - compute Coulomb term seminumeric
# = 3 - compute Coulomb term with RI approx
# = 4 - compute Coulomb term exactly
# Flag 3 = 0 - do not include exchange terms
# = 1 - do include local X-alpha exchange
# the X-Alpha parameter can be chosen via
# % rel Xalpha 0.7 (default)
# = 2 - same as 1 but with sign reversed
# = 3 - exchange via one-center exact
# integrals including the spin-other
# orbit interaction
# = 4 - all exchange terms full analytic
# (this is expensive)
# Flag 4 = 0 - do not include DFT local correlation
# terms
# = 1 - do include local DFT correlation (here
# this is done with VWN5)
#
SOCMaxCenter 4 # max. number of centers to include in

# the integrals (not fully consistently
# implemented yet; better leave equal to 4)

# The following simple input equivalents can also be used:
# SOMF(1X) = SOCType 3, SOCFlags 1,2,3,0 and SOCMaxCenter 4
# RI-SOMF(1X) = SOCType 3, SOCFlags 1,3,3,0 and SOCMaxCenter 4
# VEFF-SOC = SOCType 3, SOCFlags 1,3,1,1 and SOCMaxCenter 4
# VEFF(-2X)-SOC = SOCType 3, SOCFlags 1,3,2,1 and SOCMaxCenter 4
# AMFI = SOCType 3, SOCFlags 1,4,3,0 and SOCMaxCenter 1
# AMFI-A = SOCType 4, SOCFlags 1,4,3,0 and SOCMaxCenter 1
# (AMFI-like approach that uses pre-calculated atomic densities;
# this can be combined with the SOCOff option
# to exclude contributions from specific atoms)

(continues on next page)
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(continued from previous page)

# NOTE: If you choose the RI option you need to specify an auxiliary basis set
# even if the underlying SCF calculation does not make use of any form
# of RI!
# -----------------------------------------------
# For the effective nuclear charge SOC operator
# the nuclear charges can be adjusted.
# -----------------------------------------------
Zeff[26] 0.0 # set the effective nuclear charge

# of iron (Z = 26) to zero
# -----------------------------------------------
# Neglecting SOC contributions from particular
# atoms
# -----------------------------------------------
SOCOff 0,5 # turn off the SOC for atoms 0 and 5

# this makes sense if the SOC operator
# has only one center contributions
# (e.g. effective nuclear charge)

Simple input equivalents are described in more detail in [611]. More details on the AMFI-A approach which uses
pre-calculated atomic densities can be found in [284].

The Breit-Pauli spin-orbit coupling operator is given by:

�̂�SOC = �̂�
(1)
SOC + �̂�

(2)
SOC

with the one- and two-electron contributions

�̂�
(1)
SOC =

𝛼2

2

∑︁
𝑖

∑︁
𝐴

𝑍𝐴
(r𝑖 −R𝐴)× p𝑖

|r𝑖 −R𝐴|3
𝑠𝑖 ≡

𝛼2

2

∑︁
𝑖

∑︁
𝐴

𝑍𝐴𝑟
−3
𝑖𝐴 l̂𝑖𝐴ŝ𝑖 (7.344)

�̂�
(2)
SOC = −𝛼

2

2

∑︁
𝑖

∑︁
𝑗 ̸=𝑖

(r𝑖 − r𝑗)× p𝑖

|r𝑖 − r𝑗 |3
(̂s𝑖 + 2ŝ𝑗) (7.345)

≡ −𝛼
2

2

∑︁
𝑖

∑︁
𝑗 ̸=𝑖

l̂𝑖𝑗𝑟
−3
𝑖𝑗 (̂s𝑖 + 2ŝ𝑗) (7.346)

This operator would be hard to handle exactly; therefore it is common to introduce mean field and/or effective
potential approaches in which the operator is written as an effective one-electron operator:

�̂�SOC ∼=
∑︁
𝑖

ĥ
(eff)
𝑖 ŝ𝑖 (7.347)

The simplest approximation is to simply use the one-electron part and regard the nuclear charges as adjustable
parameters. Reducing their values from the exact nuclear charge is supposed to account in an average way for the
screening of the nuclear charge by the electrons. In our code we use the effective nuclear charges of Koseki et
al. This approximation introduces errors which are usually smaller than 10% but sometimes are larger and may
approach 20% in some cases. The approximation is best for first row main group elements and the first transition
row (2p and 3d elements). For heavier elements it becomes unreliable.

A much better approximation is to take the two-electron terms into account precisely. Without going into details
here – the situation is as in Hartree-Fock (or density functional) theory and one gets Coulomb, exchange and cor-
relation terms. The correlation terms (evaluated in a local DFT fashion) are negligible and can be safely neglected.
They are optionally included and are not expensive computationally. The Coulomb terms is (after the one-electron
term) the second largest contribution and is expensive to evaluate exactly. The situation is such that in the Coulomb-
part the spin-other orbit interaction (the second term in the two-electron part) does not contribute and one only has
to deal with the spin-own-orbit contribution. The exact evaluation is usually too expensive to evaluate. The RI and
seminumeric approximation are much more efficient and introduce only minimal errors (on the order of usually
not more than 1 ppm in g-tensor calculations for example) and are therefore recommended. The RI approximation
is computationally more efficient. Please note that you have to specify an auxiliary basis set to take advantage of
the RI approximation, even if the preceding SCF calculation does not make use of any form of RI. The one-center
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approximation to the Coulomb term introduces much larger errors. The fully numeric method is both slower and
less accurate and is not recommended.

The exchange term has contributions from both the spin-own-orbit and spin-other-orbit interaction. These are
taken both into account in the mean-field approximation which is accessed by Flag 3 = 3. Here a one-center
approximation is much better than for the Coulomb term since both the integrals and the density matrix elements
are short ranged. Together with the Coulomb term this gives a very accurate SOC operator which is recommended.
The DFT-Veff operator suffers from not treating the spin-other-orbit part in the exchange which gives significant
errors (also, local DFT underestimates the exchange contributions from the spin-same-orbit interaction by some
10% relative to HF but this is not a major source of error). However, it is interesting to observe that in the precise
analytical evaluation of the SOMF operator, the spin-other-orbit interaction is exactly -2 times the spin-own-orbit
interation. Thus, in the DFT framework one gets a much better SOC operator if the sign of the DFT exchange term
is simply reversed! This is accessed by Flag 3 = 2.

Exclusion of Atomic Centers

In ORCA it is possible to change the spin-orbit coupling operator in order to exclude contributions from user-
defined atoms. This approach can be useful, for example, in quantifying the contribution of the ligands to the
zero-field splitting (ZFS); for an application of this method see Ref. [835].

This is illustrated for the calculation of the SOC contribution to the ZFS of the triplet oxygen molecule. Using the
input below we start by a normal calculation of the ZFS, including both oxygen atoms. Note that we use here the
effective nuclear charge operator. This is required as not all implemented SOC operators are compatible with the
decomposition in terms of individual centers contributions.

! def2-TZVP def2-TZVP/c

%casscf nel 8
norb 6
mult 3,1
nroots 1,3
rel dosoc true

end
end

%rel
SOCType 1
end

*xyz 0 3
O 0 0 0
O 0 0 1.207
*

The calculated value of the D parameter is approximately 2.573 cm−1. In a second calculation we exclude the
contribution from the first oxygen atom. For this we change the %rel block to the one below.

%rel
SOCType 1
SOCOff 0
end

Now the D parameter is calculated to be approximately 0.643 cm−1, a result that deviates quite significantly from
half of the value calculated previously, implying that non-additive effects are important. In addition to the effective
nuclear charge operator, the AMFI-A operator described previously can be used. Given that this is based on pre-
calculated atomic densities, it might be preferred for heavier elements where the effective nuclear charge operator
becomes unreliable. The method is not limited to CASSCF calculations as described above, and can be used in
DFT, MRCI and ROCIS calculations.
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7.51.3 EPR and NMR properties

Calculation of EPR and NMR response properties can be requested in the %eprnmr input block. The individual
flags are given below.

%eprnmr
# Calculate the g-tensor using CP-KS theory
gtensor true
# Calculate and print one- and two-electron contributions to the g-tensor
gtensor_1el2el true

# Calculate the D-tensor
DTensor so # spin orbit part

ss # spin-spin part
ssandso # both parts

DSOC qro # quasi-restricted method; must be done with the keyword !uno
pk # Pederson-Khanna method.

# NOTE: both approximations are only valid for
# pure functionals (no HF exchange)

cp # coupled-perturbed method (default)
cvw # van W\"ullen method

DSS direct # directly use the canonical orbitals for the spin density
uno # use spin density from UNOs

PrintLevel n # Amount of output (default 2)

# whether to calculate and print the Euler angles via `orca_euler` if the
# calculation of the g-tensor or the D-tensor is requested
PrintEuler false

# For the solution of the CP-SCF equations:
Solver Pople # Pople solver (default)

CG # conjugate gradient
DIIS # DIIS type solver

MaxIter 64 # maximum number of iterations
MaxDIIS 10 # max. number of DIIS vectors (only DIIS)
Tol 1e-3 # convergence tolerance
LevelShift 0.05 # level shift for DIIS (ignored otherwise)

Ori CenterOfElCharge # center of electronic charge
CenterOfNucCharge # center of nuclear charge
CenterOfSpinDens # center of spin density
CenterOfMass # center of mass
GIAO # use the GIAO formalism (default)
N # number of the atom to put the origin
X,Y,Z # explicit position of the origin

# in coordinate input units (Angstrom by default)

# Calculate the NMR shielding tensor
NMRShielding 1 # for chosen nuclei - specified with the Nuclei keyword

2 # for all nuclei - equivalent to the 'NMR' simple input keyword

# treatment of 1-electron integrals in the RHS of the CPSCF equations
giao_1el = giao_1el_analytic # analytical, default

giao_1el_numeric # numerical - for testing only

# treatment of 2-electron integrals in the RHS of the CPSCF equations
# various options for combination of approximations in Coulomb (J) and
# exact (HF) exchange (K) part. The default is the same as used for the SCF.
giao_2el = giao_2el_rijk # RIJK approximation

giao_2el_same_as_scf # use same scheme as in SCF
giao_2el_analytic # fully analytical, for testing only

(continues on next page)
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(continued from previous page)

giao_2el_rijonx # RIJ approximation with analytical K
giao_2el_cosjonx # COSJ approximation with analytical K
giao_2el_rijcosx # RIJ approximation with COSX approximation
giao_2el_cosjx # COSJ approximation with COSX apprxomation
giao_2el_exactjcosx # exact J with COSX approximation
giao_2el_exactjrik # exact J with RIK approximation

# for g-tensor calculations using the SOMF-operator for the SOC
# treatment, the 2-electron contribution to the GIAO terms can be
# computed as well, but they take much more time and usually do not
# contribute significantly and therefore are disabled by default
do_giao_soc2el false

# treatment of tau in meta-GGA DFT - see below
Tau = Dobson # (default) Other options: 0, MS, GI

# use effective nuclear charges for the gauge correction to the A-tensor
# (this makes sense if an effective 1-electron SOC operator is used)
hfcgaugecorrection_zeff true

# calculate diamagnetic spin-orbit (DSO) integrals needed for the gauge
# correction to the A-tensor numerically (faster than the analytical way)
hfcgaugecorrection_numeric true

# Grid settings for the above: <0 means to use the DFT grid setting
hfcgaugecorrection_angulargrid -1
hfcgaugecorrection_intacc -1
hfcgaugecorrection_prunegrid -1
hfcgaugecorrection_bfcutoff -1
hfcgaugecorrection_wcutoff -1

Nuclei = all type { flags }
# Calculate nuclear properties. Here the properties
# for all nuclei of "type" are calculated ("type" is
# an element name, for example Cu.)
# Flags can be the following:
# aiso - calculate the isotropic part of the HFC
# adip - calculate the dipolar part of the HFC
# aorb - 2nd order contribution to the HFC from SOC
# fgrad - calculate the electric field gradient
# rho - calculate the electron density at the
# nucleus
# shift - NMR shielding tensor (orbital contribution)
# srot - spin-rotation tensor
# ssdso - spin-spin coupling constants, diamagnetic spin orbit term
# sspso - spin-spin coupling constants, paramagnetic spin orbit term
# ssfc - spin-spin coupling constants, Fermi contact term
# sssd - spin-spin coupling constants, spin dipole term
# ssall - spin-spin coupling constants, calculate all above contributions

# In addition you can change several parameters
# e.g. for a different isotope.
Nuclei = all N { PPP=39.1, QQQ=0.5, III=1.0 };

# PPP - the HFC proportionality factor for this nucleus
# = ge*gN*betaE*betaN
# QQQ - the quadrupole moment for this nucleus
# III - the spin for this nucleus
# ist - isotope
# ssgn - nuclear g-factor for spin-spin coupling
# and spin-rotation constants (overrides ist)

(continues on next page)
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# For example:
# calculates the hyperfine coupling for all nitrogen atoms
Nuclei = all N { aiso, adip, fgrad, rho};

# calculates the spin-spin coupling constants for all carbon atoms
# assuming all carbon atoms are 13C
Nuclei = all C { ssall, ist = 13};

# You can also calculate properties for individual atoms
# as in the following example:
Nuclei = 1,5,8 { aiso, adip};

# NOTE: Counting starts with atom 1!
# WARNING: All the nuclei, mentioned in one line
# as above will be assigned the same parameters !

# For spin-spin coupling constants, a distance threshold is
# applied in the eprnmr block to restrict the number of couplings
# to be computed, given in Angstroms:
SpinSpinRThresh 5.0 # default

# Coupling can be restricted to certain element pairs
# (if they are added to the "Nuclei" list and are within RThresh).
# The syntax accepts multiple pairs of element symbols or
# atomic numbers or "*" as a wildcard
SpinSpinElemPairs {C C} {H *} {6 7} # default is {* *}, i.e. all

# Similarly, coupling can be restricted to certain atom pairs
# (if they are added to the "Nuclei" list and are within RThresh).
# The syntax accepts multiple pairs of indices (starting at 0!)
# or "*" as a wildcard
SpinSpinAtomPairs {1 0} {5 *} # default is {* *}, i.e. all

# whether to print reduced spin-spin coupling constants
PrintReducedCoupling false

end

Hyperfine and Quadrupole Couplings

The hyperfine coupling has four contributions:

(a) The isotropic Fermi contact term that arises from the finite spin density on the nucleus under investigation. It
is calculated for nucleus 𝑁 from:

𝑎iso (𝑁) =

(︂
4

3
𝜋 ⟨𝑆𝑧⟩−1

)︂
𝑔𝑒𝑔𝑁𝛽𝑒𝛽𝑁𝜌

(︁
�⃗�𝑁

)︁
(7.348)

Here, ⟨𝑆𝑧⟩ is the expectation value of the z-component of the total spin, 𝑔𝑒 and 𝑔𝑁 are the electron and nuclear
g-factors and 𝛽𝑒 and 𝛽𝑁 are the electron and nuclear magnetons respectively. 𝜌

(︁
�⃗�𝑁

)︁
is the spin density at the

nucleus. The proportionality factor 𝑃𝑁 = 𝑔𝑒𝑔𝑁𝛽𝑒𝛽𝑁 is commonly used and has the dimensions MHz bohr3 in
ORCA.

(b) The spin dipole part that arises from the magnetic dipole interaction of the magnetic nucleus with the magnetic
moment of the electron. It is also calculated as an expectation value over the spin density as:

𝐴dip
𝜇𝜈 (𝑁) = 𝑃𝑁

∑︁
𝑘𝑙𝜌𝑘𝑙

⟨︀
𝜑𝑘
⃒⃒
𝑟−5𝑁

(︀
3�⃗�𝑁𝜇�⃗�𝑁𝜈 − 𝛿𝜇𝜈𝑟2𝑁

)︀⃒⃒
𝜑𝑙
⟩︀

(7.349)

where 𝜌 is the spin-density matrix and �⃗�𝑁 is a vector of magnitude 𝑟𝑁 that points from the nucleus in question to
the electron ({𝜑} is the set of basis functions).
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(c) The second order contribution that arises from spin-orbit coupling. Presently ORCA can calculate all these
contributions. The first two are calculated as simple expectation values of the appropriate operators over the self-
consistent spin density, but the second order contribution requires the solution of the coupled-perturbed SCF equa-
tions and is consequently computationally more demanding. The contribution can be written:

𝐴orb
𝜇𝜈 (𝑁) = − 1

2𝑆
𝑃𝑁
∑︁
𝑘𝑙

𝜕𝜌𝑘𝑙
𝜕𝐼𝜈

⟨︀
𝜑𝑘
⃒⃒
ℎSOC
𝜇

⃒⃒
𝜑𝑙
⟩︀

(7.350)

The derivative of the spin density is computed from solving the coupled-perturbed SCF equations with respect to
the nucleus-orbit coupling as perturbation. The nucleus-orbit coupling is represented by the operator

ℎNOC
𝜈 (𝐴) =

∑︁
𝑖

𝑟−3𝑖𝐴 𝑙
(𝐴)
𝑖,𝜈 (7.351)

where the sum is over electrons and 𝐴 is the nucleus in question.

(d) The gauge-correction contribution.[492] This term is often small. However, it is needed in order to get exactly
gauge-invariant results. We recently showed that the gauge correction can become crucial in the long-distance limit
between the nuclear spin and the electron spin. This is relevant for pseudocontact NMR chemical shifts (PCS).[492]

The field gradient tensor is closely related to the dipole contribution to the hyperfine coupling. The main differ-
ences are that the electron instead of the spin density enters its calculation and that it contains a nuclear contribution
due to the surrounding nuclei. It is calculated from

𝑉𝜇𝜈 (𝑁) = −
∑︀
𝑘𝑙

𝑃𝑘𝑙
⟨︀
𝜑𝑘
⃒⃒
𝑟−5𝑁

(︀
3�⃗�𝑁𝜇�⃗�𝑁𝜈 − 𝛿𝜇𝜈𝑟2𝑁

)︀⃒⃒
𝜑𝑙
⟩︀

+
∑︀
�̸�=𝑁

𝑍𝐴�⃗�
−5
𝐴𝑁

(︁
3�⃗�𝐴𝑁𝜇�⃗�𝐴𝑁𝜈 − 𝛿𝜇𝜈𝑅2

𝐴𝑁

)︁ (7.352)

with 𝑍𝐴 as the nuclear charge of nucleus 𝐴 and �⃗�𝐴𝑁 as a vector of magnitude 𝑅𝐴𝑁 that points from nucleus 𝐴
to nucleus 𝑁 . P is the first order density matrix.

NOTE:

• Hyperfine and quadrupole couplings are properties where the standard basis sets that have been designed for
geometry optimization and the like may not be entirely satisfactory (especially for atoms heavier than Ne).
You should probably look into tailoring the basis set according to your needs. While it is likely that a later
release will provide one or two special basis sets for “core-property” calculations at this time you have to
make sure yourself that the basis set has enough flexibility in the core region, for example by uncontracting
core basis functions and adding s-primitives with large exponents (or using the “decontraction feature”,
section Choice of Basis Set). If you add these tight functions and use DFT make sure that the numerical
integration is still satisfactory. Use the “SpecialGrid” feature to enlarge grids for individual atoms without
increasing the computational effort too drastically.

• For heavy nuclei you may want to consider the possibility of relativistic effects. Scalar relativistic effects
can be handled with several quasi-relativistic Hamiltonians in ORCA, an overview of the possibilities and
some recommendations can be found in Relativistic Calculations. Note that relativistic calculations may have
special requirements on basis sets, and in the context of property calculations, you should be especially aware
of the importance of using picture change corrections (see Relativistic Calculations and Picture-Change
Effects). In quasi-relativistic calculations with DFT, one should also be very cautious about accuracy of the
numerical integration, especially for heavier (transition metal) nuclei.

Second order HFCs require the calculation of the spin-orbit coupling contributions which in turn requires the
calculation of the coupled perturbed SCF equations. These effects can be quite significant for heavier nuclei and
should definitely be included for transition metal complexes. The spin-orbit coupling treatment used is the same
as described under The Spin-Orbit Coupling Operator.
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The g-Tensor

The EPR g-tensor is a property that can be calculated as a second derivative of the energy and it is implemented as
such in ORCA for the SCF methods—e.g. HF and DFT—, CASSCF, as well as all-electron MP2 (or RI-MP2) and
double-hybrid DFT. The following four contributions arise for the g-tensor (SZ = spin Zeeman, RMC = relativistic
mass correction, DSO = diamagnetic spin-orbit correction, PSO = orbital Zeeman/SOC term):

𝑔(SZ)
𝜇𝜈 = 𝛿𝜇𝜈𝑔𝑒 (7.353)

𝑔(RMC)
𝜇𝜈 = −𝛼

2𝑔𝑒
2𝑆

∑︁
𝑘,𝑙

𝑃𝛼−𝛽𝑘𝑙

⟨
𝜑𝑘

⃒⃒⃒
𝑇
⃒⃒⃒
𝜑𝑙

⟩
(7.354)

𝑔(DSO)
𝜇𝜈 =

𝛼2𝑔𝑒
4𝑆

∑︁
𝑘,𝑙

𝑃𝛼−𝛽𝑘𝑙

⟨
𝜑𝑘

⃒⃒⃒⃒
⃒∑︁
𝐴

𝜉 (𝑟𝐴) [r𝐴r𝑂 − r𝐴,𝜇r𝑂,𝜈 ]

⃒⃒⃒⃒
⃒𝜑𝑙
⟩

(7.355)

𝑔(PSO)
𝜇𝜈 = − 𝑔𝑒

2𝑆

∑︁
𝑘,𝑙

𝜕𝑃𝛼−𝛽𝑘𝑙

𝜕𝐵𝜇

⟨︀
𝜑𝑘
⃒⃒
ℎSOC
𝜈

⃒⃒
𝜑𝑙
⟩︀

(7.356)

Here, 𝑔𝑒 is the free-electron g-value (=2.002319. . . ), 𝑆 is the total spin, 𝛼 the fine structure constant, 𝑃𝛼−𝛽 is the
spin density matrix, 𝜑is the basis set, 𝑇 is the kinetic energy operator, 𝜉 (𝑟𝐴) an approximate radial operator, ℎSOC

the spatial part of an effective one-electron spin-orbit operator and 𝐵𝜇 is a component of the magnetic field. The
calculation of the derivative of the spin-density depends on the chosen level of theory. For the SCF-level it is done
based on the coupled-perturbed SCF theory with respect to a magnetic field perturbation.

Accuracy. g-tensor calculations at the SCF level are not highly demanding in terms of basis set size. Basis sets
that give reliable SCF results (at least valence double-zeta plus polarization) usually also give reliable g-tensor
results. For many molecules the Hartree-Fock approximation will give reasonable predictions. In a number of
cases, however, it breaks down completely. DFT is more robust in this respect and the number of molecules where
it fails is much smaller. Among the density functionals, the hybrid functionals seem to be the most accurate. In my
hands PBE0 is perhaps the best although PWP1 and B3LYP are not much worse. The GGA functionals such as BP,
PW91, BLYP or PBE are equally good for small radicals but are significantly inferior to their hybrid counterparts
for transition metal complexes.

Gauge dependence. Unfortunately, the g-tensor is a gauge dependent property, i.e. the results depend on where the
origin is chosen within the molecule. Unless fully invariant procedures (such as GIAOs) are used, this undesirable
aspect is always present in the calculations. GIAOs are now available for calculations on the SCF-level in ORCA.
However, if the choice of gauge origin is not outrageously poor, the gauge dependence is usually so small that it
can be ignored for all practical purposes, especially if large basis sets are used. ORCA gives you considerable
freedom in the choice of gauge origin. It can either be the center of mass, the center of nuclear charge, the center of
electronic charge, GIAOs (recommended if available), a special atom or a user-defined point in space. It is wise to
check the sensitivity of the results with respect to the choice of origin, especially when small g-shifts on the order
of only a few hundred ppm are calculated.

Spin-orbit coupling operator. In previous versions of the code, the g-tensor module used the parameterization
of Koseki et al. [462, 463, 464] for the spin-orbit operator. This is expected to be a reasonable approximation
for the 2p and 3d elements and less satisfactory for heavier main group or transition metal containing systems.
Thus, the main target molecules with the simple operators are radicals made of light atoms and first row transition
metal complexes. More accurate SOC operators (at only moderately increased computational cost) have now been
implemented and are described in section The Spin-Orbit Coupling Operator. With these operators there are
fewer restrictions. However, for very heavy elements they will suffer from the shortcomings of the Breit-Pauli
approximation and future releases will modify these operators to take into account the ZORA or DKH corrections
to the SOC.
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Zero-Field-Splitting

It is well known that the ZFS consists of a first order term arising from the direct spin-spin interaction[364]:

𝐷
(SS)
𝐾𝐿 =

1

2

𝛼2

𝑆 (2𝑆 − 1)

⟨
0𝑆𝑆

⃒⃒⃒⃒
⃒⃒∑︁
𝑖

∑︁
𝑗 ̸=𝑖

𝑟2𝑖𝑗𝛿𝐾𝐿 − 3 (r𝑖𝑗)𝐾 (r𝑖𝑗)𝐿
𝑟5𝑖𝑗

{2𝑠𝑧𝑖𝑠𝑧𝑗 − 𝑠𝑥𝑖𝑠𝑥𝑗 − 𝑠𝑦𝑖𝑠𝑦𝑗}

⃒⃒⃒⃒
⃒⃒ 0𝑆𝑆

⟩
(7.357)

(𝐾,𝐿 =x,y,z). Here 𝛼 is the fine structure constant (≈ 1/137 in atomic units), r𝑖𝑗 is the electronic distance vector
with magnitude 𝑟𝑖𝑗 and 𝑠𝑖 is the spin-vector operator for the 𝑖’th electron. |0𝑆𝑆⟩ is the exact ground state eigen-
function of the Born-Oppenheimer Hamiltonian with total spin 𝑆 and projection quantum number𝑀𝑆 = 𝑆. Since
the spin-spin interaction is of first order, it presents no particular difficulties. The more complicated contribution to
the D-tensor arises from the spin-orbit interaction, which gives a second order contribution. Under the assumption
that the spin-orbit coupling (SOC) operator can to a good approximation be represented by an effective one-electron
operator (�̂�SOC =

∑︀
𝑖 ĥ

SOC
𝑖 ŝ𝑖), ref [622] has derived the following sum-over-states (SOS) equations for the SOC

contribution to the ZFS tensor:

𝐷
SOC−(0)
𝐾𝐿 = − 1

𝑆2

∑︁
𝑏(𝑆𝑏=𝑆)

∆−1𝑏

⟨
0𝑆𝑆

⃒⃒⃒⃒
⃒∑︁
𝑖

ℎ̂𝐾;SOC
𝑖 𝑠𝑖,0

⃒⃒⃒⃒
⃒ 𝑏𝑆𝑆

⟩⟨
𝑏𝑆𝑆

⃒⃒⃒⃒
⃒∑︁
𝑖

ℎ̂𝐿;SOC
𝑖 𝑠𝑖,0

⃒⃒⃒⃒
⃒ 0𝑆𝑆

⟩
(7.358)

𝐷
SOC−(−1)
𝐾𝐿 = − 1

𝑆 (2𝑆 − 1)

∑︁
𝑏(𝑆𝑏=𝑆−1)

∆−1𝑏

⟨
0𝑆𝑆

⃒⃒⃒⃒
⃒∑︁
𝑖

ℎ̂𝐾;SOC
𝑖 𝑠𝑖,+1

⃒⃒⃒⃒
⃒ 𝑏𝑆−1𝑆−1

⟩⟨
𝑏𝑆−1𝑆−1

⃒⃒⃒⃒
⃒∑︁
𝑖

ℎ̂𝐿;SOC
𝑖 𝑠𝑖,−1

⃒⃒⃒⃒
⃒ 0𝑆𝑆

⟩
(7.359)

𝐷
SOC−(+1)
𝐾𝐿 = − 1

(𝑆+1)(2𝑆+1) ·∑︀
𝑏(𝑆𝑏=𝑆+1)

∆−1𝑏

⟨
0𝑆𝑆

⃒⃒⃒⃒∑︀
𝑖

ℎ̂𝐾;SOC
𝑖 𝑠𝑖,−1

⃒⃒⃒⃒
𝑏𝑆+1𝑆+1

⟩⟨
𝑏𝑆+1𝑆+1

⃒⃒⃒⃒∑︀
𝑖

ℎ̂𝐿;SOC
𝑖 𝑠𝑖,+1

⃒⃒⃒⃒
0𝑆𝑆

⟩
(7.360)

Here the one-electron spin-operator for electron 𝑖 has been written in terms of spherical vector operator components
𝑠𝑖,𝑚 with 𝑚 = 0,±1 and ∆𝑏 = 𝐸𝑏 − 𝐸0 is the excitation energy to the excited state multiplet

⃒⃒
𝑏𝑆𝑆
⟩︀

(all 𝑀𝑆

components are degenerate at the level of the BO Hamiltonian).

One attractive possibility is to represent the SOC by the spin-orbit mean-field (SOMF) method developed by Hess
et al.,[390] widely used in the AMFI program by Schimmelpfennig [762] and discussed in detail by Berning et
al.[97] as well as in ref. [611]. In terms of an (orthonormal) one-electron basis, the matrix elements of the SOMF
operator are:

ℎ𝐾;SOC
𝑟𝑠 =

(︁
𝑝
⃒⃒⃒
ℎ̂1𝑒𝑙−SOC
𝐾

⃒⃒⃒
𝑞
)︁

+
∑︀
𝑟𝑠
𝑃𝑟𝑠

[︀(︀
𝑝𝑞
⃒⃒
𝑔SOC
𝐾

⃒⃒
𝑟𝑠
)︀
− 3

2

(︀
𝑝𝑟
⃒⃒
𝑔SOC
𝐾

⃒⃒
𝑠𝑞
)︀
− 3

2

(︀
𝑠𝑞
⃒⃒
𝑔SOC
𝐾

⃒⃒
𝑝𝑟
)︀]︀ (7.361)

and:

ℎ̂1𝑒𝑙−SOC
𝑘 (r𝑖) =

𝛼2

2

∑︁
𝑖

∑︁
𝐴

𝑍𝐴𝑟
−3
𝑖𝐴 l̂𝑖𝐴;𝑘 (7.362)

𝑔SOC
𝑘 (r𝑖,r𝑗) = −

𝛼2

2
l̂𝑖𝑗;𝑘𝑟

−3
𝑖𝑗

(7.363)

l̂𝑖𝐴 = (r̂𝑖 − R𝐴) × p̂𝑖 is the angular momentum of the 𝑖’th electron relative to nucleus 𝐴. The vector r̂𝑖𝐴 =
r̂𝑖 − R𝐴 of magnitude 𝑟𝑖𝐴 is the position of the 𝑖’th electron relative to atom 𝐴. Likewise, the vector r̂𝑖𝑗 =

r̂𝑖 − r̂𝑗 of magnitude 𝑟𝑖𝑗 is the position of the 𝑖th electron relative to electron 𝑗 and l̂𝑖𝑗 = (r̂𝑖 − r̂𝑗) × p̂𝑖 is its
angular momentum relative to this electron. P is the charge density matrix of the electron ground state (𝑃𝑝𝑞 =⟨︀
0𝑆𝑆

⃒⃒
𝐸𝑝𝑞
⃒⃒
0𝑆𝑆

⟩︀
with 𝐸𝑝𝑞 = 𝑎+𝑝𝛽𝑎𝑞𝛽 + 𝑎+𝑝𝛼𝑎𝑞𝛼 where 𝑎+𝑝𝜎 and 𝑎𝑞𝜎 are the usual Fermion creation and annihilation

operators).
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General Treatment of ZFS

The zero-field splitting (ZFS) is typically the leading term in the Spin-Hamiltonian (SH) for transition metal com-
plexes with a total ground state spin 𝑆>1/2 (for reviews and references see chapter Publications Related to ORCA).
Its net effect is to introduce a splitting of the 2𝑆 + 1 𝑀𝑆 levels (which are exactly degenerate at the level of the
Born-Oppenheimer Hamiltonian), even in the absence of an external magnetic field. Thus, an analysis and inter-
pretation of the ZFS is imperative if the information content of the various physical methods that are sensitive to
ZFS effects.

In 2007, we have developed a procedure that makes the ZFS calculation compatible with the language of analytic
derivatives.[614] Perhaps the most transparent route is to start from the exact solutions of the Born-Oppenheimer
Hamiltonian. To this end, we look at the second derivative of the ground state energy (𝐸 =

⟨
0𝑆𝑆

⃒⃒⃒
�̂�
⃒⃒⃒
0𝑆𝑆

⟩
) with

respect to a spin-dependent one-electron operator of the general form:

ℎ̂𝐾;(𝑚) = 𝑥
(𝑚)
𝐾

∑︁
𝑝𝑞

ℎ𝐾𝑝𝑞𝑆
(𝑚)
𝑝𝑞 (7.364)

Where ℎ𝐾𝑝𝑞 is the matrix of the 𝐾’th component of the spatial part of the operator (assumed to be imaginary
Hermitian as is the case for the spatial components of the SOC operator) and 𝑆(𝑚)

𝑝𝑞 is the second quantized form
of the spin vector operator (𝑚 = 0,±1). The quantity 𝑥(𝑚)

𝐾 is a formal perturbation parameter. Using the exact
eigenfunctions of the BO operator, the first derivative is:

𝜕𝐸

𝜕𝑥
(𝑚)
𝐾

⃒⃒⃒⃒
⃒
𝑥
(𝑚)
𝐾 =0

=
∑︁
𝑝𝑞

ℎ𝐾𝑝𝑞𝑃
(𝑚)
𝑝𝑞 (7.365)

With the components of the spin density:

𝑃 (𝑚)
𝑝𝑞 =

⟨
0𝑆𝑆 |𝑆(𝑚)

𝑝𝑞 |0𝑆𝑆
⟩

(7.366)

The second derivative with respect to a second component for 𝑚′ = −𝑚 is:

𝜕2𝐸

𝜕𝑥
(𝑚)
𝐾 𝜕𝑥

(−𝑚)
𝐿

⃒⃒⃒⃒
⃒
𝑥
(𝑚)
𝐾 =𝑥

(−𝑚)
𝐿 =0

=
∑︁
𝑝𝑞

ℎ𝐾𝑝𝑞
𝜕𝑃

(𝑚)
𝑝𝑞

𝑥
(−𝑚)
𝐿

(7.367)

The derivative of the spin density may be written as:

𝜕𝑃
(𝑚)
𝑝𝑞

𝑥
(−𝑚)
𝐿

=
⟨
0
𝑆𝑆(−𝑚)
𝐿 |𝑆(𝑚)

𝑝𝑞 |0𝑆𝑆
⟩
+
⟨
0𝑆𝑆 |𝑆(𝑚)

𝑝𝑞 |0
𝑆𝑆(−𝑚)
𝐿

⟩
(7.368)

Expanding the perturbed wavefunction in terms of the unperturbed states gives to first order:⃒⃒⃒
0
𝑆𝑆(−𝑚)
𝐿

⟩
= −

∑︁
𝑛 ̸= 0∆−1𝑛 |𝑛⟩

⟨
𝑛
⃒⃒⃒
ℎ̂𝐿;(−𝑚)

⃒⃒⃒
0𝑆𝑆

⟩
(7.369)

Where |𝑛⟩ is any of the
⃒⃒⃒
𝑏𝑆

′𝑀 ′
⟩

. Thus, one gets:

𝜕2𝐸

𝜕𝑥
(𝑚)
𝐾 𝜕𝑥

(−𝑚)
𝐿

=
∑︁
𝑝𝑞

ℎ𝐾𝑝𝑞
𝜕𝑃

(𝑚)
𝑝𝑞

𝑥
(−𝑚)
𝐿

(7.370)

= −
∑︁
𝑛 ̸=0

∆−1𝑛

[︁⟨
0𝑆𝑆 |ℎ̂𝐿;(−𝑚)|𝑛

⟩⟨
𝑛|ℎ̂𝐾;(𝑚)|0𝑆𝑆

⟩
+
⟨
0𝑆𝑆 |ℎ̂𝐾;(𝑚)|𝑛

⟩⟨
𝑛|ℎ̂𝐿;(−𝑚)|0𝑆𝑆

⟩]︁
(7.371)

The equality holds for exact states. For approximate electronic structure treatments, the analytic derivative approach
is more attractive since an infinite sum over states can never be performed in practice and the calculation of analytic
derivative is computationally less demanding than the calculation of excited many electron states.

Using eq. (7.370), the components of the SOC-contribution to the D-tensor are reformulated as

𝐷
SOC−(0)
𝐾𝐿 =

1

2𝑆2

∑︁
𝑝𝑞

ℎ𝐾;SOC
𝑝𝑞

𝜕𝑃
(0)
𝑝𝑞

𝜕𝑥
(0)
𝐿

(7.372)
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𝐷
SOC−(−1)
𝐾𝐿 =

1

𝑆 (2𝑆 − 1)

∑︁
𝑝𝑞

ℎ𝐾;SOC
𝑝𝑞

𝜕𝑃
(+1)
𝑝𝑞

𝜕𝑥
(−1)
𝐿

(7.373)

𝐷
SOC−(+1)
𝐾𝐿 =

1

(𝑆 + 1) (2𝑆 + 1)

∑︁
𝑝𝑞

ℎ𝐾;SOC
𝑝𝑞

𝜕𝑃
(−1)
𝑝𝑞

𝜕𝑥
(+1)
𝐿

(7.374)

These are general equations that can be applied together with any non-relativistic or scalar relativistic electronic
structure method that can be cast in second quantized form. Below, the formalism is applied to the case of a
self-consistent field (HF, DFT) reference state.

For DFT or HF ground states, the equations are further developed as follows:

The SCF energy is:

𝐸SCF = 𝑉NN +
⟨︀
Ph+

⟩︀
+

1

2

∫︁ ∫︁
𝜌 (r1) 𝜌 (r2)

|r1 − r2|
𝑑r1𝑑r2 −

1

2
𝑎X

∑︁
𝜇𝜈𝜅𝜏𝜎

𝑃𝜎𝜇𝜅𝑃
𝜎
𝜈𝜏 (𝜇𝜈|𝜅𝜏) + 𝑐DF𝐸XC [𝜌𝛼, 𝜌𝛽 ]

(7.375)

Here 𝑉NN is the nuclear repulsion energy and ℎ𝜇𝜈 is a matrix element of the one-electron operator which contains
the kinetic energy and electron-nuclear attraction terms (⟨ab⟩ denotes the trace of the matrix product ab). As
usual, the molecular spin-orbitals 𝜓𝜎𝑝 are expanded in atom centered basis functions (𝜎 = 𝛼, 𝛽):

𝜓𝜎𝑝 (r) =
∑︁
𝜇

𝑐𝜎𝜇𝑝𝜑𝜇 (r) (7.376)

with MO coefficients 𝑐𝜎𝜇𝑝. The two-electron integrals are defined as:

(𝜇𝜈|𝜅𝜏) =
∫︁ ∫︁

𝜑𝜇 (r1)𝜑𝜈 (r1) 𝑟
−1
12 𝜑𝜅 (r2)𝜑𝜏 (r2) 𝑑r1𝑑r2 (7.377)

The mixing parameter 𝑎X controls the fraction of Hartree-Fock exchange and is of a semi-empirical nature.
𝐸XC [𝜌𝛼, 𝜌𝛽 ] represent the exchange-correlation energy. The parameter 𝑐DF is an overall scaling factor that al-
lows one to proceed from Hartree-Fock theory (𝑎X = 1, 𝑐DF = 0) to pure DFT (𝑎X = 0, 𝑐DF = 1) to hybrid DFT
(0 < 𝑎X < 1, 𝑐DF = 1). The orbitals satisfy the spin-unrestricted SCF equations:

𝐹𝜎𝜇𝜈 = ℎ𝜇𝜈 +
∑︁
𝜅𝜏

𝑃𝜅𝜏 (𝜇𝜈|𝜅𝜏)− 𝑎X𝑃
𝜎
𝜅𝜏 (𝜇𝜅|𝜈𝜏) + 𝑐DF (𝜇|𝑉 𝛼𝑋𝐶 |𝜈) (7.378)

With 𝑉 𝜎𝑋𝐶 = 𝛿𝐸𝑋𝐶

𝛿𝜌𝜎(r)
and 𝑃𝜇𝜈 = 𝑃𝛼𝜇𝜈 + 𝑃 𝛽𝜇𝜈 being the total electron density. For the SOC perturbation it is

customary to regard the basis set as perturbation independent. In a spin-unrestricted treatment, the first derivative
is:

𝜕𝐸SCF

𝜕𝑥
(𝑚)
𝐾

=
∑︁
𝑖𝛼

(︀
𝑖𝛼|ℎ𝐾𝑠𝑚|𝑖𝛼

)︀
+
∑︁
𝑖𝛽

(︀
𝑖𝛽 |ℎ𝐾𝑠𝑚|𝑖𝛽

)︀
= 0 (7.379)

For the second derivative, the perturbed orbitals are required. However, in the presence of a spin-dependent per-
turbation they can no longer be taken as pure spin-up or spin-down orbitals. With respect to the 𝐿’th component
of the perturbation for spin-component 𝑚, the orbitals are expanded as:

𝜓
𝛼;(𝑚)𝐿
𝑖 (r) =

∑︁
𝑎𝛼

𝑈
(𝑚);𝐿
𝑎𝛼𝑖𝛼

𝜓𝛼𝑎 (r) +
∑︁
𝑎𝛽

𝑈
(𝑚);𝐿
𝑎𝛽𝑖𝛼

𝜓𝛽𝑎 (r) (7.380)

𝜓
𝛽;(𝑚)𝐿
𝑖 (r) =

∑︁
𝑎𝛼

𝑈
(𝑚);𝐿
𝑎𝛼𝑖𝛽

𝜓𝛼𝑎 (r) +
∑︁
𝑎𝛽

𝑈
(𝑚);𝐿
𝑎𝛽𝑖𝛽

𝜓𝛽𝑎 (r) (7.381)

Since the matrix elements of the spin-vector operator components are purely real and the spatial part of the SOC
operator has purely imaginary matrix elements, it follows that the first order coefficients are purely imaginary. The

7.51. Calculation of Properties 1043



ORCA Manual, Release 6.0

second derivative of the total SCF energy becomes:

𝜕2𝐸SCF

𝜕𝑥
(𝑚)
𝐾 𝜕𝑥

(−𝑚)
𝐿

=
∑︁
𝑖𝛼𝑎𝛼

{︁
𝑈

(−𝑚);𝐿*
𝑎𝛼𝑖𝛼

(︀
𝑎𝛼|ℎ𝐾𝑠𝑚|𝑖𝛼

)︀
+ 𝑈

(−𝑚);𝐿
𝑎𝛼𝑖𝛼

(︀
𝑖𝛼|ℎ𝐾𝑠𝑚|𝑎𝛼

)︀}︁
+
∑︁
𝑖𝛼𝑎𝛽

{︁
𝑈

(−𝑚);𝐿*
𝑎𝛽𝑖𝛼

(︀
𝑎𝛽 |ℎ𝐾𝑠𝑚|𝑖𝛼

)︀
+ 𝑈

(−𝑚);𝐿
𝑎𝛽𝑖𝛼

(︀
𝑖𝛼|ℎ𝐾𝑠𝑚|𝑎𝛽

)︀}︁
+
∑︁
𝑖𝛽𝑎𝛼

{︁
𝑈

(−𝑚);𝐿*
𝑎𝛼𝑖𝛽

(︀
𝑎𝛼|ℎ𝐾𝑠𝑚|𝑖𝛽

)︀
+ 𝑈

(−𝑚);𝐿
𝑎𝛼𝑖𝛽

(︀
𝑖𝛽 |ℎ𝐾𝑠𝑚|𝑎𝛼

)︀}︁
+
∑︁
𝑖𝛽𝑎𝛽

{︁
𝑈

(−𝑚);𝐿*
𝑎𝛽𝑖𝛽

(︀
𝑎𝛽 |ℎ𝐾𝑠𝑚|𝑖𝛽

)︀
+ 𝑈

(−𝑚);𝐿
𝑎𝛽𝑖𝛽

(︀
𝑖𝛽 |ℎ𝐾𝑠𝑚|𝑎𝛽

)︀}︁
(7.382)

Examination of the three cases 𝑚 = 0,±1 leads to the following equations for the D-tensor components:

𝐷
(0)
𝐾𝐿 = − 1

4𝑆2

∑︁
𝜇𝜈

𝜕𝑃
(0)
𝜇𝜈

𝜕𝑥
(0)
𝐿

(︀
𝜇|ℎ𝐾;SOC|𝜈

)︀
(7.383)

𝐷
(+1)
𝐾𝐿 =

1

2 (𝑆 + 1) (2𝑆 + 1)

∑︁
𝜇𝜈

(︀
𝜇|ℎ𝐾;SOC|𝜈

)︀ 𝜕𝑃 (−1)
𝜇𝜈

𝜕𝑥
(+1)
𝐿

(7.384)

𝐷
(−1)
𝐾𝐿 =

1

2𝑆 (2𝑆 − 1)

∑︁
𝜇𝜈

(︀
𝜇|ℎ𝐾;SOC|𝜈

)︀𝜕𝑃 (+1)
𝜇𝜈

𝜕𝑥
(−1)
𝐿

(7.385)

Where a special form of the perturbed densities has been chosen. They are given in the atomic orbital basis as:

𝜕𝑃
(0)
𝜇𝜈

𝜕𝑥
(0)
𝐿

=
∑︁
𝑖𝛼𝑎𝛼

𝑈
(0);𝐿
𝑎𝛼𝑖𝛼

𝑐𝛼𝜇𝑖𝑐
𝛼
𝜈𝑎 +

∑︁
𝑖𝛽𝑎𝛽

𝑈
(0);𝐿
𝑎𝛽𝑖𝛽

𝑐𝛽𝜇𝑖𝑐
𝛽
𝜈𝑎 (7.386)

𝜕𝑃
(+1)
𝜇𝜈

𝜕𝑥
(−1)
𝐿

=
∑︁
𝑖𝛼𝑎𝛽

𝑈
(−1);𝐿
𝑎𝛽𝑖𝛼

𝑐𝛼𝜇𝑖𝑐
𝛽
𝜈𝑎 −

∑︁
𝑖𝛽𝑎𝛼

𝑈
(−1);𝐿
𝑎𝛼𝑖𝛽

𝑐𝛼𝜇𝑎𝑐
𝛽
𝜈𝑖 (7.387)

𝜕𝑃
(−1)
𝜇𝜈

𝜕𝑥
(+1)
𝐿

= −
∑︁
𝑖𝛼𝑎𝛽

𝑈
(+1);𝐿
𝑎𝛽𝑖𝛼

𝑐𝛽𝜇𝑎𝑐
𝛼
𝜈𝑖 +

∑︁
𝑖𝛽𝑎𝛼

𝑈
(+1);𝐿
𝑎𝛼𝑖𝛽

𝑐𝛽𝜇𝑖𝑐
𝛼
𝜈𝑎 (7.388)

The special form of the coupled perturbed equations are implemented in ORCArun as follows: The perturbation is
of the general form ℎ𝐾𝑠𝑚. The equations (7.383)-(7.388) and (7.389)-(7.394) below have been written in such a
way that the spin integration has been performed but that the spin-dependent factors have been dropped from the
right-hand sides and included in the prefactors of eqs. (7.383)-(7.385). The explicit forms of the linear equations
to be solved are:

𝑚 = 0: (︁
𝜀(0)𝑎𝛼 − 𝜀

(0)
𝑖𝛼

)︁
𝑈
𝐾(0)
𝑎𝛼𝑖𝛼

+ 𝑎X
∑︁
𝑗𝛼𝑏𝛼

𝑈
𝐾(𝑚)
𝑏𝛼𝑗𝛼

{(𝑏𝛼𝑖𝛼|𝑎𝛼𝑗𝛼)− (𝑗𝛼𝑖𝛼|𝑎𝛼𝑏𝛼)} = −
(︀
𝑎𝛼|ℎ𝐾 |𝑖𝛼

)︀
(7.389)

(︁
𝜀(0)𝑎𝛽 − 𝜀

(0)
𝑖𝛽

)︁
𝑈
𝐾(0)
𝑎𝛽𝑖𝛽

+ 𝑎X
∑︁
𝑗𝛽𝑏𝛽

𝑈
𝐾(𝑚)
𝑏𝛽𝑗𝛽

{(𝑏𝛽𝑖𝛽 |𝑎𝛽𝑗𝛽)− (𝑗𝛽𝑖𝛽 |𝑎𝛽𝑏𝛽)} = −
(︀
𝑎𝛽 |ℎ𝐾 |𝑖𝛽

)︀
(7.390)

𝑚 = +1:(︁
𝜀(0)𝑎𝛼 − 𝜀

(0)
𝑖𝛽

)︁
𝑈
𝐾(+1)
𝑎𝛼𝑖𝛽

+ 𝑎X
∑︁
𝑗𝛼𝑏𝛼

𝑈
𝐾(+1)
𝑏𝛽𝑗𝛼

(𝑏𝛽𝑖𝛽 |𝑎𝛼𝑗𝛼)− 𝑎X
∑︁
𝑏𝛼𝑗𝛽

𝑈
𝐾(+1)
𝑏𝛽𝑗𝛼

(𝑗𝛽𝑖𝛽 |𝑎𝛼𝑏𝛼) = −
(︀
𝑎𝛼|ℎ𝐾 |𝑖𝛽

)︀
(7.391)

(︁
𝜀(0)𝑎𝛽 − 𝜀

(0)
𝑖𝛼

)︁
𝑈
𝐾(+1)
𝑎𝛽𝑖𝛼

+ 𝑎X
∑︁
𝑗𝛽𝑏𝛼

𝑈
𝐾(+1)
𝑏𝛼𝑗𝛽

(𝑏𝛼𝑖𝛼|𝑎𝑏𝑗𝛽)− 𝑎X
∑︁
𝑏𝛽𝑗𝛼

𝑈
𝐾(+1)
𝑏𝛽𝑗𝛼

(𝑗𝛼𝑖𝛼|𝑎𝛽𝑏𝛽) = 0 (7.392)

𝑚 = −1:(︁
𝜀(0)𝑎𝛽 − 𝜀

(0)
𝑖𝛼

)︁
𝑈
𝐾(−1)
𝑎𝛽𝑖𝛼

+ 𝑎X
∑︁
𝑗𝛽𝑏𝛼

𝑈
𝐾(−1)
𝑏𝛼𝑗𝛽

(𝑏𝛼𝑖𝛼|𝑎𝑏𝑗𝛽)− 𝑎X
∑︁
𝑏𝛽𝑗𝛼

𝑈
𝐾(−1)
𝑏𝛽𝑗𝛼

(𝑗𝛼𝑖𝛼|𝑎𝛽𝑏𝛽) = −
(︀
𝑎𝛽 |ℎ𝐾 |𝑖𝛼

)︀
(7.393)
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(︁
𝜀(0)𝑎𝛼 − 𝜀

(0)
𝑖𝛽

)︁
𝑈
𝐾(−1)
𝑎𝛼𝑖𝛽

+ 𝑎X
∑︁
𝑗𝛼𝑏𝛼

𝑈
𝐾(−1)
𝑏𝛽𝑗𝛼

(𝑏𝛽𝑖𝛽 |𝑎𝛼𝑗𝛼)− 𝑎X
∑︁
𝑏𝛼𝑗𝛽

𝑈
𝐾(−1)
𝑏𝛽𝑗𝛼

(𝑗𝛽𝑖𝛽 |𝑎𝛼𝑏𝛼) = 0 (7.394)

Note that these coupled-perturbed (CP) equations contain no contribution from the Coulomb potential or any other
local potential such as the exchange-correlation potential in DFT. Hence, in the absence of HF exchange, the
equations are trivially solved:

𝑈
𝐾(0)
𝑎𝛼𝑖𝛼

= −
(︀
𝑎𝛼|ℎ𝐾 |𝑖𝛼

)︀
𝜀
(0)
𝑎𝛼 − 𝜀

(0)
𝑖𝛼

(7.395)

𝑈
𝐾(0)
𝑎𝛽𝑖𝛽

= −
(︀
𝑎𝛽 |ℎ𝐾 |𝑖𝛽

)︀
𝜀
(0)
𝑎𝛽 − 𝜀

(0)
𝑖𝛽

(7.396)

𝑈
𝐾(+1)
𝑎𝛼𝑖𝛽

= −
(︀
𝑎𝛼|ℎ𝐾 |𝑖𝛽

)︀
𝜀
(0)
𝑎𝛼 − 𝜀

(0)
𝑖𝛽

(7.397)

𝑈
𝐾(+1)
𝑎𝛽𝑖𝛼

= 0 (7.398)

𝑈
𝐾(−1)
𝑎𝛽𝑖𝛼

= −
(︀
𝑎𝛽 |ℎ𝐾 |𝑖𝛼

)︀
𝜀
(0)
𝑎𝛽 − 𝜀

(0)
𝑖𝛼

(7.399)

𝑈
𝐾(−1)
𝑎𝛼𝑖𝛽

= 0 (7.400)

It is interesting that the “reverse spin flip coefficients” 𝑈𝐾(+1)
𝑎𝛽𝑖𝛼

and 𝑈𝐾(−1)
𝑎𝛼𝑖𝛽

are only nonzero in the presence of
HF exchange. In a perturbation expansion of the CP equations they arise at second order (V2/∆𝜀2) while the
other coefficients are of first order (V/∆𝜀; V represents the matrix elements of the perturbation). Hence, these
contributions are of the order of 𝛼4 and one could conceive dropping them from the treatment in order to stay
consistently at the level of 𝛼2. These terms were nevertheless kept in the present treatment.

Equations (7.389)-(7.394) are referred to as CP-SOC (coupled-perturbed spin-orbit coupling) equations. They can
be solved by standard techniques and represent the desired analogue of the CP-SCF magnetic response equations
solved for the determination of the g-tensor and discussed in detail earlier [664]. It is readily confirmed that
in the absence of HF exchange, eqs. (7.395)-(7.400) inserted into eqs. (7.383)-(7.388) lead back to a modified
Pederson-Khanna type treatment of the SOC contributions to the D-tensor [662]. In the framework of the formalism
developed above, the Pederson-Khanna formula can be re-written in the form:

𝐷
(SOC;PK)
𝐾𝐿 =

1

4𝑆2

∑︁
𝑖𝛽 ,𝑎𝛽

(︁
𝜓𝛽𝑖
⃒⃒
ℎ𝐾;SOC⃒⃒𝜓𝛽𝑎)︁𝑈𝐿;(0)𝑎𝛽𝑖𝛽

+
1

4𝑆2

∑︁
𝑖𝛼,𝑎𝛼

(︀
𝜓𝛼𝑖
⃒⃒
ℎ𝐾;SOC⃒⃒𝜓𝛼𝑎 )︀𝑈𝐿;(0)𝑎𝛼𝑖𝛼

− 1

4𝑆2

∑︁
𝑖𝛼,𝑎𝛽

(︀
𝜓𝛼𝑖
⃒⃒
ℎ𝐾;SOC ⃒⃒𝜓𝛽𝑎 )︀𝑈𝐿;(−1)𝑎𝛽𝑖𝛼

− 1

4𝑆2

∑︁
𝑖𝛽 ,𝑎𝛼

(︀
𝜓𝛼𝑖
⃒⃒
ℎ𝐾;SOC⃒⃒𝜓𝛼𝑎 )︀𝑈𝐿;(+1)

𝑎𝛼𝑖𝛽

(7.401)

This equation was derived from second-order non-self-consistent perturbation theory without recourse to spin-
coupling. For the special case of no Hartree-Fock exchange, the main difference to the treatment presented here
is that the correct prefactors from eqs. (7.372)-(7.374) occur in front of the spin-flip contributions rather than ±
1/(4𝑆2) in eq. (7.401). In the presence of HF exchange it is suggested that the consistent generalization of the PK
method are eqs. (7.383)-(7.385) with the ± 1/(4𝑆2) prefactors and this way the method has been implemented as
an option into the ORCA program.

For completeness, the evaluation of the spin-spin term in the SCF case proceeds conveniently through:

𝐷
(SS)
𝐾𝐿 =

𝑔2𝑒
4

𝛼2

𝑆 (2𝑆 − 1)

∑︁
𝜇𝜈

∑︁
𝜅𝜏

{︀
𝑃𝛼−𝛽𝜇𝜈 𝑃𝛼−𝛽𝜅𝜏 − 𝑃𝛼−𝛽𝜇𝜅 𝑃𝛼−𝛽𝜈𝜏

}︀ ⟨︀
𝜇𝜈
⃒⃒
𝑟−512

{︀
3𝑟12,𝐾𝑟12,𝐿 − 𝛿𝐾𝐿𝑟212

}︀⃒⃒
𝜅𝜏
⟩︀

(7.402)

as derived by McWeeny and Mizuno and discussed in some detail by Sinnecker and Neese.[800] In this reference it
was found that DFT methods tend to overestimate the spin-spin contribution if the calculations are based on a spin-
unrestricted SCF treatment. A much better correlation with experiment was found for open-shell spin restricted
calculations. The origin of this effect proved to be difficult to understand but it was shown in ref [354] that in the
case of small spin-contamination, the results of ROKS calculations and of those that are obtained on the basis of
the spin-unrestricted natural orbital (UNO) determinant are virtually indistinguishable. It is therefore optionally
possible in the ORCA program to calculate the spin-spin term on the basis of the UNO determinant.
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Spin-rotation constants

Spin-rotation constant calculations are implemented using perturbation-dependent atomic orbitals following [290].
As given in eq. 34 of that reference, the spin-rotation tensor of nucleus 𝐾, M𝐾 , is related to the nuclear shielding
tensor computed with GIAOs, 𝜎GIAO

𝐾 , and the diamagnetic part of the shielding tensor with the gauge origin set at
that nucleus, 𝜎dia

𝐾 (R𝐾):

M𝐾 = 2𝛾𝐾
(︀
𝜎GIAO
𝐾 − 𝜎dia

𝐾 (R𝐾)
)︀
I−1 −Mnuc

𝐾

where Mnuc
𝐾 is the nuclear component (given in eq. 14 of the reference), I is the inertia tensor, and 𝛾𝐾 is the nu-

clear magnetogyric ratio. Accordingly, upon requesting spin-rotation constants, ORCA automatically computes the
NMR shieldings with GIAOs as well. The following input shows an example calculation of M(17O) in H2

12C17O:

! HF pcSseg-1 Mass2016 Bohrs
*xyz 0 1

O -0.00000000 -0.00000000 1.13863731 M=16.999131
C -0.00000000 -0.00000000 -1.14131773 M=12.0
H -0.00000000 1.76770755 -2.24076285
H 0.00000000 -1.76770755 -2.24076285

*
%eprnmr

Nuclei = all O {srot, ist=17}
end

ò Note

• The magnetogyric ratio used can be changed either by choosing the correct isotope via ist, or by pro-
viding the nuclear g-factor directly via ssgn.

• The masses used to compute the inertia tensor are independent of the chosen isotopes! The example
above requests atomic masses of the most abundant isotope (via the Mass2016 keyword) and explicitly
specifies those of 12C (which is the default) and 17O.

Cartesian Index Conventions for EPR and NMR Tensors

The NMR shielding tensor 𝜎 and the EPR 𝑔 and 𝐴 tensors are in general nonsymmetric matrices. It is therefore
important to know the conventions used with regard to their cartesian indices. These conventions stipulate the
order of the vector–matrix–vector multiplications in the respective spin Hamiltonians. Unless stated otherwise,
ORCA adopts the following conventions:

For the NMR shielding tensor the nuclear Zeeman Hamiltonian assumes the form:

𝐻𝐼 = −𝑔𝑁𝛽𝑁B(1− 𝜎)I,

where B is the applied magnetic field vector.

For the EPR 𝑔 and 𝐴 tensors the EPR spin Hamiltonian assumes the form:

𝐻𝑆 = 𝛽𝑒BgS+ SAI. (7.403)
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MP2 level magnetic properties

Presently, hyperfine couplings (excluding the 𝐴orb term), g-tensors, and shielding tensors without GIAOs can be
calculated for both canonical and RI-MP2 and double-hybrid DFT without the frozen core approximation. The
𝐴orb term of the hyperfine couplings is available only for RI-MP2 and double-hybrid DFT with and without frozen
core approximation. In case the RIJCOSX approximation is used, the keywords Z_GridX, Z_GridX_RHS, KCOpt,
KC_GridX and KC_IntAccX are relevant – see sections RIJCOSX-RI-MP2 Gradients and MP2 and RI-MP2 Second
Derivatives. NMR shielding and g-tensor calculations with GIAOs are available for RI-MP2 and double-hybrid
DFT with or without a frozen core. The implementation is described in detail in refs [829, 850] and the available
options are shown in section RI-MP2 and Double-Hybrid DFT Response Properties. Note that for double-hybrid
DFT the correct properties are printed after the density heading containing “Method : MP2” and “Level : Relaxed
density”. DLPNO-MP2 (and double-hybrid) shielding tensors are also available - see section Local MP2 Response
Properties.

Nucleus-independent chemical shielding

Aromaticity is a fundamental concept in chemistry and much attention has been payed to its analysis in quantum
chemistry. One possibility to gain insight into aromaticity is to sample the ring current effect in NMR close to the 𝜋-
system. As this is not done by inspecting the chemical shielding of any of the atoms, this quantity is called nucleus
independent chemical shielding (NICS). Usually, a “dummy” atom is placed in the center of the ring and/or at some
distance away from it. In ORCA, one needs to use a ghost atom, e.g. “H:” to ensure that the program generates
DFT or COSX grid points in the region on interest. For technical reasons, this atom must also have at least one
basis function, which can be set with NewGTO. An s-function with a sufficiently large exponent will not overlap with
any other basis function in the molecule and will thus have no effect on the results, but only satisfy the technical
requirement (note that the extra grid points may change some of the calculation results by increasing the accuracy
of the numerical integration). If RI is used, a dummy fitting function must also be added to the AuxJ, AuxJK,
and/or AuxC basis set. A typical input for benzene looks like this:

! TightSCF NMR PBE def2-TZVP RI def2/J
* gzmt 0 1

H: NewGTO S 1 1 1e6 1 end NewAuxJGTO S 1 1 2e6 1 end
H: 1 1 NewGTO S 1 1 1e6 1 end NewAuxJGTO S 1 1 2e6 1 end
C 1 1.39 2 90
C 1 1.39 2 90 3 60
C 1 1.39 2 90 4 60
C 1 1.39 2 90 5 60
C 1 1.39 2 90 3 -60
C 1 1.39 2 90 6 60
H 3 1.09 4 120 1 180
H 4 1.09 3 120 1 180
H 5 1.09 4 120 1 180
H 6 1.09 5 120 1 180
H 7 1.09 3 120 1 180
H 8 1.09 7 120 1 180

*
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Shielding tensor orbital decomposition

It is possible to decompose the NMR shielding tensor into orbital- or orbital pair contributions. One such option is
the Natural Chemical Shielding analysis (see Section Natural Chemical Shielding Analysis (NCS)), while another
is presented here. The shielding tensor for nucleus 𝐴 can be exactly decomposed as follows:

𝜎𝐴 =
∑︁
𝑝

(︀
𝜎𝐴,para
𝑝 + 𝜎𝐴,dia

𝑝

)︀
𝜎𝐴,para/dia
𝑖 = 𝜎𝐴,para/dia

𝑖𝑖 +
1

2

∑︁
𝑗 ̸=𝑖

(︁
𝜎𝐴,para/dia
𝑖𝑗 + 𝜎𝐴,para/dia

𝑗𝑖

)︁
+
∑︁
𝑎

(︁
𝜎𝐴,para/dia
𝑖𝑎 + 𝜎𝐴,para/dia

𝑎𝑖

)︁
𝜎𝐴,para/dia
𝑎 = 𝜎𝐴,para/dia

𝑎𝑎 +
1

2

∑︁
�̸�=𝑎

(︁
𝜎𝐴,para/dia
𝑎𝑏 + 𝜎𝐴,para/dia

𝑏𝑎

)︁
𝜎𝐴,para
𝑝𝑞 = 𝐷B

𝑝𝑞ℎ
M𝐴
𝑝𝑞

𝜎𝐴,dia
𝑝𝑞 = 𝐷𝑝𝑞ℎ

B,M𝐴
𝑝𝑞

𝐷𝑝𝑞 =
∑︁
𝜇𝜈𝜅𝜆

𝑐𝜇𝑝𝑆𝜇𝜈𝐷𝜈𝜅𝑆𝜅𝜆𝑐𝜆𝑞

𝐷B
𝑝𝑞 =

∑︁
𝜇𝜈𝜅𝜆

𝑐𝜇𝑝𝑆𝜇𝜈𝐷
B
𝜈𝜅𝑆𝜅𝜆𝑐𝜆𝑞

ℎM𝐴
𝑝𝑞 =

∑︁
𝜇𝜈

𝑐𝜇𝑝ℎ
M𝐴
𝜇𝜈 𝑐𝜈𝑞

ℎB,M𝐴
𝑝𝑞 =

∑︁
𝜇𝜈

𝑐𝜇𝑝ℎ
B,M𝐴
𝜇𝜈 𝑐𝜈𝑞

Note that for SCF methods (HF or DFT), 𝜎𝐴,para/dia
𝑎 = 0. To request the analysis, a valid GBW file must be

given with the keyword LocOrbGBW, which can contain any orthonormal MOs in the same basis, e.g. canonical or
localized, although the decomposition above assumes that the Brillouin condition is fulfilled and may be misleading
if performed over NBOs for example. Orbital contributions over 0.01 ppm are printed – this is currently not user-
configurable. The separate orbital pair contributions can also be printed using Printlevel=3. The following
example input calculates HF and RI-MP2 shieldings for formaldehyde and decomposes them over Pipek–Mezey
localized orbitals (note that the virtual orbitals are likely not well localized - AHFB would be better suited there).
The second sub-calculation just prints the LMOs for convenient visualization with Avogadro.

! RI-MP2 NMR TightSCF RIJK pcSseg-1 cc-pwCVDZ/C def2/JK
%base "H2CO_NMR_PM"
%loc

LocMet PM # Pipek-Mezey localization
Occ true # localize both occupied
Virt true # and virtual orbitals (better use AHFB for these!)
T_core -1e5 # including the core

end
%eprnmr

PrintLevel 3 # print orbital pair contributions (lots of output!)
LocOrbGBW "H2CO_NMR_PM.loc" # use these orbitals

end
!xyzfile # store the coordinates
*gzmt 0 1

O
C 1 1.2078
H 2 1.1161 1 121.74
H 2 1.1161 1 121.74 3 180

*
# read the localized orbitals and print them in the output
# for easy visualization with Avogadro
$new_job
! HF pcSseg-1 NoRI MORead NoIter PrintBasis PrintMOs
%moinp "H2CO_NMR_PM.loc"
*xyzfile 0 1 H2CO_NMR_PM.xyz
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Treatment of Tau in Meta-GGA Functionals

For GIAO-based calculations with meta-GGAs, different options are available for the kinetic energy density 𝜏 . The
current-independent 𝜏0 is not gauge-invariant. Ignoring the terms, which produce the gauge-dependence, leads to
an ad-hoc gauge-invariant treatment (this was the default up to ORCA 5). A gauge-invariant definition 𝜏MS, con-
taining an explicit dependence on the magnetic field, was proposed by Maximoff and Scuseria.[567] However, this
ansatz produces unphysical paramagnetic contributions to the shielding tensor.[758] The last option, introduced
by Dobson,[216] is gauge-invariant but requires the solution of the CP-SCF equations, even for pure density func-
tionals. For a discussion and comparison of these alternatives see refs [79] (in the context of TDDFT) and [714,
758] (in the context of NMR shielding). Note that the calculated shieldings can differ substantially between the
different approaches! Some other electronic structure programs use the MS ansatz by default, so be careful when
comparing results between different codes. In ORCA the treatment of 𝜏 in GIAO-based calculations is chosed as
follows

%eprnmr
Tau 0 # gauge-variant

GI # ad-hoc gauge-invariant
MS # field-dependent, gauge-invariant version of Maximoff and Scuseria
Dobson # (default) current density-dependent, gauge-invariant version of Dobson

end

7.51.4 Paramagnetic NMR shielding tensors

For systems with spin 𝑆 > 0, the nuclear shielding contains a contribution which arises from the paramagnetism
of the unpaired electrons.1 This contribution is temperature-dependent and is called the “paramagnetic shielding”
(𝜎p). It adds to the temperature-indendent contribution to the shielding, also called the “orbital” contribution:

𝜎 = 𝜎orb + 𝜎p.

ORCA currently supports the calculation of 𝜎p for systems whose paramagnetism can be described by the effective
EPR spin Hamiltonian

𝐻𝑆 = SDS+ 𝛽𝑒BgS+ SAI. (7.404)

The theoretical background can be found in Refs. [810, 863]. We reproduce here the main equations.

For a spin state described by Eq. (7.404), the paramagnetic shielding tensor is given by

𝜎p = −𝛽𝑒𝑆(𝑆 + 1)

𝑔𝑁𝛽𝑁3𝑘𝑇
gZA, (7.405)

where Z is a dimensionless 3× 3 matrix which is determined by the ZFS and the temperature, as follows: Diago-
nalization of the ZFS Hamiltonian SDS yields energy levels 𝐸𝜆 and eigenstates |𝑆𝜆𝑎⟩, where 𝑎 labels degenerate
states if 𝐸𝜆 is degenerate. Then Z is defined as (𝑖, 𝑗 = 𝑥, 𝑦, 𝑧)

𝑍𝑖𝑗 =
3

𝑆(𝑆 + 1)

1

𝑄0

∑︁
𝜆

𝑒−𝐸𝜆/𝑘𝑇

[︃∑︁
𝑎,𝑎′

⟨𝑆𝜆𝑎|𝑆𝑖|𝑆𝜆𝑎′⟩⟨𝑆𝜆𝑎′|𝑆𝑗 |𝑆𝜆𝑎⟩

+2𝑘𝑇
∑︁
𝜆′ ̸=𝜆

∑︁
𝑎,𝑎′

⟨𝑆𝜆𝑎|𝑆𝑖|𝑆𝜆′𝑎′⟩⟨𝑆𝜆′𝑎′|𝑆𝑗 |𝑆𝜆𝑎⟩
𝐸𝜆′ − 𝐸𝜆

]︃
,

where 𝑄0 =
∑︀
𝜆′,𝑎 𝑒

−𝐸𝜆/𝑘𝑇 denotes the partition function. An important property of the Z matrix as defined
above is that it goes to the identity matrix as D/𝑘𝑇 goes to zero.

The orbital part of the shielding, 𝜎orb, is calculated in the same manner as for closed-shell molecules. It is available
in ORCA for the unrestricted HF and DFT methods and for MP2 (see Section MP2 level magnetic properties for
more information on the latter).

The orca_pnmr tool uses Eq. (7.407) to calculate 𝜎p. Usage of orca_pnmr is described in Section orca_pnmr.
1 For a comprehensive review on paramagnetic NMR, see e.g. [658].
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7.51.5 Calculating properties from existing densities

Occasionally, one may calculate a density matrix using an expensive correlated method such as CCSD and realize
afterwards that a certain property such as the quadrupole moment or a hyperfine coupling constant (HFCC) is also
required. Rather than start the whole calculation from scratch, one may wish to use the existing density matrix
to calculate the properties. For this purpose, we have experimentally introduced a “properties only” calculation
mode, whereby the MOs are read from an existing BaseName.gbw file and the densities are read from an existing
BaseName.densities file and only the property calculations are performed. Note however, that this presents many
possibilities for error, so only use it as a last resort and be very careful with the results!

Take, for example, this CCSD calculation:

! ccsd def2-svp
%base "BO-CCSD"
%mdci density unrelaxed end
*xyz 0 2
B 0 0 0
O 0 0 1.2049
*

This produces the files BO-CCSD.gbw and BO-CCSD.densities. To obtain the CCSD quadrupole moment and
HFCCs without repeating the whole calculation, we can copy these two files into a new directory (highly recom-
mended!) and start a second job with the !PropertiesOnly keyword. Note that the basename of the second job
must be identical!

! ccsd def2-svp
%base "BO-CCSD"
%mdci density unrelaxed end
*xyz 0 2
B 0 0 0
O 0 0 1.2049
*
# Everything above must be the same as in the first job!

# Request the property calculations
! PropertiesOnly
%elprop

quadrupole true
end
%eprnmr

Nuclei = all B { Aiso, Adip }
Nuclei = all O { Aiso, Adip }

end

7.51.6 Local Energy Decomposition

The DLPNO-CCSD(T) method provides very accurate relative energies and allows to successfully predict many
chemical phenomena. In order to facilitate the interpretation of coupled cluster results, we have developed the
Local Energy Decomposition (LED) analysis [33, 105, 768], which permit to divide the total DLPNO-CCSD(T)
energy (including the reference energy) into physically meaningful contributions. A practical guide to the LED
scheme is reported in Section Local Energy Decomposition. Examples of applications of this scheme can be found
in Ref. [84, 106, 294, 536, 537, 904]

As a word of caution we emphasize that only the total energy is an observable and its decomposition is, to some
extent, arbitrary. Nevertheless, the LED analysis appears to be physically well grounded and logical to us, it is
straightforward to apply and comes typically at a negligible computational cost compared to DLPNO-CCSD(T)
calculations. Starting from ORCA 4.1, the LED scheme is available for both closed shell and open shell calcula-
tions. The code has also been made parallel and more efficient.

The LED scheme makes no assumption about the strength of the intermolecular interaction and hence it remains
valid and consistent over the entire potential energy surface. Alternative schemes, such as the popular symmetry
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adapted perturbation theory, are perturbative in nature and hence are best applied to weakly interacting systems.

The idea of the LED analysis is rather simple. In local correlation methods occupied orbitals are localized and
can be readily assigned to pre-defined fragments in the molecule. The same can be done for the correlation energy
in terms of pair correlation energies that refer to pairs of occupied orbitals. In this way, both the correlation and
the reference energy can be decomposed into intra- and interfragment contributions. The fragmentation is user
defined. An arbitrary number of fragments can be defined. In the case that more than 2 fragments are defined, the
interfragment interaction is printed for each fragment pair.

A very important feature of the LED scheme is the possibility to distinguish between dispersive and non-dispersive
part of the DLPNO-CCSD(T) correlation energy. In brief, we exploit the fact that each CCSD pair correlation
energy contribution can be expressed as a sum of double excitations from pairs of occupied orbitals into the vir-
tual space. As in the DLPNO-CCSD(T) scheme the virtual space is spanned by Pair Natural Orbitals(PNOs) that
are essentially local, the entire correlation energy can be decomposed into double excitations types, depending on
where occupied and virtual orbitals are localized. For each pair of fragments, the sum of all excitations correspond-
ing to the interaction of instantaneous local dipoles located on different fragments defines the so called “London
dispersion” attraction between the two fragments in the LED framework.

For a system of two fragments, one can use as a reference point the geometrically and electronically relaxed frag-
ments that constitute the interacting super-molecule. Relative to this reference state, the binding energy between
the fragments can be written as:

∆𝐸 =∆𝐸𝑔𝑒𝑜−𝑝𝑟𝑒𝑝

+∆𝐸𝑟𝑒𝑓.𝑒𝑙−𝑝𝑟𝑒𝑝 + 𝐸𝑟𝑒𝑓.𝑒𝑙𝑠𝑡𝑎𝑡 + 𝐸𝑟𝑒𝑓.𝑒𝑥𝑐ℎ

+∆𝐸𝐶−𝐶𝐶𝑆𝐷𝑛𝑜𝑛−𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 + 𝐸𝐶−𝐶𝐶𝑆𝐷𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛

+∆𝐸
𝐶−(𝑇 )
𝑖𝑛𝑡

(7.406)

where ∆𝐸𝑔𝑒𝑜−𝑝𝑟𝑒𝑝 is the energy needed to distort the fragments from their equilibrium configuration to the inter-
acting geometry (also called “strain” in other energy decomposition schemes). The ∆𝐸𝑟𝑒𝑓.𝑒𝑙−𝑝𝑟𝑒𝑝 term represents the
electronic preparation energy and describes how much energy is necessary to bring the fragments into the elec-
tronic structure that is optimal for interaction. 𝐸𝑟𝑒𝑓.𝑒𝑥𝑐ℎ is the inter-fragment exchange interaction (it always gives
a binding contribution in our formalism) and 𝐸𝑟𝑒𝑓.𝑒𝑙𝑠𝑡𝑎𝑡 is the electrostatic energy interaction between the distorted
electronic clouds of the fragments. The sum of these terms gives the Hatree-Fock energy in the closed shell case
and the energy of the QRO determinant in the open shell case. Finally, the correlation energy is decomposed into
dispersive 𝐸𝐶−𝐶𝐶𝑆𝐷𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 and non-dispersive ∆𝐸𝐶−𝐶𝐶𝑆𝐷𝑛𝑜𝑛−𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 contributions plus a triples correction term to the
interaction energy ∆𝐸

𝐶−(𝑇 )
𝑖𝑛𝑡 .

The 𝐸𝐶−𝐶𝐶𝑆𝐷𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 term contains the London dispersion contribution from the strong pairs described above plus
the interfragment component of the weak pairs, which is essentially dispersive in nature. The ∆𝐸𝐶−𝐶𝐶𝑆𝐷𝑛𝑜𝑛−𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛
correlation term serves to correct the contributions to the binding energy approximately included in the reference
energy, e.g it counteracts the overpolarization typical of the HF method. It contains the so called charge transfer
excitations from the strong pairs 𝐸𝐶𝑇 (𝑋→𝑌 )

𝐶−𝑆𝑃 + 𝐸
𝐶𝑇 (𝑋←𝑌 )
𝐶−𝑆𝑃 , which represent the sum of all double excitation

contributions that do not conserve the charge within each fragment. Moreover, the non-dispersive term also includes
the electronic preparation from strong (∆𝐸𝐶−𝑆𝑃𝑒𝑙−𝑝𝑟𝑒𝑝) and weak (∆𝐸𝐶−𝑊𝑃

𝑒𝑙−𝑝𝑟𝑒𝑝) pairs. Finally, ∆𝐸𝐶−(𝑇 )
𝑖𝑛𝑡 represents

the triples correction contribution to the interaction energy between the fragments. In the LED scheme, this term
can be further decomposed into intra- and interfragment components. This can be useful, for example, to estimate
the London dispersion contribution from the triples correction term, as suggested in ref.[536].
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7.52 Natural Bond Orbital (NBO) Analysis

A popular and useful method for population analysis is the natural bond orbital analysis due to Weinhold and
co-workers. It is implemented in the NBO program which is distributed in older versions via the CCL list and
in newer versions via the University of Wisconsin/Madison. Information about the NBO program can be found
at http://www.chem.wisc.edu/~nbo7. In order to use it together with ORCA you need a version of the stand-
alone executable. Starting with version 3.1.x ORCA can only be used with NBO6 or NBO7. To specify the NBO
executable the environment variable NBOEXE=/full/name/of/nbo7-executable has to be set. As the NBO part of
the interface is not independent of the integer data-type width (i4 or i8), the NBO executable which will be used
together with ORCA has to be compiled using i4!

ORCA features two methods to interface with the NBO program: ! NBO keyword and the %nbo-block. The
following example illustrates the use for formaldehyde:

#
# Test the interface to the NBO program
#
! RHF SVP NBO

* xyz 0 1
C 0.000000 0.000000 0.000000
O 1.200000 0.000000 0.000000
H -0.550000 0.952628 0.000000
H -0.550000 -0.952628 -0.000000

*

This produces the following output:

Now starting NBO....

*********************************** NBO 7.0 ***********************************
N A T U R A L A T O M I C O R B I T A L A N D

N A T U R A L B O N D O R B I T A L A N A L Y S I S
************************ development version (D000000) ************************
(c) Copyright 1996-2018 Board of Regents of the University of Wisconsin System

on behalf of the Theoretical Chemistry Institute. All rights reserved.

Cite this program [NBO 7.0.0 (15-Nov-2018)] as:

NBO 7.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed,
J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou,
C. R. Landis, and F. Weinhold, Theoretical Chemistry Institute,
University of Wisconsin, Madison, WI (2018)

/NPA / : Natural Population Analysis
/NBO / : Natural Bond Orbital Analysis
/AONBO / : Checkpoint the AO to NBO transformation
/ARCHIVE/ : Write the archive file to lfn47

Job title: ORCA Job: NBO_1

NATURAL POPULATIONS: Natural atomic orbital occupancies

NAO Atom No lang Type(AO) Occupancy Energy
-------------------------------------------------------

1 C 1 s Cor( 1s) 1.99997 -11.34329
2 C 1 s Val( 2s) 1.01533 -0.17540
3 C 1 s Ryd( 3s) 0.00701 0.61376
4 C 1 px Val( 2p) 0.81697 0.08822
5 C 1 px Ryd( 3p) 0.01268 0.63900

(continues on next page)
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6 C 1 py Val( 2p) 1.09795 -0.01243
7 C 1 py Ryd( 3p) 0.00055 0.80803
8 C 1 pz Val( 2p) 0.66003 -0.03464
9 C 1 pz Ryd( 3p) 0.00283 0.62824
10 C 1 dxy Ryd( 3d) 0.00576 2.75039
11 C 1 dxz Ryd( 3d) 0.00375 2.25746
12 C 1 dyz Ryd( 3d) 0.00000 2.08566
13 C 1 dx2y2 Ryd( 3d) 0.00337 2.74845
14 C 1 dz2 Ryd( 3d) 0.00114 2.40647

15 O 2 s Cor( 1s) 1.99998 -20.56485
16 O 2 s Val( 2s) 1.70725 -0.92198
17 O 2 s Ryd( 3s) 0.00171 1.55322
18 O 2 px Val( 2p) 1.62177 -0.42255
19 O 2 px Ryd( 3p) 0.00079 1.29654
20 O 2 py Val( 2p) 1.91529 -0.46844
21 O 2 py Ryd( 3p) 0.00383 1.41052
22 O 2 pz Val( 2p) 1.32984 -0.28626
23 O 2 pz Ryd( 3p) 0.00011 1.30080
24 O 2 dxy Ryd( 3d) 0.00213 3.26414
25 O 2 dxz Ryd( 3d) 0.00340 3.20490
26 O 2 dyz Ryd( 3d) 0.00000 2.98918
27 O 2 dx2y2 Ryd( 3d) 0.00406 3.55008
28 O 2 dz2 Ryd( 3d) 0.00119 3.17511

29 H 3 s Val( 1s) 0.88576 0.07107
30 H 3 s Ryd( 2s) 0.00298 0.41181
31 H 3 px Ryd( 2p) 0.00030 2.18260
32 H 3 py Ryd( 2p) 0.00159 2.49146
33 H 3 pz Ryd( 2p) 0.00002 1.85643

34 H 4 s Val( 1s) 0.88576 0.07107
35 H 4 s Ryd( 2s) 0.00298 0.41181
36 H 4 px Ryd( 2p) 0.00030 2.18260
37 H 4 py Ryd( 2p) 0.00159 2.49146
38 H 4 pz Ryd( 2p) 0.00002 1.85643

Summary of Natural Population Analysis:

Natural Population
Natural ---------------------------------------------

Atom No Charge Core Valence Rydberg Total
--------------------------------------------------------------------

C 1 0.37265 1.99997 3.59028 0.03709 5.62735
O 2 -0.59134 1.99998 6.57415 0.01720 8.59134
H 3 0.10934 0.00000 0.88576 0.00489 0.89066
H 4 0.10934 0.00000 0.88576 0.00489 0.89066

====================================================================
* Total * -0.00000 3.99995 11.93596 0.06408 16.00000

Natural Population
---------------------------------------------------------

Core 3.99995 ( 99.9988% of 4)
Valence 11.93596 ( 99.4664% of 12)
Natural Minimal Basis 15.93592 ( 99.5995% of 16)
Natural Rydberg Basis 0.06408 ( 0.4005% of 16)

---------------------------------------------------------

Atom No Natural Electron Configuration
----------------------------------------------------------------------------

(continues on next page)
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C 1 [core]2s( 1.02)2p( 2.57)3s( 0.01)3p( 0.02)3d( 0.01)
O 2 [core]2s( 1.71)2p( 4.87)3d( 0.01)
H 3 1s( 0.89)
H 4 1s( 0.89)

NATURAL BOND ORBITAL ANALYSIS:

Occupancies Lewis Structure Low High
Max Occ ------------------- ----------------- occ occ

Cycle Ctr Thresh Lewis non-Lewis CR BD nC LP (L) (NL)
============================================================================

1 2 1.90 15.89671 0.10329 2 4 0 2 0 0
----------------------------------------------------------------------------

Structure accepted: No low occupancy Lewis orbitals

-------------------------------------------------------
Core 3.99995 ( 99.999% of 4)
Valence Lewis 11.89676 ( 99.140% of 12)
================== =============================
Total Lewis 15.89671 ( 99.354% of 16)
-----------------------------------------------------
Valence non-Lewis 0.07835 ( 0.490% of 16)
Rydberg non-Lewis 0.02493 ( 0.156% of 16)
================== =============================
Total non-Lewis 0.10329 ( 0.646% of 16)

-------------------------------------------------------

(Occupancy) Bond orbital / Coefficients / Hybrids
------------------ Lewis ------------------------------------------------------

1. (1.99997) CR ( 1) C 1 s(100.00%)
1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

2. (1.99998) CR ( 1) O 2 s(100.00%)
1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000

3. (1.98853) LP ( 1) O 2 s( 56.22%)p 0.78( 43.73%)d 0.00( 0.05%)
0.0000 0.7496 -0.0170 0.6612 0.0069
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 -0.0201 0.0100

4. (1.91757) LP ( 2) O 2 s( 0.00%)p 1.00( 99.89%)d 0.00( 0.11%)
0.0000 0.0000 0.0000 -0.0000 -0.0000
0.9994 -0.0098 0.0000 -0.0000 -0.0330
-0.0000 0.0000 0.0000 -0.0000

5. (1.99996) BD ( 1) C 1- O 2
( 33.33%) 0.5773* C 1 s( 0.00%)p 1.00( 99.44%)d 0.01( 0.56%)

0.0000 -0.0000 -0.0000 0.0000 -0.0000
-0.0000 0.0000 0.9951 -0.0652 -0.0000
0.0750 0.0000 -0.0000 0.0000

( 66.67%) 0.8165* O 2 s( 0.00%)p 1.00( 99.75%)d 0.00( 0.25%)
0.0000 -0.0000 0.0000 0.0000 -0.0000
-0.0000 0.0000 0.9987 -0.0090 0.0000
-0.0505 0.0000 0.0000 -0.0000

6. (1.99975) BD ( 2) C 1- O 2
( 32.59%) 0.5709* C 1 s( 32.18%)p 2.09( 67.35%)d 0.01( 0.46%)

0.0000 0.5628 0.0714 0.8149 0.0973
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000

(continues on next page)
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-0.0000 0.0000 0.0618 -0.0286
( 67.41%) 0.8211* O 2 s( 43.84%)p 1.27( 55.85%)d 0.01( 0.31%)

0.0000 0.6615 0.0284 -0.7470 -0.0215
-0.0000 0.0000 -0.0000 -0.0000 0.0000
0.0000 0.0000 0.0490 -0.0270

7. (1.99548) BD ( 1) C 1- H 3
( 56.63%) 0.7526* C 1 s( 33.98%)p 1.94( 65.86%)d 0.00( 0.16%)

0.0000 0.5826 -0.0192 -0.3995 -0.0029
0.7063 -0.0087 0.0000 -0.0000 -0.0318
-0.0000 0.0000 -0.0180 -0.0153

( 43.37%) 0.6585* H 3 s( 99.79%)p 0.00( 0.21%)
0.9989 -0.0095 0.0184 -0.0416 0.0000

8. (1.99548) BD ( 1) C 1- H 4
( 56.63%) 0.7526* C 1 s( 33.98%)p 1.94( 65.86%)d 0.00( 0.16%)

0.0000 0.5826 -0.0192 -0.3995 -0.0029
-0.7063 0.0087 -0.0000 0.0000 0.0318
0.0000 0.0000 -0.0180 -0.0153

( 43.37%) 0.6585* H 4 s( 99.79%)p 0.00( 0.21%)
0.9989 -0.0095 0.0184 0.0416 -0.0000

---------------- non-Lewis ----------------------------------------------------
9. (0.00000) BD*( 1) C 1- O 2

( 66.67%) 0.8165* C 1 s( 0.00%)p 1.00( 99.44%)d 0.01( 0.56%)
( 33.33%) -0.5773* O 2 s( 0.00%)p 1.00( 99.75%)d 0.00( 0.25%)

10. (0.00000) BD*( 2) C 1- O 2
( 67.41%) 0.8211* C 1 s( 32.18%)p 2.09( 67.35%)d 0.01( 0.46%)
( 32.59%) -0.5709* O 2 s( 43.84%)p 1.27( 55.85%)d 0.01( 0.31%)

11. (0.03918) BD*( 1) C 1- H 3
( 43.37%) 0.6585* C 1 s( 33.98%)p 1.94( 65.86%)d 0.00( 0.16%)

0.0000 -0.5826 0.0192 0.3995 0.0029
-0.7063 0.0087 -0.0000 0.0000 0.0318
0.0000 0.0000 0.0180 0.0153

( 56.63%) -0.7526* H 3 s( 99.79%)p 0.00( 0.21%)
-0.9989 0.0095 -0.0184 0.0416 -0.0000

12. (0.03918) BD*( 1) C 1- H 4
( 43.37%) 0.6585* C 1 s( 33.98%)p 1.94( 65.86%)d 0.00( 0.16%)

0.0000 -0.5826 0.0192 0.3995 0.0029
0.7063 -0.0087 0.0000 -0.0000 -0.0318
-0.0000 0.0000 0.0180 0.0153

( 56.63%) -0.7526* H 4 s( 99.79%)p 0.00( 0.21%)
-0.9989 0.0095 -0.0184 -0.0416 0.0000

13. (0.00969) RY ( 1) C 1 s( 29.83%)p 2.30( 68.57%)d 0.05( 1.60%)
0.0000 -0.0565 0.5432 -0.1169 0.8198
0.0000 -0.0000 0.0000 -0.0000 -0.0000
0.0000 0.0000 0.1087 -0.0648

14. (0.00517) RY ( 2) C 1 s( 0.00%)p 1.00( 9.56%)d 9.46( 90.44%)
0.0000 0.0000 -0.0000 0.0000 -0.0000
0.0465 0.3057 0.0000 -0.0000 0.9510
0.0000 0.0000 -0.0000 -0.0000

15. (0.00001) RY ( 3) C 1 s( 20.02%)p 0.82( 16.47%)d 3.17( 63.52%)
16. (0.00000) RY ( 4) C 1 s( 0.00%)p 1.00( 90.64%)d 0.10( 9.36%)
17. (0.00000) RY ( 5) C 1 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%)
18. (0.00000) RY ( 6) C 1 s( 42.72%)p 0.35( 15.02%)d 0.99( 42.26%)
19. (0.00000) RY ( 7) C 1 s( 0.00%)p 1.00( 0.56%)d99.99( 99.44%)
20. (0.00000) RY ( 8) C 1 s( 0.00%)p 0.00( 0.00%)d 1.00(100.00%)
21. (0.00000) RY ( 9) C 1 s( 7.29%)p 0.09( 0.66%)d12.63( 92.05%)
22. (0.00368) RY ( 1) O 2 s( 0.00%)p 1.00( 98.96%)d 0.01( 1.04%)

0.0000 -0.0000 -0.0000 0.0000 0.0000
0.0064 0.9948 -0.0000 0.0000 -0.1018
0.0000 0.0000 -0.0000 0.0000

23. (0.00014) RY ( 2) O 2 s( 35.10%)p 1.44( 50.60%)d 0.41( 14.30%)
0.0000 -0.0178 0.5922 0.0556 -0.7091

(continues on next page)
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0.0000 -0.0000 -0.0000 0.0000 -0.0000
0.0000 0.0000 0.3336 -0.1780

24. (0.00000) RY ( 3) O 2 s( 56.05%)p 0.25( 13.79%)d 0.54( 30.17%)
25. (0.00000) RY ( 4) O 2 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%)
26. (0.00000) RY ( 5) O 2 s( 0.00%)p 1.00( 1.14%)d86.35( 98.86%)
27. (0.00000) RY ( 6) O 2 s( 0.00%)p 1.00( 0.25%)d99.99( 99.75%)
28. (0.00000) RY ( 7) O 2 s( 0.00%)p 0.00( 0.00%)d 1.00(100.00%)
29. (0.00000) RY ( 8) O 2 s( 6.72%)p 5.27( 35.42%)d 8.61( 57.85%)
30. (0.00000) RY ( 9) O 2 s( 2.07%)p 0.30( 0.61%)d47.00( 97.32%)
31. (0.00308) RY ( 1) H 3 s( 99.42%)p 0.01( 0.58%)

0.0096 0.9970 -0.0710 -0.0281 0.0000
32. (0.00002) RY ( 2) H 3 s( 0.22%)p99.99( 99.78%)
33. (0.00002) RY ( 3) H 3 s( 0.00%)p 1.00(100.00%)
34. (0.00001) RY ( 4) H 3 s( 0.57%)p99.99( 99.43%)
35. (0.00308) RY ( 1) H 4 s( 99.42%)p 0.01( 0.58%)

0.0096 0.9970 -0.0710 0.0281 0.0000
36. (0.00002) RY ( 2) H 4 s( 0.22%)p99.99( 99.78%)
37. (0.00002) RY ( 3) H 4 s( 0.00%)p 1.00(100.00%)
38. (0.00001) RY ( 4) H 4 s( 0.57%)p99.99( 99.43%)

NHO DIRECTIONALITY AND BOND BENDING (deviation from line of nuclear centers at
the position of maximum hybrid amplitude)

[Thresholds for printing: angular deviation > 1.0 degree]
p- or d-character > 25.0%
orbital occupancy > 0.10e

Line of Centers Hybrid 1 Hybrid 2
--------------- ------------------- ------------------

NBO Theta Phi Theta Phi Dev Theta Phi Dev
===============================================================================

3. LP ( 1) O 2 -- -- 90.0 0.0 -- -- -- --
4. LP ( 2) O 2 -- -- 90.0 90.7 -- -- -- --
5. BD ( 1) C 1- O 2 90.0 0.0 3.0 0.0 87.0 178.7 180.0 88.7

SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS

Threshold for printing: 0.50 kcal/mol
E(2) E(NL)-E(L) F(L,NL)

Donor (L) NBO Acceptor (NL) NBO kcal/mol a.u. a.u.
===============================================================================

within unit 1
3. LP ( 1) O 2 13. RY ( 1) C 1 8.58 1.40 0.098
4. LP ( 2) O 2 11. BD*( 1) C 1- H 3 26.11 1.16 0.156
4. LP ( 2) O 2 12. BD*( 1) C 1- H 4 26.11 1.16 0.156
4. LP ( 2) O 2 14. RY ( 2) C 1 5.72 3.06 0.118
4. LP ( 2) O 2 26. RY ( 5) O 2 0.73 3.75 0.047
7. BD ( 1) C 1- H 3 12. BD*( 1) C 1- H 4 0.74 1.42 0.029
7. BD ( 1) C 1- H 3 22. RY ( 1) O 2 2.25 2.12 0.062
8. BD ( 1) C 1- H 4 11. BD*( 1) C 1- H 3 0.74 1.42 0.029
8. BD ( 1) C 1- H 4 22. RY ( 1) O 2 2.25 2.12 0.062

NATURAL BOND ORBITALS (Summary):

Principal Delocalizations
NBO Occupancy Energy (geminal,vicinal,remote)

===============================================================================

(continues on next page)
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Molecular unit 1 (CH2O)
------ Lewis --------------------------------------

1. CR ( 1) C 1 1.99997 -11.34329
2. CR ( 1) O 2 1.99998 -20.56485
3. LP ( 1) O 2 1.98853 -0.81352 13(v)
4. LP ( 2) O 2 1.91757 -0.46975 11(v),12(v),14(v),26(g)
5. BD ( 1) C 1- O 2 1.99996 -0.53505
6. BD ( 2) C 1- O 2 1.99975 -1.23345
7. BD ( 1) C 1- H 3 1.99548 -0.72703 22(v),12(g)
8. BD ( 1) C 1- H 4 1.99548 -0.72703 22(v),11(g)

------ non-Lewis ----------------------------------
9. BD*( 1) C 1- O 2 0.00000 0.20704
10. BD*( 2) C 1- O 2 0.00000 0.95146
11. BD*( 1) C 1- H 3 0.03918 0.69317
12. BD*( 1) C 1- H 4 0.03918 0.69317
13. RY ( 1) C 1 0.00969 0.58169
14. RY ( 2) C 1 0.00517 2.58837
15. RY ( 3) C 1 0.00001 1.75652
16. RY ( 4) C 1 0.00000 0.96046
17. RY ( 5) C 1 0.00000 0.64510
18. RY ( 6) C 1 0.00000 1.49223
19. RY ( 7) C 1 0.00000 2.24615
20. RY ( 8) C 1 0.00000 2.08566
21. RY ( 9) C 1 0.00000 2.49414
22. RY ( 1) O 2 0.00368 1.39676
23. RY ( 2) O 2 0.00014 1.56107
24. RY ( 3) O 2 0.00000 2.18160
25. RY ( 4) O 2 0.00000 1.30222
26. RY ( 5) O 2 0.00000 3.27920
27. RY ( 6) O 2 0.00000 3.20505
28. RY ( 7) O 2 0.00000 2.98918
29. RY ( 8) O 2 0.00000 2.69359
30. RY ( 9) O 2 0.00000 3.12898
31. RY ( 1) H 3 0.00308 0.41874
32. RY ( 2) H 3 0.00002 2.57996
33. RY ( 3) H 3 0.00002 1.85643
34. RY ( 4) H 3 0.00001 2.06898
35. RY ( 1) H 4 0.00308 0.41874
36. RY ( 2) H 4 0.00002 2.57996
37. RY ( 3) H 4 0.00002 1.85643
38. RY ( 4) H 4 0.00001 2.06898

-------------------------------
Total Lewis 15.89671 ( 99.3545%)

Valence non-Lewis 0.07835 ( 0.4897%)
Rydberg non-Lewis 0.02493 ( 0.1558%)

-------------------------------
Total unit 1 16.00000 (100.0000%)
Charge unit 1 0.00000

$CHOOSE
LONE 2 2 END
BOND D 1 2 S 1 3 S 1 4 END

$END

NBO analysis completed in 0.05 CPU seconds (0 wall seconds)
Maximum scratch memory used by NBO was 297106 words (2.27 MB)
Stopping NBO...Storing NBOs: NBO_1.nbo

*** returned from NBO program ***

Thus, in this example the NBO analysis of formaldehyde shows that a single Lewis structure is dominant with
single bonds between C and H, a double bond between C and O and two lone pairs at the oxygen – just as ordinary
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chemical arguments would imply. In addition, the program produces the four corresponding valence antibonds.
The remaining components of the basis set span the “Rydberg” space and lead to semilocalized, orthogonal orbitals
that are assigned to single atoms (Note the nomenclature: BD = bond, BD* = antibond, LP = lone pair, CR = core
orbital, RY= Rydberg orbital). The NPA analysis shows a patially negative oxygen and partially positive carbon
and hydrogen atoms.

Additionally, the NBO orbitals are stored in the ORCA .gbw file format as jobname.nbo. This file can be used for
further analysis and usage with ORCA e.g. for plotting orbitals via orca_plot.

The NBO program has many additional features and analysis tools. The features that are implemented in ORCA
can be controlled via the %nbo-block

%nbo
NBOKEYLIST = "$NBO ... $END"
DELKEYLIST = "$DEL ... $END"
COREKEYLIST = "$CORE ... $END"
NRTSTRKEYLIST = "$NRTSTR ... $END"
NPEPAKEYLIST = "$NPEPA ... $END"
end

The syntax of the respective keylists is given by the NBO6.x/NBO7.x manual.

Specifying the single ! NBO keyword corresponds to the %nbo-block

%nbo
NBOKEYLIST = "$NBO NBO NPA AONBO=C ARCHIVE $END"
end

The full set of features beyond those which can be give via the %nbo block can be accessed using the file FILE.47,
which is generated by the NBO program. This is an ascii file that can be edited with a text editor. Add or remove
keywords in the corresponding blocks as needed and call the gennbo program like

gennbo < FILE.47 >jobname.nboout
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(a) (a) π (b) (b) π - LP (c) (c) π*

(d) (d) σ (e) (e) σ - LP (f) (f) σ*

Fig. 7.63: Six NBOs of the H2CO molecule. Shown are the occupied bonding 𝜋 and 𝜎 orbitals (left) for C and O,
the two oxygen lone pairs (middle) and the two 𝜋* and 𝜎* antibonding orbitals (right).

The FILE.47 file looks like:

$GENNBO NATOMS=4 NBAS=38 UPPER BODM FORMAT $END
$NBO $END
$COORD
ORCA Job: check

6 6 0.000000 0.000000 0.000000
8 8 2.267671 0.000000 0.000000
1 1 -1.039349 1.800206 0.000000
1 1 -1.039349 -1.800206 0.000000

$END
$BASIS

If you have no need for this (rather large) file, then you have to delete it manually!

7.52.1 NBO Deletions

An advanced feature, which has been implemented via the ORCA-NBO interface, is the possibility of using dele-
tions.

! RHF 3-21G BOHRS TightSCF

%nbo
nbokeylist="$nbo nbo npa aonbo=c archive $end"
delkeylist="$del lewis delete 1 element 3 11 $end"
end

(continues on next page)
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*xyz 0 1
C 1.4089705283 0.0210567401 0.0000000000
N -1.3645072652 -0.1355759321 0.0000000000
H 1.9849776453 1.9986808971 0.0000000000
H 2.1492280974 -0.9096841007 1.6818209547
H 2.1492280974 -0.9096841007 -1.6818209547
H -2.0504340036 0.7268536543 -1.5583845544
H -2.0504340036 0.7268536543 1.5583845544
*

The DELKEYLIST provides NBO with the task to perform certain deletions of orbitals/interactions. Per deletion
ORCA calculates a new Fock matrix on basis of an NBO density corresponding to the deletions:

Stopping NBO...Starting NBO again for $del instructions...

LEWIS: Delete all non-Lewis NBOs
Deletion of the following orbitals from the NBO Fock matrix:

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Orbital occupancies:

Orbital No deletions This deletion Change
------------------------------------------------------------------------------

1. CR ( 1) C 1 1.99978 2.00000 0.00022
2. CR ( 1) N 2 1.99983 2.00000 0.00017
3. LP ( 1) N 2 1.97796 2.00000 0.02204
4. BD ( 1) C 1- N 2 1.99846 2.00000 0.00154
5. BD ( 1) C 1- H 3 1.99858 2.00000 0.00142
6. BD ( 1) C 1- H 4 1.99406 2.00000 0.00594
7. BD ( 1) C 1- H 5 1.99406 2.00000 0.00594
8. BD ( 1) N 2- H 6 1.99440 2.00000 0.00560
9. BD ( 1) N 2- H 7 1.99440 2.00000 0.00560
10. BD*( 1) C 1- N 2 0.00009 0.00000 -0.00009
11. BD*( 1) C 1- H 3 0.01567 0.00000 -0.01567
12. BD*( 1) C 1- H 4 0.00763 0.00000 -0.00763
13. BD*( 1) C 1- H 5 0.00763 0.00000 -0.00763
14. BD*( 1) N 2- H 6 0.00424 0.00000 -0.00424
15. BD*( 1) N 2- H 7 0.00424 0.00000 -0.00424
16. RY ( 1) C 1 0.00094 0.00000 -0.00094
17. RY ( 2) C 1 0.00034 0.00000 -0.00034
18. RY ( 3) C 1 0.00020 0.00000 -0.00020
19. RY ( 4) C 1 0.00001 0.00000 -0.00001
20. RY ( 1) N 2 0.00114 0.00000 -0.00114
21. RY ( 2) N 2 0.00044 0.00000 -0.00044
22. RY ( 3) N 2 0.00034 0.00000 -0.00034
23. RY ( 4) N 2 0.00001 0.00000 -0.00001
24. RY ( 1) H 3 0.00163 0.00000 -0.00163
25. RY ( 1) H 4 0.00079 0.00000 -0.00079
26. RY ( 1) H 5 0.00079 0.00000 -0.00079
27. RY ( 1) H 6 0.00117 0.00000 -0.00117
28. RY ( 1) H 7 0.00117 0.00000 -0.00117

NEXT STEP: Perform one SCF cycle to evaluate the energy of the new density
matrix constructed from the deleted NBO Fock matrix.

------------------------------------------------------------------------------
Copying NBO density...
Calculating new Fock-Matrix...
Calculating Fock-Matrix...done!

(continues on next page)
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New NBO energy via Fock-Matrix: -94.629937

Starting NBO again for $del/return energy instructions...

------------------------------------------------------------------------------
Energy of deletion : -94.629936711

Total SCF energy : -94.679444929
-------------------

Energy change : 0.049508 a.u., 31.067 kcal/mol
------------------------------------------------------------------------------

Multiple deletions can also be specified, as can be seen for this example. The output then also contains the additional
energy values:

Starting NBO again for $del instructions...

Deletion of the following NBO Fock matrix elements:
3, 11;

Orbital occupancies:

Orbital No deletions This deletion Change
------------------------------------------------------------------------------

1. CR ( 1) C 1 1.99978 1.99978 -0.00000
2. CR ( 1) N 2 1.99983 1.99983 -0.00000
3. LP ( 1) N 2 1.97796 1.99348 0.01552
4. BD ( 1) C 1- N 2 1.99846 1.99860 0.00015
5. BD ( 1) C 1- H 3 1.99858 1.99845 -0.00014
6. BD ( 1) C 1- H 4 1.99406 1.99404 -0.00002
7. BD ( 1) C 1- H 5 1.99406 1.99404 -0.00002
8. BD ( 1) N 2- H 6 1.99440 1.99450 0.00011
9. BD ( 1) N 2- H 7 1.99440 1.99450 0.00011
10. BD*( 1) C 1- N 2 0.00009 0.00008 -0.00000
11. BD*( 1) C 1- H 3 0.01567 0.00042 -0.01525
12. BD*( 1) C 1- H 4 0.00763 0.00780 0.00017
13. BD*( 1) C 1- H 5 0.00763 0.00780 0.00017
14. BD*( 1) N 2- H 6 0.00424 0.00424 0.00000
15. BD*( 1) N 2- H 7 0.00424 0.00424 0.00000
16. RY ( 1) C 1 0.00094 0.00063 -0.00031
17. RY ( 2) C 1 0.00034 0.00034 0.00000
18. RY ( 3) C 1 0.00020 0.00032 0.00012
19. RY ( 4) C 1 0.00001 0.00002 0.00001
20. RY ( 1) N 2 0.00114 0.00115 0.00001
21. RY ( 2) N 2 0.00044 0.00044 0.00000
22. RY ( 3) N 2 0.00034 0.00034 0.00000
23. RY ( 4) N 2 0.00001 0.00001 0.00000
24. RY ( 1) H 3 0.00163 0.00092 -0.00072
25. RY ( 1) H 4 0.00079 0.00083 0.00005
26. RY ( 1) H 5 0.00079 0.00083 0.00005
27. RY ( 1) H 6 0.00117 0.00118 0.00000
28. RY ( 1) H 7 0.00117 0.00118 0.00000

NEXT STEP: Perform one SCF cycle to evaluate the energy of the new density
matrix constructed from the deleted NBO Fock matrix.

------------------------------------------------------------------------------
Copying NBO density...
Calculating new Fock-Matrix...
Calculating Fock-Matrix...done!

(continues on next page)
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New NBO energy via Fock-Matrix: -94.668383

Starting NBO again for $del/return energy instructions...

------------------------------------------------------------------------------
Energy of deletion : -94.668383268

Total SCF energy : -94.679444929
-------------------

Energy change : 0.011062 a.u., 6.941 kcal/mol
------------------------------------------------------------------------------

NOTE: Deletions are only implemented for SCF methods!

7.52.2 NBO for Post-HF Densities

NBO analysis can be performed on all methods producing a density. In some methods the density generation has
to be specified explictly, e. g. for MP2 calculations this would be:

! MP2 3-21G TightSCF BOHRS NBO

%MP2
density relaxed
end

*xyz 0 1
C 1.4089705283 0.0210567401 0.0000000000
N -1.3645072652 -0.1355759321 0.0000000000
H 1.9849776453 1.9986808971 0.0000000000
H 2.1492280974 -0.9096841007 1.6818209547
H 2.1492280974 -0.9096841007 -1.6818209547
H -2.0504340036 0.7268536543 -1.5583845544
H -2.0504340036 0.7268536543 1.5583845544
*

The output will contain both the NBO analysis of the SCF density as well as of the MP2 relaxed density. An NBO
analysis of a density generated by the MDCI module can be specified as follows:

! CISD 3-21G TightSCF BOHRS NBO

%mdci
density linearized

end

*xyz 0 1
C 1.4089705283 0.0210567401 0.0000000000
N -1.3645072652 -0.1355759321 0.0000000000
H 1.9849776453 1.9986808971 0.0000000000
H 2.1492280974 -0.9096841007 1.6818209547
H 2.1492280974 -0.9096841007 -1.6818209547
H -2.0504340036 0.7268536543 -1.5583845544
H -2.0504340036 0.7268536543 1.5583845544
*

Again, the output will contain both the NBO analysis of the SCF density as well es of the CISD linearized density.
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7.52.3 Natural Chemical Shielding Analysis (NCS)

For closed-shell calculations of NMR chemical shielding at the SCF level (see sections NMR Chemical Shifts and
EPR and NMR properties), the NCS analysis can be requested by adding NCS to the NBOKEYLIST. The NCS keyword
accepts the arguments U, I, CSA, XYZ, and MO to analyze the “unperturbed”, “induced”, anisotropic, Cartesian, and
canonical MO contributions to the shielding tensors, respectively, as well as a decimal number for the printing
threshold (in ppm). For more information, consult the NBO manual and the original publication.[113]

! PBE def2-TZVP NMR
%nbo

NBOKeyList = "$NBO NCS=0.01,I,U,XYZ $END"
end
* xyz 0 1

H 0.00 0.00 0.00
C 1.06 0.00 0.00
N 2.23 0.00 0.00

*

Summary of isotropic NMR chemical shielding
Total Lewis (L) and non-Lewis (NL) contributions: (ppm)

NBO H 1 C 2 N 3
--------------- ------- ------- -------

1. C 2(cr) L -0.18 200.26 0.18
NL -0.02 0.02 0.00

2. N 3(cr) L -0.03 -0.12 235.18
NL 0.00 0.01 0.02

3. N 3(lp) L 1.02 -33.00 -151.92
NL -1.04 1.81 12.18

4. H 1- C 2 L 25.75 -49.28 -20.30
NL -1.24 6.10 2.26

5. C 2- N 3 L 2.29 15.40 13.66
NL 0.02 0.00 -0.00

6. C 2- N 3 L 2.29 15.40 13.66
NL 0.02 0.00 -0.00

7. C 2- N 3 L 0.46 -77.94 -151.00
NL 0.05 -4.41 0.95

--------------- ------- ------- -------
Lewis 31.59 70.70 -60.53

non-Lewis -2.21 3.53 15.42
--------------- ------- ------- -------

Total 29.38 74.23 -45.11

7.53 Population Analyses and Control of Output

At present ORCA knows three different ways of analyzing the computed SCF wavefunction that will be described
below. All of these methods can produce a tremendous amount of output. However, this output can be precisely
controlled by the user to his or her individual needs.

In general there is one compound key called PrintLevel which is there to choose reasonable amounts of output.
All that PrintLevel does is to set certain flags in the array Print which holds the details about what to print and
what not.
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7.53.1 Controlling Output

The array Print allows the control of output. The general way of assigning elements of Print is:

%output
PrintLevel Normal
Print[ Flag ] 0 # turn print off

1 # turn print on
n # some flags are more sophisticated

end

The compound key PrintLevel can be used to select certain default settings for the print array. Specifying Print
after PrintLevel can be used to modify these defaults.

%output
PrintLevel Nothing

Mini
Small
Normal
Maxi
Large
Huge
Debug

end

Print has presently the following elements that can be user controlled:

Flag Action
P_InputFile Echo the input file
P_Cartesian Print the cartesian coordinates
P_Internal Print the internal coordinates
P_Basis = 1 : Print the basis set information

= 2 : Also print the primitives in input format
P_OneElec Print of the one electron matrix
P_Overlap Print the overlap matrix
P_KinEn Print the kinetic energy matrix
P_S12 Print the S−1/2 matrix
P_GuessOrb Print the initial guess orbitals
P_OrbEn = 1 : Print orbital energies up to LUMO+9

= 2 : Print all orbital energies
P_MOs Print the MO coefficients on convergence
P_Density Print the converged electron density
P_SpinDensity Print the converged spin density
P_EHTDetails Print initial guess extended Hückel details
P_SCFInfo Print the SCF input flags
P_SCFMemInfo Print the estimated SCF memory requirements
P_SCFIterInfo = 1 : print short iteration information

= 2 : print longer iteration information
= 3 : in a direct SCF also print integral progress

P_Fockian Print Fockian matrix
P_DIISMat Print DIIS matrix
P_DIISError Print DIIS error
P_Iter_P Print Density
P_Iter_C Print MO coefficients
P_Iter_F Print Fock matrix
P_Mayer Print Mayer population analysis. Default = on.
P_NatPop Print Natural population analysis. Default = off.
P_Hirshfeld Print Hirshfeld population analysis. Default = off.

continues on next page
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Table 7.31 – continued from previous page
Flag Action
P_MBIS Print MBIS population analysis. Default = off.
P_Mulliken Print Mulliken population analysis. Default = on
P_AtCharges_M Print Mulliken atomic charges
P_OrbCharges_M Print Mulliken orbital charges
P_FragCharges_M Print Mulliken fragment charges
P_FragBondOrder_M Print Mulliken fragment bond orders
P_BondOrder_M Print Mulliken bond orders
P_ReducedOrbPop_M Print Mulliken reduced orb. charges
P_FragPopMO_M Print Mulliken fragment population for each MO
P_FragOvlMO_M Print Mulliken overlap populations per fragment pair
P_AtPopMO_M Print Mulliken atomic charges in each MO
P_OrbPopMO_M Print Mulliken orbital population for each MO
P_ReducedOrbPopMO_M Print Mulliken reduced orbital population for each MO
P_Loewdin Print Loewdin population analysis. Default = on.
P_AtCharges_L Print Loewdin atomic charges
P_OrbCharges_L Print Loewdin orbital charges
P_FragCharges_L Print Loewdin fragment charges
P_FragBondOrder_L Print Loewdin fragment bond orders
P_BondOrder_L Print Loewdin bond orders
P_ReducedOrbPop_L Print Loewdin reduced orb. charges
P_FragPopMO_L Print Loewdin fragment population for each MO
P_FragOvlMO_L Print Loewdin overlap populations per fragment pair
P_AtPopMO_L Print Loewdin atomic charges in each MO
P_OrbPopMO_L Print Loewdin orbital population for each MO
P_ReducedOrbPopMO_L Print Loewdin reduced orbital population for each MO
P_NPA Natural population analysis
P_NBO Natural bond orbital analysis
P_Fragments Print fragment information
P_GUESSPOP Print initial guess populations
P_UNO_FragPopMO_M Print Mulliken fragment population per UNO
P_UNO_OrbPopMO_M Print Mulliken orbital pop. per UNO
P_UNO_AtPopMO_M Print Mulliken atomic charges per UNO
P_UNO_ReducedOrbPopMO_M Print Mulliken reduced orbital pop. per UNO
P_UNO_FragPopMO_L Print Loewdin fragment population per UNO
P_UNO_OrbPopMO_L Print Loewdin orbital pop. per UNO
P_UNO_AtPopMO_L Print Loewdin atomic charges per UNO
P_UNO_ReducedOrbPopMO_L Print Loewdin reduced orbital pop. per UNO
P_UNO_OccNum Print occupation numbers per UNO
P_AtomExpVal Print atomic expectation values
P_AtomBasis Print atomic basis
P_AtomDensFit Print electron density fit
P_Symmetry Symmetry basic information
P_Sym_Salc Symmetry process printing
P_SCFSTABANA Information on progress, convergence, and results of the SCF stability analysis
P_DFTD Print info on Grimme’s dispersion correction

print mini = 0
print small = 1
print normal = 1
print maxi = 2
print huge = 2

P_DFTD_GRAD Print gradient info on Grimme’s dispersion correction
print mini = 0
print small = 0
print normal = 0
print maxi = 1

continues on next page
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Table 7.31 – continued from previous page
Flag Action

print huge = 2
P_G1EL2EL Print one- and two-electron contributions to the g-tensor

The various choices for PrintLevel have the following defaults:

PrintLevel Print settings
Mini P_OrbEn = 1

P_Cartesian = 1
P_InputFile = 1
P_SCFIterInfo = 1

Small all the previous plus
P_SCFInfo = 1
P_Mayer = 1
P_MULLIKEN = 1
P_AtCharges_M = 1
P_ReducedOrbPop_M = 1
P_Loewdin = 1
P_AtCharges_L = 1
P_ReducedOrbPop_L = 1
P_Fragments = 1
P_FragCharges_M = 1
P_FragBondOrder_M = 1
P_FragCharges_L = 1
P_FragBondOrder_L = 1

Normal all the previous plus
P_Internal = 1
P_BondOrder_L = 1
P_BondOrder_M = 1
P_FragPopMO_L = 1
P_ReducedOrbPopMO_L = 1
P_SCFIterInfo = 2

Maxi all the previous plus
P_OrbEn = 2
P_GuessOrb = 1
P_MOs = 1
P_Density = 1
P_SpinDensity = 1
P_Basis = 1
P_FragOVLMO_M = 1
P_OrbPopMO_M = 1
P_OrbCharges_M = 1

Huge All the previous plus
P_OneElec = 1
P_Overlap = 1
P_S12 = 1
P_AtPopMO_M = 1
P_OrbPopMO_M = 1
P_AtPopMO_L = 1
P_EHTDetails = 1

Debug print everything
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7.53.2 Mulliken Population Analysis

The Mulliken population analysis [599] is, despite all its known considerable weaknesses, the standard in most
quantum chemical programs. It partitions the total density using the assignment of basis functions to given atoms
in the molecules and the basis function overlap. If the total charge density is written as 𝜌 (�⃗�) and the total number
of electrons is 𝑁 we have: ∫︁

𝜌 (�⃗�) 𝑑�⃗� = 𝑁 (7.407)

and from the density matrix P and the basis functions 𝜑:

𝜌 (�⃗�) =
∑︁
𝜇𝜈

𝑃𝜇𝜈𝜑𝜇 (�⃗�)𝜑𝜈 (�⃗�) (7.408)

therefore: ∫︁
𝜌 (�⃗�) 𝑑�⃗� =

∑︁
𝜇𝜈

𝑃𝜇𝜈

∫︁
𝜑𝜇 (�⃗�)𝜑𝜈 (�⃗�) 𝑑�⃗�⏟  ⏞  

𝑆𝜇𝜈

(7.409)

=
∑︁
𝜇𝜈

𝑃𝜇𝜈𝑆𝜇𝜈 (7.410)

After assigning each basis function to a given center this can be rewritten:

=
∑︁
𝐴

∑︁
𝐵

∑︁
𝜇

𝐴
∑︁
𝜈

𝐵𝑃𝐴𝐵𝜇𝜈 𝑆
𝐴𝐵
𝜇𝜈 (7.411)

=
∑︁
𝐴

∑︁
𝜇

𝐴
∑︁
𝜈

𝐴𝑃𝐴𝐴𝜇𝜈 𝑆
𝐴𝐴
𝜇𝜈 + 2

∑︁
𝐴

∑︁
𝐵<𝐴

∑︁
𝜇

𝐴
∑︁
𝜈

𝐵𝑃𝐴𝐵𝜇𝜈 𝑆
𝐴𝐵
𝜇𝜈 (7.412)

Mulliken proposed to divide the second term equally between each pair of atoms involved and define the number
of electrons on center 𝐴, 𝑁𝐴, as:

𝑁𝐴 =
∑︁
𝜇

𝐴
∑︁
𝜈

𝐴𝑃𝐴𝐴𝜇𝜈 𝑆
𝐴𝐴
𝜇𝜈 +

∑︁
𝐵 ̸=𝐴

∑︁
𝜇

𝐴
∑︁
𝜈

𝐵𝑃𝐴𝐵𝜇𝜈 𝑆
𝐴𝐵
𝜇𝜈 (7.413)

such that
∑︀
𝐴

𝑁𝐴 = 𝑁 . The charge of an atom in the molecule is then:

𝑄𝐴 = 𝑍𝐴 −𝑁𝐴 (7.414)

where 𝑍𝐴 is the core charge of atom 𝐴. The cross terms between pairs of basis functions centered on different
atoms is the overlap charge and is used in ORCA to define the Mulliken bond order:

𝐵𝐴𝐵 = 2
∑︁
𝜇

𝐴
∑︁
𝜈

𝐵𝑃𝐴𝐵𝜇𝜈 𝑆
𝐴𝐵
𝜇𝜈 (7.415)

The Mulliken population analysis is turned on by using:

%output
Print[ P_Mulliken ] 1 # default = on

end

A number of additional options can be specified to control the details of the Mulliken population analysis. By
default the Mulliken population analysis is turned on.

%output
Print[ P_AtCharges_M ] 1 # Print atomic charges
Print[ P_OrbCharges_M ] 1 # Print orbital charges
Print[ P_FragCharges_M] 1 # Print fragment charges
Print[ P_BondOrder_M ] 1 # Print bond orders

(continues on next page)
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(continued from previous page)

Print[ P_FragBondOrder_M ] 1# Print fragment b.o.
Print[ P_ReducedOrbPop_M ] 1# Print reduced orb. Charges
Print[ P_AtPopMO_M ] 1 # Print atomic charges in

# each MO
Print[ P_OrbPopMO_M ] 1 # Print orbital populaiton

# for each MO
Print[ P_ReducedOrbPopMO_M] 1 # Print reduced orbital

# pop for each MO
Print[ P_FragPopMO_M ] 1 # Print the fragment

# population for for each MO
end

These options allow to get very detailed information about the computed wavefunctions and is much more conve-
nient than to look at the MOs directly. A “reduced orbital population” is a population per angular momentum type.
For example the sum of populations of each p𝑧 orbital at a given atom is the reduced orbital population of the p𝑧
function.

Note that for finite temperature HF or KS-DFT calculations (SmearTemp> 0 K, fractional occupation numbers or
FOD analysis, see Finite Temperature HF/KS-DFT ), only the Mulliken reduced orbital charges based on 𝜌𝐹𝑂𝐷 will
be printed. They can be used to get a first impression about the localization of hot electrons in the molecule without
generating the corresponding FOD plot (see FOD plots). The following example shows the corresponding printout
for the first carbon atom of p-benzyne based on a FOD analysis with default settings (see Fractional Occupation
Number Weighted Electron Density (FOD)).

------------------------------------------
FOD BASED MULLIKEN REDUCED ORBITAL CHARGES
------------------------------------------

0 C s : 0.006371 s : 0.006371
pz : 0.016375 p : 0.030785
px : 0.009893
py : 0.004516
dz2 : 0.004248 d : 0.010308
dxz : 0.000254
dyz : 0.004855
dx2y2 : 0.000860
dxy : 0.000091
f0 : 0.000006 f : 0.000378
f+1 : 0.000014
f-1 : 0.000309
f+2 : 0.000002
f-2 : 0.000006
f+3 : 0.000010
f-3 : 0.000032

If other population analysis printouts are wanted the user is referred to the Löwdin analysis (Löwdin Population
Analysis) which is turned on by default using the total SCF density of the calculation, also in the case of finite
electronic temperature.

7.53.3 Löwdin Population Analysis

The Löwdin analysis [840] is somewhat more straightforward than the Mulliken analysis. In the Löwdin method
one changes to a basis where all overlap integrals vanish. This is accomplished via Löwdins symmetric orthogonal-
ization matrix S−1/2. Using this transformation matrix the new basis functions are multicentered but are in a least
square sense as similar as possible to the original, strictly localized, atomic basis functions. The similarity of the
transformed functions and original functions is explored in the population analysis. The density matrix transforms
as:

P𝐿 = S1/2PS1/2 (7.416)
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Then the atomic populations are:

𝑁𝐴 =
∑︁
𝜇

𝐴𝑃𝐿𝜇𝜇 (7.417)

The bond order is defined from the Wiberg index [889] that was first used in the context of semiempirical methods
(that are formulated in the Löwdin basis right from the start):

𝐵𝐴𝐵 =
∑︁
𝜇

𝐴
∑︁
𝜈

𝐵
(︀
𝑃𝐿𝜇𝜈

)︀2
(7.418)

The output for the Löwdin population analysis (that I personally prefer over the Mulliken analysis) is closely similar.
By default the Löwdin population analysis is turned on and provides some more detail than the Mulliken analysis.

%output
Print[ P_Loewdin ] 1 # default = on

end

The flags to regulate the details are almost identical:

%output
Print[ P_AtCharges_L ] 1 # Print atomic charges
Print[ P_OrbCharges_L ] 1 # Print orbital charges
Print[ P_FragCharges_L] 1 # Print fragment charges
Print[ P_BondOrder_L ] 1 # Print bond orders
Print[ P_FragBondOrder_L ] 1 # Print fragment b.o.
Print[ P_ReducedOrbPop_L ] 1 # Print reduced orb. Charges
Print[ P_AtPopMO_L ] 1 # Print atomic charges in

# each MO
Print[ P_OrbPopMO_L ] 1 # Print orbital population

# for each MO
Print[ P_ReducedOrbPopMO_L] 1 # Print reduced orbital

# pop for each MO
Print[ P_FragPopMO_L ] 1 # Print the fragment

# population for each MO
end

In addition one can set, in the method block, the threshold for the printing of the bond order.

%method
LOEWDIN_BONDORDERTHRESH 0.05

end

7.53.4 Mayer Population Analysis

Mayers bonding analysis [568, 569, 570, 571] is another creative attempt to define chemically useful indices. The
Mayer atomic charge is identical to the Mulliken charge. The Mayer bond order is defined as:

𝐵𝐴𝐵 =
∑︁
𝜇

𝐴
∑︁
𝜈

𝐵 (PS)𝜇𝜈 (PS)𝜈𝜇 + (RS)𝜇𝜈 (RS)𝜈𝜇 (7.419)

Here P is the total electron density matrix and R is the spin-density matrix. These Mayer bond orders are very
useful. Mayer’s total valence for atom 𝐴 is defined as:

𝑉𝐴 = 2𝑁𝐴 −
∑︁
𝜇

𝐴
∑︁
𝜈

𝐴 (PS)𝜇𝜈 (PS)𝜈𝜇 (7.420)

In normal bonding situations and with normal basis sets 𝑉𝐴 should be reasonably close to the valence of atom 𝐴
in a chemical sense (i.e. close to four for a carbon atom). The bonded valence is given by:

𝑋𝐴 = 𝑉𝐴 −
∑︁
𝐵 ̸=𝐴

𝐵𝐴𝐵 (7.421)
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and finally the free valence (a measure of the ability to form further bonds) is given by:

𝐹𝐴 = 𝑉𝐴 −𝑋𝐴 (7.422)

The Mayer population analysis is turned on by:

%output
Print[ P_Mayer ] 1 # default = on

end

The output is rather simple and short and can not be further controlled. By default the Mayer population analysis
is turned on. In addition one can set, in the method block, the threshold for the printing of the bond order.

%method
MAYER_BONDORDERTHRESH 0.1

end

7.53.5 Natural Population Analysis

A popular and useful method for population analysis is the natural population analysis due to Weinhold and co-
workers. It is implemented in the NBO interface.

7.53.6 Local Spin Analysis

It is common practice in various areas of chemistry to think about the interaction of open-shell systems in terms of
local spin states. For example, in dimeric or oligomeric transition metal clusters, the ‘exchange coupling’ between
open shell ions that exist locally in high-spin states is a much studied phenomenon. Diradicals would be typical
systems in organic chemistry that show this phenomenon. In quantum mechanics, however, the total spin is not a
local property, but instead a property of the system as a whole. The total spin squared, 𝑆2, and its projection onto
the z-axis, 𝑆𝑧 , commute with the non-relativistic Hamiltonian and hence, the eigenfunctions of the non-relativistic
Hamiltonian can be classified according to good quantum numbers 𝑆 and 𝑀 according to:

S2
⃒⃒
Ψ𝑆𝑀

⟩︀
= 𝑆(𝑆 + 1)

⃒⃒
Ψ𝑆𝑀

⟩︀
𝑆𝑧
⃒⃒
Ψ𝑆𝑀

⟩︀
=𝑀

⃒⃒
Ψ𝑆𝑀

⟩︀
where

⃒⃒
Ψ𝑆𝑀

⟩︀
is an exact eigenfunction of the non-relativistic Hamiltonian or an approximation to it that conserves

the total spin as a good quantum number. The total spin itself is given by the sum over the individual electron spins
as:

S =
∑︁
𝑖

s(𝑖)

And hence,

S2 =
∑︁

𝑖,𝑗
s(𝑖)s(𝑗)

is a two-electron property of the system. It is obviously not trivial to relate the chemically very meaningful concept
of local spin to a rigorous quantum mechanical treatment. While there are various proposals of how to deal with
this problem, we follow here a proposal of Clark and Davidson (Clark, A.E.; Davidson, E.R., J. Chem. Phys. 2001,
115, 7382-7392). The following equations are implemented in the SCF and CASSCF modules of Orca.

Clark and Davidson define fragment projection operators with the property:

𝑃𝐴𝑃𝐵 = 𝛿𝐴𝐵𝑃𝐴

and: ∑︁
𝐴

𝑃𝐴 = 1
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Then using this identity:

S =
∑︁
𝑖

∑︁
𝐴

s(𝑖)𝑃𝐴(𝑖)

S =
∑︁
𝐴

∑︁
𝑖

s(𝑖)𝑃𝐴(𝑖)

=
∑︁
𝐴

S𝐴(𝑖)

they show that the local spin operators obey the standard relations for spin operators:

S𝐴 = S†𝐴

S𝐴 × S𝐴 = 𝑖ℏS𝐴

Hence

S2 =
∑︁
𝐴

∑︁
𝐵

S𝐴S𝐵

But then importantly:

S𝐴S𝐵 =
∑︁
𝑖

∑︁
𝑗

s(𝑖)s(𝑗)𝑃𝐴(𝑖)𝑃𝐵(𝑗)

= 3
4𝛿𝐴𝐵

∑︁
𝐴

𝑃𝐴(𝑖) +
∑︁
𝑖

∑︁
𝑗>𝑖

s(𝑖)s(𝑗){𝑃𝐴(𝑖)𝑃𝐵(𝑗) + 𝑃𝐴(𝑗)𝑃𝐵(𝑖)}

With the first- and second-order density matrix:

𝛾(x,x′) = 𝑁

∫︁
Ψ(x,x2, ...,x𝑁 )Ψ*(x′,x2, ...,x𝑁 )𝑑x2...𝑑x𝑁

Γ(x1,x
′
1;x2,x

′
2) =

(︂
𝑁
2

)︂∫︁
Ψ(x1,x2, ...,x𝑁 )Ψ*(x′1,x

′
2, ...,x𝑁 )𝑑x3...𝑑x𝑁

(with
(︀
𝑁
2

)︀
= 1

2𝑁(𝑁 − 1)). Then:

⟨S𝐴S𝐵⟩ = 3
4𝛿𝐴𝐵𝑡𝑟(𝛾𝑃𝐴) + 2𝑡𝑟(𝑃𝐴(1)𝑃𝐵(2)s(1)s(2)Γ(1, 1; 2, 2))

In terms of the number of electrons on site ‘A’and the expectation value of 𝑆𝐴𝑧⟨︀
𝑆𝐴𝑧
⟩︀
= 1

2 𝑡𝑟(𝛾
𝛼−𝛽𝑃𝐴)⟨︀

𝑁𝐴
⟩︀
= 𝑡𝑟(𝛾𝛼+𝛽𝑃𝐴)

in terms of molecular orbitals: ⟨︀
𝑆𝐴𝑧
⟩︀
= 1

2

∑︁
𝑝,𝑞

𝛾𝛼−𝛽𝑝𝑞 ⟨𝑝|𝑃𝐴|𝑞⟩

⟨︀
𝑁𝐴
⟩︀
=
∑︁
𝑝,𝑞

𝛾𝛼+𝛽𝑝𝑞 ⟨𝑝|𝑃𝐴|𝑞⟩

McWeeny and Kutzelnigg (McWeeny, R.; Kutzelnigg, W. Int. J. Quant. Chem. 1968, 11, 187-203) show that for
the expectation value of s(1)s(2), the relevant irreducible part of the two-body density can be expressed in terms
of the spinless density matrix of second order:

𝑅
(0)
0 (1, 1′; 2, 2′) = − 1

3Γ(1, 1
′; 2, 2′)− 2

3Γ(2, 1
′; 1, 2′)

= − 1
3

∑︁
𝑝𝑞𝑟𝑠

Γ𝑝𝑞𝑟𝑠𝑝(1)𝑞(1
′)𝑟(2)𝑠(2′) + 2Γ𝑝𝑞𝑟𝑠𝑝(2)𝑞(1

′)𝑟(1)𝑠(2′)
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= − 1
3

∑︁
𝑝𝑞𝑟𝑠

(Γ𝑝𝑞𝑟𝑠 + 2Γ𝑟𝑞𝑝𝑠)𝑝(1)𝑞(1
′)𝑟(2)𝑠(2′)

with a normalization factor of 3
4 after spin integration. Hence using this:

⟨S𝐴S𝐵⟩ = 3
4𝛿𝐴𝐵𝑡𝑟(𝛾𝑃𝐴) +

6
4 𝑡𝑟(𝑃𝐴(1)𝑃𝐵(2)𝑅

(0)
0 (1, 1; 2, 2))

And then performing the integral:

⟨S𝐴S𝐵⟩ = 3
4𝛿𝐴𝐵𝑡𝑟(𝛾𝑃𝐴)−

6
4
1
3⏟ ⏞ 
1
2

∑︁
𝑝𝑞𝑟𝑠

(Γ𝑝𝑞𝑟𝑠 + 2Γ𝑟𝑞𝑝𝑠)𝑃
𝐴
𝑝𝑞𝑃

𝐵
𝑟𝑠

This is the final and perhaps most compact equation. The projection operator can be defined in very many different
ways. The easiest is to Löwdin orthogonalize the basis set:⃒⃒

𝜇𝐴𝐿
⟩︀
=
∑︁
𝜈𝐴

⃒⃒
𝜈𝐴
⟩︀
𝑆−1/2𝜇𝜈

where 𝐿 denotes the Löwdin basis. This means that molecular orbitals are expressed in the orthogonal basis as:

c𝐿 = S+1/2c

and the density as:

P𝐿 = S+1/2PS+1/2

The fragment projector is defined as:

𝑃𝐴 =
∑︁
𝜇𝐿∈𝐴

|𝜇𝐿⟩ ⟨𝜇𝐿|

Clark and Davidson suggest a slightly more elaborate projector in which first, the intra-fragment overlap is elimi-
nated. This happens with a matrix U that for two fragments takes form:

U =

(︃
S
−1/2
𝐴 0

0 S
−1/2
𝐵

)︃

where is the block of basis functions belonging to fragment A. Likewise:

U−1 =

⎛⎜⎝S
+1/2
𝐴 0

0 S
+1/2
𝐵

⎞⎟⎠
Then the ‘pre-overlap’is:

S̄ = U†SU

This contains the unit matrix in the intra-fragment blocks and non-zero elements elsewhere. This overlap matrix is
the finally orthogonalized to obtain the globally orthogonal Löwdin basis. We finally transform the MO coefficients
by the following transformation:

c𝐿 = S+1/2U−1c

For the projectors, operating with the two MOs i and j gives:

⟨𝑖|𝑃𝐴|𝑗⟩ =
∑︁
𝜇𝐿∈𝐴

∑︁
𝜅𝐵
𝐿 𝜏

𝐶
𝐿

⟨︀
𝜅𝐵𝐿 |𝜇𝐴𝐿

⟩︀ ⟨︀
𝜇𝐴𝐿 |𝜏𝐶𝐿

⟩︀
𝑐𝐿𝜅𝑖𝑐

𝐿
𝜏𝑗

=
∑︁
𝜇𝐿∈𝐴

∑︁
𝜅𝐵
𝐿 𝜏

𝐶
𝐿

𝛿𝐴𝐵𝛿𝐴𝐶𝛿𝜅𝜇𝛿𝜏𝜇𝑐
𝐿
𝜅𝑖𝑐

𝐿
𝜏𝑗
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=
∑︁
𝜇𝐿∈𝐴

𝑐𝐿𝜇𝑖𝑐
𝐿
𝜇𝑗

Herrmann et al. (Herrmann, C.; Reiher, M.; Hess, B.A. J. Chem. Phys. 2005, 122, 34102) give the correct
expression of the expectation values for a single spin-unrestricted determinant

⟨S𝐴S𝐵⟩ = 3
4𝛿𝐴𝐵

{︃∑︁
𝑖

𝑃𝐴𝑖𝑖 +
∑︁
�̄�

𝑃𝐴�̄̄�𝑖

}︃

+ 1
4

⎧⎨⎩∑︁
𝑖𝑗

𝑃𝐴𝑖𝑖 𝑃
𝐵
𝑗𝑗 +

∑︁
�̄��̄�

𝑃𝐴�̄̄�𝑖 𝑃
𝐵
�̄��̄� −

∑︁
𝑖𝑗

𝑃𝐴𝑖𝑗𝑃
𝐵
𝑖𝑗 −

∑︁
�̄��̄�

𝑃𝐴�̄��̄�𝑃
𝐵
�̄��̄� −

∑︁
�̄�𝑗

𝑃𝐴�̄̄�𝑖 𝑃
𝐵
𝑗𝑗 −

∑︁
𝑖�̄�

𝑃𝐴𝑖𝑖 𝑃
𝐵
�̄��̄�

⎫⎬⎭
−
∑︁
𝑖�̄�

𝑃𝐴𝑖�̄�𝑃
𝐵
𝑖�̄�

Which is used in the Orca implementation.

The use of the Local spin-implementation is very easy. All that is required is to divide the molecule into fragments.
The rest happens automatically. For example, let us consider two nitrogen atoms at the dissociation limit. While
the total spin state is S=0, the tow nitrogen atoms local exist in high-spin states (S=3/2). Consider the following
test job:

! HF def2-SVP UHF TightSCF PModel

%scf brokensym 3,3 end

* xyz 0 1
N(1) 0 0 0
N(2) 0 0 1094
*

and the output:

-------------------
LOCAL SPIN ANALYSIS (Loewdin* projector)
-------------------

(1) A.E. Clark; E.R. Davison J. Chem. Phys. (2001), 115(16), pp 7382-7392
(2) C. Herrmann, M. Reiher, B.A. Hess J. Chem. Phys. (2005) 122, art 034102-1

Number of fragments = 2
Number of basis functions = 28
Number of atoms = 2

... Fragment AO indices were mapped

... intra-fragment orthogonalization completed

... Global Loewdin orthogonalizer constructed

... Loewdin orthogonalized occupied orbitals constructed

<SA*SB> 1 2
----------------------------------

1 : 3.7568
2 : -2.2500 3.7568

<SzA> Seff(A)
--------------------------

1 : 1.5000 1.5017
2 : -1.5000 1.5017

thus perfectly corresponding to the expectations. The same can be done at the CASSCF level:
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! HF def2-SVP UHF TightSCF PModel

%casscf nel 6 norb 6 nroots 1 end

* xyz 0 1
N(1) 0 0 0
N(2) 0 0 1094
*

With the result:

<SA*SB> 1 2
----------------------------------

1 : 3.7500
2 : -3.7500 3.7500

<SzA>* Seff(A)
--------------------------

1 : n.a. 1.5000
2 : n.a. 1.5000

* = for a singlet state all <SzA> values are zero by definition

Thus, cleanly confirming the expectations.

As a less trivial example, consider a typical Fe(III) antiferromatically coupled transition metal dimer. An appro-
priate input may be:

! pbe def2-sv(p) tightscf kdiis soscf pmodel

%scf
brokensym 5,5

end

* xyz -2 1
Fe(1) -1.93818 0.53739 -0.00010
Fe(2) 1.06735 0.47031 0.00029
S(3) -0.38935 2.59862 -0.00983
S(3) -0.48170 -1.59050 0.01091
S(1) 2.68798 0.43924 1.99710
S(1) 2.68692 0.42704 -1.99712
S(2) -3.55594 0.56407 -1.99889
S(2) -3.55850 0.58107 1.99646
H(1) 3.91984 0.39462 1.47608
H(1) 3.91940 0.39536 -1.47662
H(2) -4.78410 0.69179 -1.48280
H(2) -4.78991 0.49249 1.47983
*

Where one of the bridging sulfurs was assigned to each site respectively.

<SA*SB> 1 2
----------------------------------

1 : 7.7009
2 : -5.3721 7.7012

<SzA> Seff(A)
--------------------------

1 : 1.7579 2.3197

(continues on next page)
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(continued from previous page)

2 : -1.7579 2.3198

Nice shows the expected results with the local site spins being close to their ideal value 2.5 which would hold for
a high-spin Fe(III) ion.

7.53.7 UNO Orbital Printing

The analysis of UNO’s can be controlled similarly. The flags together with their default values are shown below:

%output
Print[ P_UNO_OccNum ] = 1; # Occupation numbers
Print[ P_UNO_AtPopMO_M ] = 0; # Mulliken atom pop.

# per UNO
Print[ P_UNO_OrbPopMO_M] = 0; # Mulliken orbital pop.

# per UNO
Print[ P_UNO_ReducedOrbPopMO_M] = 0;

# Mulliken reduced orbital
# pop. per UNO

Print[ P_UNO_AtPopMO_L ] = 0; # Loewdin atom pop.
# per UNO

Print[ P_UNO_OrbPopMO_L] = 0; # Loewdin orbital pop.
# per UNO

Print[ P_UNO_ReducedOrbPopMO_L] = 0;
# Loewdin reduced orbital
# pop. per UNO

end

7.53.8 Hirshfeld Charges

The partitioning method by Hirshfeld is one of the most used approaches in the so-called atoms in molecules (AIM)
methods.[394] In this case, the AIM density of atom A, 𝜌𝐴(�⃗�) is written as:

𝜌𝐴(�⃗�) = 𝜌(�⃗�)𝑤𝐴(�⃗�) (7.423)

Here, 𝜌(�⃗�) is the total charge density at position �⃗�, and 𝑤𝐴(�⃗�) a weighting function, that within the Hirshfeld
method is equal to:

𝑤𝐴(�⃗�) =
𝜌0𝐴(�⃗�)

𝜌0(�⃗�)
(7.424)

where 𝜌0𝐴(�⃗�) is the pro-atomic density of atom 𝐴 and 𝜌0(�⃗�) =
∑︀
𝐴 𝜌

0
𝐴(�⃗�) the pro-molecular density. The ratio in

eq. (7.423) is known as stockholder. From eqs. (7.423) and (7.424) one can calculate the Hirshfeld charges as:

𝑄Hirsh.
𝐴 = 𝑍𝐴 −

∫︁
𝜌𝐴(�⃗�)𝑑�⃗� (7.425)

In ORCA, the pro-atomic density within the Hirshfeld method is calculated via density fitting with a set of Gaussian
s-functions per element.

The calculation of the Hirshfeld charges in ORCA is requested by writing

! Hirshfeld

in the ORCA input file, or alternatively via the %output block:

%output
Print[ P_Hirshfeld ] 1 # default = off

end
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For instance, if we request the Hirshfeld charges for a water molecule:

!HF cc-pvdz tightscf Hirshfeld

%maxcore 4000

* xyz 0 1
O 0.00000006589375 0.00157184228646 0.00000000004493
H 0.77316868532439 -0.58666889665624 -0.00000000000005
H -0.77316876182122 -0.58666895650640 -0.00000000000005

*

ORCA prints the following information at the end of the output file:

------------------
HIRSHFELD ANALYSIS
------------------

Total integrated alpha density = 4.999998580
Total integrated beta density = 4.999998580

ATOM CHARGE SPIN
0 O -0.333756 0.000000
1 H 0.166879 0.000000
2 H 0.166879 0.000000

TOTAL 0.000003 0.000000

7.53.9 MBIS Charges

The Minimal Basis Iterative Stockholder (MBIS) method is a variant of the Hirshfeld method.[870] The idea
behind this approach is that the pro-atomic density 𝜌0𝐴(�⃗�) is expanded in a minimal set of atom-centered s-type
Slater functions 𝜌0𝐴𝑖(�⃗�):

𝜌0𝐴(�⃗�) =

𝑚𝐴∑︁
𝑖=1

𝜌0𝐴𝑖(�⃗�) (7.426)

with 𝜌0𝐴𝑖(�⃗�) equal to:

𝜌0𝐴𝑖(�⃗�) =
𝑁𝐴𝑖
𝜎3
𝐴𝑖8𝜋

exp

⎛⎝−
⃒⃒⃒
�⃗� −𝑅𝐴

⃒⃒⃒
𝜎𝐴𝑖

⎞⎠ (7.427)

Here, 𝑚𝐴 is the number of shells of atom 𝐴. The populations 𝑁𝐴𝑖, and the widths 𝜎𝐴𝑖 can be written as:

𝑁𝐴𝑖 =

∫︁
𝜌(�⃗�)

𝜌0𝐴𝑖(�⃗�)

𝜌0(�⃗�)
𝑑�⃗� (7.428)

𝜎𝐴𝑖 =
1

3𝑁𝐴𝑖

∫︁
𝜌(�⃗�)

𝜌0𝐴𝑖(�⃗�)

𝜌0(�⃗�)

⃒⃒⃒
�⃗� −𝑅𝐴

⃒⃒⃒
𝑑�⃗� (7.429)

In order to compute the AIM densities 𝜌𝐴(�⃗�), the MBIS method uses an iterative algorithm where: (1) an initial
guess is generated for the set of 𝑁𝐴𝑖 and 𝜎𝐴𝑖 and the pro-atomic densities are calculated through eqs. (7.426) and
(7.427), (2) the new set of 𝑁𝐴𝑖 and 𝜎𝐴𝑖 are obtained via eqs. (7.428) and (7.429), (3) if convergence is reached
for 𝜌𝐴(�⃗�), the iterative process stops, otherwise we go back to (1) but now one uses the last estimates for 𝑁𝐴𝑖 and
𝜎𝐴𝑖.

Once, the MBIS iterative process stops, the MBIS charges are calculated as:

𝑄MBIS.
𝐴 = 𝑍𝐴 −

∫︁
𝜌𝐴(�⃗�)𝑑�⃗� (7.430)

The calculation of the MBIS charges in ORCA is requested by writing
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! MBIS

in the ORCA input file, or alternatively via the %output block:

%output
Print[ P_MBIS ] 1 # default = off

end

If we request the MBIS charges for a HF calculation at the cc-pvdz level of a chloroform molecule:

!HF cc-pvdz tightscf MBIS

* xyz 0 1
C -0.00000997794639 -0.00091664148112 0.45499807439812
H 0.00000069467312 0.00031189002174 1.53703126401237
Cl 0.00003188789531 1.69433732001280 -0.08420513240263
Cl 1.46635420502892 -0.84684178730039 -0.08421103795485
Cl -1.46637680965097 -0.84689178125304 -0.08420916805301

*

ORCA prints the following information at the end of the output file:

------------------
MBIS ANALYSIS
------------------

Convergence threshold (charges) ... 1.000e-06
Number of iterations ... 46

Total integrated alpha density ... 29.000001385
Total integrated beta density ... 29.000001385

ATOM CHARGE POPULATION SPIN
0 C 0.208633 5.791367 0.000000
1 H 0.169417 0.830583 0.000000
2 Cl -0.126877 17.126877 0.000000
3 Cl -0.125586 17.125586 0.000000
4 Cl -0.125590 17.125590 0.000000

TOTAL -0.000003 58.000003 0.000000

MBIS VALENCE-SHELL DATA:
ATOM POPULATION WIDTH(A.U.)
0 C 4.122213 0.508675
1 H 0.830583 0.358785
2 Cl 8.532439 0.524031
3 Cl 8.531380 0.523959
4 Cl 8.531381 0.523959

The second block corresponds to the valence Slater function, which is caracterized by its population 𝑁𝐴,𝑣 and
width 𝜎𝐴,𝑣 .

The convergence threshold for the MBIS charges is set to 10−6. However, it can be changed via the tag
MBIS_CHARGETHRESH in the %method block:

%method
MBIS_CHARGETHRESH 0.0001

end

ORCA can also print the following MBIS-related quantities: (1) atomic dipole moments, (2) atomic
quadrupole moments, (3) atomic octupole moments, and (4) third radial moment of the MBIS density(︂
⟨𝑟3⟩𝐴 =

∫︀ ⃒⃒⃒
�⃗� −𝑅𝐴

⃒⃒⃒3
𝜌𝐴(�⃗�)𝑑�⃗�

)︂
. The printing of these properties is controlled by the tag MBIS_LARGEPRINT,
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to be specified in the %method block:

%method
MBIS_LARGEPRINT TRUE # default = FALSE

end

If this option is activated, an extra iteration is performed after reaching the convergence threshold for the charges.

The origin for the calculation of the atomic dipole, quadrupole and octupole moments is the center of each
atom (default). However, the user can also define a global origin (independent of the atom) through the tag
MBIS_ORIGIN_MULT in the %method block:

%method
MBIS_ORIGIN_MULT CenterOfCoords # origin of coordinate system (0,0,0)

CenterOfMass # center of mass
CenterOfNucCharge # center of nuclear charge
CenterXYZ # arbitrary position, set coordinates with MBIS_ORIMULT_

→˓XYZ
CenterOfEachAtom # center of each atom (default)

MBIS_ORIMULT_XYZ x,y,z # set the coordinates, otherwise 0,0,0 (unit: Angstrom)
end

7.54 Orbital and Density Plots

There are two types of graphics output possible in ORCA - two dimensional contour plots and three dimensional
surface plots. The quantities that can be plotted are the atomic orbitals, molecular orbitals, natural orbitals, the
total electron density or the total spin density. The graphics is controlled through the block %plots.

7.54.1 Contour Plots

The contour plots are controlled via the following variables

%plots
#*** the vectors defining the cut plane
v1 0, 0, 0 # pointer to the origin
v2 1, 0, 0 # first direction
v3 0, 1, 0 # second direction
#*** alternative to defining vectors. Use atom coordinates
at1 0 # first atom defining v1
at2 2 # second atom defining v2
at3 4 # third atom defining v3
#*** resolution of the contour
dim1 45 # resolution in v2-direction
dim2 45 # resolution in v3-direction
#*** minimum and maximum values along v2 and v3
min1 -7.0 # min value along v2 in bohr
max1 7.0 # min value along v2 in bohr
min2 -7.0 # min value along v3 in bohr
max2 7.0 # max value along v3 in bohr
#***
UseCol true # Use color in the plot (blue=positive,

# red=negative)
Skeleton true # Draw Skeleton of the molecule of those

# atoms that are in or close to the cut
# plane

Atoms true # Draw the atoms that are in the plane as
# circles

NCont 200 # Number of contour levels.

(continues on next page)
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ICont 0 # Draw NCont equally space contours
1 # Start with 1/NCont and the double the

# value for each additional contour
#*** the format of the output file
Format Origin # straight ascii files

HPGL # plotter language files
#*** the quantities to plot
MO("MyOrbital-15xy.plt",15,0); # orbital to plot
v3= 0, 0, 1 # change cut plane
MO("MyOrbital-16xz.plt",16,0); # orbital to plot
ElDens("MyElDens.plt"); # Electron density
SpinDens("MySpinDens"); # Spin density

end

The input was:
v1 = 0, 0, 0; v2 = 1, 0, 0; v3 = 0, 1, 0; min1= -8; max1= 8; min2= -8; max2= 8; dim1=
50; dim2=50; Format = HPGL; NCont = 200; Icont = 1; Skeleton= true; Atoms = true;
MO("Test-DFT-H2CO+-MO7xy.plt",7,1);

NOTE:
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• The command MO("MyOrbital-15xy.plt",15,0); is to be interpreted as follows: MO means that a MO
is to be plotted. “MyOrbital-15xy.plt” is the file to be created. 15 is the number of the MO to be drawn
(remember: counting starts at orbital 0!) and 0 is the operator the orbital belongs to. For a RHF (or RKS)
calculation there is only one operator which has number 0. For a UHF (or UKS) calculation there are two
operators - the spin-up orbitals belong to operator 0 and the spin-down orbitals belong to operator 1. For
ROHF calculations there may be many operators but at the end all orbitals will be collected in one set of
vectors. Thus the operator is always =0 in ROHF.

• The ELDENS (plot of the total electron density) and SPINDENS (plot of the total spin density) commands
work analogous to the MO with the obvious difference that there is no MO or operator to be defined.

• Analogous to ELDENS and SPINDENS, post-HF densities can be selected using the keyword extended
by the respective method. ELDENSMDCI / SPINDENSMDCI will plot the MDCI density, of course only
if is available. ELDENSMP2RE and SPINDENSMP2RE will work with the MP2 relaxed density, while
ELDENSMP2UR and SPINDENSMP2UR will yield the MP2 unrelaxed density. The OO-RI-MP2 densities
can be requested by ELDENSOO or SPINDENSOO. Similarly, AutoCI relaxed densities can be plotted by
using the ELDENSAUTOCIRE and SPINDENSAUTOCIRE keywords, and the unrelaxed densities by using
ELDENSAUTOCIUR and SPINDENSAUTOCIUR.

• The UNO option plots natural orbitals of the UHF wavefunction (if they are available). No operator can be
given for this command because there is only one set of UHF-NOs. Similarly, using UCO option can be used
to plot the UHF corresponding orbitals.

• If the program cannot find the plot module (“Bad command or filename”) try to use
ProgPlot="orca_plot.exe" in the %method block or point to the explicit path.

• The defining vectors v2 and v3 are required to be orthonormal. The program will use a Schmidt orthonor-
malization of v3 with respect to v2 to ensure orthonormality. If you do not like this make sure that the input
vectors are already orthogonal.

• at1, at2 and at3 can be used instead of v1, v2 and v3. In this case say v1 is taken as the coordinates of
atom at1. Mixed definitions where say v2 is explicitly given and say v3 is defined through at3 are possible.
A value of -1 for at1, at2 and at3 signals that at1, at2 and at3 are not to be used. This type of definition
may sometimes be more convenient.

• Variables can be assigned several times. The “actual” value a variable has is stored together with the com-
mand to generate a plot (MO, ELDENS or SPINDENS). Thus after each plot command the format or orientation
of the plot can be changed for the next one.

• The Origin format produces a straightforward ASCII file with x, y and z values that can be read into your
favorite contour plot program or you could write a small program that reads such files and converts them to
whatever format is more appropriate for you.

• I usually use Word for Windows to open the HPGL files which appears to work fine. Double clicking on the
graphics will allow modification of linewidth etc. For some reason that is not clear to me some graphics
programs do not like the HPGL code that is produced by ORCA. If you are an HPGL expert and you have a
suggestion - let me know.

7.54.2 Surface Plots

General Points

Surface plots can, for example, be created through an interface to Leif Laaksonen’s gOpenMol program. This
program can be obtained free of charge over the internet. It runs on a wide variety of platforms, is easy to use,
produces high quality graphics and is easy to interface1 - thank you Leif for making this program available!

The relevant [PLOTS] section looks like this:

1 There were some reports of problems with the program on Windows platforms. Apparently it is better to choose the display settings as
“true color 32 bit” rather than “high 16 bit”. Thanks to Thomas Brunold!
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%output
XYZFile true

end

%plots
dim1 45 # resolution in x-direction
dim2 45 # resolution in y-direction
dim3 45 # resolution in z-direction
min1 -7.0 # x-min value in bohr
max1 7.0 # x-min value in bohr
min2 -7.0 # y-min value in bohr
max2 7.0 # y-max value in bohr
min3 -7.0 # z-min value in bohr
max3 7.0 # z-max value in bohr
Format gOpenMol_bin # binary *.plt file

gOpenMol_ascii # ascii *.plt file
Gaussian_Cube # Gaussian-cube format

# (an ASCII file)
MO("MyOrbital-15.plt",15,0); # orbital to plot
MO("MyOrbital-16.plt",16,0); # orbital to plot
UNO("MyUNO-48.plt",48); # UHF-NO to plot
ElDens("MyElDens.plt"); # Electron density
SpinDens("MySpinDens.plt"); # Spin density

end

NOTE:

• it is admittedly inconvenient to manually input the dimension of the cube that is used for plotting. If you
do nothing such that min1 = max1 = min2 = max2 = min3 = max3=0 then the program will try to be
smart and figure out a good cube size by itself. It will look at the minimum and maximum values of the
coordinates and then add 7 bohrs to each dimension in the hope to properly catch all wavefunction tails.

Sometimes you will want to produce orbital plots after you looked at the output file and decided which orbitals you
are interested in. In this case you can also run the orca_plot program in a crude interactive form by invoking it
as:

orca_plot MyGBWFile.gbw -i

This will provide you with a subset of the capabilities of this program but may already be enough to produce the
plots you want to look at. Note that for the name of the GBW-file you may as well input files that result from natural
orbitals (normally *.uno), corresponding orbitals (normally *.uco) or localized orbitals (normally *.loc). Once
in the interactive program, by entering ‘1’ for ‘Enter type of plot,’ you will access a list of available plot capabilities
relevant to your current calculation file (MyGBWFile.gbw):

-----------------------------------------------------------------------
Plot-Type is presently: 1
-----------------------------------------------------------------------
Searching for Ground State Electron or Spin Densities: ...
-----------------------------------------------------------------------

1 - molecular orbitals
2 - (scf) electron density ...... (scfp ␣

→˓ ) => AVAILABLE
3 - (scf) spin density ...... (scfr ␣

→˓ ) => AVAILABLE
4 - natural orbitals
5 - corresponding orbitals
6 - atomic orbitals
7 - mdci electron density ...... (mdcip ␣

→˓ ) - NOT AVAILABLE
8 - mdci spin density ...... (mdcir ␣

→˓ ) - NOT AVAILABLE
9 - OO-RI-MP2 density ...... (pmp2re ␣

(continues on next page)
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→˓ ) - NOT AVAILABLE
10 - OO-RI-MP2 spin density ...... (pmp2ur ␣

→˓ ) - NOT AVAILABLE
11 - MP2 relaxed density ...... (pmp2re ␣

→˓ ) - NOT AVAILABLE
12 - MP2 unrelaxed density ...... (pmp2ur ␣

→˓ ) - NOT AVAILABLE
13 - MP2 relaxed spin density ...... (rmp2re ␣

→˓ ) - NOT AVAILABLE
14 - MP2 unrelaxed spin density ...... (rmp2ur ␣

→˓ ) - NOT AVAILABLE
15 - LED dispersion interaction density ...... (ded21 ␣

→˓ ) - NOT AVAILABLE
16 - Atom pair density
17 - Shielding Tensors
18 - Polarisability Tensor
19 - AutoCI relaxed density ...... (autocipre ␣

→˓ ) - NOT AVAILABLE
20 - AutoCI unrelaxed density ...... (autocipur ␣

→˓ ) - NOT AVAILABLE
21 - AutoCI relaxed spin density ...... (autocirre ␣

→˓ ) - NOT AVAILABLE
22 - AutoCI unrelaxed spin density ...... (autocirur ␣

→˓ ) - NOT AVAILABLE
-----------------------------------------------------------------------
Searching for State or Transition State AO Electron Densities: ...
-----------------------------------------------------------------------

23 - CIS unrelaxed transition AO density ...... (Tdens-CIS ␣
→˓ ) - NOT AVAILABLE

24 - ROCIS unrelaxed transition AO density ...... (Tdens-ROCIS ␣
→˓ ) - NOT AVAILABLE

25 - CAS unrelaxed transition AO density ...... (Tdens-CAS ␣
→˓ ) - NOT AVAILABLE

26 - ICE unrelaxed transition AO density ...... (Tdens-ICE ␣
→˓ ) - NOT AVAILABLE

27 - MRCI unrelaxed transition AO density ...... (Tdens-MRCI ␣
→˓ ) - NOT AVAILABLE

28 - LFT unrelaxed transition AO density ...... (Tdens-LFT ␣
→˓ ) - NOT AVAILABLE
-----------------------------------------------------------------------
Searching for State or Transition State MO Electron Densities: ...
-----------------------------------------------------------------------

29 - CIS unrelaxed transition MO density ...... (Tdens-CISMO ␣
→˓ ) - NOT AVAILABLE

30 - ROCIS unrelaxed transition MO density ...... (Tdens-ROCISMO ␣
→˓ ) - NOT AVAILABLE

31 - CAS unrelaxed transition MO density ...... (Tdens-CASMO ␣
→˓ ) - NOT AVAILABLE

32 - ICE unrelaxed transition MO density ...... (Tdens-ICEMO ␣
→˓ ) - NOT AVAILABLE

33 - MRCI unrelaxed transition MO density ...... (Tdens-MRCIMO ␣
→˓ ) - NOT AVAILABLE

34 - LFT unrelaxed transition MO density ...... (Tdens-LFTMO ␣
→˓ ) - NOT AVAILABLE
-----------------------------------------------------------------------
Searching for State or Transition State QDPT AO Electron Densities: ...
-----------------------------------------------------------------------

35 - CAS QDPT unrelaxed transition AO density ...... (Tdens-CASQDSOC ␣
→˓ ) - NOT AVAILABLE

36 - DCDCAS QDPT unrelaxed transition AO density ...... (Tdens-CASDCDQDSOC ␣
→˓ ) - NOT AVAILABLE

(continues on next page)
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37 - CAS CUSTOM E QDPT unrelaxed transition AO density ...... (Tdens-CASCUSTOMEQDSOC ␣
→˓ ) - NOT AVAILABLE

38 - NEVPT2 QDPT unrelaxed transition AO density ...... (Tdens-CASPTQDSOC ␣
→˓ ) - NOT AVAILABLE

39 - QDNEVPT2 QDPT unrelaxed transition AO density ...... (Tdens-CASQDPTQDSOC ␣
→˓ ) - NOT AVAILABLE

40 - MRCI QDPT unrelaxed transition AO density ...... (Tdens-MRCIQDSOC ␣
→˓ ) - NOT AVAILABLE

41 - ROCIS QDPT unrelaxed transition AO density ...... (Tdens-ROCISQDSOC ␣
→˓ ) - NOT AVAILABLE

42 - LFT QDPT unrelaxed transition AO density ...... (Tdens-LFTQDSOC ␣
→˓ ) - NOT AVAILABLE

Fig. 7.64: The 𝜋* orbital of H2CO as calculated by the RI-BP/VDZP method.
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FOD plots

The fractional occupation number weighted electron density (𝜌𝐹𝑂𝐷, see Fractional Occupation Numbers) can be
plotted in 3D for a pre-defined contour surface value which, after extensive testing, was set to the default value of
𝜎 = 0.005 e/Bohr3. In order to allow comparison of various systems this value should be kept fix (in critical cases,
one may also check the FOD plot with a a smaller value of 𝜎 = 0.002 e/Bohr3 for comparison). The FOD is strictly
positive in all space and resembles orbital densities (e.g., 𝜋-shape in large polyenes) or the total charge density for
an ideal ‘metal’ with complete orbital degeneracy in trivial cases. FOD plots represent a cost-effective and robust
way to identify the ‘hot’ (strongly correlated) electrons in a molecule and to choose appropriate approximate QC
methods for a subsequent computational study of the systems in question. Based on our experience, the following
rules of thumb can be derived:

• no significant 𝜌𝐹𝑂𝐷: use (double)-hybrid functionals or (DLPNO-)CCSD(T) (single-reference electronic
structure)

• significant but rather localized 𝜌𝐹𝑂𝐷: use semi-local GGA functionals (or hybrid functional with low Fock-
exchange, avoid HF or MP2; slight multi-reference character)

• significant and delocalized 𝜌𝐹𝑂𝐷: use multi-reference methods (or finite temperature DFT; strong multi-
reference character)

Basically, 𝜌𝐹𝑂𝐷 can be plotted analogously to an electron density calculated with ORCA using Basename.
scfp_fod instead of Basename.scfp. The required Basename.scfp_fod is stored in the Basename.
densities container. To print all available densities use the 9 - List all available densities in
orca_plot:

---------------------
List of density names
---------------------

Index: Name of Density
------------------------------------------------------------------------

0: orca.scfp_fod <--- required for␣
→˓FOD plot

1: orca.scfp
2: orca.scfr

Note that producing *.cube files with orca_plot (see orca_plot) may take a considerable amount of time for
larger molecules, particularly if high quality plots for publication purposes (i.e., 120x120x120 resolution) are
wanted. An example FOD plot (singlet ground sate of 𝑝-benzyne, see Fractional Occupation Numbers for the
corresponding ORCA input) is shown in Fig. 7.65. It has been produced with the UCSF CHIMERA program (this
program can be obtained free of charge over the internet: https://www.cgl.ucsf.edu/chimera/) using the *.cube
file generated with orca_plot:

orca_plot pbenzyne.gbw -i

user input:
1 (type of plot)
2 (electron density)
n (default name: no)
pbenzyne.scfp_fod (name of the FOD file)
4 (number of grid intervals)
120 (NGrid)
5 (output file format)
7 (cube)
10 (generate plot)
11 (exit)

It is also possible to generate *.cube files from 𝜌𝐹𝑂𝐷 (analogously to electron density plots) with other programs
that can read ORCABaseName.gbw and electron density files by simply using the Basename.scfp_fod file instead
of the Basename.scfp file.
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Fig. 7.65: FOD plot at 𝜎 = 0.005 e/Bohr3 (TPSS/def2-TZVP (T = 5000 K) level) for the 1𝐴𝑔 ground state of
𝑝-benzyne (FOD depicted in yellow).

The significant and rather delocalized FOD for 𝑝-benzyne (1𝐴𝑔) indicates that multi-reference methods would be
needed for reliable computational study of this molecule (category c)). More examples of FOD plots generated
with the same setup and programs can be found in the original publication and corresponding supplementary
information.[327]

Interface to gOpenMol

Here is a short summary of how to produce these plots with gOpenMol:

• First of all the molecular geometry must be save by choosing XYZFile=true in the [OUTPUT] block. This
will produce a straightforward ascii file containing the molecular geometry (or simply ! XYZFile).

• After having produced the plot files start gOpenMol and choose File-Import-Coords . In the dialog choose
the XYZ format and select the file. Then press apply and dismiss . The molecule should now be displayed in
the graphics window.

• You can change the appearance by choosing View-Atom type .

• The color of the background can be changed with Colour-Background .

• After having done all this choose Plot-Contour and select the Browse button to select the appropriate
file. Then press Import File to read it in. NOTE: you can only directly read files that were produced in
gOpenMol_bin format. If you have chosen gOpenMol_ascii you must first use the gOpenMol file conver-
sion utility under Run-Pltfile (conversion) to produce the binary plt file.

• After having read the plt file choose the appropriate isocontour value (one for the positive and one for the
negative lobes of an orbital) and select suitable colors via Colour(n) to the right of the isocontour value. The
Details button allows you to choose between solid and mesh representation and other things.
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• Once the plot looks the way you like, use File-Hardcopy to produce a publication quality postscript or bitmap
picture that can be imported into any word processing or graphics software.

Interface to Molekel

The Molekel program (http://ugovaretto.github.io/molekel/) is another beautiful and easy-to-use graphics tool that
is recommended in combination with ORCA. You may even find it a little easier to use than gOpenMol but this
may be a matter of personal taste. In order to produce plots with Molekel follow the following procedure:

• Produce Gaussian-Cube files (and optionally also an XYZ file) with ORCA as described above.

• Start Molekel and use the right mouse button to obtain the Load menu.

• Choose the format xyz to load your coordinates

• Use the right mouse button again to select the Surface menu

• Choose the format “Gaussian Cube” and click Load Surface

• Click on Both Signs if you visualize an orbital or spin density

• Select a suitable contour value in the Cutoff box.

• Click on Create Surface. That’s it!

• In the Color menu (also available via the right mouse button) you can adjust the colors and in the main menu
the display options for your molecule. Default settings are in a startup file that you can modify to suit your
taste. More details are in the Molekel manual – check it out; it can do many other useful things for you too!

7.55 Utility Programs

7.55.1 orca_mapspc

This utility program is used to turn calculated spectra into a format that can be plotted with standard graphics
programs. The usage is simple (for output examples see for example sections Semiempirical Methods, IR Spectra,
Raman Spectra and Resonant Inelastic Scattering Spectroscopy):

orca_mapspc file spectrum options

file = name of an ORCA output file
name of an ORCA Hessian file (for IR and Raman)

spectrum= abs - Absorption spectra
cd - CD spectra
ir - IR spectra
raman - Raman spectra

options -x0value: Start of the x-axis for the plot
-x1value: End of the x-axis for the plot
-wvalue : Full-width at half-maximum height in

cm**-1 for each transition
-nvalue : Number of points to be used

The exact abilities of orca_mapspc can be seen by simply executing the command in a terminal

orca_mapspc

Then one gets:
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----------------------------------------------------------------------------------
usage: orca_mapspc Output-file { ABS, ABSV, ABSQ, ABSOI, CD, IR, RAMAN, NRVS, VDOS,

MCD, SOCABS, SOCABSQ,SOCABSOI, XES, XESV, XESQ, XESOI,
XAS, XASV, XASQ, XASOI, XESSOC, XESSOCQ, XESSOCOI,
XASSOC, RIXS, RIXSSOC} -options

----------------------------------------------------------------------------------
----General options ----
-o output file
-cm use cm**-1 (default)
-eV use eV (default cm**-1)
-g use Gaussian lineshape default
-l use Lorentz lineshape (only for Absorption and Emission like spectra)
-v use Voigt lineshape (only for Absorption and Emission like spectra)
-x0 initial point of spectrum
-x1 final point of spectrum
-w line width for Gaussian/Lorenzian linewidth
-q line width for the Gaussian part of Voigt linewidth
-kw coeffitient for the line width calculated as kw*sqrt(energy)
-n number of points
----The following additional options are for RIXS and RIXSSOC calculations----
-x2 initial point of the spectrum along y axis
-x3 final point of the spectrum along yaxis
-g line width for Gaussian/Lorenzian linewidth along y axis
-m number of points for the emission spectrum
-eaxis plot option for the emission axis: (1) for Energy transfer

(2) for emission spectrum
-uex number of user defined cuts at constant Excitation Energy axis
-udw number of user defined cuts at constant Emission/ Energy Transfer axis
-dx number for shifting the spectra along the Excitation /Emission Energy axis
-kg coeffitient for the line width calculated as kg*sqrt(energy)
----Using external files----
paras.inp: a list of energy ranges with desired broadening parameters
for x axis: E_start E_stop Width
for y axis: 0 0 0 E_start E_stop Width
for xy axis: E_start1 E_stop1 Width1 E_start2 E_stop2 Width2
udex.inp: list of energies for taking cuts

at constant Excitation Energy axis (RIXS/RIXSOC)
udem.inp: list of energies for taking cuts

at constant Emission/ Energy Transfer axis (RIXS/RIXSOC)
gfsp.inp: list of ground-final state pairs to generate

individual state pair RIXS planes
and respective analysis planes (ROCIS RIXS/RIXSOC)

---------------------------------------------------------------------------------

NOTE:

• The input to this program can either be a normal output file from an ORCA calculation or a ORCA .hess file
if IR or Raman spectra are desired

• Unless it is specified otherwise the default lineshape is always assumed to be a Gaussian

• There will be two output files:

– Input-file.spc.dat (spc=abs-like or cd or ir or raman): This file contains the data to be plotted

– Input-file.spc.stk: This file contains the individual transitions (wavenumber and intensity)

• The absorption plot has five columns: The first is the wavenumber in reciprocal centimeters, the second the
total intensity and the third to fifth are the individual polarizations (i.e. assuming that the electric vector of
the incoming beam is parallel to either the input x-, or y- or z-axis respectively). The last three columns are
useful for interpreting polarized single crystal spectra.

• Generation of multiple spectra. When more than one spectra of the same kind are available the program will
try to plot them. For example in the case of a CASSCF calculation with the NEVPT2 flag on, there will be
two Absorption spectra (CASSCF and NEVPT2) that can be ploted
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For example:

orca_mapspc My-CASSCF/NEVPT2-Output.out SOCABS -x07000 -x18000 -eV -n10000 -w2.0 -l

Mode is SOCABS
Entering SOC-ABS reading
Using eV units
Using Lorentzian shape
Multiple SOCABS (2) spectra detected ...
----------------------------------
Plotting SOCABS Spectrum 0
----------------------------------
Cannot read the paras.inp file ...
taking the line width parameter from the command line
Number of peaks ... 4455
Start energy [eV] ... 7000.00
Stop energy [eV] ... 8000.00
Peak FWHM [eV] ... 2.00
Number of points ... 10000
----------------------------------
Plotting SOCABS Spectrum 1
----------------------------------
Cannot read the paras.inp file ...
taking the line width parameter from the command line
Number of peaks ... 4455
Start energy [eV] ... 7000.00
Stop energy [eV] ... 8000.00
Peak FWHM [eV] ... 2.00
Number of points ... 10000

This will generate two kind of spectra one for the CASSCF and one for the NEVPT2 calculation

CASSCF:
My-CASSCF/NEVPT2-Output.out.0.socabs.dat
My-CASSCF/NEVPT2-Output.out.0.socabs.stk

NEVPT2:
My-CASSCF/NEVPT2-Output.out.1.socabs.dat
My-CASSCF/NEVPT2-Output.out.1.socabs.stk

Other Absorption or CD spectra can also be generated in the same way.

7.55.2 orca_chelpg

This program calculates CHELPG atomic charges according to Breneman and Wiberg[124]. The atomic charges
are fitted to reproduce the electrostatic potential on a regular grid around the molecule, while constraining the sum
of all atomic charges to the molecule’s total charge. An additional constraint can be added, so the CHELPG charges
also reproduce the total dipole moment of the molecule.

The program works with default values in the following way:

orca_chelpg MyJob.gbw

The program uses three adjustable parameters, which can also be set in a separate chelpg input block

%chelpg
GRID 0.3 # Spacing of the regular grid in Angstroems
RMAX 2.8 # Maximum distance of all atoms to any gridpoint in Angstroems
VDWRADII COSMO # VDW Radii of Atoms, COSMO default

BW # Breneman, Wiberg radii
DIPOLE FALSE # If true, then the charges also reproduce the total dipole moment

end
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In this case, ORCA automatically calculates the CHELPG charges at the end of the calculation. Automatic calcu-
lation of CHELPG charges using the default values can also be achieved by specifying

! CHELPG

in the simple input section. By default the program uses the COSMO VDW radii for the exclusion of gridpoints
near the nuclei, as these are defined for all atoms. The BW radii are similar, but only defined for very few atom
types.

The charges may exhibit some dependence on the molecule’s orientation in space, or some artificial variations in
symmetric molecules. These effects can be minimized by increasing the CHELPG grid size, either by setting the
GRID parameter in the CHELPG block, or in the one-liner via

! CHELPG(LARGE)

If one wants that the calculated CHELPG charges reproduce the total dipole moment of the molecule, as well as
the electrostatic potential, then the following tag has to be added to the %chelpg block:

%chelpg
DIPOLE TRUE # The default is set to FALSE

end

In particular, the constraint affects the 𝑥,𝑦,𝑧 components of the total dipole moment, so they reproduce the exact 3
components of the total dipole moment calculated via one-electron integrals.

7.55.3 orca_pltvib

This program is used in conjunction with gOpenMol (or xmol) to produce animations or plots of vibrational modes
following a frequency run. The usage is again simple and described in section Animation of Vibrational Modes
together with a short description of how to produce these plots in gOpenMol.

The program produces 20 frames of animation, where first and last frame correspond to the TS, all others calculated
as 𝑠𝑖𝑛(2𝜋𝑓𝑟𝑎𝑚𝑒/20− 1) * 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡.

7.55.4 orca_vib

This is a small “standalone” program to perform vibrational analysis. The idea is that the user has some control
over things like the atomic masses that enter the prediction of vibrational frequencies but are independent of the
electronic structure calculation as such.

The program takes a “.hess” file as input and produces essentially the same output as follows the frequency
calculation. The point is that the “.hess” is a user-editable textfile that can be manually changed to achieve
isotope shift predictions and the like. The usage together with an example is described in section Isotope Shifts. If
you pipe the output from the screen into a textfile you should also be able to use orca_mapspc to plot the modified
IR, Raman and NRVS spectra.

7.55.5 orca_loc

Localization is a widely used technique nowadays. By defining different functionals, various localization methods
are established. The most favorable localization methods are developed by Foster-Boys and Pipek-Mezey. In
ORCA there are four different localization methods available, the Pipek-Mezey method (PM), the Foster-Boys
method (FB), the intrinsic atomic orbitals (IAO) based PM method and the IAO based FB method.

For Foster-Boys localization there are three different algorithms: first there is the conventional algorithm (FB).
Second, there is an alternative algorithm (NEWBOYS), which is faster and could be used, for example, to localize
the virtual MOs of a large system.

The third Foster-Boys algorithm is based on an augmented Hessian procedure (AHFB). It is particularly suited
to obtain very tightly converged orbitals if an appropriate tolerance is requested (useful for local correlation).
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Furthermore, it systematically converges towards a local minimum, rather than a different type of stationary point.
The method proceeds in three stages. An initial set of localized orbitals is obtained through the NEWBOYS method.
This is followed by an augmented Hessian maximization (rational function optimization) either with direct or with
Davidson diagonalization, depending on the number of orbitals. Efficiency is therefore achieved for small and
large systems alike. If the optimization fails to proceed but the augmented Hessian has got the correct eigenvalue
structure, a Newton-Raphson maximization is triggered as the third stage. Currently, the only user-adjustable
parameter of the AHFB method is the tolerance Tol. Convergence is signalled when the eigenvalue structure is
correct, and the largest element of the orbital gradient, 4 ⟨𝑖|r|𝑗⟩ (⟨𝑗|r|𝑗⟩ − ⟨𝑖|r|𝑖⟩), is below Tol. This is different
from the other localization methods, which take the difference in the localization sum between two successive
iterations as the convergence criterion.

The intrinsic atomic orbitals and intrinsic bond orbitals (IAOIBO) localization method is developed by Gerald
Knizia, see Ref. [449]. In IAOIBO method, the occupied MOs are projected to a minimal basis set to get the IAOs,
firstly. In ORCA different from original IAOIBO method, the converged SCF MO of atoms are used instead of
Huzinaga MINI or STO-3G. However, the IAO charges computed by our method are quite similar to original IAO.
Then, Pipek-Mezey functional is employed to localize these IAOs to IBOs. Finally,IBOs will be backtransformed
to their original basis set. The IAO partial charges of canonical MOs for each atom is also printed out before the
IAOIBO localization. But make sure you have included all occupied MOs in the IAOIBO localization. Otherwise,
the IAO charges are meaningless. We further improved the original IAOIBO method by using the FB functional
instead of PM functional. The computational time of the new method named IAOBOYS should be faster than the
standard FB method for large systems. However, the IAO based method can only be used for the localization of
occupied MOs.

There are two ways to do the MO localization in ORCA . The simpler way is to request the localization at the end
of any ORCA calculation input file. Details are set in the %loc block.

%loc
LocMet PM # Localization method e.g. PIPEK-MEZEY

FB # FOSTER-BOYS
IAOIBO # IAOIBO
IAOBOYS # IAOBOYS
NEWBOYS # FOSTER-BOYS
AHFB # Augmented Hessian Foster-Boys

Tol 1e-6 # absolute convergence tolerance for the localization sum
# default value is 1e-6
# In the case of AHFB, however, this is the gradient threshold!

Random 0 # Always take the same seed for start for localization
# (For testing/debug purpose,optional)

1 # Take a random seed for start of localization (default)
PrintLevel 2 # Amount of printing
MaxIter 64 # Max number of iterations
T_Bond 0.85 # Thresh that classifies orbitals in bond-like at the printing
T_Strong 0.95 # Thresh that classifies orbitals into strongly-localized at

# the printing
OCC true # Localize the occupied space
T_CORE -99.9 # The Energy window for the first OCC MO to be localized (in a.u.)

# Here, we localize all occupied MOs including core orbitals.
VIRT true # Localize the virtual space
end

The localized MOs are obtained iteratively. Convergence is achieved when the localization functional value is
self-consistent (contraled by Tol). Setting the flags OCC/VIRT to true will request a localization of the subspace.
If both flags are set, two consecutive localizations are performed. The localized orbitals are stored in the form of a
standard GBW file named .loc. Keep in mind that the localization of the occupied orbitals might change the total
energy depending on what type of calculation you want to perform thereafter. For RHF and UHF there shouldn’t
be any problems, but for CASSCF the keyword OCC is not sufficient. CASSCF is not invariant to rotation of all
the occupied orbitals.
The other way to do the localization is calling the orca_loc program directly from shell, which is more general.
The orca_loc program requires an input of its own. The input is a textfile containing the necessary parameters.
If no input is specified, orca_loc returns a help-file with a description of the necessary input-parameters. You
need to specify in/output gbw-files, along with orbital ranges and the localization method to be used. A source of
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confusion is the operator line op (alpha = 0 or beta = 1). For RHF(ROHF) and CASSCF, this should be set to
zero. The input file usually looks like,

Myjob.gbw # input orbitals
Myjob.loc.gbw # output orbitals
10 # orbital window: first orbital to be localized e.g. first active
15 # orbital window: last orbital to be localized e.g. last active
0 # localization method:

# 1=PIPEK-MEZEY,2=FOSTER-BOYS,3=IAO-IBO,4=IAO-BOYS,5=NEW-BOYS,6=AHFB
# The following parameters are optional
# However, if you want to change one of them, all preceding ones have to be set, too.
0 # operator: 0 for alpha, 1 for beta
128 # maximum number of iterations
1e-6 # convergence tolerance of the localization functional value
0.0 # relative convergence tolerance of the localization functional value
0.95 # printing thresh to call an orbital strongly localized
0.85 # printing thresh to call an orbital bond-like
2 # printlevel
1 # use Cholesky Decomposition (0=false, 1=true)
1 # randomize seed for localization (0=false, 1=true)

If the input file is called myloc.inp, running “orca_loc myloc.inp” will produce the Myjob.loc.gbw file containing
the localized orbitals. Please make sure the Myjob.gbw is in the same directory as myloc.inp.

7.55.6 orca_blockf

This utility program allows the canonicalization of orbitals (.gbw file) for arbitrary subspaces. With canonical-
ization we refer to the block diagonalization of the Fock matrix. Note that the necessary Fock matrix must be
generated and be available on disk prior calling orca_blockf. The program is described in section Local Zero-
Field Splitting, where the Local ZFS decomposition is discussed.

7.55.7 orca_plot

Orca_plot is a utility program that can be used to generate 2D and 3D graphics of various types of orbitals and
densities during an ORCA run. It can in principle called in two ways:

1) Within a calculation input via the %block section. This is described in section Orbital and Density Plots. In
this way it can be used to create graphics (2D) or (3D) data for visualization.

2) It is also possible to run this program interactively. The input parameters are:

gbwfile # name of gbw-file
-i # interactive use of orca_plot
-m 256 # max. memory in MB (if needed)

You will then get a simple, self-explaining menu that will allow you to generate a variety of files (such as .plt
and .cube) directly from the .gbw files without restarting or running a new job. If needed, the -m-option allows
to control the memory usage of your plotting job.

The listed utilities are printed by writing in the terminal

orca_plot my.gbw -i

1 - Enter type of plot
2 - Enter no of orbital to plot
3 - Enter operator of orbital (0=alpha,1=beta)
4 - Enter number of grid intervals
5 - Select output file format
6 - Plot CIS/TD-DFT difference densities
7 - Plot CIS/TD-DFT transition densities

(continues on next page)
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8 - Set AO(=1) vs MO(=0) to plot
9 - List all available densities
10 - Perform Density Algebraic Operations

11 - Generate the plot
12 - exit this program

Perform Orbital Plots

Let’s assume the pyridine molecule in the following input:

!def2-SVP

*xyz 0 1
C 0.690940233 0.417992301 -1.170801378
C 0.690940233 1.616339301 -0.458357378
C 0.690940233 1.560238301 0.936438622
N 0.690940233 0.417992301 1.635468622
C 0.690940233 -0.724253699 0.936438622
C 0.690940233 -0.780354699 -0.458357378
H 0.690940233 0.417992301 -2.257043378
H 0.690940233 2.574997301 -0.967574378
H 0.690940233 2.478336301 1.521602622
H 0.690940233 -1.642351699 1.521602622
H 0.690940233 -1.739012699 -0.967574378
*

We can select to plot the HOMO from the list of Occupied Orbitals

----------------
ORBITAL ENERGIES
----------------

NO OCC E(Eh) E(eV)
0 2.0000 -15.563726 -423.5105

...
Occupied Orbitals Manifold
...
20 2.0000 -0.349834 -9.5195
...
Unoccupied Orbitals Manifold
...
21 0.0000 0.111722 3.0401
...

For this we modify options 2, 3, 4 and 8 as:

Enter a number: 2
Enter MO: 20

Enter a number: 3
Enter OP: 0

Enter a number: 4
Enter NGRID: 80

Enter a number: 5
File-Format is presently: 7
(7 - 3D Gaussian cube)

(continues on next page)
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Enter a number: 8
Enter 0(MO) or 1(AO): 0

And we generate the plot as:

11 - Generate the plot
Enter a number: 11 =>

PlotType ... MO-PLOT
MO/Operator ... 20 0
Output file ... pyridine_scf.mo20a.cube
Format ... Grid3d/Cube
Resolution ... 80 80 80

Calling PlotGrid3d with ATOM-A,B=0,0
Entering PlotGrid3d with Plottype =1

*** PLOTTING FINISHED ***
Output file: pyridine_scf.mo20a.cube

We can now use any visualization software e.g. chimera to plot the generated HOMO 20 orbital:(Figure: Fig. 7.66)

Fig. 7.66: Pyridine HOMO

List of Density Plots

If a density instead of an orbital plot is required options 1 and 9 can be used to list the available densities.

For example option 1 in the above example will provide the computed available densities.

Enter a number: 1
-----------------------------------------------------------------------
Reading Over 2 Saved Densities ...
-----------------------------------------------------------------------
-----------------------------------------------------------------------
Plot-Type is presently: 1
-----------------------------------------------------------------------
Searching for Ground State Electron or Spin Densities: ...
-----------------------------------------------------------------------

(continues on next page)
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1 - molecular orbitals
2 - (scf) electron density ...... (scfp ␣

→˓ ) => AVAILABLE
3 - (scf) spin density ...... (scfr ␣

→˓ ) - NOT AVAILABLE
4 - natural orbitals
5 - corresponding orbitals
6 - atomic orbitals
7 - mdci electron density ...... (mdcip ␣

→˓ ) - NOT AVAILABLE
8 - mdci spin density ...... (mdcir ␣

→˓ ) - NOT AVAILABLE
9 - OO-RI-MP2 density ...... (pmp2re ␣

→˓ ) - NOT AVAILABLE
10 - OO-RI-MP2 spin density ...... (pmp2ur ␣

→˓ ) - NOT AVAILABLE
11 - MP2 relaxed density ...... (pmp2re ␣

→˓ ) - NOT AVAILABLE
12 - MP2 unrelaxed density ...... (pmp2ur ␣

→˓ ) - NOT AVAILABLE
13 - MP2 relaxed spin density ...... (rmp2re ␣

→˓ ) - NOT AVAILABLE
14 - MP2 unrelaxed spin density ...... (rmp2ur ␣

→˓ ) - NOT AVAILABLE
15 - LED dispersion interaction density ...... (ded21 ␣

→˓ ) - NOT AVAILABLE
16 - Atom pair density
17 - Shielding Tensors
18 - Polarisability Tensor
19 - AutoCI relaxed density ...... (autocipre ␣

→˓ ) - NOT AVAILABLE
20 - AutoCI unrelaxed density ...... (autocipur ␣

→˓ ) - NOT AVAILABLE
21 - AutoCI relaxed spin density ...... (autocirre ␣

→˓ ) - NOT AVAILABLE
22 - AutoCI unrelaxed spin density ...... (autocirur ␣

→˓ ) - NOT AVAILABLE

In this case the (scf) electron density is available and can be chosen to be visualized in a similar process as described
above for the orbitals.

Enter Type: 2
The default name of the density would be: pyridine_scf.scfp
Is this the one you want (y/n)?

While Option 9 will give us the name of this density:

---------------------
List of density names
---------------------

Index: Name of Density
------------------------------------------------------------------------

0: pyridine_scf.scfp

Following the above steps we can visualize the SCF electron density of pyridine

PlotType ... DENSITY-PLOT
ElDens File ... pyridine_scf.scfp
Output file ... MyElDens
Format ... Grid3d/Cube

(continues on next page)
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Resolution ... 80 80 80

Calling PlotGrid3d with ATOM-A,B=0,0
Entering PlotGrid3d with Plottype =2

*** PLOTTING FINISHED ***
Output file: pyridine_scf.eldens.cube

(Figure: Fig. 7.67)

Fig. 7.67: Pyridine SCF Electron Density

Perform Algebraic Operations

Starting from ORCA 6 one can perform simple Algebraic Operations with the computed densities. The presently
available operations are listed in menu option 10:

Enter a number: 10
-----------------------------------------------------------------------
Available Algebraic Operations:
-----------------------------------------------------------------------

1 - Pair Densities Addition
2 - Pair Densities Subtraction
3 - Pair Densities Multiplication
4 - Pair Densities Division
5 - Density Normalization
6 - Make Natural Transition Orbitals
7 - Make Natural Difference Orbitals
8 - Leave Section - Return to Main Menu

The important step to these processes is to make sure that the desired State or Transition State Densities are available
in the Densities file. To achieve this, one should request the desired densities to be stored in the disk after the
calculation is executed by the commands !KeepDens or !KeepTransDensity. Please NOTE that storage of
several hundreds or thousands of these densities need to be done with care from the user’s perspective as they
might occupy several hundreds of GB disk space!

Let us in addition on top of the SCF calculation of pyridine perform a canonical CCSD calculation with the fol-
lowing input:
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!CCSD def2-SVP

*xyz 0 1
C 0.690940233 0.417992301 -1.170801378
C 0.690940233 1.616339301 -0.458357378
C 0.690940233 1.560238301 0.936438622
N 0.690940233 0.417992301 1.635468622
C 0.690940233 -0.724253699 0.936438622
C 0.690940233 -0.780354699 -0.458357378
H 0.690940233 0.417992301 -2.257043378
H 0.690940233 2.574997301 -0.967574378
H 0.690940233 2.478336301 1.521602622
H 0.690940233 -1.642351699 1.521602622
H 0.690940233 -1.739012699 -0.967574378
*

Option 1 in the orca_plot menu will now provide us with both the scf and mdci electron densities.

-----------------------------------------------------------------------
Plot-Type is presently: 1
-----------------------------------------------------------------------
Searching for Ground State Electron or Spin Densities: ...
-----------------------------------------------------------------------

1 - molecular orbitals
2 - (scf) electron density ...... (scfp ␣

→˓ ) => AVAILABLE
3 - (scf) spin density ...... (scfr ␣

→˓ ) - NOT AVAILABLE
4 - natural orbitals
5 - corresponding orbitals
6 - atomic orbitals
7 - mdci electron density ...... (mdcip ␣

→˓ ) => AVAILABLE

Hence we can proceed and in option 2 of the Available Algebraic Operations menu take their difference to
produce the respective CCSD - HF electron correlation electron density as:

---------------------
List of density names
---------------------

Index: Name of Density
------------------------------------------------------------------------

0: pyridine_ccsd.scfp
1: pyridine_ccsd.P0.tmp
2: pyridine_ccsd.mdcip

-----------------------------------------------------------------------
Performing Algebraic Operations Over Densities: => SUBTRACTION
-----------------------------------------------------------------------
Number of Densities to be Processed from the List => 2:
-----------------------------------------------------------------------
Enter FileName for Density[ 0]: pyridine_ccsd.scfp
Provide a Scale Factor for Density[ 0] (Default => 1.00): 1
Enter FileName for Density[ 1]: pyridine_ccsd.mdcip
Provide a Scale Factor for Density[ 1] (Default => 1.00): 1
-----------------------------------------------------------------------
INTERPRETTING EQUATION:
-----------------------------------------------------------------------
1/sqrt(N) * [(1.00) * {pyridine_ccsd.scfp} - (1.00) * {pyridine_ccsd.mdcip}]
-----------------------------------------------------------------------

(continues on next page)
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PlotType ... DENSITY-PLOT
ElDens File ... pyridine_ccsd.scfp_minus_pyridine_ccsd.mdcip
Output file ... pyridine_ccsd.scfp_minus_pyridine_ccsd.mdcip.cube
Format ... Grid3d/Cube
Resolution ... 80 80 80

We can directly visualize the produced pyridine_ccsd.scfp_minus_pyridine_ccsd.mdcip.cube

(Figure: Fig. 7.68)

Fig. 7.68: Pyridine CCSD-HF Electron Density

NOTE: The generated density is stored in the Density Container so that it can be further processed or properly
stored for future use

---------------------
List of density names
---------------------

Index: Name of Density
------------------------------------------------------------------------

0: pyridine_ccsd.scfp
1: pyridine_ccsd.P0.tmp
2: pyridine_ccsd.mdcip
3: pyridine_ccsd.scfp_minus_pyridine_ccsd.mdcip

Another useful utility option of orca_plot is that is able to generate Natural Transition Orbitals (NTOs) of Natural
Difference Orbitals (NDOs) from any theory level available State or Transition Density. Let us show case an
example. We now perform a SA-CASSCF (7,8) calculation on the pyridine molecule according to the input where
we make sure that all relevant densities are kept on disk after the calculation by adding the KeepTransDensity
in the keyword list.

!def2-SVP KeepTransDensity

%casscf
nel 8
norb 7

(continues on next page)
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mult 1
nroots 10
end

*xyz 0 1
C 0.690940233 0.417992301 -1.170801378
C 0.690940233 1.616339301 -0.458357378
C 0.690940233 1.560238301 0.936438622
N 0.690940233 0.417992301 1.635468622
C 0.690940233 -0.724253699 0.936438622
C 0.690940233 -0.780354699 -0.458357378
H 0.690940233 0.417992301 -2.257043378
H 0.690940233 2.574997301 -0.967574378
H 0.690940233 2.478336301 1.521602622
H 0.690940233 -1.642351699 1.521602622
H 0.690940233 -1.739012699 -0.967574378
*

Indeed after the calculation we now have besides the CASSCF electron densities all the relevant CASSCF State
and Transition densities become now available.

-----------------------------------------------------------------------
Plot-Type is presently: 1
-----------------------------------------------------------------------
Searching for Ground State Electron or Spin Densities: ...
-----------------------------------------------------------------------

1 - molecular orbitals
2 - (scf) electron density ...... (scfp ␣

→˓ ) => AVAILABLE
3 - (scf) spin density ...... (scfr ␣

→˓ ) - NOT AVAILABLE
...

-----------------------------------------------------------------------
Searching for State or Transition State AO Electron Densities: ...
-----------------------------------------------------------------------

23 - CIS unrelaxed transition AO density ...... (Tdens-CIS ␣
→˓ ) - NOT AVAILABLE

24 - ROCIS unrelaxed transition AO density ...... (Tdens-ROCIS ␣
→˓ ) - NOT AVAILABLE

25 - CAS unrelaxed transition AO density ...... (Tdens-CAS ␣
→˓ ) => AVAILABLE

...
-----------------------------------------------------------------------
Searching for State or Transition State MO Electron Densities: ...
-----------------------------------------------------------------------

29 - CIS unrelaxed transition MO density ...... (Tdens-CISMO ␣
→˓ ) - NOT AVAILABLE

30 - ROCIS unrelaxed transition MO density ...... (Tdens-ROCISMO ␣
→˓ ) - NOT AVAILABLE

31 - CAS unrelaxed transition MO density ...... (Tdens-CASMO ␣
→˓ ) => AVAILABLE

...

We can now set ourselves to generate the NTOs and NDOs dominating the computed State 1

ROOT 1: E= -246.3609192216 Eh 5.176 eV 41749.8 cm**-1
0.82391 [ 346]: 2212100
0.06447 [ 295]: 2112200

Hence by using options 6 =>NTOs or 7 =>NDOs of the Available Algebraic Operations menu, and pro-
cessing the respective:
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1) AO Transition densities 𝐷01 for NTOs

-----------------------------------------------------------------------
Performing Algebraic Operations Over Densities: => MAKE_NTOS
-----------------------------------------------------------------------
Enter FileName for Density[ 0]: Tdens-CAS-0-0-0-1
Provide a Scale Factor for Density[ 0] (Default => 1.00): 1
-----------------------------------------------------------------------
NATURAL TRANSITION ORBITALS GENERATION:
-----------------------------------------------------------------------
Warning: The one-electron matrix doesn't exist - is recalculated (SHARK)
Calculating the overlap matrix ... done!

------------------------------------------------
NATURAL TRANSITION ORBITALS FOR STATE 1 1A
------------------------------------------------

STATE 1 1A : E= 0.190226 au 5.176 eV 41749.8 cm**-1

Threshold for printing occupation numbers 1.0000e-04

0 : n= 1.28519446
1 : n= 0.03997952
2 : n= 0.01505089
3 : n= 0.00336119

=> Natural Transition Orbitals (donor ) were saved in Tdens-CAS-0-0-0-1.1-1A_nto-donor.gbw
=> Natural Transition Orbitals (acceptor) were saved in Tdens-CAS-0-0-0-1.1-1A_nto-acceptor.gbw
-----------------------------------------------------------------------
Provide a Number of NTOs to plot (Default => 1): 1
-----------------------------------------------------------------------
-----------------------------------------------------------------------
Reading Donor NTO-file : Tdens-CAS-0-0-0-1.1-1A_nto-donor.gbw
-----------------------------------------------------------------------
Generating cube file for Donor NTO[0]:=> Tdens-CAS-0-0-0-1.1-1A_nto-donor.gbw.0.cube
-----------------------------------------------------------------------
Reading Acceptor NTO-file : Tdens-CAS-0-0-0-1.1-1A_nto-acceptor.gbw
-----------------------------------------------------------------------
Generating cube file for Acceptor NTO[0]:=> Tdens-CAS-0-0-0-1.1-1A_nto-acceptor.gbw.0.cube
Current-settings:

PlotType ... MO-PLOT
MO/Operator ... 0 0
Output file ... Tdens-CAS-0-0-0-1.1-1A_nto-acceptor.gbw.0.cube
Format ... Grid3d/Cube
Resolution ... 80 80 80

2) AO State densities 𝐷00 −𝐷11 for NDOs

-----------------------------------------------------------------------
Performing Algebraic Operations Over Densities: => MAKE_NDOS
-----------------------------------------------------------------------
Enter FileName for Density[ 0]: Tdens-CAS-0-0-0-0
Provide a Scale Factor for Density[ 0] (Default => 1.00): 1
Enter FileName for Density[ 1]: Tdens-CAS-0-0-1-1
Provide a Scale Factor for Density[ 1] (Default => 1.00): 1
-----------------------------------------------------------------------
NATURAL DIFFERENCE ORBITALS GENERATION:
-----------------------------------------------------------------------
Warning: The one-electron matrix doesn't exist - is recalculated (SHARK)
Calculating the overlap matrix ... done!

------------------------------------------------
(continues on next page)
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NATURAL DIFFERENCE ORBITALS FOR STATE 1 1A
------------------------------------------------

STATE 1 1A : E= 0.190226 au 5.176 eV 41749.8 cm**-1

Threshold for printing occupation numbers 1.0000e-04

0 : n= 0.49881235
1 : n= 0.08492368
2 : n= 0.06708141
3 : n= 0.01254920
4 : n= 0.00667407
5 : n= 0.00006162

=> Natural Difference Orbitals (donor ) were saved in Tdens-CAS-0-0-0-0-Tdens-CAS-0-0-1-1.1-
→˓1A_ndo-donor.gbw
=> Natural Difference Orbitals (acceptor) were saved in Tdens-CAS-0-0-0-0-Tdens-CAS-0-0-1-1.1-
→˓1A_ndo-acceptor.gbw
-----------------------------------------------------------------------
Provide a Number of NDOs to plot (Default => 1): 1
-----------------------------------------------------------------------
-----------------------------------------------------------------------
Reading Donor NDO-file : Tdens-CAS-0-0-0-0-Tdens-CAS-0-0-1-1.1-1A_ndo-donor.gbw
-----------------------------------------------------------------------
Generating cube file for Donor NDO[0]:=> Tdens-CAS-0-0-0-0-Tdens-CAS-0-0-1-1.1-1A_ndo-donor.
→˓gbw.0.cube
-----------------------------------------------------------------------
Reading Acceptor NDO-file : Tdens-CAS-0-0-0-0-Tdens-CAS-0-0-1-1.1-1A_ndo-acceptor.gbw
-----------------------------------------------------------------------
Generating cube file for Acceptor NDO[0]:=> Tdens-CAS-0-0-0-0-Tdens-CAS-0-0-1-1.1-1A_ndo-
→˓acceptor.gbw.0.cube
Current-settings:

PlotType ... MO-PLOT
MO/Operator ... 0 0
Output file ... Tdens-CAS-0-0-0-0-Tdens-CAS-0-0-1-1.1-1A_ndo-acceptor.gbw.0.cube
Format ... Grid3d/Cube
Resolution ... 80 80 80

It is possible to produce the corresponding Donor and Acceptor NTOs and NDOs orbital pairs which can be readily
visualized in:

(Figure: Fig. 7.69)
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Fig. 7.69: Pyridine SA-CASSCF(8,7) NTO/NDO donor/acceptor orbital pairs for State 1

NOTE: It is beneficial and more correct to always process the AO basis Densities. In particular it is not possible
nor is correct to process reduced MO basis Densities.

Additional TIPS regarding Density Plots

1) As an alternative to menu option 9 one can check, which densities are available, directly in the calculation
directory by reading out the list of all densities contained in the densities-file:

orca_plot mymol.densities

2) When orca_plot is used for very expensive plots, it even can be called in parallel mode:

mpirun -np 4 /orca_path/orca_plot_mpi MyGBWFile.gbw -i MyGBWFile

3) It is possible to use orca_plot to create difference densities between the ground and excited states from CIS
or TD-DFT calculations directly from the .cis calculation information. This is implemented as an extra in-
teractive menu point that is (hopefully) self-explanatory. Starting from ORCA 6 one can use the Algebraic
Operations utility menu to carry out these operations directly from the generated State and Transition
Densities.

7.55.8 orca_2mkl: Old Molekel as well as Molden inputs

This little utility program can be used to convert gbw files into mkl files which are of ASCII format. This is useful
since molekel can read these files and use them for plotting and the like. The contents of the mkl file is roughly
the same as the gbw file (except for the internal flags of ORCA) but this is an ASCII file which can also be read
for example by your own programs. It would therefore be a good point for developing an interface. It is likely that
this functionality will be further expanded in the future.

orca_2mkl BaseName
(will produce BaseName.mkl from BaseName.gbw)

orca_2mkl BaseName -molden
(writes a file in molden format)

orca_2mkl BaseName -mkl
(writes a file in MKL format)
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We have recently also added the capability to convert any gbw type file into MKL or Molden format. Thus, you
can use this device to vizualize QRO or UNO or UCO orbitals or any type of natural orbitals:

orca_2mkl gbw_type_file.extension mkl_file.extension -mkl -anyorbs
# or
orca_2mkl gbw_type_file.extension molden_file.extension -molden -anyorbs

You also have the opportunity to run orca_2mkl backwards in order to produce gbw type files. You can use
this device in order to import orbitals from other sources into ORCA. This is not a frequently used option and
it has limited capabilities. Hence, it is documented here only in a cursory way in order for you to be able to
experiment. Note that the CASSCF tutorial, that supplements the manual, shows how to edit the molecular orbitals
using orca_2mkl.

orca_2mkl BaseName -gbw
(will produce BaseName.gbw out of BaseName.mkl)

7.55.9 orca_2aim

This utility program reads a .gbw file and creates a .wfn and .wfx file that can be used for topological analysis of
the electron density by other programs. This works for open-shell and closed-shell wave functions. The usage is
very simple – just type AIM in the simple input line of your input file, or use

orca_2aim BaseName
(will produce BaseName.wfn and BaseName.wfx from BaseName.gbw)

7.55.10 orca_vpot

This program calculates the electrostatic potential at a given set of user defined points. It can be used with either
an input file or in interactive mode. It needs four arguments:

orca_vpot MyJob.gbw MyJob.scfp MyJob.vpot.xyz MyJob.vpot.out

First: The gbw file containing the correct geometry and basis set

Second: The desired density matrix in this basis (perhaps use the KeepDens keyword)

Third: an ASCII file with the target positions in AU, e.g.

6 (number_of_points)
5.0 0.0 0.0 (XYZ coordinates)

-5.0 0.0 0.0
0.0 5.0 0.0
0.0-5.0 0.0
0.0 0.0 5.0
0.0 0.0 -5.0

Fourth: The target file which will then contain the electrostatic potential, e.g.

6 (number of points)
VX1 VY1 VZ1 (potential for first point)
VX2 VY2 VZ2 (potential for second point)
etc.

It should be straightforward for you to read this file and use the potential for whatever purpose.

There are some special ways to call orca_vpot: A call for use in parallel mode

mpirun -np 4 /full_path/orca_vpot_mpi MyJob.gbw MyJob.scfp MyJob.pot.xyz MyJob.pot.out

A call to check, which densities are available in MyJob.densities,
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orca_vpot MyJob.densities

will give you a listing of all densities contained in the file.

In the case that basename of gbw- and densities-file do not match, you have to pass the densities’ name as fifth
argument to orca_vpot.

orca_vpot MyJob.gbw OtherJob.scfp MyJob.pot.xyz MyJob.pot.out OtherJob

A call to orca_vpot without any arguments will display a help message.

7.55.11 orca_euler

This utility program is used to calculate the relative orientation between calculated hyperfine coupling
(HFC)/nuclear quadrupole coupling (NQC) tensors and a reference tensor (the calculated molecular g-/D-tensor).
The orca_euler program is run by default in an ORCA job after the calculation of HFCs or NQCs, if g- or D-
tensor are also calculated in the same job. The utility program can also be run as a stand-alone program. In this
case the .property.txt file of a previous NQC/HFC- and D- or g-tensor calculation must be available.

The orientation between the tensors is calculated in terms of a 3x3 rotational matrix R. This is parametrized by the
three so-called Euler angles 𝛼, 𝛽 and 𝛾. These angles define the relative orientation between two tensors A and
B by three successively applied rotations around different axes in order to align A with B. In the commonly used
z-y-z convention these three rotations are:

• Rotate A𝑥𝑦𝑧 counterclockwise around its 𝑧 axis by 𝛼 to give A𝑥′𝑦′𝑧′ .

• Rotate A𝑥′𝑦′𝑧′ counterclockwise around its 𝑦′ axis by 𝛽 to give A𝑥′′𝑦′′𝑧′′ .

• Rotate A𝑥′′𝑦′′𝑧′′ counterclockwise around its 𝑧′′ axis by 𝛾 to align with B.

orca_euler prop-file options

file = basename of an ORCA .property.txt file

options
-refg/-refD: Reference tensor (g-tensor or D-tensor, default is -refg)
-conv zyz/-conv zxz: Euler rotation convention (default is zyz)
-order: Ordering of the reference tensor (x, y, z) with respect to

ORCA output (min, mid, max)
-plotA: plot the HFC-tensors
-plotQ: plot the NQC-tensors
-detail: print detailed information

NOTE:

• By default the D-tensor is used as reference tensor only if 𝑆 > 1
2 and if D>0.3 cm−1; in all other cases the

g-tensor is used as reference tensor. The user can manually select the reference tensor – if the information
is available in the prop-file – by using –refg or -refD.

• By default the Euler rotation in the z-y-z convention is used. The z-x-z convention can be selected manually
by using the option –conv zxz.

• By default the axes of the g- or D-tensor are assigned depending on their magnitude. gmin → 𝑔𝑥, gmid → 𝑔𝑦 ,
gmax → 𝑔𝑧 (similarly for D). This ordering can be modified manually when running the standalone program
as shown in the following examples:
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-order 3 2 1: min→ z
mid→ y

max→ x

-order 1 -2 3: min→ x
mid→ y (flipped in the orientation)

max→ z

• The nuclear hyperfine and quadrupole coupling tensors can be plotted (in the xyz-file format) by the
orca_euler program using –plotA or –plotQ. The HFC tensor for atom 3 (counting starts at zero) is
e.g. stored in the file prop-file.3.A.xyz, the respective NQC tensor is stored in prop-file.3.Q.xyz.
In these xyz files the position of four atoms (He, Ne, Ar, Kr) is given. The x-, y- and z-direction of the tensor
are in the direction of the vectors between He-Ne, He-Ar and He-Kr.

• The actual definition of the used rotation matrix and more information on the relative orientation can be
printed by using the option –detail.

7.55.12 orca_exportbasis

A small utility program to print out the basis sets used by ORCA. Its usage requires at least the name of the basis
set, as specified in the simple input line of ORCA. Additional parameters like an ECP basis set, a list of specific
atoms or the name of an ouput file are accepted. The output is stored in ASCII format, it can be inspected and
modified. The user can choose to print the basis sets in either ORCA format, which then can be copied into the input
file, or in GAMESS-US format, which can be read via the %basis block as externally specified basis. NOTE: Basis
set names containing special characters may need a pair of enclosing “ or ‘ to be recognized.

USAGE: orca_exportbasis keywords options

-b, --basis : name of basis set
def2-svp
'def2-tzvp(-f)' - string to be passed with literals

EXAMPLE: orca_exportbasis -b svp

Additional Options:

-e, --ecp : ecp basis
sdd
default - ECP-part of basis (if present)

-f, --format : output format
ORCA - to be read via %basis NewGTO
GAMESS-US - to be read as %basis GTOName 'mybasis.bas'
default - ORCA

-a, --atoms : list of elements
Cu - single element
Ga Ge As Se - list of elements separated by blanks
default - whole periodic table is printed

-o, --outfile: name of outputfile
mybasis.bas
default - derived name

(continues on next page)
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EXAMPLE: orca_exportbasis -b svp -e sdd -a Ag -f GAMESS-US -o mybasis.bas

The output stored in GAMESS-US format can be used in the %basis block of the next ORCA calculation.

%basis
GTOName "mybasis.bas"
GTOAuxJName "myauxjbasis.bas"
GTOAuxJKName "myauxjkbasis.bas"
GTOAuxCName "myauxjcbasis.bas"
end

7.55.13 orca_eca

This utility program makes use of the calculated exchange coupling constants to compute relative energies of all
possible spin states through diagonalization of spin Hamiltonian. The absolute and relative energies of the spin
states are printed in the *.en and *.en0 files respectively. The on-site spin expectation values are also printed
in a *.sp file.The following example calculates the spin ladder for a system with exchange coupling constant of
-152.48 cm**-1 between Mn(III) and Mn(IV).

%sim
ms_bs 0.5 # Arbitrary spin state
end

# specification of spin centers
$spins 2
1 2.0 # Spin on first manganese
2 1.5 # Spin on second manganese

# Exchange coupling constant (H = -2J S1 S2)
$ecc 1
1 -152.48

$aiso_bs 2 # A false segment just to print the *.sp file
1 0.00
2 0.00

7.55.14 orca_pnmr

orca_pnmr calculates the paramagnetic contribution to the NMR shielding tensor from EPR 𝑔, 𝐴, and 𝐷 tensors
(see Section Paramagnetic NMR shielding tensors for theoretical background). It is a standalone program which
you can invoke on the command line after the main ORCA calculation has finished. Alternatively, it can read user-
provided 𝑔/𝐴/𝐷 tensors from an input file (option -i). Note that orca_pnmr expects 𝑔 and𝐴 tensors that conform
to the convention described in Section Cartesian Index Conventions for EPR and NMR Tensors.

USAGE: orca_pnmr BaseName [-i] [-v]

OPTIONS: -i : read from the input file "BaseName.pnmr.inp"
-v : print more output (Z matrices)

When called without options, orca_pnmr will attempt to extract 𝑔, 𝐷, and 𝐴 tensors from the property file
BaseName.property.txt and use these to calculate the paramagnetic shieldings at 298 K. Note that this function-
ality is not sophisticated: it only recognizes EPR tensors calculated by the EPRNMR module. A more flexible way
to use the capabilities of orca_pnmr is to manually edit the textfile BaseName.pnmr.inp and then run orca_pnmr
with the -i option. The file has the following format:
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3 # Spin multiplicity (2S+1)
298 # Temperature range minimum [K]
300 # Temperature range maximum [K]
1 # Temperature step [K]
1 # Have g-tensor? 0 or 1

2.004689 0.000000 -0.000000 # Cartesian g-tensor
0.000000 2.004689 0.000000 # (if available)
0.000000 0.000000 2.002123

1 # Have D-tensor? 0 or 1
-0.514341 -0.000000 -0.000000 # Cartesian D-tensor [cm-1]
-0.000000 -0.514341 -0.000000 # (if available)
-0.000000 -0.000000 1.028682
2 # Number of A-tensors
0O # First nucleus (index,element)
-72.358765 # Prefactor [MHz]
-78.989514 0.000000 -0.000000 # Cartesian A-tensor [MHz]

0.000000 -78.989514 -0.000000
-0.000000 -0.000000 53.478581
1O # Next nucleus (index,element)
-72.358765 # Prefactor [MHz]
-78.989516 0.000000 -0.000000 # Cartesian A-tensor [MHz]

0.000000 -78.989516 -0.000000
-0.000000 -0.000000 53.478580
# ... Further nuclei

• 𝐷 and 𝑔 tensors are optional: if they are not supplied orca_pnmr will assume the isotropic free-electron
value for 𝑔, and 𝐷 to be zero.

• 𝐴 tensors, however, are not optional; without an 𝐴 tensor for a given nucleus, the pNMR shielding cannot
be calculated for that nucleus.

7.55.15 orca_lft

Starting from ORCA 5.0, ORCA features a standalone multiplet program called orca_lft.

• Orca_lft is dedicated to experimental spectroscopists.

• It is able to run an arbitrary number of spectra simulations with emphasis on X-ray spectroscopies.

In this section we briefly review the main functionalities of orca_lft. For a more detail description and examples
discussion please refer to the orca_lft tutorial.

1. The goal is to be able to compute various spectroscopic properties of a given LFT center (ion) if one can
manually pass the information of 1 and 2 electron integrals in the form of e.g the diagonal elements of the
LFT matrix (LFT orbital energies) and the Slater-Condon parameters of a given LFT problem.

2. This will allow the experimental spectroscopist to perform a massive amount of spectra simulations during
the actual running experiments

Any LFT problem can be parametrized in terms 1-electron𝐻𝐿𝐹 matrix elements and the Slater-Condon 2-electron
integrals F0, F2, F4, (or the Racah parameters A, B, C, of the d-shell). (Figure: Fig. 7.70)

Fig. 7.70: Definition of an LFT problem in terms of 1-electron energies and Slater Condon parameters (SCPs)

In practice we need to know:
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1. the Slater Condon parameters of a given LFT problem

2. the 𝐻𝐿𝐹 matrix elements or the relation of them (ligand field splitting, 10Dq, AOM model)

The design workflow of orca_lft is the following:

• Solve the General CI problem on a User-specified LFT problem: Type of Ion, Number of Electrons, Involved
Shells, Involved Multiplicities

• Compute All possible Non Relativistic States/Multiplicity

• Compute the Transition Densities on the CSFs basis

• Compute the Needed transition Moments in the given LFT basis (i.e. 2p3d)

• Compute various properties with emphasis to X-ray spectroscopy (ABS, XAS, XES, RIXS) at the Non Rel-
ativistic Limit

• Compute the respective Relativistically corrected States on the Quasi Degenerate Perturbation Theory basis

• Provide access to various relativistically corrected properies (ABS, XAS, XES, RIXS, MCD, XMCD, GTen-
sors, Dtensors, Hyperfine Couplings, Electric Field Gradients)

orca_lft requires its own input. By simply executing it from the terminal

orca_lft

one gets printings of the Usage:

************************************************************************************************************
Simulate or Fit Spectra
************************************************************************************************************

============================================================================================================
Usage: orca_lft BaseName.lft.inp [options]
============================================================================================================

-----------------------------------------------------------------------------------------------
→˓-------------
[Options]:
-----------------------------------------------------------------------------------------------
→˓-------------
-sim Simulate Spectra
-fit Fit Spectra (This is not yet availiable!)
-----------------------------------------------------------------------------------------------
→˓-------------

************************************************************************************************************
Generate Initial Input
************************************************************************************************************

============================================================================================================
Usage: orca_lft BaseName [options]
============================================================================================================

various Run Options:

-----------------------------------------------------------------------------------------------
→˓-------------
[Options]:
-----------------------------------------------------------------------------------------------
→˓-------------
-p_case Requests p-shell case
-d_case Requests d-shell case
-f_case Requests f-shell case
-sp_case Requests sp-shell case

(continues on next page)
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-ps_case Requests sp-shell case
-sd_case Requests sd-shell case
-ds_case Requests ds-shell case
-sf_case Requests sf-shell case
-fs_case Requests fs-shell case
-pd_case Requests pd-shell case
-dp_case Requests dp-shell case
-pf_case Requests pf-shell case
-fp_case Requests fp-shell case
-df_case Requests pf-shell case
-fd_case Requests fp-shell case
-spd_case Requests spd-shell case
-spf_case Requests spf-shell case
-sdf_case Requests sdf-shell case
-pdf_case Requests pdf-shell case
-soc Requests Input with SOC Constants
-atnoN Sets Atomic Number N
-----------------------------------------------------------------------------------------------
→˓-------------
-Special Cases for known Elements. LFT Parameters are filled from an internal AILFT NEVPT2␣
→˓database

--------------------------------------Supported Oxidation States-------------------------------
→˓-------------
Presently Default Oxidation States are supported except for Fe:
Main Elements -> O
TM Elements (Fe(26)) -> I,II,III
TM Elements (All other) -> II
Lanthanide/Actinide Elements -> III
--------------------------------------------Valence Cases--------------------------------------
→˓-------------
-atnoN -2s2p_case Requests 2s2p-shell case for element with atomic number N (4-9)
-atnoN -3s3p_case Requests 3s3p-shell case for element with atomic number N (12-18)
-atnoN -4s4p_case Requests 4s4p-shell case for element with atomic number N (20,31-
→˓36)
-atnoN -4s4p_case Requests 5s5p-shell case for element with atomic number N (38,49-
→˓54)
-atnoN -3d4s_case Requests 3d4s-shell case for element with atomic number N (22-29)
-atnoN -4d5s_case Requests 4d5s-shell case for element with atomic number N (40-47)
-atnoN -5d6s_case Requests 4d6s-shell case for element with atomic number N (72-79)
-atnoN -4f5d_case Requests 4d5d-shell case for element with atomic number N (59-70)
-atnoN -5f6d_case Requests 5d6d-shell case for element with atomic number N (91-
→˓102)
-----------------------------------------Core-Valence Cases------------------------------------
→˓------------
-atnoN -1s3d_case Requests 1s3d-shell case for element with atomic number N (22-29)
-atnoN -2p3d_case Requests 2p3d-shell case for element with atomic number N (22-29)
-atnoN -3p3d_case Requests 3p3d-shell case for element with atomic number N (22-29)
--------------------------------------Core-Valence XES Cases-----------------------------------
→˓-------------
-atnoN -1s2p3d_case Requests 1s2p3d-shell case for element with atomic number N (22-
→˓29)
-atnoN -1s3p3d_case Requests 1s3p3d-shell case for element with atomic number N (22-
→˓29)
-----------------------------------------------------------------------------------------------
→˓-------------

and various Spectra Simulation Options:

************************************************************************************************************
Spectra Simulation Options for the BaseName.lft.inp:

(continues on next page)
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************************************************************************************************************

-----------------------------------------------------------------------------------------------
→˓-------------
TIP: Switch ON a Property calculation as DoProperty true:
-----------------------------------------------------------------------------------------------
→˓-------------

-----------------------------------------------------------------------------------------------
→˓-------------
General Input Parameters:
-----------------------------------------------------------------------------------------------
→˓-------------
NEl Sets the number of electrons
Shell_PQN Sets the principle quantum number per type of shells (s,p,d,f)
LFTCase !!!ALTERNATIVE TO Shell_PQN!!! Sets the given LFT problem (2p3d,␣
→˓1s3p3d, ...)
-----------------------------------------------------------------------------------------------
→˓------------
LFTCase WILL replace Shell_PQN
-----------------------------------------------------------------------------------------------
→˓------------
(e.g. Shell_PQN = 0,2,3,0 for a 2p3d calculation)
Mult Sets the Multiplicity/Multiplicities
NRoots Sets the number of Roots/Multiplicity
TMultiplets (0.01) Threshold for the Multiplets grouping in eV
DoeV All values in eV. This is default. If set false the cm-1 unit is␣
→˓used throughout
DoRAS Requests a RASCI calculation
RAS(nel: m1 h/ m2 / m3 p) Computes the X-Ray Emission Spectra

RAS-reference with nel electrons
m1= number orbitals in RAS-1
h = max. number of holes in RAS-1
m2= number of orbitals in RAS-2 (any number of electrons or holes)
m3= number of orbitals in RAS-3
p = max. number of particles in RAS-3

DoElastic Computes in addition the Elastic Scattering terms in RIXS/
→˓RIXSSOC calculations
-----------------------------------------------------------------------------------------------
→˓-------------
Non Relativistic Spectroscopic Properties:
-----------------------------------------------------------------------------------------------
→˓-------------
DoABS/DoXAS Computes the Absorption like Spectra
DoCD Computes the CD Spectra
DoXES Computes the X-Ray Emission Spectra
DoRIXS Computes the RIXS Spectra
DoQuadrupole Computes the ABS,XAS,RIXS Spectra beyond dipole approximation
-----------------------------------------------------------------------------------------------
→˓-------------
Relativistically Corrected Spectroscopic Properties:
-----------------------------------------------------------------------------------------------
→˓-------------
DoSOC Requests the Spin Orbit Coupling Calculations
Note that this turned on automatically if zeta SOC
constant are provided
-----------------------------------------------------------------------------------------------
→˓-------------
DoABS/DoXAS Computes the SOC Corrected Absorption like Spectra

(continues on next page)
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DoCD Computes the SOC Corrected CD Spectra
DoMCD/DoXMCD Computes the SOC Corrected MCD/XMCD Spectra
DoXESSOC: Computes the SOC Corrected XES Spectra
DoRIXSSOC: Computes the SOC Corrected RIXS Spectra
DoQuadrupole Computes the SOC Corrected ABS,XAS, XES RIXS Spectra beyond␣
→˓dipole approximation
-----------------------------------------------------------------------------------------------
→˓-------------
Magnetic Properties:
-----------------------------------------------------------------------------------------------
→˓-------------
DoMagnetization Computes the Magnetization
DoSusceptibility Computes the Susceptibilities
DoGTensor Computes the g-Tensors/Matrices
DoDTensor Computes the Zero-Field Splittings
DoATensor Computes the Hyperfine Tensors
DoEFGTensor Computes the Electric Field Gradient Tensors
(also Moesbauer Parameters in the presence of Fe centers)
-----------------------------------------------------------------------------------------------
→˓-------------
Variable Parameters (if they are not given, default values are used)
-----------------------------------------------------------------------------------------------
→˓-------------
Temperature(300) Temperature to be used in the SOC calculations
MagneticField(0) Magnetic Field (in Gauss)
NPointsPsi(10) Solid Angle Integration points Psi for MCD and XMCD
NPointsPhi(10) Solid Angle Integration points Phi for MCD and XMCD
NPointsTheta(10) Solid Angle Integration points Theta for MCD and XMCD
-----------------------------------------------------------------------------------------------
→˓-------------
Variable Parameters needed for Magnetization and Susceptibility calculations
-----------------------------------------------------------------------------------------------
→˓-------------
LebedevIntegrationPoints(26) Number for Integration points for Lebedev)
LebedevPrec(5) Precision of the grid for different field directions
(meaningful values range from 1 (smallest) to 10 (largest)
nPointsFStep (5) Number of steps for numerical differentiation
(def: 5, meaningful values are 3, 5 7 and 9)
MAGTemperatureMIN(4.0) Minimum Temperature (K) for Magnetization
MAGTemperatureMAX(4.0) Maximum Temperature (K) for Magnetization
MAGTemperatureNPoints(1) Number of Temperature points for Magnetization
MAGFieldStep(100.0) Size of Field step for numerical differentiation (def: 100 Gauss)
MAGFieldMin(0.0) Minimum Field (Gauss) for Magnetization
MAGFieldMax(70000.0) Minimum Field (Gauss) for Magnetization
MAGNPoints(15) Number of Field points for Magnetization
SUSTempMin(1) Minimum Temperature (K) for Susceptibility
SUSTempMxn(300.0) Maximum Temperature (K) for Susceptibility
SUSNPoints(300) Number of Temperature points for Susceptibility
SUSStatFieldMIN(0.0) Minimum Static Field (Gauss) for Susceptibility
SUSStatFieldMAX(1) Maximum Static field (Gauss) for Susceptibility
SUSStatFieldNPoints(1) Number of Static Fields for Susceptibility
-----------------------------------------------------------------------------------------------
→˓-------------

Orca_lft can run standalone by processing an input file (Basename.lft.inp) with orca_lft

orca_lft BaseName.lft.inp -sim

Alternatively, one can call the main orca program like

orca BaseName.lft.inp
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The different benefits of the two runs are provided in the orca_lft tutorial

Orca_lft can also be used to automatically generate initial proper input files. For example, by running

orca_lft BaseName -pd_case

will generate an initial basename.lft_pd.inp input.

-----------------------------------------------------------------
Initial Input: BaseName.lft_pd.inp for Orca_LFT has been generated:
-----------------------------------------------------------------

This will generate a bare input. One has to fill in the required LFT parameters and the desired spectroscopic
properies and start the simulations like in every common multiplet program.

%lft

#-----Parameters------
NEl= 0
Shell_PQN= 0, 2, 3, 0
Mult= 0
NRoots= -1
#--------------------

#---Slater-Condon Parameters---
#---All Values in eV---
PARAMETERS
F0pp = 0.00
F2pp = 0.00
F0dd = 0.00
F2dd = 0.00
F4dd = 0.00
F0pd = 0.00
F2pd = 0.00
G1pd = 0.00
G3pd = 0.00
end
#--------------------

#---Diagonal LFT-Matrix Elelemnts---
#---All Values in eV---
FUNCTIONS
0 0 " 0.00"
1 1 " 0.00"
2 2 " 0.00"
3 3 " 0.00"
4 4 " 0.00"
5 5 " 0.00"
6 6 " 0.00"
7 7 " 0.00"
end
#--------------------

#---SPECTRA/PROPERTIES---
DoABS true
#---------
end

(continues on next page)
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*xyz 0 0
Atom 0.00 0.00 0.00
*

Special initial inputs based on an internal NEVPT2 data base can also be generated. For the 2p3d LFT case of NiII
this will look like this

orca_lft BaseName -atno28 -2p3d_case

------------------------------------------------------------------------------
Creating input for Atom Ni(II) ...
------------------------------------------------------------------------------

-----------------------------------------------------------------
Initial Input: BaseName.lft_pd.inp for Orca_LFT has been generated:
-----------------------------------------------------------------

This will generate the following imput where the LFT parameters are filled in from an internal NEVPT2 database
from precomputed CASCI/NEVPT2 AILFT LFT parameters

In the case of 𝑁𝑖𝐼𝐼 this will look like this. This is basically a ready to run input.

%lft

#-----Parameters------
NEl= 14
LFTCase 2p3d
Mult= 3, 1
NRoots= 25, 30
#--------------------

#---Slater-Condon Parameters---
#---All Values in eV---
PARAMETERS
F0pp = 85.88
F2pp = 54.77
F0dd = 23.31
F2dd = 13.89
F4dd = 9.14
F0pd = 33.03
F2pd = 7.76
G1pd = 6.42
G3pd = 2.11
end
#--------------------

#---Diagonal LFT-Matrix Elelemnts---
#---All Values in eV---
FUNCTIONS
0 0 " 0.00"
1 1 " 0.00"
2 2 " 0.00"
3 3 "1138.35"
4 4 "1138.35"
5 5 "1138.35"
6 6 "1138.35"
7 7 "1138.35"
end

(continues on next page)
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#--------------------

#---SPECTRA/PROPERTIES---
DoABS true
#---------
end

*xyz 2 3
Ni 0.00 0.00 0.00
*

Alternatively as discussed in the Abinitio Ligand Field Theory section (1- and 2-shell Abinitio Ligand Field Theory)
one may actually run a 2-shell AILFT calculation and produce the respective *nevpt2.lft.inp file

!NoIter NEVPT2 def2-SVP def2-SVP/C

%method
frozencore fc_none
end

#--------------------
#Rotate Orbitals
#--------------------
%scf
rotate
{2,6,90}
{3,7,90}
{4,8,90}
end
end

#--------------------
#General Options
#--------------------
%casscf
nel 14
norb 8
mult 3,1
nroots 100,100

LFTCase 2p3d
rel
dosoc true
end
end

*xyz 2 3
Ni 0.0000000000 0.0000000000 0.0000000000
*

The structure of an orca_lft input is the following:

It contains:

• The General Parameters Block where the LFT problem is defined

—–Parameters—— NEl= 14 LFTCase 2p3d #Shells_PQN 0,2,3,0, Alternative definition using s,p,d,f main
quantum numbers Mult= 3, 1 NRoots= 25, 30 ——————–
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• The PARAMETERS Block where the SCPs and SOC constant parameters are defined

—Slater-Condon Parameters— —All Values in eV— PARAMETERS F0pp = 85.88 F2pp = 54.77 F0dd =
23.31 F2dd = 13.89 F4dd = 9.14 F0pd = 33.03 F2pd = 7.76 G1pd = 6.42 G3pd = 2.11 end ——————–

. . .

—SOC-CONSTANTS— —All Values in eV— PARAMETERS ZETA_P = 10.68 ZETA_D = 0.08 end
——————–

• The FUNCTIONS Block where the LFT matrix is defined

• The Properties Block where the desire simulation properties are specified

—SPECTRA/PROPERTIES— DoABS true ———

• The xyz Block where the ion, charge, multiplicity and coordinates (0. 0. 0.) are defined

*xyz 2 3 Ni 0.0000000000 0.0000000000 0.0000000000 *

It should be emphasized the orca_lft via the FUNCTIONS and PARAMETERS blocks provides

• an arbitary paramterization of the 1-electron LFT matrix and the Slater Condon Parameters

• a powerfull parameters scanability

which helps to performs any kind of simulation without any symmetry restrictions. Details regarding the use of
the FUNCTIONS and PARAMETERS blocks with examples are provided in the orca_lft tutorial

Let us perform the 𝑁𝑖2+ L-edge XAS spectrum simulation using the following input

%lft

#-----Parameters------
NEl= 14
LFTCase 2p3d
Mult= 3, 1
NRoots= 25, 30
#--------------------

#---Slater-Condon Parameters---
#---All Values in eV---
PARAMETERS
F0pp = 85.88
F2pp = 54.77
F0dd = 23.31
F2dd = 13.89
F4dd = 9.14
F0pd = 33.03
F2pd = 7.76
G1pd = 6.42
G3pd = 2.11

end
#--------------------

#---Diagonal LFT-Matrix Elelemnts---
#---All Values in eV---
FUNCTIONS
0 0 " 0.00"
1 1 " 0.00"
2 2 " 0.00"
3 3 "1138.35"
4 4 "1138.35"
5 5 "1138.35"

(continues on next page)
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6 6 "1138.35"
7 7 "1138.35"

end
#--------------------

#---SOC-CONSTANTS---
#---All Values in eV---
PARAMETERS
ZETA_P = 11.341
ZETA_D = 0.085

end
#--------------------

#---SPECTRA/PROPERTIES---
DoABS true
DoSOC true
#---------

end

*xyz 2 3
Ni 0.00 0.00 0.00
*

In a first step the definition of the LFT problem is performed:

------------------------------------------------------------------------------
L I G A N D F I E L D T H E O R Y
------------------------------------------------------------------------------

Number of electrons = 14
Multiplicities = 3 1
Roots = 25 30
Shells included = 0 2 3 0

Definition of the ligand field basis set:
0 = pz
1 = px
2 = py
3 = dz2
4 = dxz
5 = dyz
6 = dx2y2
7 = dxy

Definition of the static ligand field by the user:
There are 9 ligand field parameters

Nr. Name Initial Value
-----------------------------------------
1 F0PP 85.880000
2 F2PP 54.770000
3 F0DD 23.310000
4 F2DD 13.890000
5 F4DD 9.140000
6 F0PD 33.030000
7 F2PD 7.760000
8 G1PD 6.420000

(continues on next page)
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9 G3PD 2.110000

Definition of the ligand field functions by the user:
There are 8 ligand field functions

Nr. H-element value function
-----------------------------------------
1 H(0,0) 0.000000000 0.00
2 H(1,1) 0.000000000 0.00
3 H(2,2) 0.000000000 0.00
4 H(3,3) 1138.350000000 1138.35
5 H(4,4) 1138.350000000 1138.35
6 H(5,5) 1138.350000000 1138.35
7 H(6,6) 1138.350000000 1138.35
8 H(7,7) 1138.350000000 1138.35

Defining the one-electron LFT matrix ... done
Defining the two-electron LFT matrix ... done

In following the CI problem is defined:

Defining the CI spaces and setting up the CI ...
Making Checks...
Multiplicty = 3, #(configurations) = 28 #(CSF's) = 28 #(Roots) = 25
NRoots<NCSFs Adjussting ==> (CSF's) = 25
Setting up CI...
Multiplicty = 3, #(configurations) = 28 #(CSF's) = 25 #(Roots) = 25
Making Checks...
Multiplicty = 1, #(configurations) = 36 #(CSF's) = 36 #(Roots) = 30
NRoots<NCSFs Adjussting ==> (CSF's) = 30
Setting up CI...
Multiplicty = 1, #(configurations) = 36 #(CSF's) = 30 #(Roots) = 30
CI setup done

And the CI problem is solved:

LOWEST ROOT (ROOT 0, MULT 3) = 460.113216547 Eh 12520.317 eV

STATE ROOT MULT DE/a.u. DE/eV DE/cm**-1
1: 1 3 0.000000 0.000 0.0
2: 2 3 0.000000 0.000 0.0
3: 3 3 0.000000 0.000 0.0
4: 4 3 0.000000 0.000 0.0
5: 5 3 0.000000 0.000 0.0
6: 6 3 0.000000 0.000 0.0
7: 0 1 0.086266 2.347 18933.2
8: 1 1 0.086266 2.347 18933.2
9: 2 1 0.086266 2.347 18933.2
10: 3 1 0.086266 2.347 18933.2
11: 4 1 0.086266 2.347 18933.2
12: 7 3 0.099001 2.694 21728.2
13: 8 3 0.099001 2.694 21728.2
14: 9 3 0.099001 2.694 21728.2
15: 5 1 0.132624 3.609 29107.7
16: 6 1 0.132624 3.609 29107.7
17: 7 1 0.132624 3.609 29107.7
18: 8 1 0.132624 3.609 29107.7
19: 9 1 0.132624 3.609 29107.7
20: 10 1 0.132624 3.609 29107.7

(continues on next page)
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21: 11 1 0.132624 3.609 29107.7
22: 12 1 0.132624 3.609 29107.7
23: 13 1 0.132624 3.609 29107.7
24: 14 1 0.331652 9.025 72789.3
25: 15 1 29.897078 813.541 6561650.2
26: 16 1 29.897078 813.541 6561650.2
27: 17 1 29.897078 813.541 6561650.2
28: 18 1 29.897078 813.541 6561650.2
29: 19 1 29.897078 813.541 6561650.2
30: 10 3 29.915627 814.046 6565721.2
31: 11 3 29.915627 814.046 6565721.2
32: 12 3 29.915627 814.046 6565721.2
33: 13 3 29.915627 814.046 6565721.2
34: 14 3 29.915627 814.046 6565721.2
35: 15 3 29.915627 814.046 6565721.2
36: 16 3 29.915627 814.046 6565721.2
37: 17 3 29.978158 815.747 6579445.1
38: 18 3 29.978158 815.747 6579445.1
39: 19 3 29.978158 815.747 6579445.1
40: 20 3 29.978158 815.747 6579445.1
41: 21 3 29.978158 815.747 6579445.1
42: 22 3 30.016020 816.777 6587754.9
43: 23 3 30.016020 816.777 6587754.9
44: 24 3 30.016020 816.777 6587754.9
45: 20 1 30.087356 818.719 6603411.3
46: 21 1 30.087356 818.719 6603411.3
47: 22 1 30.087356 818.719 6603411.3
48: 23 1 30.106270 819.233 6607562.6
49: 24 1 30.106270 819.233 6607562.6
50: 25 1 30.106270 819.233 6607562.6
51: 26 1 30.106270 819.233 6607562.6
52: 27 1 30.106270 819.233 6607562.6
53: 28 1 30.106270 819.233 6607562.6
54: 29 1 30.106270 819.233 6607562.6

accompanied by a multiplet analysis:

---------------------------------------------------
Atomic calculation : Multiplet analysis (LFT)
---------------------------------------------------
11 multiplets found (Threshold = 0.01 eV)
0 3F | E = 0.000 eV | 2p(6)3d(8)
1 3P | E = 2.694 eV | 2p(6)3d(8)
2 3F | E = 814.046 eV | 2p(5)3d(9)
3 3D | E = 815.747 eV | 2p(5)3d(9)
4 3P | E = 816.777 eV | 2p(5)3d(9)
5 1D | E = 2.347 eV | 2p(6)3d(8)
6 1G | E = 3.609 eV | 2p(6)3d(8)
7 1S | E = 9.025 eV | 2p(6)3d(8)
8 1D | E = 813.541 eV | 2p(5)3d(9)
9 1P | E = 818.719 eV | 2p(5)3d(9)
10 1F | E = 819.233 eV | 2p(5)3d(9)
---------------------------------------------------

In following SOC is computed on the QDPT framework

*************************************
Doing QDPT with ONLY SOC!
*************************************

------------------------------------

(continues on next page)
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NONZERO SOC MATRIX ELEMENTS (cm**-1)
------------------------------------

Bra Ket
<Block Root S Ms | HSOC | Block Root S Ms> = Real-part Imaginary part
--------------------------------------------------------------------------------------
0 1 1.0 1.0 0 0 1.0 1.0 0.000 -685.571
0 3 1.0 1.0 0 2 1.0 1.0 0.000 342.781
0 4 1.0 1.0 0 2 1.0 1.0 0.000 0.134
0 4 1.0 1.0 0 3 1.0 1.0 0.000 -2.946
0 5 1.0 1.0 0 2 1.0 1.0 0.000 0.987
0 5 1.0 1.0 0 3 1.0 1.0 0.000 7.920
0 5 1.0 1.0 0 4 1.0 1.0 0.000 -1022.995
0 6 1.0 1.0 0 2 1.0 1.0 0.000 -3.379

...

1 29 0.0 0.0 0 17 1.0 -1.0 -2850.628 3039.103
1 29 0.0 0.0 0 18 1.0 -1.0 -16745.172 2885.219
1 29 0.0 0.0 0 19 1.0 -1.0 -1533.311 4672.283
1 29 0.0 0.0 0 20 1.0 -1.0 105.943 -43.140
1 29 0.0 0.0 0 21 1.0 -1.0 14.076 39.149

Note: In the following the full <I|HBO+SOC|J> are printed in the CI Basis.
I,J are compound indices for |Block/Mult, Ms, Root>, where the states
are ordered first by MultBlock, then Ms and finally Root.

...

The corrected SOC states are then printed

The threshold for printing is 0.0010
Eigenvectors:
Weight Real Image : Block Root Spin Ms
STATE 0: 0.0000
0.194318 0.035977 -0.439345 : 0 0 1 1
0.193821 0.438951 0.033797 : 0 1 1 1
0.001621 -0.008938 -0.039257 : 0 4 1 0
0.248122 0.000664 -0.498118 : 0 5 1 0
0.180615 0.034848 0.423557 : 0 0 1 -1
0.180625 0.423745 -0.032633 : 0 1 1 -1

STATE 1: 0.0000
0.180266 0.018153 0.424189 : 0 0 1 1
0.180623 -0.424680 0.016424 : 0 1 1 1
0.245822 0.492098 -0.060506 : 0 4 1 0
0.001648 -0.040383 -0.004177 : 0 5 1 0
0.002114 0.045969 -0.001038 : 0 6 1 0
0.195326 0.087330 0.433242 : 0 0 1 -1
0.192550 0.430084 -0.087049 : 0 1 1 -1

...

STATE 104: 6683223.2237
0.031604 0.157946 0.081591 : 0 17 1 1
0.054142 -0.232659 -0.003404 : 0 18 1 1
0.064958 -0.076463 0.243129 : 0 19 1 1
0.040339 0.047206 0.195219 : 0 24 1 1
0.127180 -0.000013 0.356624 : 0 20 1 0
0.001970 -0.000039 -0.044381 : 0 21 1 0
0.080521 -0.000008 0.283763 : 0 23 1 0

(continues on next page)
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0.031582 0.157887 -0.081573 : 0 17 1 -1
0.054144 -0.232664 0.003379 : 0 18 1 -1
0.064929 -0.076436 -0.243078 : 0 19 1 -1
0.040357 0.047226 -0.195260 : 0 24 1 -1
0.031231 -0.176723 0.000065 : 1 21 0 0
0.376805 0.613845 0.000034 : 1 22 0 0

Followed by the SOC corrected Absorption (Here XAS) spectrum

------------------------------------------------------------------------------------------
SOC CORRECTED ABSORPTION SPECTRUM
------------------------------------------------------------------------------------------
States Energy Wavelength fosc T2 |TX| |TY| |TZ|
(cm-1) (nm) (D**2) (D) (D) (D)
------------------------------------------------------------------------------------------
0 1 0.0 0.0 0.000000000 0.00006 0.00748 0.00248 0.00014
0 2 0.0 0.0 0.000000000 0.08561 0.15114 0.25053 0.00001
0 3 0.0 0.0 0.000000000 0.08072 0.24632 0.14159 0.00001
0 4 0.0 5379590440159.6 0.000000000 0.00010 0.00622 0.00793 0.00050
0 5 0.0 5308337586647.6 0.000000000 0.00021 0.01379 0.00399 0.00008
0 6 0.0 3910043783335.5 0.000000000 0.02400 0.04644 0.14780 0.00056
0 7 0.0 3891062988270.8 0.000000000 0.03327 0.05783 0.17298 0.00064
0 8 0.0 3626963690424.4 0.000000000 0.04657 0.21455 0.02332 0.00029
0 9 1386.7 7211.2 0.000000723 0.00998 0.01613 0.09858 0.00007
0 10 1386.7 7211.2 0.000000741 0.01022 0.09943 0.01828 0.00001
0 11 1386.7 7211.2 0.000000001 0.00002 0.00200 0.00345 0.00006
0 12 1386.7 7211.2 0.000000018 0.00024 0.00512 0.01469 0.00011
0 13 1386.7 7211.2 0.000000006 0.00009 0.00899 0.00263 0.00002
0 14 1386.7 7211.2 0.000000000 0.00000 0.00044 0.00179 0.00001

...

2 101 6677152.3 1.5 0.000693465 0.00199 0.02052 0.03956 0.00095
2 102 6683223.2 1.5 0.000000000 0.00000 0.00000 0.00000 0.00000
2 103 6683223.2 1.5 0.000000000 0.00000 0.00000 0.00000 0.00000
2 104 6683223.2 1.5 0.000000000 0.00000 0.00000 0.00000 0.00000

By processing the *.out file as usual with orca_mapspc orca_mapspc the *.dat and *.stk files are generated resulting
in Fig. 7.71.
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Fig. 7.71: orca_lft simulated 𝑁𝑖2+ L-edge XAS spectrum

7.55.16 orca_crystalprep

ORCA 5.0 fetures a utility program that can process crystallographic files (.cif) or .xyz supercell files and produce
proper inputs for the embedded cluster calculations It is named orca_crystalprep tool.

Performing an embedded cluster calculation conventionally or within the Ionic-Crystal-QMMM one needs to define
basically 3 regions

1. The quantum cluster QC that will be treated quantum mechanically

2. The point charges region PC that represents the solids environment

3. A boundary region BR or ECP that is located between the QC and PC with the main role to prevent charge
communication between the QC and PC regions.

This implies that in a first step one needs to generate a SuperCell (.xyz) structure and separate the different regions
according to the calculation design. In a second step one needs to charge balance the system. All this is then need
to be combined into a proper calculation input.

This is clearly a multistep and many times multiplatform process that is

1. Complicated

2. Time consuming

3. Not user friendly

The orca_crystalprep utility is designed to automatically generate proper inputs for ORCA embedded cluster cal-
culations with the aim to allow to a wide range of experienaced and not experienced users the ability to setup an
embedded cluster calculation with a minimal effort.

orca_crystalprep requires its own input. By simply executing it from the terminal
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orca_crystalprep

one gets printings of the Usage:

************************************************************************************************************
Generate initial ORCA CrystalPrep Input
************************************************************************************************************

============================================================================================================
Usage: orca_crystalprep [Basename Input] [options]
============================================================================================================

-----------------------------------------------------------------------------------------------
→˓-------------
[Options]:
-----------------------------------------------------------------------------------------------
→˓-------------
-geninput Generate Initial Input
-----------------------------------------------------------------------------------------------
→˓-------------

************************************************************************************************************
Generate ORCA Embedding Cluster Inputs using the CrystalPrep Utility
************************************************************************************************************

============================================================================================================
Usage: orca_crystalprep [CrystalPrep Input]
============================================================================================================

and the different Options:

-----------------------------------------------------------------------------------------------
→˓-------------
[CrystalPrep Input Options]:
-----------------------------------------------------------------------------------------------
→˓--------------
General Definitions
-----------------------------------------------------------------------------------------------
→˓--------------
DoCIF true This will process a .cif file
DoXYZ true This will process a .xyz file
InputCIF "CIFFileName" Set the name of the CIFFileName
InputXYZ "XYZFileName" Set the name of the XYZFileName
-----------------------------------------------------------------------------------------------
→˓--------------
SuperCell Construction Definitions
-----------------------------------------------------------------------------------------------
→˓--------------
DoSuperCell true Flag to generate a SuperCell
SCDimension "axbxc" The Dimension of the SuperCell (e.g.
→˓"1x1x1")
InputCIF "CIFFileName" Set the name of the CIFFileName
InputXYZ "XYZFileName" Set the name of the XYZFileName
-----------------------------------------------------------------------------------------------
→˓--------------
Embedding Cluster Definitions
-----------------------------------------------------------------------------------------------
→˓--------------
DoEmbedding true Flag to generate the files for the␣
→˓embedding approach
UseVolumeCriterion true Volume Criterion to generate layers
UseDistanceCriterion true Distance Criterion to generate layers

(continues on next page)
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CellVolumeFraction value Cell(UniCell/SuperCell) fraction (default␣
→˓1.0)
DoSimpleInput true Flag to generate a conventional Embedding␣
→˓Cluster input
DoICQMMMInput true Flag to generate a Ionic-Crystal-QMMM␣
→˓input
WritePDB true Flag to run a Ionic-Crystal-QMMM input␣
→˓from a PDF file
QCCharge Charge Number Specify the total QC Charge
QCMult Multiplicity Number Specify the total Multiplicity
-----------------------------------------------------------------------------------------------
→˓--------------
Special Tasks on Embedding Cluster Construction/Definition
-----------------------------------------------------------------------------------------------
→˓--------------
DoLayers true Request Layers Definition
1) Layers Definition. There are 2 Options:
a) The Differnt regions are build in layers as multipoles of the UnitCell
b) The Differnt regions are build in layers around a predefined QC cluster via a QCAtom List
QCLayers QC Layers Number Specify the number of the QC Layers
ECPLayers ECP Layers Number Specify the number of the ECP Layers
PCLayers PC Layers Number Specify the number of the PC Layers
HFLayers HF Layers Number Specify the number of the HF Layers
Example Input
QCLayers 1
2) Atoms Definition. This is alternative to Layers Definition (e.g. DoLayers false)
NQCAtoms QC Atoms Number Specify the number of the QC Atoms
NHFAtoms HF Atoms Number Specify the number of the HF Atoms
NECPAtoms ECP Atoms Number Specify the number of the ECP Atoms
NPCAtoms PC Atoms Number Specify the number of the PC Atoms
QCAtoms QC Atoms List Specify the List of the QC Atoms (e.g.␣
→˓0,1,4,10...
HFAtoms HF Atoms List Specify the List of the HF Atoms (e.g.␣
→˓0,1,4,10...
ECPAtoms ECP Atoms List Specify the List of the ECP Atoms (e.g.␣
→˓0,1,4,10...
PCAtoms PC Atoms List Specify the List of the PC Atoms (e.g.␣
→˓0,1,4,10...
Example Input
NQAtoms= 4
QCAtoms 0,1,4,10
-----------------------------------------------------------------------------------------------
→˓--------------
Request an Explicit Atom Definion in Ionic-Crystal-QMMM
HINT: This is automatically Set to true if an Atom List (QC Atoms, ECP Atoms, ...) is provided␣
→˓by the user
-----------------------------------------------------------------------------------------------
→˓--------------
SetQCAtoms true Set explicitely the QC Atoms
SetHFAtoms true Set explicitely the HF Atoms
SetECPAtoms true Set explicitely the ECP Atoms
SetPCAtoms true Set explicitely the PC Atoms
SetPC2Atoms true Set explicitely the PC2 Atoms
-----------------------------------------------------------------------------------------------
→˓--------------
Redefine SuperCell Origin. This is for shifting the center origin to a desired atom during the␣
→˓SC Construction
This Helps to automatically construct desired Cluster structures using the Layers Definition
-----------------------------------------------------------------------------------------------
→˓--------------
ShiftOrigin true Request Origin Shift to a particular Atom

(continues on next page)
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ChosenAtom an Atom Number The Number of the Chosen atom (e.g. 2)
-----------------------------------------------------------------------------------------------
→˓--------------
Neutralize the Embedded Cluster in the Simple Input
Note that in the Ionic-Crustal QMMM Input this step is taken care on demand during the QM/MM␣
→˓run
-----------------------------------------------------------------------------------------------
→˓--------------
ChargePoints the charge points Specify the number of the charge points␣
→˓(default 1000)
ChargeStep the charge points Define the step during the iterations␣
→˓(default 0.01)
ChargeThres the threshold Define the neutralization threshold␣
→˓(default 0.01)
Neutralization Schemes:
NeutralizingScheme1 true -> Neutralization is based on All Charges
NeutralizingScheme2 true -> Neutralization is based on different␣
→˓charges
Equiping the ECP and PC regions
NeutralizingScheme3 true -> Neutralization is based on PC2 Region
-----------------------------------------------------------------------------------------------
→˓--------------
Special Definitions for the .metainfo File in the Ionic-Crustal QMMM
This helps Setting Charge/Spin in a specific atom type
It can also aid the neutralization step of the Embedded Cluster in the Simple Input
-----------------------------------------------------------------------------------------------
→˓--------------
NAtomTypes Number of Atom Types Specify The Atom types that will be␣
→˓defined
Example Input
#-------------------------
#Atom Type Charge Spin
#-------------------------
AtomTypes 2
Co 1 2.0 1.5
Co 2 3.0 0
end
This specifies the local Spin and Charge of a Td HS Co2+ center (Type 1) and a OH Co3+ center␣
→˓(Type 2)
During the Embedding cluster construction
-----------------------------------------------------------------------------------------------
→˓--------------

In a first step the orca_crystalprep tool can be used to generate its own input. So by running:

orca_crystalprep crystalprep.inp -geninput

it will generate the following initial input:

---------------------------------------------------------------------------------
Initial Input: crystalprep.inp for Orca_CrystalPrep has been generated. All Done!
---------------------------------------------------------------------------------

which looks like the following:

%crystalprep

#************************
#Read CIF/XYZ
#************************

(continues on next page)
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DoCIF true

#------------------------
#INPUT CIF/XYZ
#------------------------
#InputCIF "CIFName.cif"
#------------------------
#Set Special Tasks
#------------------------
#SpaceGroupNumber 200

#************************
#Generate SuperCell
#************************
DoSuperCell true
SCDimension "1x1x1"

#************************
#Setup Embedding Approach
#************************
DoEmbedding true
DoLayers true

#------------------------
#Atom Type Charge Spin
#------------------------
#NAtomTypes 2
#Co 1 2.0 1.5
#Co 2 3.0 0.0

#************************
#Generate Inputs
#************************
#DoSimpleInput true
#DoICQMMMInput true

#Neutralize true
#QCCharge 0
#QCMult 1
#------------------------
end

By providing names for the *.cif or *.xyz files that are desired to be processed and different options it is possible
to generate a ready to run embedding cluster input as is shown in Fig. 7.72.
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Fig. 7.72: Embedded cluster IC-QM/MM Input generation

For the construction of the embedded cluster structure by default a layers approach is performed in which the
different structural layers are constructed as multiplets of the unitcell or a fraction of the unitcell

The unitcell fractions in terms of volume units are specified by the following keyword

CellVolumeFraction N #by default N=1

As an example let us discuss in detail the case of NaCl.

Let us assume that we want to generate an embedding cluster input

1. with a 20x20x20 supercell starting from the nacl.cif file

2. create an embedding cluster with 1 QC and 1ECPs layers

3. create an IC-QM/MM embedding cluster input

for this purpose the following input is used

%crystalprep

#************************
#Read CIF/XYZ
#************************
DoCIF true

#------------------------
#INPUT CIF/XYZ
#------------------------
InputCIF "nacl.cif"

#************************
#Generate SuperCell
#************************
DoSuperCell true
SCDimension "20x20x20"

#************************
#Setup Embedding Approach
#************************

(continues on next page)
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DoEmbedding true
DoLayers true

#------------------------
#Atom Type Charge Spin
#------------------------
NAtomTypes 2
Na 0 1.0 0.0
Cl 1 -1.0 0.0

#************************
#Generate Inputs
#************************
DoICQMMMInput true
QCCharge 0
QCMult 1
#------------------------
end

In a first step the orca_crystalprep will process the nacl.cif file and will create the unitcell and the requested
20x20x20 supercell

-------------------------------------------------------------
Reading Information from the provided CIF file: nacl.cif
-------------------------------------------------------------

------------------------Unit Cell Parameters-----------------
Hermann-Mauguin Space Group: P1
Space Group ID: 1
Unit Cell Symmetry:
Unit Cell Volume: 46.09
Unit Cell alpha angle: 60.00
Unit Cell beta angle: 60.00
Unit Cell gamma angle: 60.00
Unit Cell alpha length: 4.024
Unit Cell beta length: 4.024
Unit Cell gamma length: 4.024
Atom Type AO x y z occ
Na 0 11 0.000 0.000 0.000 1.00
Cl 1 17 0.500 0.500 0.500 1.00
Done
-------------------------------------------------------------

----------Making a SuperCell with 20x20x20 dimensions-----------
Unit Cell:
0 1 2
0 4.024000 0.000000 0.000000
1 0.000000 4.024000 0.000000
2 0.000000 0.000000 4.024000

Transformation Matrix:
0 1 2
0 80.480000 0.000000 0.000000
1 0.000000 80.480000 0.000000
2 0.000000 0.000000 80.480000

---------------------------------------------------------------------
Saving xyz file: nacl4.cif_20x20x20.xyz ...Done
---------------------------------------------------------------------

In a following step the costruction of the embedding cluster structure will be initiated
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------------Making a Embedding Cluster Input ------------
------------Using the Layers Approach with: ------------
QC_Layers: 1
ECP_Layers: 1
PC_Layers: 1
--------------
Preparing Inputs ...

In a next step the center of the .xyz supercell will be assigned to the closest atom:

-------------------------------
The Center of XYZ Coordinates
-------------------------------
41.246, 41.246, 41.246
-------------------------------
Closest Atom to Center
-------------------------------
Na(4630) 40.240, 40.240, 40.240
-------------------------------
Shifting Origin to closest atom
-------------------------------
40.240, 40.240, 40.240

In following an automatic layers generation is performed

--------------------------------------
Saving Generated Layers XYZ Files ...
--------------------------------------
Saving Layer 0 XYZ File: nacl.cif_20x20x20.xyz_0.xyz
Saving Layer 1 XYZ File: nacl.cif_20x20x20.xyz_1.xyz
Saving Layer 2 XYZ File: nacl.cif_20x20x20.xyz_2.xyz
Saving Layer 3 XYZ File: nacl.cif_20x20x20.xyz_3.xyz
Saving Layer 4 XYZ File: nacl.cif_20x20x20.xyz_4.xyz
Saving Layer 5 XYZ File: nacl.cif_20x20x20.xyz_5.xyz
Saving Layer 6 XYZ File: nacl.cif_20x20x20.xyz_6.xyz
Saving Layer 7 XYZ File: nacl.cif_20x20x20.xyz_7.xyz
Saving Layer 8 XYZ File: nacl.cif_20x20x20.xyz_8.xyz
Saving Layer 9 XYZ File: nacl.cif_20x20x20.xyz_9.xyz

--------------------------------------
Saving Generated Layers PDB File ...
--------------------------------------

The embedding cluster is then constructed:

--------------------------------------
Saving Generated Cluster XYZ Files ...
--------------------------------------
Saving QC XYZ File: nacl.cif_20x20x20.xyz_QC.xyz
Saving ECP Region XYZ File: nacl.cif_20x20x20.xyz_ECP.xyz
Saving PC Region XYZ File: nacl.cif_20x20x20.xyz_PC.xyz

Finally the IC-QM/MM embedding cluster will be generated

--------------------------------------
Saving Embedding Cluster Inputs ...
--------------------------------------
Saving ICQMMM Input: nacl.cif_20x20x20.xyz.ICQMMM.inp
Done
--------------------------------------------------------------

Ionic-Crystal QM/MM requires the generation of a simple force field *.prms For details see section: ORCA Mul-
tiscale Implementation The needed information including charge and spin is taken from a *metainfo file. The

7.55. Utility Programs 1127



ORCA Manual, Release 6.0

orca_crystalprep provides the possibility to externally set chatge and spin in the *.metainfo file

This is acheived by the following process:

At first processing of the .cif files assignes atom types to all the detected atoms in the asymetric unit

Atom Type AO x y z occ
Na 0 11 0.000 0.000 0.000 1.00
Cl 1 17 0.500 0.500 0.500 1.00

In the orca_crystalprep input it is possible to assign specific initial charge and spin to atoms of a paricular atom
type in the following way:

NAtomTypes 2
Na 0 1.0 0.0
Cl 1 -1.0 0.0

This information is then passed in the *.metainfo file

18522
# atom nr. - element - atom type - formal charge - formal spin - molecule nr
0 Na 0 1 0 1
1 Na 0 1 0 1
2 Na 0 1 0 1
...

9261 Cl 1 -1 0 1
9262 Cl 1 -1 0 1
9263 Cl 1 -1 0 1
...

The constructed embedded cluster is shown in Fig. 7.73.

Fig. 7.73: Generated Embedded cluster. QC: 𝑁𝑎4𝐶𝑙4, ECP region red dots, PC region small green and purple
dots

while the generated IC-QM/MM embeding cluster input is provided below

!Ionic-Crystal-QMMM
#Include Method
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%qmmm
#--------Define the Cluster---------
ORCAFFFilename= ""
Use_QM_InfoFromPDB true
Use_QM3_InfoFromPDB true
ECPLayerECP= "SDD"
#--------Charge Convergence---------
CONV_Charges false
ENFORCETOTALCHARGE true
CHARGE_TOTAL 0
PrintLevel 4
end
#-----------------------------------

*pdbfile 0 1 nacl.cif_20x20x20.pdb

Note: that the information regarding the QC, ECP and PC regions is read from the generated *.pdb file

• Further information regarding the IC-QM/MM and the QM/MM module in general is provided in section
ORCA Multiscale Implementation

• Further information and examples regarding the orca_crystalprep tool and the embedding approach is pro-
vided in the Treating Solids with the Embedding Cluster approach tutorial.

7.56 Compound Methods

7.56.1 Commands

Below is a list of all available commands available in Compound

——————————— Dataset Related ——————————–

• Dataset(Dataset)

• MakeReferenceFromDir(D.MakeReferenceFromDir)

• Print(D.Print)

—————————— File Handling Related —————————–

• CloseFile (CloseFile)

• OpenFile (OpenFile)

——————————- For Loop Related ——————————-

• Break (Break)

• Continue (Continue)

• EndFor (EndFor)

• For (For)

——————————– Geometry Related ——————————-

• Geometry(Geometry)

• BohrToAngs(G.BohrToAngs)

• CreateBSSE(G.CreateBSSE)

• FollowNormalMode(G.FollowNormalMode)

• GetAtomicNumbers(G.GetAtomicNumbers)

• GetBondDistance(G.GetBondDistance)
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• GetCartesians(G.GetCartesians)

• GetGhostAtoms(G.GetGhostAtoms)

• GetNumOfAtoms(G.GetNumOfAtoms)

• MoveAtomToCenter(G.MoveAtomToCenter)

• Read(G.Read)

• RemoveAtoms(G.RemoveAtoms)

• RemoveElements(G.RemoveElements)

• WriteXYZFile(G.WriteXYZFile)

——————————– GΟΑΤ Related ——————————-

• GOAT(GOAT )

• Get_Energy (Goat.Get_Energy)

• Get_Num_Of_Geometries (Goat.Get_Num_Of_Geometries)

• Parse_ensemble_file (Goat.Parse_Ensemble_File)

• Set_Basename (Goat.Set_Basename)

• Print (Goat.Print)

• WriteXYZFile (Goat.WriteXYZFile)

—————————— If block Related ——————————

• If (If )

—————————- Linear Algebra Related —————————-

• Diagonalize(Diagonalize)

• InvertMatrix(InvertMatrix)

• Mat_p_Mat(Mat_p_Mat)

• Mat_x_Mat(Mat_x_Mat)

• Mat_x_Scal(Mat_x_Scal)

————————— ORCA calculation Related —————————

• Basenames(Basenames)

• ReadMOs(ReadMOs)

—————————– Program flow Related —————————–

• Abort (Abort)

• End (End)

• EndRun (EndRun)

• GoTo (GoTo)

————————— Property File Related —————————-

• GetNumOfInstances(GetNumOfInstances)

• Read(Read)

• ReadProperty(ReadProperty)

————————– String Handling Related ————————–

• GetBasename (S.GetBasename)

• GetChar (S.GetChar)
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• GetSuffix (S.GetSuffix)

• Print (Print)

• Write2File (Write2File)

• Write2String (Write2String)

——————————— Step Related ———————————

• & (&)

• Alias (Alias)

—————————– Timer Related ————————————

• Timer (Timer)

• Last (T.Last)

• Reset (T.Reset)

• Start (T.Start)

• Stop (T.Stop)

• Total (T.Total)

————————— Variables Related ———————————-

• Variables (Variables - General)

• Variables - Assignment (Variables - Assignment)

• Variables - Declaration (Variables - Declaration)

• Variables - Functions (Variables - Functions)

• Variable - With (With)

• GetBool() V.GetBool()

• GetDim1() V.GetDim1()

• GetDim2() V.GetDim2()

• GetDouble() V.GetDouble()

• GetInteger() V.GetInteger()

• GetSize() V.GetSize()

• GetString() V.GetString()

• PrintMatrix() V.PrintMatrix()

• Write2File (Write2File)

• Write2String (Write2String)

&

The & symbol has a special meaning in the compound block. Using this symbol inside the New_Step - Step_End
block the user can use variables that are defined outside the block. Both string and numerical variables are allowed.

Syntax:

&{variable}

Example
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# --------------------------------------------
# This script checks the options for the
# '&' symbol
# --------------------------------------------
%Compound

Variable method = "BP86"; #string variable'
Variable basis = "def2-TZVP def2/J";
Variable name = "base";
Variable number = 0; #integer variable
Variable distance = 0.8; #double variable
New_step
! &{method} &{basis} TightSCF
%base "&{name}_&{number}" #combination of variables
*xyz 0 1

H 0.0 0.0 0.0
H 0.0 0.0 &{distance}

*
Step_End
# ------------------------------------------
# Add some printing
# ------------------------------------------
print("SUMMARY OF VARIABLES\n");
print("Method: %s\n", method);
print("Basis: %s\n", basis);
print("Name: %s\n", name);
print("Number: %d\n", number);
print("Distance: %.2lf\n", distance);

End

Abort

Abort is used when the user wants to exit the program instantly. Syntax:
Abort;
or alternatively:
Abort

Example:

%Compound
for i from 0 to 4 do

print("i: %d\n", i);
if (i=2) then
abort;

endif
endfor
End

Alias

Alias is used to replace an integer number with a more representative string. It is useful when one performs more
than one calculations and the step numbers become too complicated to evaluate. In this case using Alias_Step after
the Step_End command will connect the preceeding calculation step number with the provided name.

Syntax:
Alias 𝑛𝑎𝑚𝑒;
or alternatively:
Alias 𝑛𝑎𝑚𝑒
Example:
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# ----------------------------------
# This script checks 'alias' keyword
# ----------------------------------
Variable numOfSteps = 20;
Variable Range = 4.0;
Variable distStart = 0.4;
Variable Step = Range/numOfSteps;
Variable distance;
Variable Energies[numOfSteps];
Variable simpleInput = "BP86 def2-SVP def2/J";

For index from 0 to numOfSteps-1 Do
Distance = distStart+ index*Step;
New_Step
!&{simpleInput}
*xyz 0 1

H 0.0 0.0 0.0
H 0.0 0.0 &{Distance}

*
Step_End
Alias currStep;
print("Current step: %d\n", currStep);
Read Energies[index] = JOB_INFO_TOTAL_EN[currStep];

EndFor

print("--------------------------------------\n");
print(" Compound Printing \n");
print("%s %12s %16s \n","Step", "Distance", "Energy");
print("--------------------------------------\n");
For index from 0 to numOfSteps - 1 Do

Distance = distStart + index*Step;
print("%4d %12.4lf %16.8lf \n", index, Distance, Energies[index]);

EndFor

End

NOTE for the Alias command the final ‘;’ is optional.

Basenames

Basenames in a variable that is automatically created in Compound everytime a New_Step is used and it holds the
name of this step. It can be used to recover this name during running of a calculation. It practically is a vector were
value zero corresponds to the main calculation before any new_step command.

Example:

*xyz 0 1
H 0.0 0.0 0.0
H 0.0 0.0 0.8

*
%Compound

new_step
!BP86

step_end
alias lala;
print("Basaenames[0]: %s\n", basenames[0]);
print("Basaenames[1]: %s\n", basenames[lala]);

End
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Break

Break can be used inside a For loop (see (see For)) when one needs to break the loop under certain conditions.
The syntax is the following:

Syntax:
For variable From Start value To End value Do
commands
break ;
commands
EndFor;

NOTE both versions break and break; are legal.

What break actually does is to set the running index of the loop to the last allowed value and then jump to the
EndFor (see EndFor)).

Example:

#
# This a script to check Compound 'break' command
#
%Compound
print(" Test for 'break'\n");
print(" It should print 0, 1 and 2\n");
for i from 0 to 6 Do

if (2*i > 4) then
break

endIF
print("index: %d\n", i);

EndFor

print("Continued outside the 'for' loop\n");

End

CloseFile

When a file is opened in Compound using the openFile command (see OpenFile), then it must be closed using the
closeFile command.

Syntax:
closeFile(file);

file is the file pointer created from the openFile command. For an example see paragraph OpenFile.

Continue

Continue can be used inside a For loop (see (see For)) when one needs to skip the current step of the loop and
proceed to the next one. The syntax is the following:

Syntax:
For variable From Start value To End value Do
commands
continue ;
commands
EndFor;

NOTE both versions continue and continue; are legal.

What continue actually does is to jump to the EndFor (see EndFor)).

Example:
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# -----------------------------------------------------
# This is a script to check Compound 'continue' command
# ----------------------------------------------------
%Compound
print(" Test for 'continue'\n");
print(" It should print 0, 1, 2 and 4\n");
for i from 0 to 4 Do

if ( i=3) then
continue;

endIf
print("index: %d\n", i);

EndFor
End

Dataset

In Compound we have Dataset objects. These objects can be treated like normal variables of type ‘compDataset’.
An important difference between normal variables and Dataset variables is the declaration. Instead of the normal:

Variable x;

we excplicitly have to declare that this is a dataset. So the syntax for a dataset declaration is:

Syntax:

Dataset mySet;

NOTE in the case of datasets we do not allow multiple dataset declarations per line.

Below is a list of functions that work on Dataset.

• MakeReferenceFromDir(D.MakeReferenceFromDir)

• Print(D.Print)

Example:

# ----------------------------------------------------
# This is an example script for dataset definition
# -----------------------------------------------------
%Compound

dataset mySet;
mySet.Print();

End

D.MakeReferenceFromDir

MakeReferenceFromDir command acts on a dataset object (see Dataset). It creates a json reference file based on
the *xyz files of the current folder. NOTE By default all charges and multplicities will be set to 0 and 1 respectively.

Syntax:
mySet.MakeReferenceFromDir(dirName);

Where:

• mySet is a dataset object that is already declared

• dirName The name of a directory that should contain some xyz files.

Example:
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%Compound
# ------------------------------------
# This is a compound script that will
# check dataset.MakeReferenceFromDir
# function
# NOTE: The script assumes that some
# xyz files rest in the current
# directory
# ------------------------------------

# First some definitions
Variable name = "mySet";
Variable numOfMolecules = 0;
dataset mySet;
Variable myDir="./";
mySet.MakeReferenceFromDir(myDir);
mySet.ReadReferenceFile();
mySet.Print();

End

D.Print

Print command acts on a dataset object (see Dataset). It prints all details of the specific dataset object.

Syntax:
mySet.Print();

Where:

• mySet is a dataset object that is already declared

Example:

# ----------------------------------------------------
# This is an example script for dataset definition
# -----------------------------------------------------
%Compound

dataset mySet;
mySet.Print();

End

Diagonalize

Compound can peform matrix algebraic operations, one of the available algebraic operation is matrix diagonal-
ization. Be carefull that the matrix, that is to be diagonalized, must be a square symmetric matrix. It is also
important to remember that only the upper triangle part of the matrix will be used for the diagonalization. If
everything proceeds smoothly then the function will return the eigenvectors and eigenvalues of the matrix.

Syntax:
A.Diagonalize(eigenValues, eigenVectors);

Where:

• A: The matrix to be diagonalized.

• eigenValues: The vector with the eigenvalues

• eigenVectors: The square matrix with the eigenvectros of the initial matrix.

Example:
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# ----------------------------------------------------
# This is an example script for diagonalization
# -----------------------------------------------------
%Compound

Variable Dim=3;
Variable A[Dim][Dim];
Variable eigenVal;
Variable eigenVec;
for i from 0 to Dim-1 Do
for j from 0 to Dim-1 Do

if (i<=j) then
A[i][j] = i+j+1;

else
A[i][j] = A[j][i];

EndIf
EndFor

EndFor
A.Diagonalize(eigenVal, eigenVec);
A.PrintMatrix();
eigenVal.PrintMatrix();
eigenVec.PrintMatrix();

End

End

End is the final command each compound script must have (unless there is an EndRun command (see EndRun)).
After Compound executes what is written in the script then it passes control again to normal ORCA input reading.
ORCA will continue analyze the input that rests after the Compound part but it will not run any calculation.

EndRun

#EndRun* is an alternative to the End command (see EndRun) for ending the execution of a Compound script. The
difference between end and EndRun is that EndRun ignores everything after the Compound block. This makes it
even easier to use Compound as a full workflow run.

EndFor

All For loops (see For) must finish with EndFor. The syntax and an example is shown in the For section (see For).

NOTE For EndFor both EndFor and EndFor; are possible.

For

For loops are used to perform repetitive tasks. The syntax is the following:

Syntax:

For variable From Start value To End value Do

commands

EndFor or EndFor;

Variable should be a variable name not previously defined. Start value and End value should be integers defining
the start and end value of the variable. Start value and End value can be numbers, predefined variables or functions
of previously defined variables. The only requirement is that they should be integers. Keep in mind that the loop
will be performed from the first value to the End value, including the End value.

Example:
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# ---------------------------------------
# This is a script to check 'for' loops
# ---------------------------------------

# ---------------------------------
# Some necessary initial definitions
# ----------------------------------
Variable x = {0.0, 1.0, 2.0, 3.0, 4.0};
Variable f;
Variable loopStart;
Variable upLimit;

# -----------------------------------
# Case 1.
# Constant Start / Constant End
# -----------------------------------
print(" -------------- Case 1 --------------\n");
print(" Constant Start / Constant End \n");
print(" f = index*x[index] \n");
print( " for index from 0 to 4 Do \n");
print(" -------------------------------------\n");
for index from 0 to 4 Do

f = index*x[index];
print("Index: %3d x[index]: %.2lf f: %.2lf\n", index, x[index], f);

EndFor

loopStart = 0;
upLimit = 4;
print(" -------------- Case 2 --------------\n");
print(" Variable Start / Variable End \n");
print(" f = index*x[index] \n");
print( " for index from loopStart to upLimit Do\n");
print(" -------------------------------------\n");
for index from loopStart to upLimit Do

f = index*x[index];
print("Index: %3d x[index]: %.2lf f: %.2lf\n", index, x[index], f);

EndFor

loopStart = 1;
upLimit = 3;
print(" -------------- Case 3 -------------- \n");
print(" function Start / function End \n");
print(" f = index*x[index] \n");
print( " for index from start-1 to upLimit+1 Do\n");
print(" ------------------------------------- \n");
for index from loopStart-1 to upLimit+1 Do

f = index*x[index];
print("Index: %3d x[index]: %.2lf f: %.2lf\n", index, x[index], f);

EndFor

End
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Geometry

In Compound we have Geometry objects. These objects can be treated like normal variables of type ‘compGeom-
etry’. An important difference between normal variables and Geometry variables is the declaration. Instead of the
normal:

Variable myGeom;

we excplicitly have to declare that this is a geometry. So the syntax for a geometry declaration is:

Syntax:

Geometry myGeom;

Geometry myGeom1, myGeom2;

Using the second definition one can define two geometry objects in the same line.

Below is a list of functions that work on Geometry objects.

• BohrToAngs(G.BohrToAngs)

• CreateBSSE (G.CreateBSSE)

• FollowNormalMode (G.FollowNormalMode)

• GetAtomicNumbers(G.GetAtomicNumbers)

• GetBondDistance(G.GetBondDistance)

• GetCartesians(G.GetCartesians)

• GetGhostAtoms(G.GetGhostAtoms)

• GetNumOfAtoms(G.GetNumOfAtoms)

• MoveAtomToCenter(G.MoveAtomToCenter)

• Read(G.Read)

• RemoveAtoms(G.RemoveAtoms)

• RemoveElements(G.RemoveElements)

• WriteXYZFile(G.WriteXYZFile)

G.BohrToAngs

BohrToAngs command acts on a geometry object (see see Geometry). It will transform the geometry of the
loaded geometry object from Bohr to Angstroms. Practically it will just multiply the coordinates with the fac-
tor 0.529177249.

Syntax:
myGeom.BohrToAngs();

Where:

• myGeom is a geometry object that already contains a geometry

Example:

# ----------------------------------------------------
# This is a script to check the BohrToAngs function
# -----------------------------------------------------
*xyz 0 1

O -1.69296787 -0.05579265 0.00556629
H -2.01296504 0.84704339 -0.01586469
H -0.73325076 0.04238910 0.00084302

(continues on next page)
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*

%Compound
Geometry myGeom;
Variable CC;
New_Step
!BP86

Step_End
myGeom.Read();
myGeom.BohrToAngs();
CC = myGeom.GetCartesians();
CC.PrintMatrix();

End

G.CreateBSSE

CreateBSSE command acts on a geometry object (see see Geometry). In the case that the geometry object contains
ghost atoms then CreateBSSE will create five new files:

• myFilename_FragmentA.xyz

• myFilename_MonomerA.xyz

• myFilename_FragmentB.xyz

• myFilename_MonomerB.xyz

• myFilename_Total.xyz

Syntax:
myGeom.CreateBSSE(filename=myFilename);

Where:

• myGeom is a geometry object that already contains a geometry

• filename is a base filename for the created files.

Example:

# --------------------------------------------------------
# This is a scrtipt to check the geom.CreateBSSE command
# -------------------------------------------------------

*xyz 0 1
o: -1.69296787 -0.05579265 0.00556629
h: -2.01296504 0.84704339 -0.01586469
h: -0.73325076 0.04238910 0.00084302
o 1.23009925 0.02698440 -0.00375550
h 1.60672086 -0.41139567 0.76236888
h 1.60236356 -0.44922858 -0.74915800
*

%Compound
Geometry monomerA;
variable myFilename = "BSSE";
Variable method = "BP86";

# --------------------------------------
# Calculation for Fragment A
# --------------------------------------
New_Step
!&{method}

(continues on next page)
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Step_End

# -------------------------------------
# Read the geometry of Fragment A
# -------------------------------------
monomerA.Read();

# -------------------------------------
# Create the missing xyz files
# -------------------------------------
monomerA.CreateBSSE(filename=myFilename);

End

NOTE The files will contain XYZ geometries in BOHRS.

G.FollowNormalMode

FollowNormalMode command acts on a geometry object (see see Geometry). It will displace the loaded geometry
following a chosen normal mode of vibtation

Syntax:
myGeom.FollowNormalMode(vibrationSN=myVibration, [ScalingFactor=myScalingFactor]);

Where:

• myGeom is a geometry object that already contains a geometry

• vibrationSN is the serial number of the vibration. NOTE Please remember that counting starts with 1.

• scalingFactor is the scaling of the normal mode of vibration. This argument is optional.

Example:

# ----------------------------------------------------
# This is a script to check the followNormalMode function
# -----------------------------------------------------
*xyz 0 1

O -1.69296787 -0.05579265 0.00556629
H -2.01296504 0.84704339 -0.01586469
H -0.73325076 0.04238910 0.00084302

*

%Compound
Geometry myGeom;
Variable CC, normalModes;
Variable res = -1;
New_Step
!BP86 Freq

Step_End
myGeom.Read();
myGeom.FollowNormalMode(vibrationSN=7, scalingFactor=0.8);
CC = myGeom.GetCartesians();
CC.PrintMatrix();

End
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G.GetAtomicNumbers

Function GetAtomicNumbers acts on geometry objects and returns and array with the atomic numbers of the ele-
ments in the working geometry.

Syntax: atomNumbers = geom.GetAtomicNumbers()

atomNumbers A variable that will be filled with the values of the atomic numbers

geom A geometry object that should already be loaded.

Example:

*xyz 0 1
O -1.69296787 -0.05579265 0.00556629
H -2.01296504 0.84704339 -0.01586469
H -0.73325076 0.04238910 0.00084302

*

%Compound
Geometry myGeom;
Variable atomicNumbers;

New_Step
!BP86

Step_End
myGeom.Read();
atomicNumbers = myGeom.GetAtomicNumbers();
print("\nCompound \n");
for i from 0 to atomicNumbers.GetSize()-1 Do
print("Atom '%d': atomic number: %d\n", i, atomicNumbers[i]);

EndFor
End

G.GetBondDistance

Function GetBondDistance acts on geometry objects and returns the distance between two atoms in Bohrs.

Syntax:

res = geom.GetBondDistance(atomA, atomB)

Where:

res The distance between atoms atomA and atomB.

geom A geometry object previously loaded.

atomA The index of atomA in the geometry.

atomB The index of atomB in the geometry.

NOTE indices start counting from 0

Example:

# ------------------------------------
# This is to test Geometry function
# GetBondDistance
# ------------------------------------
%Compound

Variable dist;
Geometry myGeom;
New_Step
!BP86

(continues on next page)
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*xyz 0 1
H 0.0 0.0 0.0
H 0.0 0.0 0.8

*
Step_End
myGeom.Read(); #Reads teh geometry of the previous step
print( " -------------------------------------------------------\n");
print( " Compound Geometry functions test (GetBondDistance) \n");
print( " It should print 1.5118\n");
print( " -------------------------------------------------------\n");
print( " The distance between atom %d and atom %d is: %.4lf Bohr\n",

0, 1, myGeom.GetBondDistance(0,1));

End

G.GetCartesians

Function GetCartesians acts on geometry objects (see Geometry) and returns the distance xyz cartesian coordi-
nates. Please remember that it alsways returns the cooridnates in BOHRS.

Syntax:

coords = geom.GetCartesians()

Where:

coords: A (nAtoms,3) array with the cartesian coordinates in BOHRS.

geom: A geometry object previously loaded.

Example:

# ----------------------------------------------------
# This is a script to check the GetCartesians function
# NOTE: It always return it in Bohrs!
# -----------------------------------------------------
*xyz 0 1

O -1.69296787 -0.05579265 0.00556629
H -2.01296504 0.84704339 -0.01586469
H -0.73325076 0.04238910 0.00084302

*

%Compound
Geometry myGeom;
Variable CC;
New_Step
!BP86

Step_End
myGeom.Read();
CC = myGeom.GetCartesians();
for i from 0 to CC.GetDim1()-1 Do
print("%12.9lf %12.9lf %12.9lf\n",
CC[i][0], CC[i][1], CC[i][2]);

endFor
End
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G.GetGhostAtoms

Function GetGhostAtoms acts on geometry objects (see Geometry). It returns a vector of size nAtoms where for
each atom the value will be -1 if it is a ghost atom, otherwise the atomic number of the element

Syntax:

ghostAtoms = geom.GetGhostAtoms()

Where:

ghostAtoms: A (nAtoms,1) integer vector with values -1 or the atomic number of the atom, in case it is not a ghost
atom.

geom: A geometry object previously loaded.

Example:

# ----------------------------------------------------
# This is a script to check the getGhostAtoms function
# -----------------------------------------------------
*xyz 0 1
o: -1.69296787 -0.05579265 0.00556629
h: -2.01296504 0.84704339 -0.01586469
h: -0.73325076 0.04238910 0.00084302
o 1.23009925 0.02698440 -0.00375550
h 1.60672086 -0.41139567 0.76236888
h 1.60236356 -0.44922858 -0.74915800
*

%Compound
Geometry myGeom;
Variable ghostAtoms;
New_Step
!BP86

Step_End
myGeom.Read();
ghostAtoms = myGeom.GetGhostAtoms();
ghostAtoms.PrintMatrix();

End

G.GetNumOfAtoms

GetNumOfAtoms returns an integer with the number of atoms of the working geometry.

Syntax:

res = geom.GetNumOfAtoms();

Where:

res is the resulting number of atoms

geom is the name of a geometry variable (see Geometry) we are using.

Example:

*xyz 0 1
O -1.69296787 -0.05579265 0.00556629
H -2.01296504 0.84704339 -0.01586469
H -0.73325076 0.04238910 0.00084302

*

%Compound
Geometry myGeom;

(continues on next page)
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Variable numOfAtoms = 0;

New_Step
!BP86

Step_End
Alias currStep;
myGeom.Read(currStep);
numOfAtoms = myGeom.GetNumOfAtoms();
print("\nCompound \n");
print("Number of atoms: %d (it should print 3)\n", numOfAtoms);

End

G.MoveAtomToCenter

Function MoveAtomToCenter acts on geometry objects (see Geometry). It will adjust the cartesian coordinates so
that the chosen atom will rest at (0.0 0.0 0.0).

Syntax:

geom.MoveAtomToCenter(atom serial nubmer);

Where:

geom: A geometry object previously loaded.

atom serial number: The serial number of the atom in the geometry.

Example:

# ----------------------------------------------------
# This is a script to check the moveAtomToCenter function
# -----------------------------------------------------
*xyz 0 1

O -1.69296787 -0.05579265 0.00556629
H -2.01296504 0.84704339 -0.01586469
H -0.73325076 0.04238910 0.00084302

*

%Compound
Geometry myGeom;
Variable CC;
New_Step
!BP86

Step_End
myGeom.Read();
myGeom.MoveAtomToCenter(0);
myGeom.BohrToAngs();
CC = myGeom.GetCartesians();
CC.PrintMatrix();

End

NOTE Please remember that counting starts with 0, meaning that the first atom is 0 and not 1!
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G.Read

Function Read acts on geometry objects (see Geometry) and reads a geometry from a property file related to a
previous step.

Syntax:

geom.Read([stepID=myStepID], propertySN=myPropertySN)

Where:

geom: A geometry object that will be updated.

stepID: The step from which we are going to read the geometry. If not given the previous step will be used.

propertySN : The serial number the geometry in the property file. If not given the last available geometry will be
used.

Example:

# ----------------------------------------------------
# This is a script to check the Read function for
# geometries
# -----------------------------------------------------
*xyz 0 1

O -1.69296787 -0.05579265 0.00556629
H -2.01296504 0.84704339 -0.01586469
H -0.73325076 0.04238910 0.00084302

*

%Compound
Geometry myGeom;
Variable CC;
New_Step
!BP86 opt

Step_End
myGeom.Read(propertySN=2);

End

G.RemoveAtoms

Function RemoveAtoms acts on geometry objects (see Geometry). It accepts a list of atoms and removes them from
the loaded geometry. In the end the geometry object will be updated.

Syntax:

geom.RemoveAtoms(atom1, atom2, . . . );

Where:

geom: A geometry object previously loaded.

atom1, atom2, . . . : The serial number of the atoms in the geometry.

Example:

# ----------------------------------------------------
# This is a script to check the RemoveAtoms function
# -----------------------------------------------------
*xyz 0 1

O -1.69296787 -0.05579265 0.00556629
H -2.01296504 0.84704339 -0.01586469
H -0.73325076 0.04238910 0.00084302

*

(continues on next page)
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%Compound
Geometry myGeom;
Variable numOfAtoms;
New_Step
!BP86

Step_End
myGeom.Read();
numOfAtoms = myGeom.GetNumOfAtoms();
print("Number of atoms before: %d (It should print 3)\n", numOfAtoms);
myGeom.RemoveAtoms(0); #Remove the first atom
numOfAtoms = myGeom.GetNumOfAtoms();
print("Number of atoms after : %d (It should print 2)\n", numOfAtoms);

End

NOTE Please remember that counting starts with 0, meaning that the first atom is 0 and not 1!

G.RemoveElements

Function RemoveElements acts on geometry objects (see Geometry). It will remove from the loaded geometry all
atoms with an atomic number given in the list.

Syntax:

geom.RemoveElements(atomNumber1, atomicNumber2, . . . );

Where:

geom: A geometry object previously loaded.

atomicNumber1, atomicNumber2, . . . : The atomic number of elements to be removed from the current geometry.

Example:

# ----------------------------------------------------
# This is a script to check the RemoveElements function
# -----------------------------------------------------
*xyz 0 1

O -1.69296787 -0.05579265 0.00556629
H -2.01296504 0.84704339 -0.01586469
H -0.73325076 0.04238910 0.00084302

*

%Compound
Geometry myGeom;
Variable numOfAtoms;
Variable CC;
New_Step
!BP86

Step_End
myGeom.Read();
numOfAtoms = myGeom.GetNumOfAtoms();
CC = myGeom.GetCartesians();
CC.PrintMatrix();
print("Number of atoms before: %d (It should print 3)\n", numOfAtoms);
myGeom.RemoveElements(8); #Remove the oxygen
numOfAtoms = myGeom.GetNumOfAtoms();
print("Number of atoms after : %d (It should print 2)\n", numOfAtoms);
CC = myGeom.GetCartesians();
CC.PrintMatrix();

End
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G.WriteXYZFile

Function WriteXYZFile acts on geometry objects (see Geometry) and writes on disc an xyz file with the coordinates
of the current goemetry object. Please remember that it alsways writes the coordinates in BOHRS.

Syntax:

res = geom.WriteXYZFile(filename=myFilename)

Where:

res: An integer that returns ‘0’ if everything worked smoothly.

myFilename The name of the file that will contain the coordinates.

geom: A geometry object previously loaded.

Example:

# ----------------------------------------------------
# This is a script to check the WriteXYZ function
# NOTE: It always write the coordinates in Bohrs!
# -----------------------------------------------------
*xyz 0 1

O -1.69296787 -0.05579265 0.00556629
H -2.01296504 0.84704339 -0.01586469
H -0.73325076 0.04238910 0.00084302

*

%Compound
Geometry myGeom;
Variable res=-1;
New_Step
!BP86

Step_End
myGeom.Read();
res = myGeom.WriteXYZFile(filename="myGeom.xyz");

End

GOAT

In Compound we have GOAT objects. These objects can be treated like normal variables of type ‘compGOAT ’.
An important difference between normal variables and GOAT variables is the declaration. Instead of the normal:

Variable myGoat;

we excplicitly have to declare that this is a GOAT object. So the syntax for a goat declaration is:

Syntax:

GOAT myGoat;

Below is a list of functions that work on Geometry objects.

• Get_Energy (Goat.Get_Energy)

• Get_Num_Of_Geometries (Goat.Get_Num_Of_Geometries)

• Parse_ensemble_file (Goat.Parse_Ensemble_File)

• Set_Basename (Goat.Set_Basename)

• Print (Goat.Print)

• WriteXYZFile (Goat.WriteXYZFile)

Example:
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# Example for the usage of GOAT objects in compound
#
# NOTE: The file 'test.finalensemble.xyz'
# should be availablie in the directory
%Compound

goat myGoat;
variable myFilename;
myGoat.Set_Basename("test");
myGoat.Parse_Ensemble_file();
for myGeomID from 1 to myGoat.Get_Num_of_Geometries() Do
write2String(myFilename, "goatGeom_%d.xyz", myGeomID);
myGoat.WriteXYZFile(geomID=myGeomID, filename=myFilename);
print("geomID: %d Energy: %lf\n", myGeomID, myGoat.Get_Energy(geomID=myGeomID));

EndFor
myGoat.Print();

EndRun

Goat.Get_Energy

Function Get_Energy acts on goat objects (see GOAT ) and returns a double with the energy of the requested
structure.

Syntax:

res = myGoat.Get_Energy(geomID=myGeomID)

Where:

res: A double with the energy of the requested structure.

myGoat A GOAT object that is already loaded (meaning it has already parse an ensemble file, see (see
Goat.Parse_Ensemble_File).

myGeomID: The geometry ID of the requested structure. Counting starts from 1.

Example:

see example in GOAT

Goat.Get_Num_Of_Geometries

Function Get_Num_Of_Geometries acts on goat objects (see GOAT ) and returns an integer with the number of
structures available in the current GOAT object.

Syntax:

res = myGoat.Get_Num_Of_Geometries()

Where:

res: An integer with the number of geometries in the current GOAT object.

myGoat A GOAT object that is already loaded (meaning it has already parse an ensemble file, see (see
Goat.Parse_Ensemble_File).

Example:

see example in GOAT
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Goat.Parse_Ensemble_File

Function Parse_Ensemble_File acts on goat objects (see GOAT ). It will read an ensemble file created by a GOAT
run and then update the object with the geometries and energies of each geometry available in the current GOAT
object.

Syntax:

res = geom.Parse_Enesemble_File(filename=myFilename)

Where:

res: An integer that returns ‘0’ if everything worked smoothly.

myFilename The name of the file that will contain the coordinates.

myGoat: A GOAT object previously loaded.

Example:

see example in GOAT

Goat.Set_Basename

Function Set_Basename acts on goat objects (see GOAT ). It set the basename of the ensemble file created by a
GOAT run. It will automatically add the extension: '.finalensemble.xyz' in the end of the basename.

Syntax:

myGoat.Set_Basename(myFilename)

Where:

myFilename The basename of the GOAT ensemble file (without the extension ‘finalensemble.xyz’).

myGOAT : A GOAT object previously loaded.

Example:

see example in GOAT

Goat.Print

Function Print acts on goat objects (see GOAT ). It will print in the output the geometries of current GOAT object.

Syntax:

myGoat.Print()

Where:

myGoat: A GOAT object previously loaded.

Example:

see example in GOAT
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Goat.WriteXYZFile

Function WriteXYZFile acts on goat objects (see GOAT ). It will write the requested geometry to an XYZ file on
disk. It expects two arguments:

1. The geometry ID of the geometry and

2. The filename that it will use to store the geometry

Syntax:

myGoat.WriteXYZFile(geomID=myGeomID, filename=myFilename)

Where:

myFilename: The name that it will be used to store the geometry on the disk.

myGeomID: The geometry ID of the requested structure. Counting starts from 1.

Example:

see example in GOAT

GetNumOfInstances

The GetNumOfInstances returns the number of instances of a specific object in a propertyfile.

Syntax:

[res=] GetNumOfInstances(propertyName=myName, [step=myStep], [filename=myFilename], [baseProp-
erty=true/false])

Where:

res: An integer that returns the number of instances of the required property in the property file.

propertyName: A string alias that defines the variable the user wants to read.

step: The step from which we want to read the property. If not given the property file from the last step will be
read.

filename: A filename of a property file. If a filename and at the same time a step are provided the program will
ignore the step and try to read the property file with the given filename.

NOTE please note that in the end of filename the extension .property.txt will be added.

baseProperty: A true/false boolean. The default value is set to false. If the value is set to true then a generic
property of the type asked will be read. This means if dipole moment is asked, it will return the last dipole moment,
irrelevant if and MP2 or SCF one wad defined.

Example

# ----------------------------------------------------
# This is an example script for readNumOfInstances
# -----------------------------------------------------
%Compound

Variable res = 0;
Variable myProperty="MP2_DIPOLE_TOTAL";
Variable myBaseProperty="DIPOLE_MOMENT_TOTAL";
New_Step
!MP2
#%mp2
# density relaxed
#end
*xyz 0 1

H 0.0 0.0 0.0
H 0.0 0.0 0.8

*
(continues on next page)
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Step_End
# First read the MP2 dipole moment
res = GetNumOfInstances(propertyName=myProperty);
print("Num of MP2 dipole moments : %d\n", res);
res = GetNumOfInstances(propertyName=myBaseProperty, Property_Base=true);
print("Num of total dipole moments : %d\n", res);

End

GoTo

The GoTo command allows the ‘jump’ inside the normal flow of a compound script. The syntax of the command
can be best presented through an example.

Example:

# ----------------------------------------------------
# This is an example script for GoTo
# (It should print only 0,1,2,3)
# -----------------------------------------------------
%Compound

Variable TCut=3;
Variable Done;
for i from 0 to 6 Do
print("Index: %d\n", i);
if (i >= TCut) then

GoTo Done;
EndIf

EndFor
Done:
print("Done\n");

End

Please note that the variable we use as a label for the GoTo command should be previously defined like a normal
variable.

If

The if block allows the user to make decisions. The syntax in Compound is the following:
Syntax:

If (expression) Then

actions

Else if (expression) Then

actions

Else

actions

Endif

Below is an example of the usage of if block in compound.

# -------------------------------------------------------------
# This is to check all available ways of 'if blocks'
# -------------------------------------------------------------
Variable x1 = 10.0;
Variable y1 = 20.0;

(continues on next page)
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Variable b1 = False;
Variable b2 = True;
Variable s1 = "alpha";
Variable s2 = "beta";
Variable s3 = "alpha";
print( " --------------------------------------------------------- \n");
print( " ---------- SUMMARY OF IF CASES -------------- \n");
print( " --------------------------------------------------------- \n");

print(" x1: %.1lf\n", x1);
print(" y1: %.1lf\n", y1);
print(" b1: %s\n", b1.GetString());
print(" b2: %s\n", b2.GetString());
print(" s1: %s\n", s1);
print(" s2: %s\n", s2);
print(" s3: %s\n", s3);
# ****************************************************************
# DOUBLES
# ****************************************************************
print(" ------------------- Doubles ---------------------- \n");
print(" Variable/constant / One operator / if (x1>5) \n");
print(" No else if/No else \n");
if (x1>5) then

print(" %.2lf > 5 \n", x1);
endif
# ----------------------------------------------------------------
print(" function / Variable / One operator / if (3*x1>y1) \n");
print(" no else if / else \n");
if (3*x1>y1) then

print(" 3*%.1lf > %.1lf\n", x1, y1);
else

print(" 3*%.1lf < %.1lf\n", x1, y1);
endif
# ----------------------------------------------------------------
print(" function / function / One operator / if (x1-y1>-10.0) \n");
print(" else if/else \n");
if (x1-y1>-10.0) then

print(" %.2lf - %.2lf > -10.0\n", x1, y1);
else if (x1-y1 < -10.0) then

print(" %.2lf - %.2lf < -10.0\n", x1, y1);
else

print(" %.2lf - %.2lf = -10.0\n", x1, y1);
endif
# ****************************************************************
# BOOLEANS
# ****************************************************************
print(" --------------- Booleans ---------------------------\n");
print(" Variable / No operator / if (b1) \n");
if (b1) then

print("b1 is True\n");
else

print("b1 is False\n");
endIf
# --------------------------------------------------------------------
# ---------------------------------------------------------------------
print(" Constant / No operator / if (true) \n");
if (True) then

print( "True\n");
else

print( "False");
endIf

(continues on next page)
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# ---------------------------------------------------------------------
# ---------------------------------------------------------------------
print(" Variable/Variable / AND operator / if (b1 and b2) \n");
if (b1 and b2) then

print("(%s and %s) is true\n", b1.GetString(), b2.GetString());
else

print("(%s and %s) is not true\n", b1.GetString(), b2.GetString());
endIf
# ---------------------------------------------------------------------
# ---------------------------------------------------------------------
print(" Variable/Variable / OR operator / if (b1 or b2) \n");
if (b1 OR b2) then

print("(%s or %s) is true\n", b1.GetString(), b2.GetString());
else

print("(%s or %s) is not true\n", b1.GetString(), b2.GetString());
endIf
# ---------------------------------------------------------------------
# ---------------------------------------------------------------------
print(" Bool /Doubles Function / AND operator / if (b1 and x1>y1 )\n");
if (b1 and y1>x1) then

print("(%s and %.1lf>%.1lf) is True\n", b1.GetString(), x1, y1);
else

print("(%s and %.1lf>%.1lf) is False\n", b1.GetString(), x1, y1);
endIf
# ---------------------------------------------------------------------
# ---------------------------------------------------------------------
print(" Nested if / if (b2) then if (y1>x1)\n");
if (b2) then

if (y1 > x1) then
print ( "(%s is True) and (%.1lf>%.1lf)\n", b2.GetString(), y1, x1);

else
print ( "(%s is True) and (%.1lf<%.1lf)\n", b2.GetString(), y1, x1);

endIf
else

print ( "%s is False\n", b2.GetString());
endIf
# ---------------------------------------------------------------------
# ---------------------------------------------------------------------
print(" ---------------- Strings ---------------------------\n");
print(" -------------------------------------------------------------\n");
print(" -------------------------------------------------------------\n");
print(" Variable/Variable / if s1=s2\n");
if (s1=s2) then

print("%s is same as %s \n", s1, s2);
else

print("%s is not same as %s \n", s1, s2);
EndIf

# ---------------------------------------------------------------------
# ---------------------------------------------------------------------
print(" ---------------- Strings ---------------------------\n");
print(" -------------------------------------------------------------\n");
print(" -------------------------------------------------------------\n");
print(" Variable/constant / if s1=\"alpha\"\n");
if (s1="alpha") then

print("%s is same as %s \n", s1, "alpha");
else

print("%s is not same as %s \n", s1, "alpha");
EndIf
End

Some comments about the syntax:
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The Else if or Else blocks are not obligatory.

The numerical operators that can be used are: ‘>’, ‘<’, ‘>=’, ‘<=’, ‘=’.

The available logical operators are: ‘and’ and ‘or’.

Unfortunately in the current version multi-parentheses are not allowed.

There is now the possibility to compare strings.

InvertMatrix

Compound can peform matrix algebraic operations, one of the available algebraic operation is the inversion of a
matrix. Be carefull that the matrix, whose the invert we are looking for, must be a real, square matrix.

Syntax:
AInvert = A.InvertMatrix();

Where:

• A: The matrix to be inverted.

• AInvert: The invert of A. It can be A itself and then A will just be updated.

Example:

# ----------------------------------------------------
# This is an example script for matrix inversion
# -----------------------------------------------------
%Compound

Variable Dim=3;
Variable A[Dim][Dim];
Variable invertA, C;
Variable res=-1;
for i from 0 to Dim-1 Do
for j from 0 to Dim-1 Do

if (i=j) then
A[i][j] = i+1;

else
A[i][j] = 0.0;

EndIf
EndFor

EndFor
invertA = A.invertMatrix();
A.PrintMatrix();
invertA.PrintMatrix();
C = Mat_x_Mat(A,invertA,false, false, 1.0, 1.0);
C.PrintMatrix();

End

Mat_p_Mat

Compound can peform matrix algebraic operations, one of the available algebraic operation is matrix addittion. In
order to add two matrices they must have the same dimensions.

Syntax:
C=Mat_p_Mat(alpha, A, beta, B);

Where:

• C: The resulting matrix.

• alpha: The coefficient for matrix A.

• A: The left matrix of the addition.
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• beta: The coefficient for matrix B.

• B: The right matrix of the addition.

Example:

# ----------------------------------------------------
# This is an example script for matrix addition
# -----------------------------------------------------
%Compound

Variable Dim=3;
Variable A[Dim][Dim];
Variable B[Dim][Dim];
Variable C;
Variable res=-1;
for i from 0 to Dim-1 Do
for j from 0 to Dim-1 Do

A[i][j] = 1.0;
B[i][j] = 2.0;

EndFor
EndFor
A.PrintMatrix();
B.PrintMatrix();
C = Mat_p_Mat(2.0, A, 3.0, B);
C.PrintMatrix();

End

Mat_x_Mat

Compound can peform matrix algebraic operations, one of the available algebraic operation is matrix multipli-
cation. In general we can multiply each matrix with constants alpha and beta so that the general multiplication
is:

C=(alphaA)(betaB)

In addition each of matrices A and B are allowed to be transposed.

Syntax:
C=Mat_x_Mat(A, B, [transposeA], [transposeB], [alpha], [beta]);

Where:

• C: The resulting matrix.

• A: The left matrix of the multiplication.

• B: The right matrix of the multiplication.

• transposeA: A boolean to state if matrix A should be transposed before the mutliplication (default: False).

• transposeB: A boolean to state if matrix B should be transposed before the multiplication (default: False).

• alpha: A scalar to multiply matrix A before the mutliplication (default 1.0).

• beta: A scalar to mutliply matrix B before the multiplication (default 1.0).

Example:

# ----------------------------------------------------
# This is an example script for matrix multiplication
# -----------------------------------------------------
%Compound

Variable Dim=3;
Variable A[Dim][Dim];
Variable invertA;
Variable C;

(continues on next page)
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Variable D;
Variable res=-1;
for i from 0 to Dim-1 Do
for j from 0 to Dim-1 Do

if (i=j) then
A[i][j] = i+1;

else
A[i][j] = 0.0;

EndIf
EndFor

EndFor
A.invertMatrix(invertA);
A.PrintMatrix();
invertA.PrintMatrix();
C = Mat_x_Mat(A,invertA,false, false, 1.0, 1.0);
C.PrintMatrix();
C = Mat_x_Mat(A, invertA, true, true, 1.0, 1.0);
C.PrintMatrix();
C = Mat_x_Mat(A, invertA, false, false, 2.0);
C.PrintMatrix();
C = Mat_x_Mat(A, invertA, false, false, 2.0, 3.0);
C.PrintMatrix();

End

Mat_x_Scal

Compound can peform matrix algebraic operations, one of the available algebraic operation is multiplication of
the elements of a matrix with a scalar. The function returns the multiplied matrix that can be the one that we use
as an argument in the parenthesis, meaning it is updated, or a different one.

Syntax:
C=Mat_x_Scal(alpha, A);

Where:

• C: The resulting matrix.

• alpha: A scalar to multiply the elements of matrix A.

• A: The matrix to be mutliplied.

Example:

# ----------------------------------------------------
# This is an example script for matrix times scalar
# -----------------------------------------------------
%Compound

Variable Dim=3;
Variable A[Dim][Dim];
Variable alpha=2.0;
Variable C;
for i from 0 to Dim-1 Do
for j from 0 to Dim-1 Do

A[i][j] = i+j;
EndFor

EndFor
A.PrintMatrix();
C = Mat_x_Scal(alpha,A);
A = Mat_x_Scal(alpha,A);
A.PrintMatrix();
C.PrintMatrix();

End
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New_Geom

New_Geom is a platform for geometry manipulation. The basic idea is to have functions that can read a geometry
and then produce one or more new geometries with some characteristics that we need. For the moment under the
umbrella of New_Geom fall 4 different functions, and these are: Displace, Remove_Atom, Remove_Element.

Displace

The idea behind “Displace’” is to have a structure, perform an analytical frequncy calculation on it (currently we
do not store numerical frequencies in the property file) and then read the Hessian from this calculation to adjust
the geometry based on a normal mode of vibration that we choose. The syntax of this command is:

syntax: New_Geom = (Displace, step, hessian, frequency, scaling)

where:
step is the step from which we choose the original geometry
hessian is the hessian read from a property file
frequency defines which normal mode we will use and
scaling is a factor of how severe we want the displacement to be.

We should note that Displace is the only command of the new_geom family of commands that will not store a
geometry on disk but only internally pass the new geometry to the next calculation. An example of the usage of
this command can be found in the script ‘iterativeOptimization’ that is given with ORCA. The relevant part is as
follows: example:

# Define variables
Variable MaxNTries = 25;
Variable CutOff = -50;
Variable displacement = 0.6;
Variable NNegative = 0;
Variable freqs[];
Variable modes[];
Variable NFreq;
Variable limit;
Variable done;
Variable FinalEnergy;

# ===========================================================
# Start a for loop over number of tries
# ===========================================================
For itry From 1 To maxNTries Do

# ----------------------------------
# Run a geometry optimization
# ----------------------------------
New_Step
! tightopt freq verytightscf nopop def2-TZVP xyzfile
Step_End
Read freqs = THERMO_FREQS[itry];
Read modes = HESSIAN_MODES[itry];
Read NFreq = THERMO_NUM_OF_FREQS[itry];
limit = NFreq - 1;
# ----------------------------------
# check for sufficeintly negative
# frequencies
# ----------------------------------
NNegative = 0;
For ifreq From 0 to limit Do
if ( freqs[ifreq] < CutOff ) then
New_Geom = (Displace, itry, modes, ifreq, displacement);
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OpenFile

Compound can write text files on disk. In order to write to a file a filepointer must be created. For this in Compound
exists the command OpenFile.

Syntax:
filePtr = OpenFile(Filename, “open mode”);

filePtr is a variable previously declared.

Filename can be a string or a variable of string type and represents the name of the file on disk.

There are two available opening modes:

• ‘w’. In this mode a new file will be created and the user can write on it. If an old file with the same name
exists, it’s contents will be deleted.

• ‘a’. In this mode if a file already exists, the user will append to what already exists in the file.

Example:

%Compound

# -------------------------------------------------------------
# This is to check all available open and close
# file options
# -------------------------------------------------------------
Variable myFilename = "myFile.txt";
Variable file;

# ---------------------------
# First open for writing
# ---------------------------
file = openFile(myFilename, "w");
write2File(file, "This is the first time we write.\n");
closeFile(file);

# ---------------------------
# Re-open to append
# ---------------------------
file = openFile(myFilename, "a");
write2File(file, "This is the second time we write.\n");
closeFile(file);

End

Remove_Atom

Remove_atom removes an atom from a geometry given its index. We should point out that counting of atoms in
ORCA starts with 0. After this command is executed it will store on a disk a new geomety in a xyz format where
only the atom with the given index will be missing.

Syntax:

New_Geom = ( Remove_atom, atomIndex, “filename”, stepIndex, [geometry Index]);

where:
atom Index is the number of the atom we want to remove. It can be an integer number or a variable.
filename is the name of the file that we want to use for the new xyz file. It can be a string in quotation marks or
a variable already defined before. In the name the xyz extension will be automatically appended. step Index the
number of the step from which we will get the initial geometry. It has to be an integer number. geometry Index
In case there are more than one geometries in the corresponding property file we can choose one. If no number is
given but default the program will use the last one.
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example:

if we use the normal ORCA input file:

*xyz 0 1
O 2.220871067 0.026716792 0.000620476
H 2.597492682 -0.411663274 0.766744858
H 2.593135384 -0.449496183 -0.744782026
*

%Compound "removeAtom.cmp"

together with the compound file “removeAtom.cmp” :

Variable filename = "newGeom";
Variable atomIndex = 0;

New_Step
!BP86

Step_End

New_Geom = ( Remove_atom, atomIndex, filename, 1);

end

then the xyz file ‘newGeom.xyz’ will be created that should look like:

2

H 2.5974927 -0.4116633 0.7667449
H 2.5931354 -0.4494962 -0.7447820

where the atom with atomIndex = 0 meaning the first atom, meaning the oxygen is removed.

Remove_Element

Remove_element is similar to the Remove_atom but instead of using the index of the atom we use its atomic
number. Thus the syntax is:

Syntax: New_Geom = ( Remove_Element, atomic number, “filename”, stepIndex, [geometry Index]);

where:
atomic number is the atomic number of the atom we want to remove. It can be an integer number or a variable.
filename is the name of the file that we want to use for the new xyz file. It can be a string in quotation marks or
a variable already defined before. In the name the xyz extension will be automatically appended. step Index the
number of the step from which we will get the initial geometry. It has to be an integer number. geometry Index
In case there are more than one geometries in the corresponding property file we can choose one. If no number is
given but default the program will use the last one.

example:

if we use again the input from paragraph 1.1.7.2 but instead of asking the compound file “removeAtom.cmp” we
ask for the compound file “removeElement.cmp” that looks like:

Variable filename = "newGeom";

New_Step
!BP86

Step_End

New_Geom = ( Remove_element, 8, filename, 1);

end
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then we will get again the same xyz file that was crated in paragraph Remove_Atom since the atom with atomic
number 8 (meaning the Oxygen) will be removed from the original geometry.

New_Step

New_Step signals the beginning of a new ORCA input.

Syntax:

New_Step
. . .Normal ORCA input commands
Step_End

There is no restriction in the input of ORCA, except of course that it should not include another Compound block.
It is important to remember that a New_Step command should always end with a Step_End command. Below we
show a simple example.

Example:

New_Step
! BP86 def2-SVP
Step_End

There is only a basic fundamental difference with a normal ORCA input. Inside the New_Step block it is not
necessary to include a geometry. ORCA will automatically try to read the geometry from the previous calculation.
Of course a geometry can be given and then ORCA will use it.

Print

Printing in the ORCA outpug can be customized using the print command. The syntax of the print command
closely follows the corresponding printf command from C/C++. So the usage of the print command is:

Syntax:
print(format string, [variables]);

For each variable there can be specifiers and flags for the specifiers. Currently print command supports three
datatypes namely integers, doubles and strings.

A format specifier follows this prototype: %[flags][width][.precision]specifier

where details for the specifiers and flags can be found in table Table 7.33

Table 7.33: compound print Specifiers
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Specifier

s strings

d integers

lf doubles

Flags

number width

.number number of decimal digits

- left alignement (by default is right)

Example:

# -------------------------------------------------------------
# This is to check all available print defintions
# -------------------------------------------------------------
Variable x1 = 2.0;
Variable x2 = {10.0, 20.0, 30.0, 40.0};
Variable x3 = {10, 20, 30, 40};
Variable x4 = {"ten", "twenty", "thirty", "fourty"};
Variable x5 = "test";
Variable index = 2;

print( " --------------------------------------------- \n");
print( " ------ SUMMARY OF PRINT DEFINITIONS --------- \n");
print( " --------------------------------------------- \n");
# ---------- No variables ------------
print( " No variables: \n" );
# ------------- Doubles --------------
print( " -------- Doubles --------------\n");
print( " constant double ( no format) : %lf\n", 3.5);
print( " constant double (defined width) : %16lf\n",3.5);
print( " constant double (defined width/accuracy) : %16.8lf\n", 3.5);
print( " variable double (x1) : %lf\n", x1);
print( " function double 2*x1*x1 : %lf\n", 2*x1*x1);
print( " array element double : %lf\n", x2[2]);
print( " array element double with var index : %lf\n", x2[index]);
#print( " array element double with function index : %lf\n", x2[index + 1];
# ------------ Integers --------------
print( " -------- Integers --------------\n");
print( " constant integer ( no format) : %d\n", 3);
print( " constant integeer (defined width) : %8d\n",3);
print( " variable integer (index) : %d\n", index);
print( " function integer 2*index*index : %d\n", 2*index*index);
print( " array element : %d\n", x3[2]);
print( " array element intteger with var index : %lf\n",x3[index]);
# ------------ Strings --------------

(continues on next page)
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(continued from previous page)

print( " -------- Strings --------------\n");
print( " constant string ( no format) : %s\n", "test");
print( " constant string (defined width) : %8s\n","test");
print( " variable string : %s\n", x5);
print( " array element : %s\n", x4[2]);
print( " array element intteger with var index : %s\n",x4[index]);
print(" ----------------------------------------------\n");
print(" ----------------------------------------------\n");
End

Read

The Read command reads a property from the property file.

NOTE This is the old syntax to read the property file and it will be deprecated in the next version of ORCA. For
the new syntax please use the ReadProperty command (see ReadProperty)

Syntax

Read myVar = propertyName[stepID]

Where:

myVar: The variable that will be updated

propertyName: The alias for the property we need to read

stepID: The step to which we refer.

Example

# ----------------------------------------------------
# This is an example script for readProperty
# -----------------------------------------------------
%Compound

Variable enDirect=0.0;
New_Step
!BP86
*xyz 0 1

H 0.0 0.0 0.0
H 0.0 0.0 0.8

*
Step_End
alias currStep;
# First read the energy directly
Read enDirect = DFT_Total_en[currStep];
print("DFT Energy : %.12lf\n", enDirect);

End

ReadProperty

One of the fundamental features of Compound is the ability to easily read ORCA calculated values from the property
file.

Syntax:

[res=] readProperty(propertyName=myName, [step=myStep], [filename=myFilename], [baseProp-
erty=true/false])

Where: res: An integer that returns the index of the found property if the property was found in the property file,
-1 if the property does not exist. This is not obligatory.

propertyName: A string alias that defines the variable the user wants to read.
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step: The step from which we want to read the property. If not given the property file from the last step will be
read.

filename: A filename of a property file. If a filename and at the same time a step are provided the program will
ignore the step and try to read the property file with the given filename.

NOTE please note that in the end of filename the extension .property.txt will be added.

baseProperty: A true/false boolean. The default value is set to false. If the value is set to true then a generic
property of the type asked will be read. This means if dipole moment is asked, it will return the last dipole moment,
irrelevant if and MP2 or SCF one wad defined.

Example

# ----------------------------------------------------
# This is an example script for readProperty
# -----------------------------------------------------
%Compound

Variable enDirect=0.0;
Variable enFilename=0.0;
Variable myProperty="DFT_Total_en";
Variable basename="compound_example_properertFile_readProperty";
Variable newBasename ="newFilename";
Variable res = -1;
New_Step
!BP86
*xyz 0 1

H 0.0 0.0 0.0
H 0.0 0.0 0.8

*
Step_End
# First read the energy directly (returning res)
res = enDirect.ReadProperty(propertyName=myProperty);
print("res : %d\n", res);
# Now read the same energy through filename (not returning res)
sys_cmd("cp %s_Compound_1.property.txt %s.property.txt", basename, newBasename);
enFilename.ReadProperty(propertyName=myProperty, filename=newBasename);
print("Difference between 2 energies : %.12lf\n", enDirect-enFilename);

End

Read_Geom

Read_Geom will read the geometry from a previous step.

Syntax:
Read_Geom 𝑛𝑢𝑚𝑏𝑒𝑟

Here number is the number of the job that we want to read the geometry from. The directive should be positioned
before a New_Step - Step_End block.

Example:

#Compound Job 1
New_Step
!BP86 def2-SVP
Step_End

#Compound Job 2
New_Step
!BP86 def2-SVP opt
Step_End

#Compound Job 3

(continues on next page)
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Read_Geom 1
New_Step
!CCSD def2-SVP
Step_End

End #Final End

In this case the third calculation, through the Read_MGeom 1 command, will read the geometry from the first
calculation.

ReadMOs

ReadMOs reads the molecular orbitals from a previous step.

Syntax:
ReadMOs(stepNumber);

Where:

• stepNumber: is the number of the step from which we want to read the orbitals.

Example:

# ----------------------------------------------------
# This is an example script for ReadMOs
# -----------------------------------------------------
%Compound

Variable step = 1;
New_Step
!BP86
*xyzfile 0 1 h2o.xyz

Step_End

ReadMOs(step);
New_Step
!BP86

Step_End
End

S.GetBasename

In Compound strings have all the functionality of a normal variable. In addition they have some additional functions
that act only on strings. On of these functions is the function GetBasename. This function searches the string and
if it contains a dot it will return the part of the string before the dot.

Syntax:

result = source.GetBasename();

Where:

result is the returned string.

source is the original string.

NOTE If the original string contains no dot then the result string will be a copy of the source one.

Example:

# ------------------------------------------------------
# This is an example script for string related functions:
# - GetBasename

(continues on next page)
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# - GetSuffix
# - GetChar
# ------------------------------------------------------
%Compound

Variable original = "lala.xyz";
Variable basename, suffix;
Variable constructed = "";
basename = original.GetBasename();
suffix = original.GetSuffix();
for i from 0 to original.stringlength()-1 Do
write2String(constructed,"%s%s", constructed, original.GetChar(i));

endfor
print("Original : %s\n", original);
print("Basename : %s\n", basename);
print("Sufix : %s\n", suffix);
print("Constructed : %s\n", constructed);

End

S.GetChar

In Compound strings have all the functionality of a normal variable. In addition they have some additional functions
that act only on strings. On of these functions is the function GetChar. This function searches the string and if it
contains a dot it will return the part of the string after the dot.

Syntax:

result = source.GetChar(index);

Where:

result is the returned string.

index is the index of the curracter in the string. Keep in mind that counting starts with 0 and not 1.

source is the original string.

NOTE If the index is larger than the size of the string or negative then the program will exit.

Example:

# ------------------------------------------------------
# This is an example script for string related functions:
# - GetBasename
# - GetSuffix
# - GetChar
# ------------------------------------------------------
%Compound

Variable original = "lala.xyz";
Variable basename, suffix;
Variable constructed = "";
basename = original.GetBasename();
suffix = original.GetSuffix();
for i from 0 to original.stringlength()-1 Do
write2String(constructed,"%s%s", constructed, original.GetChar(i));

endfor
print("Original : %s\n", original);
print("Basename : %s\n", basename);
print("Sufix : %s\n", suffix);
print("Constructed : %s\n", constructed);

End
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S.GetSuffix

In Compound strings have all the functionality of a normal variable. In addition they have some additional functions
that act only on strings. On of these functions is the function GetSuffix. This function searches the string and if it
contains a dot it will return the part of the string after the dot.

Syntax:

result = source.GetSuffix();

Where:

result is the returned string.

source is the original string.

NOTE If the original string contains no dot then the result string will be an empty string.

Example:

# ------------------------------------------------------
# This is an example script for string related functions:
# - GetBasename
# - GetSuffix
# - GetChar
# ------------------------------------------------------
%Compound

Variable original = "lala.xyz";
Variable basename, suffix;
Variable constructed = "";
basename = original.GetBasename();
suffix = original.GetSuffix();
for i from 0 to original.stringlength()-1 Do
write2String(constructed,"%s%s", constructed, original.GetChar(i));

endfor
print("Original : %s\n", original);
print("Basename : %s\n", basename);
print("Sufix : %s\n", suffix);
print("Constructed : %s\n", constructed);

End

Step_End

Step_End signals the end of an ORCA Input. It should always be the last directive of an ORCA input inside the
compound block that starts with New_Step (see paragraph New_Step)

Sys_cmd

Sys_cmd will read a system command and execute it.

Syntax:
Sys_cmd command

Example:

SYS_CMD "orca_mapspc test.out SOCABS -x0700 -x1900 -w0.5 -eV -n10000 "
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Timer

A timer is an object that can keep time for tasks in compound. Before a timer object is used it has to be declared.
The declaration of a timer is slightly different that the rest of variables, because it has to explicitly declare it’s type.

Syntax

timer myTimer;

where

timer is used instead of the normal variable command to explicitly set the variable type to compTimer.

myTimer is a normal instance of the object.

Example:

# -----------------------------------------------
# This is to test timer functions.
# --------------------------------
timer tm;
Variable x = 0.0;
tm.start();
for index from 0 to 100000 Do

x = x + 0.1;
EndFor
tm.stop();
x = tm.Total();
print( "------------------------------\n");
print( " Compound - Timer Results \n");
print( "------------------------------\n");
print( " First total time: %.2lf\n", x);

x = tm.total();
tm.Reset();
tm.Start();
for index from 0 to 200000 Do

x = x + 0.1;
EndFor
tm.Stop();
x = tm.total();

print( " Second total time: %.2lf\n", x);
End

Below is a lit of functions that work exclusively on Timer objects.

• Last (T.Last)

• Reset (T.Reset)

• Start (T.Start)

• Stop (T.Stop)

• Total (T.Total)
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T.Last

Last is a function that works on a timer object. It returns, as a real number, the last value of the timer.

Syntax

myTimer.Last();

Where:

myTimer: is the timer object initialized before.

Example:

# -----------------------------------------------
# This is to test timer functions.
# --------------------------------
timer tm;
Variable x = 0.0;
tm.start();
for index from 0 to 100000 Do

x = x + 0.1;
EndFor
tm.stop();
x = tm.Total();
print( "------------------------------\n");
print( " Compound - Timer Results \n");
print( "------------------------------\n");
print( " First total time: %.2lf\n", x);

x = tm.total();
tm.Reset();
tm.Start();
for index from 0 to 200000 Do

x = x + 0.1;
EndFor
tm.Stop();
x = tm.total();

print( " Second total time: %.2lf\n", x);
End

NOTE Before using last the timer object must, beside defined, be also initializee, using Start (see T.Start)

T.Reset

Reset is a function that works on a timer object. It resets the timer object to its initial state.

Syntax

myTimer.Reset();

Where:

myTimer: is the timer object initialized before.

Example:

# -----------------------------------------------
# This is to test timer functions.
# --------------------------------
timer tm;
Variable x = 0.0;
tm.start();
for index from 0 to 100000 Do

(continues on next page)
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x = x + 0.1;
EndFor
tm.stop();
x = tm.Total();
print( "------------------------------\n");
print( " Compound - Timer Results \n");
print( "------------------------------\n");
print( " First total time: %.2lf\n", x);

x = tm.total();
tm.Reset();
tm.Start();
for index from 0 to 200000 Do

x = x + 0.1;
EndFor
tm.Stop();
x = tm.total();

print( " Second total time: %.2lf\n", x);
End

T.Start

Start is a function that works on a timer object. It retunrs the timer object to its initial state.

Syntax

myTimer.Start();

Where:

myTimer: is the timer object initialized before.

Example:

# -----------------------------------------------
# This is to test timer functions.
# --------------------------------
timer tm;
Variable x = 0.0;
tm.start();
for index from 0 to 100000 Do

x = x + 0.1;
EndFor
tm.stop();
x = tm.Total();
print( "------------------------------\n");
print( " Compound - Timer Results \n");
print( "------------------------------\n");
print( " First total time: %.2lf\n", x);

x = tm.total();
tm.Reset();
tm.Start();
for index from 0 to 200000 Do

x = x + 0.1;
EndFor
tm.Stop();
x = tm.total();

print( " Second total time: %.2lf\n", x);
End
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T.Stop

Stop is a function that works on a timer object. It stops the timer from counting.

Syntax

myTimer.Stop();

Where:

myTimer: is the timer object initialized before.

Example:

# -----------------------------------------------
# This is to test timer functions.
# --------------------------------
timer tm;
Variable x = 0.0;
tm.start();
for index from 0 to 100000 Do

x = x + 0.1;
EndFor
tm.stop();
x = tm.Total();
print( "------------------------------\n");
print( " Compound - Timer Results \n");
print( "------------------------------\n");
print( " First total time: %.2lf\n", x);

x = tm.total();
tm.Reset();
tm.Start();
for index from 0 to 200000 Do

x = x + 0.1;
EndFor
tm.Stop();
x = tm.total();

print( " Second total time: %.2lf\n", x);
End

T.Total

Total is a function that works on a timer object. It returns a real number with the total time.

Syntax

myTimer.Total();

Where:

myTimer: is the timer object initialized before.

Example:

# -----------------------------------------------
# This is to test timer functions.
# --------------------------------
timer tm;
Variable x = 0.0;
tm.start();
for index from 0 to 100000 Do

x = x + 0.1;

(continues on next page)
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EndFor
tm.stop();
x = tm.Total();
print( "------------------------------\n");
print( " Compound - Timer Results \n");
print( "------------------------------\n");
print( " First total time: %.2lf\n", x);

x = tm.total();
tm.Reset();
tm.Start();
for index from 0 to 200000 Do

x = x + 0.1;
EndFor
tm.Stop();
x = tm.total();

print( " Second total time: %.2lf\n", x);
End

Variables - General

Everything in the Compound language is based on variables. Their meaning and usage are similar to those in
any programming language: you need to declare a variable and then assign a value to it. Notably, in Compound,
a variable must be declared before it is assigned a value, following the syntax rules of languages like C. This
differs from languages like Python, where you can assign a value to a variable without prior declaration. The only
exception to this rule in Compound is the index in a for loop, which does not require prior declaration.

In Compound we support the following data types for variables:

• Integer

• Double

• String

• Boolean

• File pointer

In addition to these data types Compound supports also variables of type Geometry and Timer but these are treated
separately (see Geometry and Timer).

For each variable in Compound there are 3 major categories of usage:

• The declaration (see Variables - Declaration)

• The assignement (see Variables - Assignment) and

• Variable functions (see Variables - Functions)

Variables - Declaration

There are currently 6 different ways to declare a variable in Compound. Their syntax is the following:

Syntax:

A. Variable name;

B. Variable name1, name2;

C. Variable name=value;

D. Variable name[𝑛];
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E. Variable name[𝑛1][𝑛2];

F. Variable name={value1, value2, . . . };

NOTE In previous versions of Compound for variables that were matrices but the size was not known one had to
declare the variable using the following syntax:

Variable name = [];

This is now changed and the empty brackets are no longer needed, so that this variable can be defined like a normal
variable as in case A.

Example

# -------------------------------------------------------------
# This is to check all available ways of
# Variable declaration in Compound
# -------------------------------------------------------------
Variable size = 5;
Variable x1; #caseA
Variable x2,x3; #caseB
Variable x4 = 1.0; #caseC
Variable x5 = 0; #caseC
Variable x6 = "Test"; #caseC
Variable x7 = True; #caseC
Variable x8 = 2*x4; #caseC
Variable x9 = x6; #caseC
Variable x10 = x7; #caseC
Variable x11; #caseA
Variable x12[3]; #caseD
Variable x12b[size-2]; #caseD
Variable x12c[size][size-1]; #caseE
x12b[1] = 4.0;
x12c[2][2] = 7.0;
Variable x13[3][3]; #caseE
Variable x14 = {2.0, 4*x4, 2, "lala"}; #caseF
Variable x15 = {0, 1, 2, 3, 4};
Variable x15b = {0, 1, 2, 3, 4};
Variable x15c[x15[x15b[2]-1]+2];
Variable x16, x17=x10, x18;
Variable x19=2.0, x20, x21[2], x23[size][size];
print( " --------------------------------------------- \n");
print( " ---------- SUMMARY OF DEFINITIONS ----------- \n");
print( " --------------------------------------------- \n");
print( " x4 (1.0) : %.2lf\n", x4);
print( " x5 (0) : %.2d\n", x5);
print( " x6 (\"Test\") : %s\n", x6);
if (x7) then

print(" x7 (True) : TRUE\n");
else

print(" x7 (True) : FALSE\n");
endIf
print(" x8 (2*x4) : %.2lf\n", x8);
print(" x9 (x6) : %s\n", x9);
print(" x12b[1] (4.0) : %lf\n", x12b[1]);
print(" x12c[2][2] (7.0) : %lf\n", x12c[2][2]);
print(" Variable x14 = {2.0, 4*x4, 2, \"lala\"};\n");
print(" x14[0] : %lf\n", x14[0]);
print(" x14[1] : %lf\n", x14[1]);
print(" x14[2] : %d\n", x14[2]);
print(" x14[3] : %s\n", x14[3]);
print(" Variable x15 = {0, 1, 2, 3, 4};\n");
print(" Variable x15b = {0, 1, 2, 3, 4};\n");
print(" Variable x15c[x15[x15b[2]-1]+2];\n");

(continues on next page)
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print(" x15c.GetSize() : %d\n", x15c.GetSize());
print(" ----------------------------------------------\n");
print(" ----------------------------------------------\n");
End

Some comments for the different cases of variable declaration.
Case A is the simplest one were we just declare the name of a variable.

Case B is similar to Case A but here more than one variables are declared simultaneously.

In Case C we combine the variable declaration with the assignment of a value to the variable. It worth noting that
in this case Compound automatically deducts the type of the variable based on the given value.

Case D declares a 1-Dimensional array of a defined size.

Case E declares a 2-Dimensional array of defined size. For this case, and also accordingly for Case E, one can use
previously defined integer variables instead of numbers.

Case F defines an array based on a list of given values. The array will automatically define it’s size based on the
size of the list. The values in the list do not have to be all of the same type.

NOTE In the past for Case F empty brackets were needed after the name of the variable. This is no longer necessary.

NOTE It is important not to forget the final ; symbol in the end of each declaration because the result of omitting
it is undefined.

Variables - Assignment

Assigning a value to a variable has a rather straightforward syntax.

Syntax:
VariableName = CustomFunction;

Where:

VariableName is a variable already declared.

CustomFunction a mathematical expression.

Example:

# -------------------------------------------------------------
# This is to check all available ways of variable assignement
# (It does not take care of 'with' we will have a separate
# file for this)
# -------------------------------------------------------------

# -----------------------------------
# Some necessary initial declarations
# -----------------------------------
Variable x1, x2, x3, x4;
Variable y1, y2, y3, y4;
Variable x5[4];
Variable y5[4];
Variable x6[3][3];
Variable y6[3][3];

# -----------------------------------
# Now the assignements
# -----------------------------------
#Scalars doubles
x1 = 1.0;
y1 = 2*x1;
#Scalars integers

(continues on next page)
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x2 = 1;
y2 = 2*x2;
#Scalars strings
x3 = "test";
y3 = x3;
#Scalars bools
x4 = True;
y4 = x4;
#1D Arrays
x5[0] = 2.0;
y5[0] = x5[0];
x5[1] = 1;
y5[1] = 2*x5[1];
x5[2] = "test";
y5[2] = x5[2];
x5[3] = True;
y5[3] = x5[3];
#2D Arrays
x6[0][0] = 1.0;
y6[0][0] = 2*x6[0][0];
print( " --------------------------------------------- \n");
print( " ---------- SUMMARY OF ASSIGNMENTS ---------- \n");
print( " --------------------------------------------- \n");
print( " ---------------- Scalars -------------------- \n");
print( " x1 : %.2lf\n", x1);
print( " y1 : %.2lf\n", y1);
print( " x2 : %d\n", x2);
print( " y2 : %d\n", y2);
print( " x3 : %s\n", x3);
print( " y3 : %s\n", y3);
print( " ---------------- 1D - Arrays----------------- \n");
print( " x5[0] : %.2lf\n", x5[0]);
print( " y5[0] : %.2lf\n", y5[0]);
print( " x5[1] : %d\n", x5[1]);
print( " y5[1] : %d\n", y5[1]);
print( " x5[2] : %s\n", x5[2]);
print( " y5[2] : %s\n", y5[2]);
print( " ---------------- 2D - Arrays----------------- \n");
print( " x6[0][0] : %lf\n", x6[0][0]);
print( " y6[0][0] : %lf\n", y6[0][0]);
print(" ----------------------------------------------\n");
print(" ----------------------------------------------\n");
End

NOTE It is important to remember to finish the variable assignment using the ‘;’ symbol.

Variables - Functions

Variables in Compound have a small number of functions that can help exctract information about them. In the
current version of Compound these functions are the following:

Syntax:
VariableName.Function();

where VariableName is a variable that is already declared. Then the function will return a value that depends on
the Function that we used.

Currenlty Compound supports the following functions:

• GetBool() V.GetBool()

• GetDim1() V.GetDim1()
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• GetDim2() V.GetDim2()

• GetDouble() V.GetDouble()

• GetInteger() V.GetInteger()

• GetSize() V.GetSize()

• GetString() V.GetString()

• PrintMatrix() V.PrintMatrix()

Example:

# -------------------------------------------------------------
# This is to check all available ways of variable assignement
# (It does not take care of 'with' we will have a separate
# file for this)
# -------------------------------------------------------------

# -----------------------------------
# Some necessary initial declarations
# -----------------------------------
Variable x1, x2, x3, x4;
Variable y1, y2, y3, y4;
Variable x5[4];
Variable y5[4];
Variable x6[3][3];
Variable y6[3][3];

# -----------------------------------
# Now the assignements
# -----------------------------------
#Scalars doubles
x1 = 1.0;
y1 = 2*x1;
#Scalars integers
x2 = 1;
y2 = 2*x2;
#Scalars strings
x3 = "test";
y3 = x3;
#Scalars bools
x4 = True;
y4 = x4;
#1D Arrays
x5[0] = 2.0;
y5[0] = x5[0];
x5[1] = 1;
y5[1] = 2*x5[1];
x5[2] = "test";
y5[2] = x5[2];
x5[3] = True;
y5[3] = x5[3];
#2D Arrays
x6[0][0] = 1.0;
y6[0][0] = 2*x6[0][0];
print( " --------------------------------------------- \n");
print( " ---------- SUMMARY OF ASSIGNMENTS ---------- \n");
print( " --------------------------------------------- \n");
print( " ---------------- Scalars -------------------- \n");
print( " x1 : %.2lf\n", x1);
print( " y1 : %.2lf\n", y1);
print( " x2 : %d\n", x2);
print( " y2 : %d\n", y2);

(continues on next page)
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print( " x3 : %s\n", x3);
print( " y3 : %s\n", y3);
print( " ---------------- 1D - Arrays----------------- \n");
print( " x5[0] : %.2lf\n", x5[0]);
print( " y5[0] : %.2lf\n", y5[0]);
print( " x5[1] : %d\n", x5[1]);
print( " y5[1] : %d\n", y5[1]);
print( " x5[2] : %s\n", x5[2]);
print( " y5[2] : %s\n", y5[2]);
print( " ---------------- 2D - Arrays----------------- \n");
print( " x6[0][0] : %lf\n", x6[0][0]);
print( " y6[0][0] : %lf\n", y6[0][0]);
print(" ----------------------------------------------\n");
print(" ----------------------------------------------\n");
End

V.GetBool()

This function will return a boolean value in case the variable is boolean or integer. For integers it will return false
for 0 and true for all other integer values. In all other cases the program will crash providing a relevant message.

Syntax:

myVar.GetBool();

where:

myVar is an already initialized variable.

Example

# ----------------------------------------------------
# This is an example script for
# Variable functions
# -----------------------------------------------------
%Compound

Variable double=1.0;
Variable integer=2;
Variable iToBool = integer.GetBool();
Variable boolean=false;

print("----------------------------------------\n");
print(" Results for translation functions \n");
print("Double to integer : %d (it should print 1)\n", double.GetInteger());
print("Integer to double : %.2lf (it should print 2.00)\n", integer.GetDouble());
print("Boolean to string : %s (it should print FALSE)\n", boolean.GetString());
print("Integer to boolean : %s (it should print TRUE)\n", iToBool.GetString());
print("Double to string : %s (it should print 1.00000000000000000000e+00)\n", double.

→˓GetString());
print("Integer to string : %s (it should print 2)\n", integer.GetString());

End
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V.GetDim1()

This function works on a variable. It will return the size of the first dimension of an array. If the variable is a scalar
it will return 1.

Syntax:

myVar.GetDim1();

where:

myVar is an already initialized variable.

Example

# ----------------------------------------------------
# This is an example script for
# Variable functions
# -----------------------------------------------------
%Compound

Variable dim1, dim2, size;
Variable A;
Variable B[3];
Variable C[3][2];

print("----------------------------------------\n");
print(" Results for scalar \n");
print("Dim1 : %d (it should print 1)\n", A.GetDim1());
print("Dim2 : %d (it should print 1)\n", A.GetDim2());
print("Size : %d (it should print 1)\n", A.GetSize());
print("----------------------------------------\n");
print(" Results for 1D-Array \n");
print("Dim1 : %d (it should print 3)\n", B.GetDim1());
print("Dim2 : %d (it should print 1)\n", B.GetDim2());
print("Size : %d (it should print 3)\n", B.GetSize());
print("----------------------------------------\n");
print(" Results for 2D-Array \n");
print("Dim1 : %d (it should print 3)\n", C.GetDim1());
print("Dim2 : %d (it should print 2)\n", C.GetDim2());
print("Size : %d (it should print 6)\n", C.GetSize());

End

V.GetDim2()

This function works on a variable. It will return the size of the second dimension of an array. If the variable is a
scalar or a 1-Dimensional array it will return 1.

Syntax:

myVar.GetDim2();

where:

myVar is an already initialized variable.

Example

# ----------------------------------------------------
# This is an example script for
# Variable functions
# -----------------------------------------------------
%Compound

Variable dim1, dim2, size;
Variable A;

(continues on next page)

1178 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

(continued from previous page)

Variable B[3];
Variable C[3][2];

print("----------------------------------------\n");
print(" Results for scalar \n");
print("Dim1 : %d (it should print 1)\n", A.GetDim1());
print("Dim2 : %d (it should print 1)\n", A.GetDim2());
print("Size : %d (it should print 1)\n", A.GetSize());
print("----------------------------------------\n");
print(" Results for 1D-Array \n");
print("Dim1 : %d (it should print 3)\n", B.GetDim1());
print("Dim2 : %d (it should print 1)\n", B.GetDim2());
print("Size : %d (it should print 3)\n", B.GetSize());
print("----------------------------------------\n");
print(" Results for 2D-Array \n");
print("Dim1 : %d (it should print 3)\n", C.GetDim1());
print("Dim2 : %d (it should print 2)\n", C.GetDim2());
print("Size : %d (it should print 6)\n", C.GetSize());

End

V.GetDouble()

This function works on a variable. It will return a double value in case the variable is integer or double. In all other
cases the program will crash providing a relevant message.

Syntax:

myVar.GetDouble();

where:

myVar is an already initialized variable.

Example

# ----------------------------------------------------
# This is an example script for
# Variable functions
# -----------------------------------------------------
%Compound

Variable double=1.0;
Variable integer=2;
Variable iToBool = integer.GetBool();
Variable boolean=false;

print("----------------------------------------\n");
print(" Results for translation functions \n");
print("Double to integer : %d (it should print 1)\n", double.GetInteger());
print("Integer to double : %.2lf (it should print 2.00)\n", integer.GetDouble());
print("Boolean to string : %s (it should print FALSE)\n", boolean.GetString());
print("Integer to boolean : %s (it should print TRUE)\n", iToBool.GetString());
print("Double to string : %s (it should print 1.00000000000000000000e+00)\n", double.

→˓GetString());
print("Integer to string : %s (it should print 2)\n", integer.GetString());

End
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V.GetInteger()

This function works on a variable. It will return an integer value in case the variable is integer or double. In all
other cases the program will crash providing a relevant message.

Syntax:

myVar.GetInteger();

where:

myVar is an already initialized variable.

Example

# ----------------------------------------------------
# This is an example script for
# Variable functions
# -----------------------------------------------------
%Compound

Variable double=1.0;
Variable integer=2;
Variable iToBool = integer.GetBool();
Variable boolean=false;

print("----------------------------------------\n");
print(" Results for translation functions \n");
print("Double to integer : %d (it should print 1)\n", double.GetInteger());
print("Integer to double : %.2lf (it should print 2.00)\n", integer.GetDouble());
print("Boolean to string : %s (it should print FALSE)\n", boolean.GetString());
print("Integer to boolean : %s (it should print TRUE)\n", iToBool.GetString());
print("Double to string : %s (it should print 1.00000000000000000000e+00)\n", double.

→˓GetString());
print("Integer to string : %s (it should print 2)\n", integer.GetString());

End

V.GetSize()

This function works on a variable. If the variable is a scalar it will return 1. If the variable is a 1-Dimensional
array it will return the size of the array which is the same with the GetDim1() . If the variable is a 2-Dimensional
array it will return the results Dim1*Dim2.

Syntax:

myVar.GetSize();

where:

myVar is an already initialized variable.

Example

# ----------------------------------------------------
# This is an example script for
# Variable functions
# -----------------------------------------------------
%Compound

Variable dim1, dim2, size;
Variable A;
Variable B[3];
Variable C[3][2];

print("----------------------------------------\n");
print(" Results for scalar \n");

(continues on next page)
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print("Dim1 : %d (it should print 1)\n", A.GetDim1());
print("Dim2 : %d (it should print 1)\n", A.GetDim2());
print("Size : %d (it should print 1)\n", A.GetSize());
print("----------------------------------------\n");
print(" Results for 1D-Array \n");
print("Dim1 : %d (it should print 3)\n", B.GetDim1());
print("Dim2 : %d (it should print 1)\n", B.GetDim2());
print("Size : %d (it should print 3)\n", B.GetSize());
print("----------------------------------------\n");
print(" Results for 2D-Array \n");
print("Dim1 : %d (it should print 3)\n", C.GetDim1());
print("Dim2 : %d (it should print 2)\n", C.GetDim2());
print("Size : %d (it should print 6)\n", C.GetSize());

End

V.GetString()

This function works on a variable. It will return a string of the value of the variable. It works for doubles, integers
and booleans.

Syntax:

myVar.GetString();

where:

myVar is an already initialized variable.

Example

# ----------------------------------------------------
# This is an example script for
# Variable functions
# -----------------------------------------------------
%Compound

Variable double=1.0;
Variable integer=2;
Variable iToBool = integer.GetBool();
Variable boolean=false;

print("----------------------------------------\n");
print(" Results for translation functions \n");
print("Double to integer : %d (it should print 1)\n", double.GetInteger());
print("Integer to double : %.2lf (it should print 2.00)\n", integer.GetDouble());
print("Boolean to string : %s (it should print FALSE)\n", boolean.GetString());
print("Integer to boolean : %s (it should print TRUE)\n", iToBool.GetString());
print("Double to string : %s (it should print 1.00000000000000000000e+00)\n", double.

→˓GetString());
print("Integer to string : %s (it should print 2)\n", integer.GetString());

End
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V.PrintMatrix()

This function works on variables. It will print print an array on a format with 8 columns.

Syntax: myVar.PrintMatrix([NCols=numOfColumns]);

where:

myVar is an already initialized variable.

numOfColumns is the desired number of columns for the printing. This is not obligatory and if not used then by
default ORCA will print using 4 columns.

Example

Example:

# ----------------------------------------------
# A script to check PrintMatrix
# ----------------------------------------------
%Compound

Variable Dim1 = 5;
Variable Dim2 = 16;
Variable x[Dim1][Dim2];
for i from 0 to Dim1-1 Do
for j from 0 to Dim2-1 Do

x[i][j] = i+j;
EndFor;

EndFor;

x.PrintMatrix(); # This should print with 4 columns
x.PrintMatrix(NCols=8); # This should print with 8 columns

EndRun

NOTE In case of scalars it will only print the header without any values.

NOTE It only works for arrays of type ‘double’ or type ‘integer’. With all variables of other types the program
will exit providing an error message.

With

The purpose of the “with” command is to add the ability to call compound while adjusting some of the variables
that are already defined in the compound file. This means that if there is a variable defined in the compound file
and a value is assigned to it, we can during the call change the assigned value of this variable.

One can pass numbers, string or boolean variables.

It should be noted that it is not possible to call array variables this way. Beside this restriction, the syntax of the
variable assignment in the case of with is the same with the variable assignment in a normal Compound script.

An important note here is that in case we use the With command the %Compound block should end with an ‘End’
even if we call a Compound script file.
Syntax:
% compound “filename”
With
var1 = val1;
var2 = val2;
End
Example:

# -------------------------------------------------------------
# This is to check all available ways of variable assignement
# in combination with the 'with' calls.
# -------------------------------------------------------------

(continues on next page)

1182 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

(continued from previous page)

# ---------------------------------
# Some necessary initial definitions
# ----------------------------------
Variable x1, x2, x3, x4;

# -----------------------------------
# Now the assignments
# -----------------------------------
#Scalars doubles
x1 = 1.0;
#Scalars integers
x2 = 1;
#Scalars strings
x3 = "test";
#Scalars bools
x4 = True;
print( " --------------------------------------------- \n");
print( " ------- SUMMARY OF WITH ASSIGNMENTS --------- \n");
print( " --------------------------------------------- \n");
print( " The calling input:\n");
print("%Compound \"0975.cmp\"\n");
print(" with\n");
print(" x1 = 3.0;\n");
print(" x2 = 2;\n");
print(" x3 = \"with\";\n");
print(" x4 = False;\n");
print("end\n");
print( " ---------------- Scalars -------------------- \n");
print( " x1 (1.0) : %.2lf\n", x1);
print( " x2 (1) : %d\n", x2);
print( " x3 (\"test\") : %s\n", x3);
print( " x4 (True) : %s\n", x4.GetString());
#print( " x6 : %s\n", x6);
#if (x4) then
# print(" x4 : TRUE\n");
#else
# print(" x4 : FALSE\n");
#endIfo
End

Write2File

With the Print command (see Print) one can write in the ORCA output. Nevertheless it might be that one would
prefer to write to a different file. In Compound one can achieve this using the write2File command. The syntax
follows closely the syntax of ‘fprintf’ command of the programming language C. The arguments definition and the
syntax is identical with the syntax of the Compound ‘Print’ command with the addition that one should define a
file object to send the printing.

Syntax:
Write2File(file variable, format string, [variables]);

Where:

file variable: is a predefined variable corresponding to an already open, through the OpenFile command, file.

format string and variables follow exactly the syntax of the Print command, so for more details please refere to
section Print.

NOTE Please remember once everything is writen to the file to close the file, using the CloseFile command (see
CloseFile).
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Example:

%Compound
# -------------------------------------------------------------
# This is to check all available write2String and
# write2File options
# -------------------------------------------------------------
Variable xS = "test_";
Variable xI = 1;
Variable final;
Variable fp;
Variable myFilename = "0955.txt";

#Create also a file object
fp = OpenFile(myFilename, "w");
write2String(final, " ----- Test ----- \n");
write2File(fp, "%s", final);
CloseFile(fp);

print( " --------------------------------------------- \n");
print( " ------ SUMMARY OF WRITE2STRING AND --------- \n");
print( " ------ WRITE2FILE --------- \n");
print( " --------------------------------------------- \n");
write2String(final, "%s", "constant" );
print( " Final : %s\n", final);
write2String(final,"%s", "constant" ); #No space before the quotation marks
print( " Final : %s\n", final);
write2String(final, "%s", "constant" ); #More than one spaces before
print( " Final : %s\n", final);
write2String(final," %s", "constant" ); #No spaces before but more afterwards
print( " Final : %s\n", final);
write2String(final, " %s", "constant" ); #More spaces before and more afterwards
print( " Final : %s\n", final);
write2String(final, "%s", xS);
print( " Final : %s\n", final);
write2String(final, "%s_%d", xS, xI);
print( " Final : %s_%d\n", final, xI);
write2String(final, "%s_%d", xS,2*xI+1);
print( " Final : %s\n", final);

End

Write2String

In case one needs to construct a string using some variables, Compound provides the Write2String command. The
syntax of the command is identical with the Write2File (see Write2File) command with the only exception that
instead of a file we should provide the name of a variable that is already declared in the file. The syntax of the
format and the variables used is identical with the Print command (please refer to Print. )

Syntax:

Write2String(variable, format string, [variables]);

where:

variable: is the name of a variable that should already be declared.

format string and variables follow exactly the syntax of the Print command, so for more details please refer to
section Print.

Example:
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%Compound
# -------------------------------------------------------------
# This is to check all available write2String and
# write2File options
# -------------------------------------------------------------
Variable xS = "test_";
Variable xI = 1;
Variable final;
Variable fp;
Variable myFilename = "0955.txt";

#Create also a file object
fp = OpenFile(myFilename, "w");
write2String(final, " ----- Test ----- \n");
write2File(fp, "%s", final);
CloseFile(fp);

print( " --------------------------------------------- \n");
print( " ------ SUMMARY OF WRITE2STRING AND --------- \n");
print( " ------ WRITE2FILE --------- \n");
print( " --------------------------------------------- \n");
write2String(final, "%s", "constant" );
print( " Final : %s\n", final);
write2String(final,"%s", "constant" ); #No space before the quotation marks
print( " Final : %s\n", final);
write2String(final, "%s", "constant" ); #More than one spaces before
print( " Final : %s\n", final);
write2String(final," %s", "constant" ); #No spaces before but more afterwards
print( " Final : %s\n", final);
write2String(final, " %s", "constant" ); #More spaces before and more afterwards
print( " Final : %s\n", final);
write2String(final, "%s", xS);
print( " Final : %s\n", final);
write2String(final, "%s_%d", xS, xI);
print( " Final : %s_%d\n", final, xI);
write2String(final, "%s_%d", xS,2*xI+1);
print( " Final : %s\n", final);

End

7.56.2 List of known Properties

The name and a sort explanation of all the known variables that can be automatically recovered, from the property
file, are given in the next table

Table 7.34: Variables, known to the compound block, with short explanation

====================================== ============================================================================================= =====
====================================== ==========================================AUTOCI============================================= =====
====================================== ============================================================================================= =====
++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++Energies+++++++++++++++++++++++++++++++++++++++++++++++ +++++
AUTOCI_REF_ENERGY AutoCI Reference Energy
AUTOCI_CORR_ENERGY AutoCI Correlatioin Energy
AUTOCI_TOTAL_ENERGY AutoCI Total Energy
++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++++++++++++++ ENERGY Gradient +++++++++++++++++++++++++++++++++++++++++ +++++
AUTOCI_NUCLEAR_GRADIENT AutoCI Energy nuclear gradient
AUTOCI_NUCLEAR_GRADIENT_NORM AutoCI Norm of the nuclear gradient

continues on next page
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AUTOCI_NUCLEAR_GRADIENT_ATOM_NUMBERS AutoCI The atomic numbers of the atoms in the gradient
++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++++ Electric Properties (Dipole moment) +++++++++++++++++++++++++++++++ +++++
AUTOCI_DIPOLE_MAGNITUDE AutoCI The value of the dipole moment
AUTOCI_DIPOLE_ELEC_CONTRIB AutoCI The electronic contribution to the dipole moment
AUTOCI_DIPOLE_NUC_CONTRIB AutoCI The nuclear contribution to the dipole moment
AUTOCI_DIPOLE_TOTAL AutoCI The total dipole moment
SCF_ENERGY SCF Energy
++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++ Electric Properties (Polarizability) +++++++++++++++++++++++++++++++ +++++
AUTOCI_POLAR_ISOTROPIC AutoCI The polarizability isotropic value
AUTOCI_POLAR_RAW AutoCI The raw polarizability tensor
AUTOCI_POLAR_DIAG_TENSOR AutoCI The polarizability diagonalized tensor
AUTOCI_POLAR_ORIENTATION AutoCI The polarizability orientation (eigenvectors)
++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++ Electric Properties (Quadrupole moment) +++++++++++++++++++++++++++++++ +++++
AUTOCI_QUADRUPOLE_MOMENT_ISOTROPIC AutoCI The quadrupole moment isotropic value
AUTOCI_QUADRUPOLE_MOMENT_DIAG_TENSOR AutoCI The quadrupole moment diagonalized tensor
AUTOCI_QUADRUPOLE_MOMENT_ELEC_CONTRIB AutoCI The elctronic contribution to the quadrupole moment tensor
AUTOCI_QUADRUPOLE_MOMENT_NUC_CONTRIB AutoCI The nuclear contribution to the quadrupole moment tensor
AUTOCI_QUADRUPOLE_MOMENT_TOTAL AutoCI The total quadrupole moment
++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++ Magnetic Properties (D Tensor) +++++++++++++++++++++++++++++++++++ +++++
AUTOCI_D_TENSOR_EIGENVALUES AutoCI The D Tensor eigenvalues
AUTOCI_D_TENSOR_EIGENVECTORS AutoCI The D Tensor eigenvectors
AUTOCI_D_TENSOR_RAW AutoCI The Raw D Tensor
AUTOCI_D_TENSOR_D AutoCI The final D value for the D Tensor
AUTOCI_D_TENSOR_E AutoCI The final E value for the D Tensor
AUTOCI_D_TENSOR_MULTIPLICITY AutoCI The spin-multiplicity used for the D Tensor calculation
++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++ Magnetic Properties (G Tensor) +++++++++++++++++++++++++++++++++++ +++++
AUTOCI_G_TENSOR_RAW AutoCI The Raw G Tensor
AUTOCI_G_TENSOR_ELEC AutoCI The Electronic part of the G Tensor
AUTOCI_G_TENSOR_TOT AutoCI The Total G Tensor
AUTOCI_G_TENSOR_ISO AutoCI The isotropic g value
AUTOCI_G_TENSOR_ORIENTATION AutoCI The G Tensor orientation (eigenvectors)
SCF_ENERGY SCF Energy
VDW_CORRECTION van der Waals correction

SCF Electric properties

SCF_DIPOLE_MAGNITUDE_DEBYE SCF dipole moment (debye)
SCF_DIPOLE_ELEC_CONTRIB SCF Electronic contribution to dipole moment
SCF_DIPOLE_NUC_CONTRIB SCF Nuclear contribution to dipole moment
SCF_DIPOLE_TOTAL SCF Total dipole moment
SCF_QUADRUPOLE_ISOTROPIC SCF isotropic quadrupole moment
SCF_QUADRUPOLE_DIAG_TENSOR SCF quadrupole moment diagonalised tensor
SCF_QUADRUPOLE_ELEC_CONTRIB SCF electronic contribution to the quadrupole moment
SCF_QUADRUPOLE_NUC_CONTRIB SCF nuclear contribution to the quadrupole moment
SCF_QUADRUPOLE_TOTAL SCF total quadrupole moment
SCF_POLAR_ISOTROPIC SCF isotropic polarizability
SCF_POLAR_RAW SCF polarizability raw tensor
SCF_POLAR_DIAG_TENSOR SCF diagonaised polarizability tensor

DFT

DFT_NUM_OF_ALPHA_EL Number of alpha electrons
DFT_NUM_OF_BETA_EL Number of beta electrons
DFT_NUM_OF_TOTAL_EL Total number of electrons
DFT_TOTAL_EN DFT Total energy

continues on next page
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DFT_EXCHANGE_EN DFT Exchange energy
DFT_CORR_EN DFT Correlation Energy
DFT_XC_EN DFT Exchange-Correlation Energy
DFT_NON_LOC_EN DFT Non-Local correlation
DFT_EMBED_CORR DFT Embedding correction

MP2

MP2_REF_ENERGY Reference SCF Energy
MP2_CORR_ENERGY MP2 Correlation energy
MP2_TOTAL_ENERGY Total Energy (SCF + MP2)

MP2 Electric properties

MP2_DIPOLE_MAGNITUDE_DEBYE MP2 dipole moment (debye)
MP2_DIPOLE_ELEC_CONTRIB MP2 Electronic contribution to dipole moment
MP2_DIPOLE_NUC_CONTRIB MP2 Nuclear contribution to dipole moment
MP2_DIPOLE_TOTAL MP2 Total dipole moment
MP2_QUADRUPOLE_ISOTROPIC MP2 isotropic quadrupole moment
MP2_QUADRUPOLE_DIAG_TENSOR MP2 quadrupole moment diagonalised tensor
MP2_QUADRUPOLE_ELEC_CONTRIB MP2 electronic contribution to the quadrupole moment
MP2_QUADRUPOLE_NUC_CONTRIB MP2 nuclear contribution to the quadrupole moment
MP2_QUADRUPOLE_TOTAL MP2 total quadrupole moment
MP2_POLAR_ISOTROPIC MP2 isotropic polarizability
MP2_POLAR_RAW MP2 polarizability raw tensor
MP2_POLAR_DIAG_TENSOR MP2 diagonaised polarizability tensor

MDCI

MDCI_REF_ENERGY Reference SCF Energy
MDCI_CORR_ENERGY Total Correlation Energy
MDCI_TOTAL_ENERGY Total Energy (SCF + Correlation)
MDCI_ALPHA_ALPHA_CORR_ENERGY Correlation energy from 𝛼𝛼 electron pairs
MDCI_BETA_BETA_CORR_ENERGY Correlation energy from 𝛽𝛽 electron pairs
MDCI_ALPHA_BETA_CORR_ENERGY Correlation energy from 𝛼𝛽 electron pairs
MDCI_DSINGLET_CORR_ENERGY Correlation energy from singlet electron pairs (only for closed-shell)(double excitations)
MDCI_DTRIPLET_CORR_ENERGY Correlation energy from triplet electron pairs (only for closed-shell) (double excitations)
MDCI_SSINGLET_CORR_ENERGY Correlation energy from singlet electron pairs (only for closed-shell) (single excitations)
MDCI_STRIPLET_CORR_ENERGY Correlation energy from triplet electron pairs (only for closed-shell) (single excitations)
MDCI_TRIPLES_ENERGY Perturbative triples correlation energy
MDCI_ALL_ELECTRONS Total number of electrons
MDCI_CORR_ELECTRONS Number of correlated electrons
MDCI_CORR_ALPHA_ELECTRONS Number of correlated 𝛼 electrons
MDCI_CORR_BETA_ELECTRONS Number of correlated 𝛽 electrons

MDCI Electric properties

MDCI_DIPOLE_MAGNITUDE_DEBYE MDCI dipole moment (debye)
MDCI_DIPOLE_ELEC_CONTRIB MDCI Electronic contribution to dipole moment
MDCI_DIPOLE_NUC_CONTRIB MDCI Nuclear contribution to dipole moment
MDCI_DIPOLE_TOTAL MDCI Total dipole moment
MDCI_QUADRUPOLE_ISOTROPIC MDCI isotropic quadrupole moment
MDCI_QUADRUPOLE_DIAG_TENSOR MDCI quadrupole moment diagonalised tensor
MDCI_QUADRUPOLE_ELEC_CONTRIB MDCI electronic contribution to the quadrupole moment
MDCI_QUADRUPOLE_NUC_CONTRIB MDCI nuclear contribution to the quadrupole moment

continues on next page
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MDCI_QUADRUPOLE_TOTAL MDCI total quadrupole moment
MDCI_POLAR_ISOTROPIC MDCI isotropic polarizability
MDCI_POLAR_RAW MDCI polarizability raw tensor
MDCI_POLAR_DIAG_TENSOR MDCI diagonaised polarizability tensor

CASSCF

CASSCF_NUM_OF_MULTS The number of CASSCF spin multiplicities
CASSCF_NUM_OF_IRREPS The number of CASSCF irreps
CASSCF_FINAL_ENERGY The CASSCF final energy
PT2_NUM_OF_MULTS The CASPT2 spin multiplicities
PT2_NUM_OF_IRREPS The number of CASPT2 irreps
PT2_FINAL_ENERGY The CASPT2 Energy
DCDCAS_NUM_OF_MULTS The number of DCDCAS spin multiplicities
DCDCAS_NUM_OF_IRREPS The number of DCDCAS irreps
DCDCAS_FINAL_ENERGY The DCDCAS Energy
CASSCF_ABS_SPECTRUM The CASSCF Absorption spectrum
CASSCF_ABS_SPECTRUM_INFO Information about the excitations of the CASSCF spectrum
CASSCF_ABS_SPECTRUM_NROOTS The number of Roots
CASSCF_CD_SPECTRUM The CASSCF CD spectrum
CASSCF_CD_SPECTRUM_INFO Information about the excitations of the CASSCF CD spectrum
CASSCF_CD_SPECTRUM_NROOTS The number or roots
CASPT2_ABS_SPECTRUM The CASPT2 Absorption spectrum
CASPT2_ABS_SPECTRUM_INFO Information about the excitations of the CASPT2 spectrum
CASPT2_ABS_SPECTRUM_NROOTS The number of roots
CASPT2_CD_SPECTRUM The CASPT2 CD spectrum
CASPT2_CD_SPECTRUM_INFO Information about the excitations of the CASPT2 CD spectrum
CASPT2_CD_SPECTRUM_NROOTS The number of roots
CAS_CUSTOM_ABS_SPECTRUM The Custom CASSCF Absorption spectrum
CAS_CUSTOM_ABS_SPECTRUM_INFO Information about the excitations of the custom CASSCF absorption spectrum
CAS_CUSTOM_ABS_SPECTRUM_NROOTS The number of roots
CAS_CUSTOM_CD_SPECTRUM The Custom CASSCF CD spectrum
CAS_CUSTOM_CD_SPECTRUM_INFO Information about the excitations of the custom CASSCF CD spectrum
CAS_CUSTOM_CD_SPECTRUM_NROOTS The number of roots
DCDCAS_ABS_SPECTRUM The DCDCAS Absorption spectrum
DCDCAS_ABS_SPECTRUM_INFO Information about the excitations of the DCDCAS absorption spectrum
DCDCAS_ABS_SPECTRUM_NROOTS The number of roots
CASSCF_DTENSOR_EIGENVALUES CASSCF D Tensor eigenvalues
CASSCF_DTENSOR_RAW_EIGENVECTORS CASSCF D Tensor Raw eigenvectors
CASSCF_DTENSOR_D D value of CASSCF ZFS
CASSCF_DTENSOR_E E value of CASSCF ZFS
CASSCF_DTENSOR_MULTIPLICITY Spin multiplicity
CASPT2_DTENSOR_EIGENVALUES CASPT2 D Tensor eigenvalues
CASPT2_DTENSOR_RAW_EIGENVECTORS CASPT2 D Tensor raw eigenvectors
CASPT2_DTENSOR_D D value of CASPT2 ZFS
CASPT2_DTENSOR_E E value of CASPT2 ZFS
CASPT2_DTENSOR_MULTIPLICITY Spin multiplicity
CAS_CUSTOM_DTENSOR_EIGENVALUES custom CASSCF D Tensor eigenvalues
CAS_CUSTOM_DTENSOR_RAW_EIGENVECTORS custom CASSCF D Tensor Raw eigenvectors
CAS_CUSTOM_DTENSOR_D D value of custom CASSCF ZFS
CAS_CUSTOM_DTENSOR_E E value of custom CASSCF ZFS
CAS_CUSTOM_DTENSOR_MULTIPLICITY Spin multiplicity

CIPSI

continues on next page
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CIPSI_SPIN_MULTIPLICITY The CIPSI spin multiplicity
CIPSI_NUM_OF_ROOTS The CIPSI number of roots
CIPSI_FINAL_ENERGY The CIPSI Final energy
CIPSI_ENERGIES The CIPSI Energies

CIS

CIS_FINAL_ENERGY The final total energy
CIS_ESCF The SCF Energy
CIS_E0 The Energy of the ground state
CIS_ENERGIES The singlet energies
CIS_ENERGIESP1 The triplet energies
CIS_MODE One of the CIS modes
CIS_NUM_OF_ROOTS The number of roots
CIS_ROOT State to be optimized
CIS_ABS_SPECTRUM_NROOTS The number of roots
CIS_ABS_SPECTRUM The CIS absorption spectrum
CIS_ABS_SPECTRUM_VELOCITY The CIS absorptioin spectrum in velocity representation
CIS_ABS_SOC_SPECTRUM_NROOTS The number or roots
CIS_ABS_SOC_SPECTRUM The CIS absorption spectrum including SOC
CIS_CD_SPECTRUM_NROOTS The number of roots
CIS_CD_SPECTRUM The CIS CD spectrum
CIS_CD_SOC_SPECTRUM_NROOTS The number of roots
CIS_CD_SOC_SPECTRUM The CIS CD spectrum including SOC

ROCIS

ROCIS_STATE ROCIS State
ROCIS_REF_ENERGY ROCIS Reference energy
ROCIS_CORR_ENERGY ROCIS correlation energy
ROCIS_TOTAL_ENERGY ROCIS total energy
ROCIS_ABS_SPECTRUM_NROOTS Number of roots
ROCIS_ABS_SPECTRUM ROCIS Absorption spectrum
ROCIS_ABS_SOC_SPECTRUM_NROOTS Number of roots
ROCIS_ABS_SOC_SPECTRUM ROCIS absorption spectrum including SOC
ROCIS_CD_SPECTRUM_NROOTS Number of roots
ROCIS_CD_SPECTRUM ROCIS CD spectrum
ROCIS_CD_SOC_SPECTRUM_NROOTS Number of roots
ROCIS_CD_SOC_SPECTRUM ROCIS CD spectrum including SOC

MRCI

MRCI_ABS_SPECTRUM The MRCI absorption spectrum
MRCI_ABS_SPECTRUM_INFO Information about the absorption spectrum
MRCI_ABS_SPECTRUM_NROOTS The number of roots
MRCI_CD_SPECTRUM The MRCI CD spectrum
MRCI_CD_SPECTRUM_INFO Information about the MRCI CD spectrum
MRCI_CD_SPECTRUM_NROOTS The number of roots
MRCI_DIPOLE_MOMENTS The MRCI dipole moments
MRCI_DIPOLE_MOMENTS_INFO Information about the MRCI dipole moments
MRCI_DTENSOR_EIGENVECTORS The eigenvectors of the MRCI D tensor
MRCI_DTENSOR_EIGENVALUES The eigenvalues of the MRCI D tensor
MRCI_DTENSOR_RAW_EIGENVECTORS The raw eigenvectors of the MRCI D tensor
MRCI_DTENSOR_D The MRCI D value for the ZFS
MRCI_DTENSOR_E The MRCI E value for the ZFS

continues on next page
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MRCI_DTENSOR_MULTIPLICITY The MRCI spin multiplicity

EXTRAPOLATION

EXTRAP_SCF_ENERGIES The SCF energies with the different basis sets
EXTRAP_CBS_SCF The extrapolated SCF energy
EXTRAP_CORR_ENERGIES The correlation energies with the different basis sets
EXTRAP_CBS_CORR The extrapolated correlatioin energy
EXTRAP_CBS_TOTAL The extrapolated total energy
EXTRAP_CCSDT_X The (T) contribution to the energy
EXTRAP_NUM_OF_ENERGIES The number of energies (basis sets) used for the extrapolation

THERMOCHEMISTRY

THERMO_TEMPERATURE Temperature (𝑜𝐾)
THERMO_PRESSURE Pressure (Atm)
THERMO_TOTAL_MASS Total Mass of the molecule (AMU)
THERMO_SPIN_DEGENERACY Electronic degeneracy
THERMO_ELEC_ENERGY Electronic energy (Eh)
THERMO_TRANS_ENERGY Translational energy (Eh)
THERMO_ROT_ENERGY Rotational energy (Eh)
THERMO_VIB_ENERGY Vibrational energy (Eh)
THERMO_NUM_OF_FREQS The number of vibrational frequencies
THERMO_FREQS Frequencies
THERMO_ZPE Zero point energy (Eh)
THERMO_INNER_ENERGY_U Inner Energy (Eh)
THERMO_ENTHALPY_H Enthalpy (Eh)
THERMO_ELEC_ENTROPY (Electronic Entropy)*T (Eh)
THERMO_ROR_ENTROPY (Rotational Entropy)*T (Eh)
THERMO_VIB_ENTROPY (Vibrational Entropy)*T (Eh)
THERMO_TRANS_ENTROPY (Translational Entropy)*T (Eh)
THERMO_ENTROPY_S (Total Entropy)*T (Eh)
THERMO_FREE_ENERGY_G Free Energy (Eh)

EPR-NPR Spin-Spin coupling

EPRNMR_SSC_NUM_OF_NUC_PAIRS Number of nuclear pairs to calculate something
EPRNMR_SSC_NUM_OF_NUC_PAIRS_DSO Number of nuclear pairs to calculate DSO terms
EPRNMR_SSC_NUM_OF_NUC_PAIRS_PSO Number of nuclear pairs to calculate PSO terms
EPRNMR_SSC_NUM_OF_NUC_PAIRS_FC Number of nuclear pairs to calculate FC terms
EPRNMR_SSC_NUM_OF_NUC_PAIRS_SD Number of nuclear pairs to calculate SD terms
EPRNMR_SSC_NUM_OF_NUC_PAIRS_SD_FC Number of nuclear pairs to calculate SD/FC terms
EPRNMR_SSC_NUM_OF_NUCLEI_PSO Number of nuclei to calculate PSO perturbations
EPRNMR_SSC_NUM_OF_NUCLEI_FC Number of nuclei to calculate SD/FC perturbations

Solvation

SOLVATION_EPSILON Dielectric constant
SOLVATION_REFRAC Refractive index
SOLVATION_RSOLV Solvent probe radius
SOLVATION_SURFACE_TYPE Cavity surface
SOLVATION_CPCM_DIEL_ENERGY Total energy including the CPCM dielectric correction
SOLVATION_NPOINTS Number of points for the Gaussian surface
SOLVATION_SURFACE_AREA Surface area

continues on next page
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General Job Information

JOB_INFO_MULT Job Multiplicity
JOB_INFO_CHARGE Job Charge
JOB_INFO_NUM_OF_ATOMS Total number of atoms
JOB_INFO_NUM_OF_EL Total number of electrons
JOB_INFO_NUM_OF_FC_EL Number of frozen core electrons
JOB_INFO_NUM_OF_CORR_ELC Number of correlated electrons
JOB_INFO_NUM_OF_BASIS_FUNCS Number of basis functions
JOB_INFO_NUM_OF_AUXC_BASIS_FUNCS Number of auxilliary C basis functions
JOB_INFO_NUM_OF_AUXJK_BASIS_FUNCS Number of auxilliary J basis functions
JOB_INFO_NUM_OF_AUX_CABS_BASIS_FUNCS Number of auxilliary JK basis functions
JOB_INFO_NUM_OF_AUX_CABS_BASIS_FUNCS Number of auxilliary CABS basis functions
JOB_INFO_TOTAL_EN Final energy

HESSIAN

HESSIAN_MODES The hessian

Math Functions

ABS Absolute value
COS Cosine
SIN Sine
TAN Tangent
ACOS Inverse cosine
ASIN Inverse sine
ATAN Inverse tangent
COSH Hyperbolic cosine
SINH Hyperbolic sine
TANH Hyperbolic tangent
EXP Exponential
LOG Common logarithm
LN Natural logarithm
SQRT Square root
ROUND Round down to nearest integer

7.56.3 List of known Simple input commands

The name and a sort explanation of all compound protocols that are know through the simple input line, are given
in the next table. The syntax is always:

Syntax:
! compound[protocol name]

Table 7.35: Protocols, known to the simple input line, with short explanation

General Printing

PRINT-ALLMETHODS Print all available know protocols
PRINT-ALLDESCRIPTIONS Print only the description of all protocols without the actual protocols

continues on next page
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Extrapolation Schemes

EXTRAPOLATE-EP1-MDCI Direct two-point extrapolation scheme with MDCI energies
COMPOUND[EXTRAPOLATE-EP1-MP2 SCF isotropic quadrupole moment
EXTRAPOLATE-EP2-DLPNO EP2 type extrapolation with DLPNO-CCSD(T) as secondary method
EXTRAPOLATE-EP2-MP2 EP2 type extrapolation with MP2 as secondary method
EXTRAPOLATE-EP3-DLPNO EP3 type extrapolation with DLPNO-CCSD(T) as secondary method
EXTRAPOLATE-EP3-MP2 EP3 type extrapolation with MP2 as secondary method
EXTRAPOLATE-PETERSON Extrapolation based on the scheme of Peterson
EXTRAPOLATE-XANTHEAS-FELLER Extrapolation based on the scheme of Xantheas and Feller

Wn Protocols

W2-2 The W2-2 version of the Wn protocols

Gn Protocols

G2-MP2 The G2-MP2 protocol
G2-MP2-ATOM The G2-MP2 protocol for atoms
G2-MP2-SV The G2-MP2-SV protocol
G2-MP2-SV-ATOM The G2-MP2-SV protocol for atoms
G2-MP2-SVP The G2-MP2-SVP protocol
G2-MP2-SVP-ATOM The G2-MP2-SVP protocol for atoms

ccCA Protocols

CCCA-DZ-QCISD-T The CCCA-DZ-QCISD-T protocol
CCCA-DZ-QCISD-T-ATOM The CCCA-DZ-QCISD-T protocol for atoms
CCCA-TZ-QCISD-T The CCCA-TZ-QCISD-T protocol
CCCA-TZ-QCISD-T-ATOM The CCCA-TZ-QCISD-T protocol for atoms
CCCA-ATZ-QCISD-T The CCCA-ATZ-QCISD-T protocol
CCCA-ATZ-QCISD-T-ATOM The CCCA-ATZ-QCISD-T protocol for atoms
CCCA-CBS-1 The CCCA-CBS-1 protocol
CCCA-CBS-1-ATOM The CCCA-CBS-1 protocol for atoms
CCCA-CBS-2 The CCCA-CBS-2 protocol
CCCA-CBS-2-ATOM The CCCA-CBS-2 protocol for atoms

Accurate Energies

EXTRAPOLATE-PNO A custom PNO extrapolation scheme to reach the complete PNO space limit. See Ref. [31] and [26] for more information.
DLPNO-CC-ENERGY A protocol for accurate energies

Ab Initio ligand field

AILFT_1SHELL Ab-initio ligand field theory for 1 shell
AILFT_2SHELL Ab-initio ligand field theory for 2 shells

X-Ray spectroscopy

MRCI-XAS X-Ray absorption spectroscopy with MRCI
CASCI-NEVPT2-XAS-XMCD X-Ray and XMCD spectroscopies with CASCI-NEVPT2
MREOM-XAS X-Ray absorption spectroscopy with MREOM..

Solvation

continues on next page
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DFT-SOLVATION-ENERGY Calculation of solvation energy
COMPOUND[DFT-DIPOLE-MOMENT-SOLVENT-INDUCTION Calculate the effect of solvent in the dipole moment

Geometry optimizations

ITERATIVE_OPTIMIZATION Iterative Optimization protocol to find structure with no negative frequencies (e.g. real minima)

7.57 Compound Examples

7.57.1 Introduction

A library of compound scripts exist in page https://github.com/ORCAQuantumChemistry/CompoundScripts .

7.57.2 Hello World

Introduction

This is the simplest script that nevertheless points to an important feature of Compound. That is the fact that
Compound does not have to run an actual ‘normal’ ORCA calculation but it can also be used as a driver for various
tasks, in this case to just print a message.

Filename

helloWorld.inp

SCRIPT

%Compound
print("Hellow World!\n");

EndRun

7.57.3 New Job

Introduction

One of the features of ORCA that will be deprecated in the future and should not be used any more is the ‘New_Job’
feature. The current script is a simple example how Compound can be used to just run a series of calculations.

Filename

replaceNewJob.inp

SCRIPT

# This is a small script thas shows how
# 'Compound' can replace the previous
# ORCA '$New_Job' feature
%Compound

# ------------------------------------
# First job
# ------------------------------------
New_Step
!BP86
*xyz 0 1

H 0.0 0.0 0.0

(continues on next page)
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H 0.0 0.0 0.8
*

Step_End
# ------------------------------------
# Second job with same goemetry
# but different functional
# ------------------------------------
New_Step
!B3LYP
*xyz 0 1

H 0.0 0.0 0.0
H 0.0 0.0 0.8

*
Step_End

EndRun

Comments

From the Compound point of view the syntax in this script is not the most efficient one. It can be rewritten in more
compact, cleaner, general way. Neverteless this is meant only as an exmample of how Compound can replace older
ORCA calculations that used the, to be deprecated, ‘New_Job’ feature.

7.57.4 High Accuracy

Introduction

This is a script that utilizes the scheme by N. J. DeYonker, T. R. Cundari, and A. K. Wilson published on: J. Chem.
Phys. 124, 114104 (2006). The script calculates accurate total energies of molecules.

Filename

ccCA_CBS_2.cmp

SCRIPT

# This is a small script thas shows how
# 'Compound' can replace the previous
# ORCA '$New_Job' feature
%Compound

# ------------------------------------
# First job
# ------------------------------------
New_Step
!BP86
*xyz 0 1

H 0.0 0.0 0.0
H 0.0 0.0 0.8

*
Step_End
# ------------------------------------
# Second job with same goemetry
# but different functional
# ------------------------------------
New_Step
!B3LYP
*xyz 0 1

H 0.0 0.0 0.0
H 0.0 0.0 0.8

(continues on next page)
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*
Step_End

EndRun

Comments

It is interesting that in this scheme the total energy is treated and there is not separation in extrapolation between
HF energy and correlation energy.

7.57.5 Scan

Introduction

This is an example script for a 1-Dimensional geometry scan. It is set up for the Ne-Ne bond distance but can be
modified to suit the user’s specific needs.

Filename

scan_1D_1M_1P.cmp

SCRIPT

# Author : Dimitrios G. Liakos
# Date : May of 2024
#
# This is a script that will calculate and potentially
# plot ONE property(1P) along a scan in ONE dimesion (1D)
# using only ONE method (1M)
#
# It is part of a series of scripts for different
# combinations of scans for dimensions, methods,
# and properties
#
# Here as an example we use for:
# - dimension: the Ne-Ne bond (dist)
# - method : "HF" (method)
# - property : the SCF energy (propName)
#
# The script creates a csv file with the absolute energies
# and an additional one with the potential energies in
# kcal/mol. Both will be saved on disk.
#
# If 'DoPython' is set to true it will also create a python
# script that plots the generated values and then run
# it. The python script will be saved on disk and thus one
# can afterwards manipulate it.
#
# NOTE The boolean option plotPotential will choose between
# plotting absolute values or potential.
#
# NOTE The boolean obtion doKcal if set to true multiplies
# the potential values with the HartreeToKcal factor.
#
# NOTE In case the doPython is set to true the script expects
# that python3 is avaiable and also the following libraries:
# - pandas
# - seaborn
# - matplotlib.pyplot

(continues on next page)
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#
# -------------------------------------------------------------
#
# ---------------- Variables to change (e.g. through 'with') --------------------------
Variable method = "HF"; # The methods of the calculation
Variable basis = "cc-pVDZ"; # The basis set of the calculation
Variable restOfInput = "TightSCF"; # Maybe something common for the simple input
Variable charge = 0; # Charge
Variable mult = 1; # Spin multiplicity
Variable myPropName = "SCF_Energy"; # The properties we want to read
#
Variable lowerLimit = 2.5; # Lower limit value
Variable UpperLimit = 5.0; # Upper limit value
Variable NSteps = 13; # Number of steps for the grid
Variable baseFilename = "myPotential"; # The basename for the created files
Variable plotPotential= true; # Plot the potential instead of absolute values
Variable DoKcal = true; # Multiply the potential values with the␣
→˓HartreeToKcal factor
Variable removeFiles = true; # Remove *_Compound_*, *bas* files
# ------------------ python plot relevant variables ---------------------------------------
Variable DoPython = true; # if we want python or not
Variable lw = 4; # The line width in case we plot with python
Variable marker = "o"; # The type of markers
Variable markerSize = 10; # The size of the markers in case we plot
Variable fontSize = 18;
#
# ----------------------- Rest of the variables ---------------------------------
#
Variable HartreeToKcal = 627.5096080305927; # Hartree to kcal/mol conversion␣
→˓factor
Variable stepSize = (UpperLimit-LowerLimit)/(NSteps-1); # The stepsize of the grid
Variable calcValues[NSteps]; # An array to store the␣
→˓calculated values
Variable res, dist, calcValue;
Variable myFilename, csvFilename;
Variable fPtr; # A file to write

# ---------------------------------------------------
# Open and Write file header for the absolute values
# ---------------------------------------------------
write2String(csvFilename, "%s_absValues.csv", baseFilename);
fPtr = OpenFile(csvFilename, "w");
write2File(fptr, "distance,method,property,calcValue\n");

# ---------------------------------------------------
# Perform the calculations and update the file
# ---------------------------------------------------
for iStep from 0 to NSteps-1 Do

dist = lowerLimit + (iStep)*stepSize;
New_Step
!&{method} &{basis} &{restOfInput}
*xyz &{charge} &{mult}

Ne 0.0 0.0 0.0
Ne 0.0 0.0 &{dist}

*
Step_end
res = calcValue.readProperty(propertyName=myPropName);
write2File(fPtr, "%.4lf,%20s,%20s,%20.10lf\n", dist, method,myPropName, calcValue);
calcValues[iStep]=calcValue;

EndFor
CloseFile(fPtr); # Close the file

(continues on next page)
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# ---------------------------------------------------
# Evaluate and write the relative values
# ---------------------------------------------------
write2String(csvFilename, "%s_relValues.csv", baseFilename);
fPtr = OpenFile(csvFilename, "w");
write2File(fPtr, "distance,method,property,calcValue\n");
for iStep from 0 to NSteps-1 Do

dist = lowerLimit + (iStep)*stepSize;
if (DoKcal) then
calcValue = (calcValues[iStep]-calcValues[NSteps-1])*HartreeToKcal;

else
calcValue = calcValues[iStep]-calcValues[NSteps-1];

EndIf
write2File(fPtr, "%.4lf,%20s,%20s,%20.10lf\n", dist, method,myPropName, calcValue);

EndFor
CloseFile(fPtr); # Close the file

if (removeFiles) then
sys_cmd("rm *_Compound_* *.bas*");

EndIf

# ---------------------------------------------------
# Create a python file and run it
# ---------------------------------------------------
if (DoPython) then

if (plotPotential) then
write2String(csvFilename, "%s_relValues.csv", baseFilename);

else
write2String(csvFilename, "%s_absValues.csv", baseFilename);

endIf

write2String(myFilename, "%s.py", baseFilename);
fPtr = openFile(myFilename, "w");
# Import necessary libraries
write2File(fPtr, "import pandas as pd\n");
write2File(fPtr, "import seaborn as sns\n");
write2File(fPtr, "import matplotlib.pyplot as plt\n");
# Read the csv file
write2File(fPtr, "df = pd.read_csv('%s')\n", csvFilename);
#Make a lineplot
write2File(fPtr, "sns.lineplot(data=df, x=\"distance\", y=\"calcValue\", hue=\"property\", \n

lw=%d, markers=True, marker='%s', markersize=%d, dashes=False)\n", lw,␣
→˓marker, markersize);
write2File(fPtr, "plt.axhline(y=0, color='black', linestyle='-', linewidth=1)\n");
write2File(fPtr, "plt.title(\"Energy Potential\", fontsize=%d)\n", fontsize+4);
write2File(fPtr, "plt.xlabel(\"Ne-Ne Distance\", fontsize=%d)\n", fontsize);
write2File(fPtr, "plt.ylabel(\"Energy (kcal/mol)\", fontsize=%d)\n", fontsize);
write2File(fPtr, "plt.xticks(fontsize=%d)\n", fontSize);
write2File(fPtr, "plt.yticks(fontsize=%d)\n", fontSize);
write2File(fPtr, "plt.show()\n");
closeFile(fPtr);
sys_cmd("python3 %s", myFilename);

EndIf

End

Comments

This script has some interesing features. It contains two variables removeFiles and DoPython. If the first of them
is set to true then the script will use a system command to remove files that are not needed anymore after the end
of the calculation. The latter, DoPython, if set to true will read the .csv file that is created and write a python file
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to make a plot of the results. Then it will run the python script to actually make the plot.

7.57.6 Numerical polarizabilities

Introduction

This script calculates numerically the polarizability of the molecule using single point calculations with an electric
field.

Filename

numericalPolarizability.cmp

SCRIPT

# Authors: Dimitrios G. Liakos / Frank Neese / Zikuan Wang
# Date : May of 2024
#
# This is a compound script that calculates the
# dipole-dipole polarizability tensor numerically
# using the double derivative of energy.
#
# The idea is the following:
#
# 1 Perform a field free calculation
#
# 2 Loop over directions I=X,Y,Z
#
# 3 Loop over directions J=X,Y,Z
#
# - put a small Q-field in directions I and J
# - Solve equations to get the energy for each combination
# - Polarizability alpha(I,J) =- ( E(+I,+J) - E(+I,-J)-E(-I,+J)+ E(-i,-j)/(4*Field^2)
# 4 Print polarisability
#
# ----------------------------------------------------------------------
# ---------------------- Variables -------------------------------
# --- Variables to be adjusted (e.g. using 'with' ----------------------
Variable molecule = "h2o.xyz";
Variable charge = 0;
Variable mult = 1;
Variable method = "HF";
Variable basis = " ";
Variable restOfInput = "VeryTightSCF";
Variable blocksInput = " ";
Variable E_Field = 0.0001;
Variable enPropName = "JOB_Info_Total_En";
Variable removeFiles = true;
# -------------- Rest of the variables --------------------------------
Variable FField[3];
Variable EFree, EPlusPlus, EPlusMinus, EMinusPlus, EMinusMinus, a[3][3];
Variable FFieldStringPlusPlus, FFieldStringPlusMinus;
Variable FFieldStringMinusPlus, FFieldStringMinusMinus;
Variable aEigenValues, aEigenVectors;

# -----------------------------------------
# Calculation without field
# -----------------------------------------
New_Step

!&{method} &{basis} &{restOfInput}
&{blocksInput}
*xyzfile &{charge} &{mult} &{molecule}

Step_End
(continues on next page)
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EFree.ReadProperty(propertyName=enPropName);

# ------------------------------------------------------------
# Loop over the x, y, z directions
# ------------------------------------------------------------
for i from 0 to 2 Do

for j from 0 to 2 Do
# ----------------------------------------------------------
# Create the appropriate direction oriented field string
# ----------------------------------------------------------
# ---------------------- (++) ------------------------------
for k from 0 to 2 Do

FField[k] = 0.0;
EndFor
FField[i] = FField[i] + E_Field;
FField[j] = FField[j] + E_Field;
write2String(FFieldStringPlusPlus, " %lf, %lf, %lf",
FField[0], FField[1], FField[2]);
#
# --------------------- (+-) ------------------------------
for k from 0 to 2 Do

FField[k] = 0.0;
EndFor
FField[i] = FField[i] + E_Field;
FField[j] = FField[j] - E_Field;
write2String(FFieldStringPlusMinus, " %lf, %lf, %lf",
FField[0], FField[1], FField[2]);
#
# --------------------- (-+) ------------------------------
for k from 0 to 2 Do

FField[k] = 0.0;
EndFor
FField[i] = FField[i] - E_Field;
FField[j] = FField[j] + E_Field;
write2String(FFieldStringMinusPlus, " %lf, %lf, %lf",
FField[0], FField[1], FField[2]);
#
# --------------------- (--) ------------------------------
for k from 0 to 2 Do

FField[k] = 0.0;
EndFor
FField[i] = FField[i] - E_Field;
FField[j] = FField[j] - E_Field;
write2String(FFieldStringMinusMinus, " %lf, %lf, %lf",
FField[0], FField[1], FField[2]);

# ----------------------------------------
# Perform the calculations.
# The plus_plus (++) one
# ----------------------------------------
ReadMOs(1);
New_Step

!&{method} &{basis} &{restOfInput}
%SCF

EField = &{FFieldStringPlusPlus}
End
&{blocksInput}

Step_End
EPlusPlus.readProperty(propertyName=enPropName);
# ----------------------------------------
# The plus_minus (+-) one

(continues on next page)
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# ----------------------------------------
ReadMOs(1);
New_Step

!&{method} &{basis} &{restOfInput}
%SCF
EField = &{FFieldStringPlusMinus}

End
&{blocksInput}

Step_End
EPlusMinus.readProperty(propertyName=enPropName);
# ----------------------------------------
# The minus_plus (-+) one
# ----------------------------------------
ReadMOs(1);
New_Step

!&{method} &{basis} &{restOfInput}
%SCF

EField = &{FFieldStringMinusPlus}
End
&{blocksInput}

Step_End
EMinusPlus.readProperty(propertyName=enPropName);
# ----------------------------------------
# And the minus_minus (--) one
# ----------------------------------------
ReadMOs(1);
New_Step

!&{method} &{basis} &{restOfInput}
%SCF
EField = &{FFieldStringMinusMinus}

End
&{blocksInput}

Step_End
EMinusMinus.readProperty(propertyName=enPropName);

a[i][j] = -(EPlusPlus-EPlusMinus-EMinusPlus+EMinusMinus)/(4*E_Field*E_Field);
EndFor

EndFor

# -----------------------------------------
# Diagonalize
# -----------------------------------------
a.Diagonalize(aEigenValues, aEigenVectors);

# -----------------------------------------
# Do some printing
# -----------------------------------------
print( "\n\n");
print( " -------------------------------------------------------\n");
print( " COMPOUND \n");
print( " Numerical calculation of dipole polarizability\n");
print( " -------------------------------------------------------\n");
print( " Molecule : %s\n", molecule);
print( " charge : %d\n", charge);
print( " Mult : %d\n", mult);
print( " Method : %s\n", method);
print( " Basis : %s\n", basis);
print( " RestOfInput : %s\n", restOfInput);
print( " BlocksInput : %s\n", blocksInput);
print( " The electric field perturbation used was: %.5lf a.u.\n", E_Field);
print( " \n\n");

(continues on next page)
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print( " -------------------------------------------------------\n");
print( " Raw electric dipole polarizability tensor is:\n");
print( " -------------------------------------------------------\n");
For i from 0 to 2 Do

print("%13.8lf %13.8lf %13.8lf\n", a[i][0], a[i][1], a[i][2]);
EndFor
print( " -------------------------------------------------------\n");
print("\n");

print( " -------------------------------------------------------\n");
print( " Raw electric dipole polarizability Eigenvalues\n");
print( " -------------------------------------------------------\n");
print("%13.8lf %13.8lf %13.8lf\n", aEigenValues[0], aEigenValues[1], aEigenValues[2]);
print( " -------------------------------------------------------\n");
print("\n");

print( " -------------------------------------------------------\n");
print( " Raw electric dipole polarizability Eigenvectors\n");
print( " -------------------------------------------------------\n");
For i from 0 to 2 Do

print("%13.8lf %13.8lf %13.8lf\n", aEigenVectors[i][0], aEigenVectors[i][1],␣
→˓aEigenVectors[i][2]);
EndFor

print( "\n a isotropic value : %.5lf\n", (aEigenValues[0]+aEigenValues[1]+aEigenValues[2])/3.
→˓0);
print( " -------------------------------------------------------\n");
print("\n\n");
#
#
# ---------------------------------------------------
# Maybe remove unneccesary files
# ---------------------------------------------------
if (removeFiles) then

sys_cmd("rm *_Compound_* *.bas* ");
EndIf
#
End

Comments

In this script we also use the linear algebra diagonalize function that is available in Compound.

7.57.7 Iterative optimization

Introduction

This is a script that will perform a geometry optimization, then run a frequency calculation and in case there are
negative frequencies it will adjust the geometry, based on the Hessian, and optimize again.

Filename

iterativeOptimization.cmp

SCRIPT

# Author: Dimitrios G. Liakos and Franke Neese
# Date : May/June of 2024
#
# *************************************** DESCRIPTION␣
→˓***********************************************

(continues on next page)
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# iterative Optimization protocol to find structure with no negative
# frequencies (e.g. real minima)
#
# Step 1. Run a single point calculation (we need it for the first property file)
#
# Step 1. Loop and perform calculations with (optimization and frequencies)
#
# Step 2. Check the frequencies. If there are negative ones use the hessian
# of the appropriate normal mode to adjust the geometry
#
# ------ Variables to adjust (e.g. using 'with') -------------------
Variable method = "HF"; #"HF-3c";
Variable MaxNTries = 25; # Number of maximum tries
Variable CutOff = -10.0; # CutOff for a negative frequency
Variable scaling = 0.6; # Scaling factor for normal mode
Variable NNegativeTarget = 0; # Number of negative frequencies we allow
Variable myFilename = "xyzInput.xyz";
Variable charge = 0;
Variable multiplicity = 2;
# ------------------------------------------------------------------
# ------ Rest of variables -------------------
Geometry myGeom;
Variable freqs, modes;
Variable res = -1;
Variable NNegative = 0;
Variable OptDone;

# -----------------------------------------------------------
# Perform a single point calculation. We need it for
# the initial geometry from the property file
# -----------------------------------------------------------
New_Step

!&{method}
Step_End
myGeom.Read();
myGeom.WriteXYZFile(filename=myFilename);

# -----------------------------------------------------------
# Start a for loop over number of tries
# ----------------------------------------------------------
For itry From 1 To maxNTries Do

# --------------------------------------------
# Perform a geometry optimization/Frequency calculation
# --------------------------------------------
New_Step
! &{method} freq Opt
*xyzfile &{charge} &{multiplicity} &{myFilename}

Step_End
res = freqs.readProperty(propertyName = "THERMO_FREQS");
res = modes.readProperty(propertyName = "HESSIAN_MODES");
myGeom.Read();

# ---------------------------------------------
# check for sufficiently negative frequencies
# ---------------------------------------------
NNegative = 0;
For ifreq From 0 to freqs.GetSize()-1 Do
if ( freqs[ifreq] < CutOff ) then

myGeom.FollowNormalMode(vibrationSN=ifreq, scalingFactor=scaling);
NNegative = NNegative + 1;

endif

(continues on next page)
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endfor
myGeom.WriteXYZFile(filename=myFilename);
If ( NNegative <= NNegativeTarget ) then
goto OptDone;

endif
endfor

# -----------------------------------------------------------------
# Either found correct geometry or reached maximum number of tries.
# -----------------------------------------------------------------
OptDone :
if (NNegative > NNegativeTarget) then

print("ERROR The program did not find a structure with the desired\n number of imaginary␣
→˓frequencies.\n There are %9.3lf negative frequencies after %3d steps", NNegative,itry);
else

print("\nSUCCESS optimized structure with (%d) negative\n frequencies found after %3d steps",
→˓ NNegative, itry);
endif

End

7.57.8 Gradient extrapolation

Introduction

This script extrapolates the gradient of a molecule. It uses a two point extrapolation where the Hartree-Fock and
correlation parts of the gradient are extrapolated separately. This opens the way for geometry optimizations with
extrapolated gradients.

Filename

gradientExtrapolation.cmp

SCRIPT

# Author: Dimitrios G. Liakos and Frank Neese
# Date : May of 2024
#
# This is a compound file that extrapolates the
# energy gradients to Complete Basis Set Limit (CBS).
#
# STEPS:
# Step1 : Run HF calculation with small basis set
# Read scfGradX and scfEnX
# Step2 : Run Correlation calculation with small basis set
# Read totalGradX and totalEnX
# Step3 : Calculate the gradient differene to get
# the corrGradX (only the correlation part)
# Step4 : Run HF calculation with big basis set
# Read scfGradY and scfEnY
# Step5 : Run correlation calculation with big basis set
# Read totalGradY and totalEnY
# Step6 : Calculate the gradient difference with the
# big basis set to get corrGradY
# Step7 : Evaluate scfGradCBS and scfEnCBS
# using scfGradX and scfGradY
# Step8 : Evaluate corrGradCBS using
# corrGradX and corrGradY
# Step9 : Add scfGradCBS and corrGradCBS to get
# totalGradCBS
# Step10: If needed, create an ORCA engrad file

(continues on next page)
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#
#
# NOTE: It works with an xyz file the name of which we should provide.
# using the variable initialXYZFilename.
#
# We extrapolate the SCF part using the scheme
# proposed in: J. Phys. Chem. 129, 184116, 2008
# E_SCF(X) = E_SCF(CBS)+Aexp(-a*SQRT(X))
#
# We extrapolate the correlation part using the schem
# proposed in: J. Chem. Phys. 1997, 106, 9639
# E_CBS(CORR)=(X^b*E_X(CORR)-Y^b*E_Y(CORR))/(X^b-Y^b)

# We use alpha and beta exponents proposed in:
# J. Chem. Theory Comput., 7, 33-43 (2011)
# ---------------------- Variables -------------------------------
# --- Variables to be adjusted (e.g. using 'with' ----------------------
Variable Molecule = "initial.xyz"; # xyz file of the initial structure
Variable charge = 0; # Charge
Variable multiplicity = 1; # Spin multiplicity
Variable method = "MP2"; # The method we use for the calculation
Variable LowerBasis = "cc-pVDZ"; # Small basis set
Variable UpperBasis = "cc-pVTZ"; # Big basis set
Variable restOfInput = "EnGrad "; # The rest of the simple input
Variable addCorrelation = true; # If we have a correlation part
Variable scfEnPropName = "MP2_Ref_Energy"; # The name of the property for the SCFenergy
Variable corrEnPropName = "MP2_Corr_Energy"; # The name of the property for the␣
→˓correlation energy
Variable LowerCardinal = 2; # Cardinal number of small basis set
Variable UpperCardinal = 3; # Cardinal number of big basis set
Variable alpha = 4.420; # Exponent for SCF extrapolation
Variable beta = 2.460; # Exponent for corrleation extrapolation
Variable enGradFilename = "result.engrad"; # Filename of the ORCA engrad file
Variable produceEnGradFile = true; # Produce an ORCA engrad file
# ---------------------------------------------------------------------
# -------------- Rest of the variables --------------------------------
Geometry myGeom;
Variable scfGradX, scfGradY; # SCF Gradients
Variable scfEnX, scfEnY, scfEnCBS; # SCF energies
Variable corrEnX, corrEnY, corrEnCBS; # Correlation enegies
Variable totalGradX, totalGradY; # Total Gradients
Variable eX = 0.0;
Variable eY = 0.0;
Variable res = -1;

Variable denominator = 0.0;
Variable gradX = 0.0, gradY = 0.0, gradCBS=0.0;
Variable nAtoms = 0;
Variable EnGradFile;
Variable Cartesians, AtomicNumbers;

# -------------------------------------------------------------------
# Step 1. SCF Calculation with small basis set (X)
# -------------------------------------------------------------------
New_Step

! HF &{LowerBasis} &{restOfInput}
*xyzfile &{charge} &{multiplicity} &{Molecule}

Step_end
res = scfEnX.readProperty(propertyName="SCF_Energy");
res = scfGradX.readProperty(propertyName="Nuclear_Gradient", Property_Base=true);
myGeom.Read();

(continues on next page)

1204 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

(continued from previous page)

nAtoms = myGeom.GetNumOfAtoms();

# ------------------------------------------------------------------
# Step 2. Initialize rest of the variables
# ------------------------------------------------------------------
Variable corrGradX[3*nAtoms]; # Correlation part of gradient with basis X
Variable corrGradY[3*nAtoms]; # Correlation part of gradient with basis Y
Variable corrGradCBS[3*nAtoms]; # CBS estimation of correlation part of the gradient
Variable scfGradCBS[3*nAtoms]; # CBS estimation of SCF part of the gradient
Variable totalGradCBS[3*nAtoms];# CBS estimation of total gradient

# -------------------------------------------------
# Step3. Correlation Calculation with small basis set (X)
# -------------------------------------------------
if (addCorrelation) then

New_Step
! &{method} &{LowerBasis} &{restOfInput}

Step_end
res = scfEnX.readProperty(propertyName=scfEnPropName);
res = corrEnX.readProperty(propertyName=corrEnPropName);
res = totalGradX.readProperty(propertyName="Nuclear_Gradient", Property_Base=true);

# -------------------------------------------------
# Evaluate correlation gradient with small basis set (X)
# -------------------------------------------------
corrGradX =mat_p_mat(1, totalGradX, -1, scfGradX);

EndIf

# -------------------------------------------------
# Step4. SCF Calculation with large basis set (Y)
# -------------------------------------------------
New_Step

!HF &{UpperBasis} &{restOfInput}
Step_End
res = scfEnY.readProperty(propertyName="SCF_Energy");
res = scfGradY.readProperty(propertyName="Nuclear_Gradient", Property_Base=true);

# -------------------------------------------------
# Step5. Correlation calculation with large basis set (Y)
# -------------------------------------------------
if (addCorrelation) then

New_Step
! &{method} &{UpperBasis} &{restOfInput}

Step_end
res = scfEnY.readProperty(propertyName=scfEnPropName);
res = corrEnY.readProperty(propertyName=corrEnPropName);
res = totalGradY.readProperty(propertyName="Nuclear_Gradient", Property_Base=true);

# -------------------------------------------------
# Evaluate correlation gradient with big basis set Y
# -------------------------------------------------
corrGradY = mat_p_mat(1, totalGradY, -1, scfGradY);

EndIf

# -------------------------------------------------
# Step6. Extrapolate the SCF part of the gradient and energy
# -------------------------------------------------
eX = exp(-alpha * sqrt(LowerCardinal));
eY = exp(-alpha * sqrt(UpperCardinal));
denominator = eY-eX;

(continues on next page)
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scfEnCBS = (scfEnX*eY - scfEnY*eX)/(eY-eX);
for i from 0 to scfGradX.GetSize()-1 Do

gradX = scfGradX[i];
gradY = scfGradY[i];

scfGradCBS[i] = (gradX * eY - gradY * eX)/denominator;
endFor

if (addCorrelation) then
# -------------------------------------------------
# Step7. Extrapolate the correlation part of the gradient and energy
# -------------------------------------------------
denominator = LowerCardinal^(beta)-(UpperCardinal)^(beta);

corrEnCBS = (LowerCardinal^(beta)*corrEnX-(UpperCardinal)^(beta)*corrEnY)/denominator;
for i from 0 to scfGradX.GetSize()-1 Do
gradX = corrGradX[i];
gradY = corrGradY[i];

corrGradCBS[i] = (LowerCardinal^(beta)*gradX-(UpperCardinal)^(beta)*gradY)/denominator;
endFor

# -------------------------------------------------
# Add SCF and correlation part to get total CBS extrapolated values
# -------------------------------------------------
totalGradCBS = mat_p_mat( 1, scfGradCBS, 1, corrGradCBS);

EndIf

# -------------------------------------------------
# Step8. Present the results
# -------------------------------------------------
print( "\n\n\n");
print( "--------------------------------------------------------\n");
print( " Compound Extrapolation of Gradient \n");
print( "--------------------------------------------------------\n");
print( "Number of atoms : %d\n", nAtoms);
print( "Lower basis set : %s\n", LowerBasis);
print( "Upper basis set : %s\n", UpperBasis);
print( "Alpha : %.2lf\n", alpha);
print( "Beta : %.2lf\n", beta);
print( "Lower Cardinal number : %d\n", LowerCardinal);
print( "Upper Cardinal number : %d\n", UpperCardinal);
print( "Method : %s\n", method);
print( "AddCorrelation : %s\n", AddCorrelation.GetString());
print( "Produce EnGrad File : %s\n", produceEnGradFile.GetString());
print( "\n\n");
print( "SCF Energy with small basis set : %.12e\n", scfEnX);
print( "SCF Energy with big basis set : %.12e\n", scfEnY);
print( "Extrapolated SCF energy : %.12e\n", scfEnCBS);
print("\n\n");
if (addCorrelation) then

print( "Correlation Energy with small basis set : %.12e\n", corrEnX);
print( "Correlation Energy with big basis set : %.12e\n", corrEnY);
print( "Extrapolated correlation energy : %.12e\n", corrEnCBS);
print("\n\n");
print( "Total Energy with small basis set : %.12e\n", scfEnX + corrEnX);
print( "Total Energy with big basis set : %.12e\n", scfEnY + corrEnY);
print( "Extrapolated Total energy : %.12e\n", scfEnCBS + corrEnCBS);
print("\n\n");

else

(continues on next page)
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print( "Total Energy with small basis set : %.12e\n", scfEnX);
print( "Total Energy with big basis set : %.12e\n", scfEnY);
print( "Extrapolated Total energy : %.12e\n", scfEnCBS);
print("\n\n");

EndIf

print( "----------------------------------------------------------------\n");
print( "SCF Gradient with basis set: %s\n", LowerBasis );
print( "----------------------------------------------------------------\n");
print( "Atom %20s %20s %20s\n", "X", "Y", "Z");
for i from 0 to nAtoms-1 Do

print("%4d %20lf %20lf %20lf\n", i, scfGradX[3*i], scfGradX[3*i+1],␣
→˓scfGradX[3*i+2]);
EndFor
if (addCorrelation) then

print( "----------------------------------------------------------------\n");
print( "Correlation Gradient with basis set: %s\n", LowerBasis );
print( "----------------------------------------------------------------\n");
print( "Atom %20s %20s %20s\n", "X", "Y", "Z");
for i from 0 to nAtoms-1 Do
print("%4d %20lf %20lf %20lf\n", i, corrGradX[3*i], corrGradX[3*i+1],␣

→˓corrGradX[3*i+2]);
EndFor

print( "----------------------------------------------------------------\n");
print( "Total Gradient with basis set: %s\n", LowerBasis );
print( "----------------------------------------------------------------\n");
print( "Atom %20s %20s %20s\n", "X", "Y", "Z");
for i from 0 to nAtoms-1 Do
print("%4d %20lf %20lf %20lf\n", i, totalGradX[3*i], totalGradX[3*i+1],␣

→˓totalGradX[3*i+2]);
EndFor

EndIf

print( "----------------------------------------------------------------\n");
print( "SCF Gradient with basis set: %s\n", UpperBasis );
print( "----------------------------------------------------------------\n");
print( "Atom %20s %20s %20s\n", "X", "Y", "Z");
for i from 0 to nAtoms-1 Do

print("%4d %20lf %20lf %20lf\n", i, scfGradY[3*i], scfGradY[3*i+1],␣
→˓scfGradY[3*i+2]);
EndFor

if (addCorrelation) then
print( "----------------------------------------------------------------\n");
print( "Correlation gradient with basis set: %s\n", UpperBasis );
print( "----------------------------------------------------------------\n");
print( "Atom %20s %20s %20s\n", "X", "Y", "Z");
for i from 0 to nAtoms-1 Do
print("%4d %20lf %20lf %20lf\n", i, corrGradY[3*i], corrGradY[3*i+1],␣

→˓corrGradY[3*i+2]);
EndFor
print( "----------------------------------------------------------------\n");
print( "Total Gradient with basis set: %s\n", UpperBasis );
print( "----------------------------------------------------------------\n");
print( "Atom %20s %20s %20s\n", "X", "Y", "Z");
for i from 0 to nAtoms-1 Do
print("%4d %20lf %20lf %20lf\n", i, totalGradY[3*i], totalGradY[3*i+1],␣

→˓totalGradY[3*i+2]);
EndFor

EndIf

(continues on next page)
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print( "----------------------------------------------------------------\n");
print( "Extrapolated SCF part of the Gradient:\n" );
print( "----------------------------------------------------------------\n");
print( "Atom %20s %20s %20s\n", "X", "Y", "Z");
for i from 0 to nAtoms-1 Do

print("%4d %20lf %20lf %20lf\n", i, scfGradCBS[3*i], scfGradCBS[3*i+1],␣
→˓scfGradCBS[3*i+2]);
EndFor

if (addCorrelation) then
print( "----------------------------------------------------------------\n");
print( "Correlation Gradient with basis set:\n" );
print( "----------------------------------------------------------------\n");
print( "Atom %20s %20s %20s\n", "X", "Y", "Z");
for i from 0 to nAtoms-1 Do
print("%4d %20lf %20lf %20lf\n", i, corrGradCBS[3*i], corrGradCBS[3*i+1],␣

→˓corrGradCBS[3*i+2]);
EndFor
print( "----------------------------------------------------------------\n");
print( "Total Gradient with basis set:\n" );
print( "----------------------------------------------------------------\n");
print( "Atom %20s %20s %20s\n", "X", "Y", "Z");
for i from 0 to nAtoms-1 Do
print("%4d %20lf %20lf %20lf\n", i, totalGradCBS[3*i], totalGradCBS[3*i+1],␣

→˓totalGradCBS[3*i+2]);
EndFor

EndIf
print( "----------------------------------------------------------------\n");

if (produceEnGradFile) then
# ------------------------------------------
# Read the geometry of the last calculation
# ------------------------------------------
myGeom.Read();
Cartesians = myGeom.GetCartesians();
atomicNumbers = myGeom.GetAtomicNumbers();
EnGradFile = openFile(enGradFilename, "w");
Write2File(EnGradFile, "\n\n\n");
Write2File(EnGradFile, " %d\n", nAtoms);
Write2File(EnGradFile, "\n\n\n");
if (addCorrelation) then
Write2File(EnGradFile, " %.12lf\n", scfEnCBS + corrEnCBS);

else
Write2File(EnGradFile, " %.12lf\n", scfEnCBS);

EndIf
Write2File(EnGradFile, "\n\n\n");
for i from 0 to 3*nAtoms-1 Do
if (addCorrelation) then

Write2File(EnGradFile, " %20.12lf\n", totalGradCBS[i]);
else

Write2File(EnGradFile, " %20.12lf\n", scfGradCBS[i]);
EndIf

EndFor
Write2File(EnGradFile, "\n\n\n");
for i from 0 to nAtoms-1 Do
Write2File(EnGradFile, "%5d %12.8lf %12.8lf %12.8lf\n", atomicNumbers[i],␣

→˓cartesians[i][0], cartesians[i][1], cartesians[i][2]);
EndFor
closeFile(EnGradFile);

(continues on next page)
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EndIf

End

Comments

7.57.9 BSSE Optimization

Introduction

This script optimizes the geometry of a molecule using gradients corrected for Basis Set Superposition Error
(BSSE) correction. The basic step is the usage of a second script that calculates BSSE corrected gradients.

Filename

BSSEOptimization.cmp

SCRIPT

# Author: Frank Neese and Dimitrios G. Liakos
# Date : May of 2024
# ---------------------------------------------------
#
# This is a script that will use a compound script to
# calculate BSSE corrected gradients and use them
# in combination with ORCA External Optimizer to
# perform a geometry optimization.
#
# We perform the following steps.
# 1. Choose a compound script that calculates the BSSE
# corrected gradient.
# We achieve this with the compoundFilename
#
# 2. Create a script to run an ORCA calculalation with
# the external optimizer and the BSSE cprrected
# gradient. We do that by running a script that runs
# an ORCA calculation that calculates the gradient
# and then copy this gradient file back to the expected
# name
#
# 3. Make a normal ORCA New_Step that calls the external
# optimizer
#
# NOTE: Depending on the chosen method the property names of
# myPropName has to be adjusted. For the gradient we do
# not have this problem because we read the last
# available in the corresponding property file.
#
# NOTE: Variable baseFilename should have the name of the calling
# orca input file!
#
# ---------------------- Variables -------------------------------
# --- Variables to be adjusted (e.g. using 'with' ----------------------
Variable molecule = "01.xyz"; # xyz file of the initial structure
Variable method = "BP86"; # The method we use for the calculation
Variable basis = " "; # The basis set
Variable restOfInput = ""; # The rest of the simple input
Variable charge = 0; # Charge
Variable mult = 1; # Spin multiplicity
Variable myPropName = "SCF_Energy"; # The name of the property for the energy

(continues on next page)
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variable myFilename = "compoundBSSE"; # Name for the created xyz files
Variable baseFilename = "run";
Variable gradCreateFile = "BSSEGradient.cmp";# The compound script that extrapolates the␣
→˓gradient
Variable DoOptimization = false; # Optimize the monomers or not
Variable produceEnGradFile = true; # Produce an ORCA engrad file
Variable enGradFilename = "result.engrad"; # Filename of the ORCA engrad file
# -------------------------------------------------------
#
# Variables for the driver script
Variable createDriverScript = true; # The shell script driver
Variable driverScript; # A script to create the extrapolated energy␣
→˓gradient
Variable driverScriptName = "runningScript";
Variable submitCommand = "orca";
# --------------------------------------------------------

# --------------------------------------------------------
#
# Variables for the ORCA input
Variable createORCAInput = true;
Variable orcaInput; # The ORCA input for the gradient extrapolation
Variable orcaInputName = "runGradient.inp";
# --------------------------------------------------------

# ------------------------------------------------
# 1. Maybe Create the necessary driver script
# for the external optimizer and make it executable
# NOTE: This will depenend on the operating system
# -------------------------------------------------
if (createDriverScript) then

driverScript = openFile(driverScriptName, "w");
write2File(driverScript, "source ~/.bashrc\n");
write2File(driverScript, "%s %s\n", submitCommand, orcaInputName );
write2File(driverScript, "cp %s %s_Compound_1_EXT.engrad\n", engradFilename, baseFilename);
closeFile(driverScript);
sys_cmd("chmod +x %s",driverScriptName);

EndIf

# ------------------------------------------------
# 2. Maybe Create the ORCA input that will run the
# compound script for the gradient extrapolation
# -------------------------------------------------
if (createORCAInput) then

orcaInput = openFile(orcaInputName, "w");
Write2File(orcaInput, "%%Compound \"%s\"\n", gradCreateFile);
Write2File(orcaInput, " with\n");
Write2File(orcaInput, " molecule =\"%s_Compound_1_EXT.xyz\"\;\n", baseFilename);
Write2File(orcaInput, " charge = %d\;\n", charge);
Write2File(orcaInput, " mutliplicity = %d\;\n", mult);
Write2File(orcaInput, " method = \"%s\"\;\n", method);
Write2File(orcaInput, " basis = \"%s\"\;\n", basis);
Write2File(orcaInput, " restOfInput = \"%s\"\;\n", restOfInput);
Write2File(orcaInput, " myPropName = \"%s\"\;\n", myPropName);
Write2File(orcaInput, " myFilename = \"%s\"\;\n", myFilename);
Write2File(orcaInput, " removeFiles = false\;\n");
Write2File(orcaInput, " DoOptimization = %s\;\n", DoOptimization.GetString());
Write2File(orcaInput, " produceEnGradFile = %s\;\n", produceEnGradFile.GetString());
Write2File(orcaInput, " enGradFilename = \"%s\"\;\n", enGradFilename);
Write2File(orcaInput, "End\n");
closeFile(orcaInput);

(continues on next page)

1210 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

(continued from previous page)

EndIf

# ------------------------------------------------
# 3. Copy the initial XYZ file to the one needed
# for the external optimizer
# -------------------------------------------------
sys_cmd("cp %s %s_Compound_1_EXT.xyz", molecule, baseFilename);

# --------------------------------------------------
# 1. Run the driver ORCA input file that calls the
# External optimizer
# --------------------------------------------------
New_Step

!ExtOpt Opt
*xyzfile &{charge} &{mult} &{baseFilename}_Compound_1_EXT.xyz
%method
ProgExt "./&{driverScriptName}"

End
Step_End

End

Comments

The initial structure should contain some ghost atoms.

7.57.10 Umbrella script

Introduction

This script calculates the potential for the “umbrella effect” in NH_3. In addition it locates the minima and maxima
in the potential surface.

Filename

Umbrella.cmp

SCRIPT

# ----------------------------------------------
# Umbrella coordinate mapping for NH3
# Author: Frank Neese
# ----------------------------------------------
variable JobName = "NH3-umbrella";
variable amin = 50.0;
variable amax = 130.0;
variable nsteps = 21;
Variable energies[21];

Variable angle;
Variable JobStep;
Variable JobStep_m;
variable step;

Variable method = "BP86";
Variable basis = "def2-SVP def2/J";

step = 1.0*(amax-amin)/(nsteps-1);

# Loop over the number of steps
# ----------------------------

(continues on next page)
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for iang from 0 to nsteps-1 do
angle = amin + iang*step;
JobStep = iang+1;
JobStep_m= JobStep-1;
if (iang>0) then
Read_Geom(JobStep_m);
New_step

! &{method} &{basis} TightSCF Opt
%base "&{JobName}.step&{JobStep}"
%geom constraints

{A 1 0 2 &{angle} C}
{A 1 0 3 &{angle} C}
{A 1 0 4 &{angle} C}
end

end

Step_End
else
New_step

! &{method} &{basis} TightSCF Opt
%base "&{JobName}.step&{JobStep}"
%geom constraints

{A 1 0 2 &{angle} C}
{A 1 0 3 &{angle} C}
{A 1 0 4 &{angle} C}
end

end

* int 0 1
N 0 0 0 0.0 0.0 0.0
DA 1 0 0 2.0 0.0 0.0
H 1 2 0 1.06 &{angle} 0.0
H 1 2 3 1.06 &{angle} 120.0
H 1 2 3 1.06 &{angle} 240.0
*

Step_End
endif
energies[iang].readProperty(propertyName="SCF_ENERGY");
print(" index: %3d Angle %6.2lf Energy: %16.12lf Eh\n", iang, angle, energies[iang]);

EndFor

# Print a summary at the end of the calculation
# ---------------------------------------------
print("////////////////////////////////////////////////////////\n");
print("// POTENTIAL ENERGY RESULT\n");
print("////////////////////////////////////////////////////////\n");
variable minimum,maximum;
variable Em,E0,Ep;
variable i0,im,ip;
for iang from 0 to nsteps-1 do

angle = amin + 1.0*iang*step;
JobStep = iang+1;
minimum = 0;
maximum = 0;
i0 = iang;
im = iang-1;
ip = iang+1;
E0 = energies[i0];
Em = E0;
Ep = E0;
if (iang>0 and iang<nsteps-1) then

(continues on next page)
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Em = energies[im];
Ep = energies[ip];

endif
if (E0<Em and E0<Ep) then minimum=1; endif
if (E0>Em and E0>Ep) then maximum=1; endif
if (minimum = 1 ) then
print(" %3d %6.2lf %16.12lf (-)\n",JobStep,angle, E0 );

endif
if (maximum = 1 ) then
print(" %3d %6.2lf %16.12lf (+)\n",JobStep,angle, E0 );

endif
if (minimum=0 and maximum=0) then
print(" %3d %6.2lf %16.12lf \n",JobStep,angle, E0 );

endif
endfor
print("////////////////////////////////////////////////////////\n");

End # end of compound block

7.57.11 Multi reference

Introduction

This is a script that calculates the atomic electron denstities in free atoms and makes a library of them.

Filename

atomDensities.inp

SCRIPT

# FN 07/2024
#
# A compound script to run calculation on free atoms
# in order to generate a library of electron densities
#
%compound

Variable Element = {" ",
"H", "He",
"Li","Be","B" ,"C" ,"N" ,"O" ,"F" ,"Ne"
};

Variable Nact = {" ",
"1" , "0",
"1" ,"0" ,"3" ,"4" ,"5" ,"6" ,"7" ,"0"
};

Variable Norb = {" ",
"1" , "0",
"1" ,"0" ,"4" ,"4" ,"4" ,"4" ,"4" ,"0"
};

Variable Nroots = {" ",
"1" , "0",
"1" ,"0" ,"3" ,"3" ,"1" ,"3" ,"3" ,"0"
};

Variable Charge = {" ",
"0" , "0",
"0" ,"0" ,"0" ,"0" ,"0" ,"0" ,"0" ,"0"
};

(continues on next page)
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Variable Mult = {" ",
"2" , "1",
"2" ,"1" ,"2" ,"3" ,"4" ,"3" ,"2" ,"1"
};

Variable HFTyp = {" ",
"UHF", "RHF

→˓",
"CASSCF","RHF","CASSCF" ,"CASSCF" ,"CASSCF" ,"CASSCF" ,"CASSCF" ,"RHF"
};

Variable el;
for el from 1 to Element.GetSize()-1 do

if (HFTyp[el]="CASSCF") then
New_Step
! cc-pVDZ VeryTightSCF Conv
%base "atom_&{Element[el]}_&{Charge[el]}_&{Mult[el]}"
%casscf nel = &{Nact[el]};

norb = &{Norb[el]};
nroots = &{Nroots[el]};
mult = &{Mult[el]};
end

* xyz &{Charge[el]} &{Mult[el]}
&{Element[el]} 0.0 0.0 0.0
*
Step_end

else
New_Step
! &{HFTyp[el]} cc-pVDZ VeryTightSCF Conv
%base "atom_&{Element[el]}_&{Charge[el]}_&{Mult[el]}"
* xyz &{Charge[el]} &{Mult[el]}
&{Element[el]} 0.0 0.0 0.0
*
Step_end

endif
endfor

endrun;

Comments

Here, it’s interesting to note that depending on the selected atom, the script either performs a CASSCF calculation,
which provides details such as the number of electrons and number of roots, among other parameters, or it carries
out a simple Hartree-Fock calculation.

7.57.12 GoTo

Introduction

This is a brief example demonstrating how the GoTo command can be used in Compound.

Filename

goTo_Example.inp

SCRIPT

# Compound Example on GoTo usage
# Efficient ON/OFF switch

%Compound

(continues on next page)
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Variable switch="OFF";
Variable turnOff, turnOn, loopEnd;
Variable maxIter = 10;
for i from 0 to maxIter do
if (switch="ON") then

GoTo turnOff;
else

GoTo turnOn;
endIf
turnOff:

print("Switch: %s\n", switch);
switch="OFF";
GoTo loopEnd;

turnON:
print("Switch: %s\n", switch);
switch="ON";
GoTo loopEnd;

loopEnd:
EndFor

End

7.58 orca_2json

This utility program supports the exchange of external ORCA data like geometry, orbitals and basisets but also of
internal ORCA data like 1-electron and 2-electron integals with other programs.

7.58.1 Export ORCA data

The program reads information like geometries, basis sets, MOs etc. stored in the .gbw file or other equivalent ones
as .uno, .mp2nat, .qro etc. and calculates integrals to export them in JSON standard output formats. For density
information the .densities file must also be available. The program is called as a standalone via command line.

Syntax:

orca_2json BaseName.gbw -options
or
orca_2json BaseName.mp2nat -options
or
orca_2json BaseName.uno -options

The following ASCII and binary JSON-formats are available as command line options. It is possible to specify
more than one format option.

-json Write ASCII JSON file (default)
-bson Write binary JSON file
-ubjson Write universal binary JSON specification file
-msgpack Write MessagePack file

In addition two more options are availble. The first of them is used to translate a basename.property.txt file to a
corresponding one in JSON format (see Property File).

-property Translate a *.txt property file to a *.json one

Finally, orca_2json has the ability to create a .gbw file from a json file. For this one needs to use the ‘-gbw’ option
(see Import JSON data into ORCA).

-gbw Create a GBW file from a json one
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7.58.2 Configuration file

The data stored in the json file can be configured more individually. Some information like atom information,
geometry and charge are always written in the outputfile (see Basic Information). Other data can be requested via
keywords in a JSON-formatted configuration file that either exists for every ORCA output file or for all files in a
directory. Without these configuration files ALL available data are stored except for the densities and the integrals.
Because of the huge amount of data these are only available when explicitly requested in the configuration file.

You can specify a basename-dependend configuration file

BaseName.json.conf

or a global file used for all requests in a directory.

orca.json.conf

Most keywords in the configuration file can be activated or deactivated with true or false but some keywords like
densities or output formats have more options and require a list of values. If an option is not specifically selected
it is omitted.

Structure of the configuration file:

{
"keyword": true/false,
...
"keyword": true/false,
"keyword": ["option",...."option"]
...

}

Example

{
"MOCoefficients":false,
"BasisSet":false

}

Using the above configuration file in the working directory, orca_2json will not export the molecular coefficients
and the basis set information.

Example

Here is an example configuration file with most available keywords where everything is disabled except for the
basis set information and the specified Integrals, all densities stored in the density file are requested and the output
format should be ascii json and binary json.

{
"MOCoefficients": false,
"Basisset": true,
"1elPropertyIntegrals": ["dipole", "quadrupole", "velocity", "printLinMom", "angular_

→˓momentum", "higherMoment"],
"1elPropertyRelIntegrals": ["dipole", "quadrupole", "angular_momentum"],
"1elIntegrals": ["H", "S", "T", "V", "HMO"],
"1elIntegralsRel": ["H", "S", "T", "V", "HMO"],
"Vaux": false,
"AuxBasisType": "AuxC"
"FullTrafo": false,
"OrbWin": [0,0,0,0,0,0,0,0].
"2elIntegrals": [ "MO_IJKL", "RI_IAV", "RI_IJKL"],
"2elNonRedIntegrals": false,
"2elNonRedRIIntegrals": false,
"MullikenCharge": false,
"LoewdinCharge": false,

(continues on next page)
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"Densities": ["all"], <--- here you specify the names like "scfp" or "scfr" or all
"JSONFormats": ["json", "bson"]

}

7.58.3 Available information

Property File

Beside all information that we will see orca_2json can create, it can also translate the property file of ORCA
(basename.property.txt) to a JSON file. This option gives access to all properties stored in the property file. (For
more information on property file see Property File).

The syntax is:

orca_2json basename -property

Where

basename is the name of the property file without the extension property.txt.

Example

If we use the following ORCA input (with the name test.inp):

!HF
*xyz 0 1

H 0.0 0.0 0.0
H 0.0 0.0 0.8

*

ORCA will create and store on disk, a file named “test.property.txt”. The start of the file will look like this:

*************************************************
******************* ORCA 6.0 *******************
*************************************************
$Calculation_Status

&GeometryIndex 1
&ListStatus OUT
&VERSION [&Type "String"] "6.0"
&PROGNAME [&Type "String"] "LeanSCF"
&STATUS [&Type "String"] "NORMAL TERMINATION"

$End
$Geometry

&GeometryIndex 1
&ListStatus OUT
&NATOMS [&Type "Integer"] 2
&NCORELESSECP [&Type "Integer"] 0
&NGHOSTATOMS [&Type "Integer"] 0
&CartesianCoordinates [&Type "Coordinates", &Dim(2,4), &Units "Bohr"]

H 0.000000000000 0.000000000000 0.000000000000
H 0.000000000000 0.000000000000 1.511780907137

$End
$SCF_Energy

&GeometryIndex 1
&ListStatus OUT
&SCF_ENERGY [&Type "Double"] -1.1271129220233238e+00

$End

Then running orca_2json in the following way:
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orca_2json test -property

ORCA will create a new file on disk, named “test.property.json”. The start of this file will look like this:

{
"Calculation_Status" : {
"PropertyName" : "Calculation_Status",
"GeometryIndex" : 1,
"VERSION" : "6.0" ,
"PROGNAME" : "LeanSCF" ,
"STATUS" : "NORMAL TERMINATION"

},
"Geometry_1" : {
"Geometry" : {
"PropertyName" : "Geometry",
"GeometryIndex" : 1,
"NATOMS" : 2 ,
"NCORELESSECP" : 0 ,
"NGHOSTATOMS" : 0 ,
"Coordinates" : {
"Type": "Cartesians",
"Units": "Bohr",
"Cartesians": [

["H ", 0.000000000000, 0.000000000000, 0.000000000000],
["H ", 0.000000000000, 0.000000000000, 1.511780907137]

]
}

},
"SCF_Energy" : {
"PropertyName" : "SCF_Energy",
"GeometryIndex" : 1,
"SCF_ENERGY" : -1.1271129220233238e+00

},

Basic Information

Some basic information will always be written into the JSON-file as
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per Atom - Coords
- ElementLabel

- ElementNumber

- Idx

- NuclearCharge

per molecule - BaseName
- Charge

- CoordinateUnits

- HFTyp

- Multiplicity

- PointGroup

For example using the following configuration file where we set everything to false:

{
"MOCoefficients": false,
"Basisset": false,
"MullikenCharge": false,
"LoewdinCharge": false,
"JSONFormats": ["json"]

}

will still produce a json file which for the case of a H2 molecule should look like:

{
"Molecule": {
"Atoms": [
{
"Coords": [
0.0,
0.0,
0.0

],
"ElementLabel": "H",
"ElementNumber": 1,
"Idx": 0,
"NuclearCharge": 1.0

},
{
"Coords": [
0.0,
0.0,
0.8

],
"ElementLabel": "H",
"ElementNumber": 1,
"Idx": 1,
"NuclearCharge": 1.0

(continues on next page)
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}
],
"BaseName": "test",
"Charge": 0,
"CoordinateUnits": "Angs",
"HFTyp": "RHF",
"Multiplicity": 1,
"PointGroup": "C1"

},
"ORCA Header": {
"Date": "2024-06-03 00:06:37 +0200",
"Git": "548015a5a0",
"Version": " Program Version 6.0 - CURRENT -\n"

}
}

Densities

orca_2json can also export calculated densities in json format.

Densities - densities as available in the .densities file

Syntax “Densities” : [list of densities]

Where list of densities should be a list of strings with the expected densities.

NOTE By default densities, due to their potential size, are not exported to a json file.

NOTE An empty bracket syntax (“Densities” : []) will cause the program to crash.

NOTE There is the string “All” available where the program will export all available densities.

Electron Integrals

The list of available electron integrals is shown in the next table.

1elIntegrals - 1-electron integrals
1elPropertyIntegrals - 1-electron property integrals
1elIntegralsRel - relativistic 1-electron integrals
1elPropertyRelIntegrals - relativistic 1-electron property integrals
2elIntegrals - two-electron integrals
2elNonRedIntegrals - non-redundant two-electron integrals
2elNonRedRIIntegrals - non-redundant two-electron RI integrals
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1-electron integrals

For 1-electron integrals we use the following notation:

H - one electron matrix
HMO - one electron matrix in MO basis
S - overlap matrix
T - kinetic energy matrix
V - nuclear attraction matrix

Example

{
"1elIntegrals": ["H", "S"],
"JSONFormats": ["json"]

}

will produce a json file were only the H-Matrix and the Overlap matrix are printed (beside the basic information).
Please note that for the one electron relativistic integrals there is a separate variable (see 1-electron relativistic
integrals)

1-electron property integrals

Also available are 1-electron property integrals.

1elPropertyIntegrals - 1-electron property integrals

Currently the following options are valid:

angular_momentum - Angular momentum integrals
dipole - Dipole moment integrals
higherMoment - Octupole moment integrals
quadrupole - Quadrupole moment integrals
velocity - Velocity integrals

Example

{
"1elPropertyIntegrals": ["dipole", "quadrupole"],
"JSONFormats": ["json"]

}
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1-electron relativistic integrals

1-electron relativistic integrals follow the same notation as the corresponding non-relativistic ones (see 1-electron
integrals).

Example

{
"1elIntegralsRel":["H", "T", "V"],
"JSONFormats": ["json"]

}

This example will produce and store in the corresponding json file the X2C-transformed H-Matrix, as well as
the separate potential and kinetic contributions. Note that while the “relativistic” overlap matrix is available for
completeness, in X2C it is identical to the non-relativistic overlap by construction.

1-electron relativistic property integrals

Also available are 1-electron relativistic (X2C) property integrals similar to the non-relativistic ones but with
reduced options.

1elPropertyRelIntegrals - relativistic 1-electron property integrals

Currently the following options are valid:

angular_momentum - Angular momentum integrals
dipole - Dipole moment integrals
quadrupole - Quadrupole moment integrals

Example

{
"1elPropertyRelIntegrals": ["dipole","quadrupole","angular_momentum"]

}

Origin setting

The origin of the electric property is per default the Cartesian origin but also the center of mass and the center of
nuclear charges can be selected. Additionally an arbitrary position can be given as x,y,z coordinates when ori_el =
3 is chosen. Currently the following options are valid:
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ori_el - 0 - Cartesian origin
- 1 - center of mass

- 2 - center of nuclear charge

- 3 - arbitrary position

ori_el_xyz - position of the origin(x,y,z)

Example

{
"1elPropertyIntegrals": ["dipole","quadrupole"],
"ori_el": 3,
"ori_el_xyz": [0.0, 1.0, 1.0]

}

2-electron integrals

ORCA_2json can produce and write on disk three main categories of 2-electron integrals.

1. Two-electron integrals in atomic basis (2-electron integrals in AO basis)

2. Two-electron integrals in molecular basis (2-electron integrals in MO basis)

3. Two-electron integrals using the resolution of identity approximation (RI). (RI 2-electron integrals)

2-electron integrals in AO basis

In atomic basis the two-electron integrals can be saved in Coulomb order or in Exchange order. The keywords for
the two options are shown in the next table.

AO_PQRS - AO basis integrals in Coulomb order
AO_PRQS - AO basis integrals in Exchange order

2-electron integrals in MO basis

In molecular basis, ORCA follows the accepted notation where by I,J,K and L we specify “internal” orbitals, mean-
ing occupied in the reference wavefunction while by A,B,C and D we specify “external” orbitals, meaning orbitals
that are empty in the reference wavefunction. With P,Q,R and S we specify all possible orbitals, meaning both
“internal” and “external”. The available keywords in “orca_2json” for the two-electron integrals in the molecular
basis are the ones shown in the table below:
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MO_IJKL - Coulomb 0-external
MO_IJKA - Coulomb 1-external
MO_IJAB - Coulomb 2-external
MO_IABC - Coulomb 3-external
MO_ABCD - Coulomb 4-external
MO_PQRS - Coulomb ALL integrals
MO_IKJL - Exchange 0-external
MO_IKJA - Exchange 1-external
MO_IAJB - Exchange 2-external
MO_IBAC - Exchange 3-external
MO_ACBD - Exchange 4-external
MO_PRQS - Exchange ALL integrals

Example

{
"2elIntegrals":["MO_IJKL", "MO_ABCD"],
"Thresh": 1e-8

}

RI 2-electron integrals

Using the Resolution of Identity (RI) one can create the integrals in a more efficient way. There are two main
categories of RI integrals: the 3-index integrals, where only only half of the transformation has taken place, and
the 4-index integrlas where the integrals are totally transformed in the molecular basis. The notation of the integrals
follows the one we just described for the two-electron integrals in the molecular basis.

RI_IJV - RI 3-index 0-external
RI_IAV - RI 3-index 1-external
RI_ABV - RI 3-index 2-external
RI_IJKL - RI 4-index Coulomb 0-external
RI_IJKA - RI 4-index Coulomb 1-external
RI_IJAB - RI 4-index Coulomb 2-external
RI_IABC - RI 4-index Coulomb 3-external
RI_ABCD - RI 4-index Coulomb 4-external
RI_IKJL - RI 4-index Exchange 0-external
RI_IKJA - RI 4-index Exchange 1-external
RI_IAJB - RI 4-index Exchange 2-external
RI_IBAC - RI 4-index Exchange 3-external
RI_ACBD - RI 4-index Exchange 4-external

In addition to the integrals in case of RI integrals also the used RI Metric is available through the option Vaux:

Vaux - true/false

Example
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{
"2elIntegrals":["RI_IJKL", "RI_IJV"],
"Vaux":true

}

Full Integral Transformation

The full transformation integrals can be selected via the FullTrafo keyword.

FullTrafo - true/false

More 2-electron integrals

Also the non-redundant 2-electron integrals are available for the RI and the nonRI case. Therefore the options
2elNonRedIntegrals or 2elNonRedRIIntegrals must be specified.

2elNonRedIntegrals - true/false
2elNonRedRIIntegrals - true/false

Orbital Windows, AuxBasisType and Threshold

The orbital window can either be selected automatically by the transformation routine or given by the user via the
OrbWin keyword. The internal and external space (i0,i1,a0,a1) is defined via an integer list.

for example:

OrbWin - [0,8,9,15]
- [0,12,13,30,0,12,13,30]

The default AUX basis type is AuxC but can be changed with the keyword AuxBasisType. Please keep in mind
that only those basis types used during the ORCA run can be selected.

AuxBasisType - AuxJ
- AuxJK

- AuxC

To reduce the number of the integrals the keyword Thresh can be used to decrease the selected integrals to save disk
space. This effects ONLY the printing and not the accuracy of the generated integrals. The default print threshold
is 1.e-15.
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Thresh - printout threshold (default 1.e-15)

Example

{
"OrbWin": [0,7,8,85,0,0,0,0],
"Thresh": 1e-8,
"AuxBasisType": "AuxC",
"Vaux": true,
"2elIntegrals": ["RI_IJKL"]

}

TDDFT amplitude data (CIS/RPA)

The TDDFT amplitudes and root informations can be requested (no triplet information yet). The available options
are:

CIS - TDDFT amplitudes
CISNRoots - informations of all roots
CISROOT - List of roots

Example

{
"CIS": true,
"CISNRoots": false,
"CISRoot": [1,4,7,12]

}

Example

{
"CIS": true,
"CISNRoots": true

}

JSON Format

The JSON Format that is created can also be defined in the configuration file through the JSONFormats variable.

JSONFormats - JSON output format

The available JSON formats are:
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json - ASCII JSON format
bson - binary JSON format
ubjson - universal binary json format
msgpck - MessagePack format

Example

{
"JSONFormats":["json","bson","ubjson","msgpck"]

}

MO Coefficients

MOCoefficients - molecule orbital information (true\false)

Example

{
"MOCoefficients": true

}

7.58.4 Import JSON data into ORCA

Some information like geometry, basis set and Molecular orbitals stored in the json format written by orca_2json
can be used to create a new gbw-file to be specified as an orbital file in the orca input. The program is called as a
standalone via command line.

orca_2json BaseName.json -gbw
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Basic Information

In order to create a functional gbw-file the following information must be provided:

per Atom - Basis
- Coords

- ElementNumber

- NuclearCharge

per molecule - Charge
- CoordinateUnits

- HFTyp

- Multiplicity

- MolecularOrbitals

NOTE

Please keep in mind that MolecularOrbitals is a composite of 2 different components, namely “EnergyUnit” and
“MOs”. Then “MOs” contains “MOCoefficients”, “Occupancy”, “OrbitalEnergy”, “OrbitalSymLabel”* and
“OrbitalSymmetry”*.

Example

The following file (let’s call it filename.json) is a json file for H_2 molecule with STO-3G basis set.

{
"Molecule": {
"Atoms": [
{"Basis": [

{"Coefficients": [ 0.1543289707029839,
0.5353281424384732,0.44463454202535485],

"Exponents": [3.42525091,0.62391373,0.1688554],
"Shell": "s"}],

"Coords": [0.0,0.0,0.0],
"ElementNumber": 1,
"NuclearCharge": 1.0},

{"Basis": [
{"Coefficients": [0.1543289707029839,

0.5353281424384732,0.44463454202535485],
"Exponents": [3.42525091,0.62391373,0.1688554],
"Shell": "s"}],

"Coords": [0.0,0.0,0.8],
"ElementNumber": 1,
"NuclearCharge": 1.0}],

"Charge": 0,
"CoordinateUnits": "Angs",
"HFTyp": "RHF",
"MolecularOrbitals": {
"EnergyUnit": "Eh",
"MOs": [{"MOCoefficients": [

-0.5554171364661243,-0.5554171364661241],
"Occupancy": 2.0,

(continues on next page)
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(continued from previous page)

"OrbitalEnergy": -0.5544958795933514,
"OrbitalSymLabel": "A",
"OrbitalSymmetry": 0},

{"MOCoefficients": [
-1.1482994800696493,1.1482994800696493],

"Occupancy": 0.0,
"OrbitalEnergy": 0.6126180830925017,
"OrbitalSymLabel": "A",
"OrbitalSymmetry": 0}]},

"Multiplicity": 1}
}

running then the command

orca_2json filename.json -gbw

should create a gbw file that ORCA can read.

Definition of the real solid harmonic Gaussian orbitals

When integrals over real solid harmonic Gaussian orbitals are issued into a JSON file, the precise definition of
these orbitals becomes important. ORCA uses its own peculiar conventions for the arrangement and the phases of
the individual components of the orbital shells.

The definitions of the angular parts of all shell components up to angular momentum 𝑘 (ℓ = 8) are documented
below. These correspond to the real solid harmonics 𝑆ℓ,𝑚(𝑥, 𝑦, 𝑧) that are normalized the following way:∫︁ 𝜋

0

sin𝜗 𝑑𝜗

∫︁ 𝜋

−𝜋
𝑑𝜙 𝑟−2ℓ𝑆2

ℓ,𝑚(𝑥, 𝑦, 𝑧) = 1

𝑅ℓ(𝑟) is the common radial part of a shell with angular momentum ℓ that consists of a specific basis set dependent
linear combination of Gaussian primitives. It is normalized independently:∫︁ ∞

0

𝑟2ℓ+2𝑅2
ℓ (𝑟) 𝑑𝑟 = 1

The factors 𝑟2 and sin𝜗 in these integrals arise from the volume element in spherical polar coordinates:

𝑥 = 𝑟 sin𝜗 cos𝜙

𝑦 = 𝑟 sin𝜗 sin𝜙

𝑧 = 𝑟 cos𝜗

𝑑𝑥 𝑑𝑦 𝑑𝑧 = 𝑟2 sin𝜗 𝑑𝑟 𝑑𝜗 𝑑𝜙

Angular momentum 𝑠 (ℓ = 0)

𝑠 =
1

2
√
𝜋
𝑅𝑠(𝑟)
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Angular momentum 𝑝 (ℓ = 1)

𝑁𝑝 =
1

2

√︂
3

𝜋

𝑝(0) = 𝑝0 = 𝑁𝑝 𝑧 𝑅𝑝(𝑟)

𝑝(1) = 𝑝+1 = 𝑁𝑝 𝑥𝑅𝑝(𝑟)

𝑝(2) = 𝑝−1 = 𝑁𝑝 𝑦 𝑅𝑝(𝑟)

Angular momentum 𝑑 (ℓ = 2)

𝑁𝑑 =
1

2

√︂
15

𝜋

𝑑(0) = 𝑑0 =

√
3

6
𝑁𝑑
(︀
3𝑧2 − 𝑟2

)︀
𝑅𝑑(𝑟)

𝑑(1) = 𝑑+1 = 𝑁𝑑 𝑥𝑧 𝑅𝑑(𝑟)

𝑑(2) = 𝑑−1 = 𝑁𝑑 𝑦𝑧 𝑅𝑑(𝑟)

𝑑(3) = 𝑑+2 = 𝑁𝑑
𝑥2 − 𝑦2

2
𝑅𝑑(𝑟)

𝑑(4) = 𝑑−2 = 𝑁𝑑 𝑥𝑦 𝑅𝑑(𝑟)

Angular momentum 𝑓 (ℓ = 3)

𝑁𝑓 =
1

2

√︂
105

𝜋

𝑓 (0) = 𝑓0 =

√
15

30
𝑁𝑓 𝑧

(︀
5𝑧2 − 3𝑟2

)︀
𝑅𝑓 (𝑟)

𝑓 (1) = 𝑓+1 =

√
10

20
𝑁𝑓 𝑥

(︀
5𝑧2 − 𝑟2

)︀
𝑅𝑓 (𝑟)

𝑓 (2) = 𝑓−1 =

√
10

20
𝑁𝑓 𝑦

(︀
5𝑧2 − 𝑟2

)︀
𝑅𝑓 (𝑟)

𝑓 (3) = 𝑓+2 =
1

2
𝑁𝑓
(︀
𝑥2 − 𝑦2

)︀
𝑧 𝑅𝑓 (𝑟)

𝑓 (4) = 𝑓−2 = 𝑁𝑓 𝑥𝑦𝑧 𝑅𝑓 (𝑟)

𝑓 (5) = 𝑓+3 = −
√
6

12
𝑁𝑓 𝑥

(︀
𝑥2 − 3𝑦2

)︀
𝑅𝑓 (𝑟)

𝑓 (6) = 𝑓−3 = −
√
6

12
𝑁𝑓 𝑦

(︀
3𝑥2 − 𝑦2

)︀
𝑅𝑓 (𝑟)
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Angular momentum 𝑔 (ℓ = 4)

𝑁𝑔 =
3

2

√︂
35

𝜋

𝑔(0) = 𝑔0 =

√
35

280
𝑁𝑔
(︀
35𝑧4 − 30𝑧2𝑟2 + 3𝑟4

)︀
𝑅𝑔(𝑟)

𝑔(1) = 𝑔+1 =

√
14

28
𝑁𝑔 𝑥𝑧

(︀
7𝑧2 − 3𝑟2

)︀
𝑅𝑔(𝑟)

𝑔(2) = 𝑔−1 =

√
14

28
𝑁𝑔 𝑦𝑧

(︀
7𝑧2 − 3𝑟2

)︀
𝑅𝑔(𝑟)

𝑔(3) = 𝑔+2 =

√
7

28
𝑁𝑔
(︀
𝑥2 − 𝑦2

)︀ (︀
7𝑧2 − 𝑟2

)︀
𝑅𝑔(𝑟)

𝑔(4) = 𝑔−2 =

√
7

14
𝑁𝑔 𝑥𝑦

(︀
7𝑧2 − 𝑟2

)︀
𝑅𝑔(𝑟)

𝑔(5) = 𝑔+3 = −
√
2

4
𝑁𝑔 𝑥

(︀
𝑥2 − 3𝑦2

)︀
𝑧 𝑅𝑔(𝑟)

𝑔(6) = 𝑔−3 = −
√
2

4
𝑁𝑔 𝑦

(︀
3𝑥2 − 𝑦2

)︀
𝑧 𝑅𝑔(𝑟)

𝑔(7) = 𝑔+4 = −1

8
𝑁𝑔
(︀
𝑥4 − 6𝑥2𝑦2 + 𝑦4

)︀
𝑅𝑔(𝑟)

𝑔(8) = 𝑔−4 = −1

2
𝑁𝑔 𝑥𝑦

(︀
𝑥2 − 𝑦2

)︀
𝑅𝑔(𝑟)

Angular momentum ℎ (ℓ = 5)

𝑁ℎ =
1

2

√︂
11

𝜋

ℎ(0) = ℎ0 =
1

8
𝑁ℎ 𝑧

(︀
63𝑧4 − 70𝑧2𝑟2 + 15𝑟4

)︀
𝑅ℎ(𝑟)

ℎ(1) = ℎ+1 =

√
15

8
𝑁ℎ 𝑥

(︀
21𝑧4 − 14𝑧2𝑟2 + 𝑟4

)︀
𝑅ℎ(𝑟)

ℎ(2) = ℎ−1 =

√
15

8
𝑁ℎ 𝑦

(︀
21𝑧4 − 14𝑧2𝑟2 + 𝑟4

)︀
𝑅ℎ(𝑟)

ℎ(3) = ℎ+2 =

√
105

4
𝑁ℎ
(︀
𝑥2 − 𝑦2

)︀
𝑧
(︀
3𝑧2 − 𝑟2

)︀
𝑅ℎ(𝑟)

ℎ(4) = ℎ−2 =

√
105

2
𝑁ℎ 𝑥𝑦𝑧

(︀
3𝑧2 − 𝑟2

)︀
𝑅ℎ(𝑟)

ℎ(5) = ℎ+3 = −
√
70

16
𝑁ℎ 𝑥

(︀
𝑥2 − 3𝑦2

)︀ (︀
9𝑧2 − 𝑟2

)︀
𝑅ℎ(𝑟)

ℎ(6) = ℎ−3 = −
√
70

16
𝑁ℎ 𝑦

(︀
3𝑥2 − 𝑦2

)︀ (︀
9𝑧2 − 𝑟2

)︀
𝑅ℎ(𝑟)

ℎ(7) = ℎ+4 = −3
√
35

8
𝑁ℎ
(︀
𝑥4 − 6𝑥2𝑦2 + 𝑦4

)︀
𝑧 𝑅ℎ(𝑟)

ℎ(8) = ℎ−4 = −3
√
35

2
𝑁ℎ 𝑥𝑦

(︀
𝑥2 − 𝑦2

)︀
𝑧 𝑅ℎ(𝑟)

ℎ(9) = ℎ+5 =
3
√
14

16
𝑁ℎ 𝑥

(︀
𝑥4 − 10𝑥2𝑦2 + 5𝑦4

)︀
𝑅ℎ(𝑟)

ℎ(10) = ℎ−5 =
3
√
14

16
𝑁ℎ 𝑦

(︀
5𝑥4 − 10𝑥2𝑦2 + 𝑦4

)︀
𝑅ℎ(𝑟)
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Angular momentum 𝑖 (ℓ = 6)

𝑁𝑖 =
1

2

√︂
13

𝜋

𝑖(0) = 𝑖0 =
1

16
𝑁𝑖
(︀
231𝑧6 − 315𝑧4𝑟2 + 105𝑧2𝑟4 − 5𝑟6

)︀
𝑅𝑖(𝑟)

𝑖(1) = 𝑖+1 =

√
21

8
𝑁𝑖 𝑥𝑧

(︀
33𝑧4 − 30𝑧2𝑟2 + 5𝑟4

)︀
𝑅𝑖(𝑟)

𝑖(2) = 𝑖−1 =

√
21

8
𝑁𝑖 𝑦𝑧

(︀
33𝑧4 − 30𝑧2𝑟2 + 5𝑟4

)︀
𝑅𝑖(𝑟)

𝑖(3) = 𝑖+2 =

√
210

32
𝑁𝑖
(︀
𝑥2 − 𝑦2

)︀ (︀
33𝑧4 − 18𝑧2𝑟2 + 𝑟4

)︀
𝑅𝑖(𝑟)

𝑖(4) = 𝑖−2 =

√
210

16
𝑁𝑖 𝑥𝑦

(︀
33𝑧4 − 18𝑧2𝑟2 + 𝑟4

)︀
𝑅𝑖(𝑟)

𝑖(5) = 𝑖+3 = −
√
210

16
𝑁𝑖 𝑥

(︀
𝑥2 − 3𝑦2

)︀
𝑧
(︀
11𝑧2 − 3𝑟2

)︀
𝑅𝑖(𝑟)

𝑖(6) = 𝑖−3 = −
√
210

16
𝑁𝑖 𝑦

(︀
3𝑥2 − 𝑦2

)︀
𝑧
(︀
11𝑧2 − 3𝑟2

)︀
𝑅𝑖(𝑟)

𝑖(7) = 𝑖+4 = −3
√
7

16
𝑁𝑖
(︀
𝑥4 − 6𝑥2𝑦2 + 𝑦4

)︀ (︀
11𝑧2 − 𝑟2

)︀
𝑅𝑖(𝑟)

𝑖(8) = 𝑖−4 = −3
√
7

4
𝑁𝑖 𝑥𝑦

(︀
𝑥2 − 𝑦2

)︀ (︀
11𝑧2 − 𝑟2

)︀
𝑅𝑖(𝑟)

𝑖(9) = 𝑖+5 =
3
√
154

16
𝑁𝑖 𝑥

(︀
𝑥4 − 10𝑥2𝑦2 + 5𝑦4

)︀
𝑧 𝑅𝑖(𝑟)

𝑖(10) = 𝑖−5 =
3
√
154

16
𝑁𝑖 𝑦

(︀
5𝑥4 − 10𝑥2𝑦2 + 𝑦4

)︀
𝑧 𝑅𝑖(𝑟)

𝑖(11) = 𝑖+6 =

√
462

32
𝑁𝑖
(︀
𝑥2 − 𝑦2

)︀ (︀
𝑥4 − 14𝑥2𝑦2 + 𝑦4

)︀
𝑅𝑖(𝑟)

𝑖(12) = 𝑖−6 =

√
462

16
𝑁𝑖 𝑥𝑦

(︀
3𝑥4 − 10𝑥2𝑦2 + 3𝑦4

)︀
𝑅𝑖(𝑟)
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Angular momentum 𝑗 (ℓ = 7)

𝑁𝑗 =
1

2

√︂
15

𝜋

𝑗(0) = 𝑗0 =
1

16
𝑁𝑗 𝑧

(︀
429𝑧6 − 693𝑧4𝑟2 + 315𝑧2𝑟4 − 35𝑟6

)︀
𝑅𝑗(𝑟)

𝑗(1) = 𝑗+1 =

√
7

32
𝑁𝑗 𝑥

(︀
429𝑧6 − 495𝑧4𝑟2 + 135𝑧2𝑟4 − 5𝑟6

)︀
𝑅𝑗(𝑟)

𝑗(2) = 𝑗−1 =

√
7

32
𝑁𝑗 𝑦

(︀
429𝑧6 − 495𝑧4𝑟2 + 135𝑧2𝑟4 − 5𝑟6

)︀
𝑅𝑗(𝑟)

𝑗(3) = 𝑗+2 =

√
42

32
𝑁𝑗
(︀
𝑥2 − 𝑦2

)︀
𝑧
(︀
143𝑧4 − 110𝑧2𝑟2 + 15𝑟4

)︀
𝑅𝑗(𝑟)

𝑗(4) = 𝑗−2 =

√
42

16
𝑁𝑗 𝑥𝑦𝑧

(︀
143𝑧4 − 110𝑧2𝑟2 + 15𝑟4

)︀
𝑅𝑗(𝑟)

𝑗(5) = 𝑗+3 = −
√
21

32
𝑁𝑗 𝑥

(︀
𝑥2 − 3𝑦2

)︀ (︀
143𝑧4 − 66𝑧2𝑟2 + 3𝑟4

)︀
𝑅𝑗(𝑟)

𝑗(6) = 𝑗−3 = −
√
21

32
𝑁𝑗 𝑦

(︀
3𝑥2 − 𝑦2

)︀ (︀
143𝑧4 − 66𝑧2𝑟2 + 3𝑟4

)︀
𝑅𝑗(𝑟)

𝑗(7) = 𝑗+4 = −
√
231

16
𝑁𝑗
(︀
𝑥4 − 6𝑥2𝑦2 + 𝑦4

)︀
𝑧
(︀
13𝑧2 − 3𝑟2

)︀
𝑅𝑗(𝑟)

𝑗(8) = 𝑗−4 = −
√
231

4
𝑁𝑗 𝑥𝑦

(︀
𝑥2 − 𝑦2

)︀
𝑧
(︀
13𝑧2 − 3𝑟2

)︀
𝑅𝑗(𝑟)

𝑗(9) = 𝑗+5 =

√
231

32
𝑁𝑗 𝑥

(︀
𝑥4 − 10𝑥2𝑦2 + 5𝑦4

)︀ (︀
13𝑧2 − 𝑟2

)︀
𝑅𝑗(𝑟)

𝑗(10) = 𝑗−5 =

√
231

32
𝑁𝑗 𝑦

(︀
5𝑥4 − 10𝑥2𝑦2 + 𝑦4

)︀ (︀
13𝑧2 − 𝑟2

)︀
𝑅𝑗(𝑟)

𝑗(11) = 𝑗+6 =

√
6006

32
𝑁𝑗
(︀
𝑥2 − 𝑦2

)︀ (︀
𝑥4 − 14𝑥2𝑦2 + 𝑦4

)︀
𝑧 𝑅𝑗(𝑟)

𝑗(12) = 𝑗−6 =

√
6006

16
𝑁𝑗 𝑥𝑦

(︀
3𝑥2 − 𝑦2

)︀ (︀
𝑥2 − 3𝑦2

)︀
𝑧 𝑅𝑗(𝑟)

𝑗(13) = 𝑗+7 = −
√
429

32
𝑁𝑗 𝑥

(︀
𝑥6 − 21𝑥4𝑦2 + 35𝑥2𝑦4 − 7𝑦6

)︀
𝑅𝑗(𝑟)

𝑗(14) = 𝑗−7 = −
√
429

32
𝑁𝑗 𝑦

(︀
7𝑥6 − 35𝑥4𝑦2 + 21𝑥2𝑦4 − 𝑦6

)︀
𝑅𝑗(𝑟)
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Angular momentum 𝑘 (ℓ = 8)

𝑁𝑘 =
1

2

√︂
17

𝜋

𝑘(0) = 𝑘0 =
1

128
𝑁𝑘
(︀
6435𝑧8 − 12012𝑧6𝑟2 + 6930𝑧4𝑟4 − 1260𝑧2𝑟6 + 35𝑟8

)︀
𝑅𝑘(𝑟)

𝑘(1) = 𝑘+1 =
3

32
𝑁𝑘 𝑥𝑧

(︀
715𝑧6 − 1001𝑧4𝑟2 + 385𝑧2𝑟4 − 35𝑟6

)︀
𝑅𝑘(𝑟)

𝑘(2) = 𝑘−1 =
3

32
𝑁𝑘 𝑦𝑧

(︀
715𝑧6 − 1001𝑧4𝑟2 + 385𝑧2𝑟4 − 35𝑟6

)︀
𝑅𝑘(𝑟)

𝑘(3) = 𝑘+2 =
3
√
70

64
𝑁𝑘
(︀
𝑥2 − 𝑦2

)︀ (︀
143𝑧6 − 143𝑧4𝑟2 + 33𝑧2𝑟4 − 𝑟6

)︀
𝑅𝑘(𝑟)

𝑘(4) = 𝑘−2 =
3
√
70

32
𝑁𝑘 𝑥𝑦

(︀
143𝑧6 − 143𝑧4𝑟2 + 33𝑧2𝑟4 − 𝑟6

)︀
𝑅𝑘(𝑟)

𝑘(5) = 𝑘+3 = −
√
1155

32
𝑁𝑘 𝑥

(︀
𝑥2 − 3𝑦2

)︀
𝑧
(︀
39𝑧4 − 26𝑧2𝑟2 + 3𝑟4

)︀
𝑅𝑘(𝑟)

𝑘(6) = 𝑘−3 = −
√
1155

32
𝑁𝑘 𝑦

(︀
3𝑥2 − 𝑦2

)︀
𝑧
(︀
39𝑧4 − 26𝑧2𝑟2 + 3𝑟4

)︀
𝑅𝑘(𝑟)

𝑘(7) = 𝑘+4 = −3
√
77

64
𝑁𝑘

(︀
𝑥4 − 6𝑥2𝑦2 + 𝑦4

)︀ (︀
65𝑧4 − 26𝑧2𝑟2 + 𝑟4

)︀
𝑅𝑘(𝑟)

𝑘(8) = 𝑘−4 = −3
√
77

16
𝑁𝑘 𝑥𝑦

(︀
𝑥2 − 𝑦2

)︀ (︀
65𝑧4 − 26𝑧2𝑟2 + 𝑟4

)︀
𝑅𝑘(𝑟)

𝑘(9) = 𝑘+5 =
3
√
1001

32
𝑁𝑘 𝑥

(︀
𝑥4 − 10𝑥2𝑦2 + 5𝑦4

)︀
𝑧
(︀
5𝑧2 − 𝑟2

)︀
𝑅𝑘(𝑟)

𝑘(10) = 𝑘−5 =
3
√
1001

32
𝑁𝑘 𝑦

(︀
5𝑥4 − 10𝑥2𝑦2 + 𝑦4

)︀
𝑧
(︀
5𝑧2 − 𝑟2

)︀
𝑅𝑘(𝑟)

𝑘(11) = 𝑘+6 =

√
858

64
𝑁𝑘
(︀
𝑥2 − 𝑦2

)︀ (︀
𝑥4 − 14𝑥2𝑦2 + 𝑦4

)︀ (︀
15𝑧2 − 𝑟2

)︀
𝑅𝑘(𝑟)

𝑘(12) = 𝑘−6 =

√
858

32
𝑁𝑘 𝑥𝑦

(︀
𝑥2 − 3𝑦2

)︀ (︀
3𝑥2 − 𝑦2

)︀ (︀
15𝑧2 − 𝑟2

)︀
𝑅𝑘(𝑟)

𝑘(13) = 𝑘+7 = −3
√
715

32
𝑁𝑘 𝑥

(︀
𝑥6 − 21𝑥4𝑦2 + 35𝑥2𝑦4 − 7𝑦6

)︀
𝑧 𝑅𝑘(𝑟)

𝑘(14) = 𝑘−7 = −3
√
715

32
𝑁𝑘 𝑦

(︀
7𝑥6 − 35𝑥4𝑦2 + 21𝑥2𝑦4 − 𝑦6

)︀
𝑧 𝑅𝑘(𝑟)

𝑘(15) = 𝑘+8 = −3
√
715

128
𝑁𝑘
(︀
𝑥8 − 28𝑥6𝑦2 + 70𝑥4𝑦4 − 28𝑥2𝑦6 + 𝑦8

)︀
𝑅𝑘(𝑟)

𝑘(16) = 𝑘−8 = −3
√
715

16
𝑁𝑘 𝑥𝑦

(︀
𝑥2 − 𝑦2

)︀ (︀
𝑥4 − 6𝑥2𝑦2 + 𝑦4

)︀
𝑅𝑘(𝑟)

7.59 Property File

One of the files that ORCA produces, during a calculation, is the property file. The name of the file is base-
name.property.txt, where basename is the basename of the input file. As we will see later ORCA can also produce
the property file with the extension .json.

Property file has mainly two usages in ORCA. The first usage is to work as basis for the Compound scripting
language. Compound reads all its information concerning properties through the property file and not through
parsing of the ORCA output. The second usage of property file is to make it easier for other programs, or potential
GUIs, to create interfaces with ORCA.

The advantage of Property file compared to the normal ORCA output is that it’s syntax is well defined and so it is
easier to parse it.

1234 Chapter 7. Detailed Documentation



ORCA Manual, Release 6.0

7.59.1 txt format

After any ORCA calculation a property file is created with the extension .property.txt. The file is a text file and one
can read it and edit it with any available text editor. Below we will analyze the syntax of the file.

The file always starts with the following three lines:

*************************************************
******************* ORCA 6.0.x ******************
*************************************************

where, obviously the version of ORCA changes.

Then, the file consists of a list of properties. Each property starts with the symbol “$” followed by the name of the
property and ends with the symbol “$” followed by “End”.

For example:

$SCF_Energy
&GeometryIndex 1
&ListStatus OUT
&SCF_ENERGY [&Type "Double"] -1.1271129230772137e+00

$End

Each property consists of components. Each component starts with the symbol “&” and has not ending symbol.

For example:

&SCF_ENERGY [&Type "Double"] -1.1271129230772137e+00

Before proceeding to details about the property specific components, there are two components that exist in every
property and always in the same order.

The first one is the GeometryIndex component. The syntax for this is quite simple, the normal “&” component
start symbol, followed by “GeometryIndex” and then an integer.

For example:

&GeometryIndex 1

This is an easy way to know the geometry that the current property belongs to.

Then for all properties follows the ListStatus component. The syntax for this component is again the “&” component
start symbol, followed by “ListStatus” follow by one the following 5 options:

1. “IN” when the property is inside a list properties

2. “OUT” when the property is not inside a list of properties

3. “FIRST” when the property is the first in a list of properties

4. “LAST” when the property is the last in a list of properties

5. “UNIQUE” when the property is the only one in a list of properties

For example:

&ListStatus OUT

Then for each property follows a series of components. Each component has the following syntax:

First the start of component symbol “&”.

Then follows the name of the component.

Then a bracket opens with various bracket information about the component. For details on the syntax of the
bracket information please check Bracket information.
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After the bracket there are different options.

If the type is a “Double” or an “Integer” then a number of the appropriate type is expected.

For example:

&NATOMS [&Type "Integer"] 2

If the type is a “String” then a string is expected starting with quotation marks.

For example:

&PROGNAME [&Type "String"] "ProgMDCI"

Finally if the type is a kind or Array then, unless there is a comment, that is enclosed inside quotation marks, an
array is written starting from the next line. We should note here that after the column header there is an empty line.
In addition there is always a first column with an integer giving just the row of the array.

For example:

&DIPOLETOTAL [&Type "ArrayOfDoubles", &Dim (3,1)] "Total"
0

0 0.0000000000000000e+00
1 0.0000000000000000e+00
2 -5.1833121128553384e-12

Bracket information

Bracket information is a list of information separated with ‘,’. The first and most important bracket component is
the “Type”. Type can be one of the following:

1. “Double”

2. “Integer

3. “Boolean”

4. “String”

5. “ArrayOfDoubles”

6. “ArrayOfIntegers”

7. “ArrayOfBooleans”

8. “MixedMatrix”

9. “Coordinates”

For example:

&NATOMS [&Type "Integer"] 2

Then in case the “Type” is a kind of array the bracket must contain the dimension of the array, using the “Dim”
component.

For example:

&ATNO [&Type "ArrayOfIntegers", &Dim (2,1)]
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7.59.2 JSON format

The property file can be also produced in a JSON format. Internally this happens through transformation of the txt
format to JSON format. There are two ways to create a JSON property file.

The first way is through the normal ORCA input using the WriteJSONPropertyFile command.

%Method
WriteJSONPropertyfile True

End

this will create a basename.property.txt and in addition a basename.property.json file.

The second way is through the ORCA_2JSON command. For this one first has to run a normal ORCA input, that
will create a basename.property.txt file, and then use the command:

orca_2json basename property

where basename is the name of the ORCA input.

Property File in JSON format is readable by any JSON library.
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CHAPTER

EIGHT

SOME TIPS AND TRICKS

8.1 Input

For calculations on open-shell systems we recommend to use the keywords !UNO !UCO in the input line. This
will generate quasi-restricted molecular orbitals QRO, unrestricted natural spin-orbitals UNSO, unrestricted natural
orbitals UNO and unrestricted corresponding orbitals UCO. Moreover, it will print the UCO overlaps in the output,
which can provide very clear information about the spin-coupling in the system. Below an example of the input
and section of the output is provided.

!B3LYP def2-SVP UNO UCO TightSCF

The UCO overlap section in the output will look like:

***UHF Corresponding Orbitals were saved in MyJob.uco***

----------------------
Orbital Overlap(*)
----------------------
.
.
.
96: 0.99968
97: 0.99955
98: 0.99947
99: 0.99910
100: 0.99873
101: 0.99563
102: 0.74329
103: 0.00000

The overlap corresponds to a value usually less than 0.85 denotes a spin-coupled pair. Whereas, values close to
1.00 and 0.00 refers to the doubly occupied and singly occupied orbitals respectively.

8.2 Cost versus Accuracy

A difficult but important subject in electronic structure theory is to balance the price/accuracy ratio of the calcula-
tions. This ratio is governed by: (a) the method used, (b) the basis set used and (c) the cutoffs and tolerances used.
There are certainly differing opinions among scientists and I merely quote a few general, subjective points:

• Calculations with minimal basis sets are always unreliable and are only good for explorations. This is also
true for small split-valence basis sets like 3-21G, 3-21GSP and perhaps also 4-22GSP. These basis sets are
significantly more reliable than their minimal basis counterparts but are not capable of delivering quantita-
tively reliable results. They may, however, be the only choice if very large molecules are targeted.

• In our own research we almost exclusively use the basis sets of the Karlsruhe group for non-relativistic
calculations. They have been updated to the “def2” set that is more consistent than the older basis sets.
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• Def2-SV(P) is the smallest and computationally efficient split-valence basis set and is largely identical to the
old SV(P), except for the transition metals which have more consistent polarization sets.

• Def2-TZVP is different from the old TZVP. It has been realized that if one invests into an accurate triple-
zeta description of the valence region it makes limited sense to only employ a single polarization function.
The accuracy is then limited by the polarization set and is not much better than what one gets from SV(P).
Hence, def2-TZVP contains a single p-set for hydrogens but is otherwise very similar to the old TZVPP
basis set, e.g. it contains 2d1f polarization for main group elements and much more extensive polarization
sets for transition metals. The highest polarization function (f for main group) does add substantially to the
computational effort. Hence, we often use def2-TZVP without the f polarization function. In order to do
that one can use the keyword def2-TZVP(-f). Together with RI or RIJCOSX this is still computationally
economic enough for most studies.

• Def2-TZVPP is a fully consistent triple-zeta basis set that provides excellent accuracy for SCF calculations
(HF and DFT) and is still pretty good for correlated calculations. It is a good basis set to provide final single
point energies.

• Def2-QZVPP is a high accuracy basis set for all kinds of calculations. It provides SCF energies near the
basis set limit and correlation energies that are also excellent. It is computationally expensive but with RI
and RIJCOSX in conjunction with parallelization it can often still be applied for final single-point energy
calculations. In conjunction with such large basis sets one should also increase the accuracy of the integra-
tion grids in DFT and RIJCOSX — it would be a shame to limit the accuracy of otherwise very accurate
calculations by numerical noise due to the grid.

• Correlation consistent basis sets provide good correlation energies but poor to very poor SCF energies. For
the same size, the ano-pVDZ basis sets are much more accurate but are also computationally more expensive.
Except for systematic basis set extrapolation we see little reason to use the cc bases.

• Pople basis sets are somewhat old fashioned and also much less consistent across the periodic table than the
basis from the Karlsruhe group. Hence, we generally prefer the latter.

• For scalar relativistic calculations (ZORA and DKH) we strongly recommend to use the SARC bases in
conjunction with the ZORA or DKH recontractions of the Karlsruhe bases. They are also flexible enough in
the core region for general purpose and spectroscopic applications.

• Effective core potentials lead to some savings (but not necessarily spectacular ones) compared to all-electron
relativistic calculations. For accurate results, small core ECPs should be used. They are generally available
for the def2 Karlsruhe type basis sets for elements past krypton. In general we prefer Stuttgart–Dresden
ECPs over LANL ones. For the first transition row, the choices are more meager. Here Karlsruhe basis sets
do not exist in conjunction with ECPs and you are bound to either SDD or LANL of which we recommend
the former. Geometries and energies are usually good from ECPs, but for property calculations we strongly
recommend to switch to all electron scalar relativistic calculations using ZORA (magnetic properties) or
DKH (electric properties).

• You can take advantage of a built-in basis set (printed using !PrintBasis or orca_exportbasis) and then
modify it by uncontracting primitives, adding steeper functions etc. (fully uncontracted bases are generated
via uncontract in %basis) Alternatively, some basis sets exist that are of at least double-zeta quality in
the core region including the DZP and Dunning basis sets. For higher accuracy you may want to consider
the aug- series of basis sets. See section Choice of Basis Set for more about basis set input.

• Likewise, if you are doing calculations on anions in the gas phase it is advisable to include diffuse functions
in the basis set. Having these diffuse functions, however, makes things much more difficult as the locality of
the basis set is significantly reduced. If these functions are included it is advisable to choose a small value
for Thresh (10−12 or lower). This is automatically done if the smallest eigenvalue of the overlap matrix
is below DiffSThresh (which is 1e-6 by default). Also, diffuse functions tend to introduce basis set linear
dependency issues, which can be solved by setting Sthresh to a larger value than the default 10−7 (see
Section Linear Dependence). Any value of Sthresh beyond 1e-6 has to be used carefully, specially if one
is running geometry optimizations, were different basis might be cut off during different geometry steps, or
when comparing different conformers since there could be some discontinuity on the final basis set.

• The integration grids used in DFT should be viewed together with the basis set. If large basis set calculations
are converged to high accuracy it is advisable to also use large DFT integration grids (like ! DEFGRID3).
For “unlimited” accuracy (i.e. benchmark calculations) it is probably best to use product grids (Grid=0)
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with a large value for IntAcc (perhaps around 6.0). The default grids have been chosen such that they
provide adequate accuracy at the lowest possible computational cost, but for all-electron calculations on
heavy elements in conjunction with scalar relativistic Hamiltonians you should examine the grid dependency
very carefully and adjust these parameters accordingly to minimize errors. You should be aware that for large
molecules the exchange-correlation integration is usually not the dominating factor (not even in combination
with RI-J).

• Similarly important is the value of Thresh that will largely determine the tunaround time for direct SCF
calculations. It may be possible to go to values of 10−6–10−8 which will result in large speed-ups. However,
the error in the final energy may then be 3 orders of magnitude larger than the cutoff or, sometimes, your
calculation will fail to converge, due to the limited integral accuracy. In general it will not be possible to
converge a direct SCF calculation to better than Thresh (the program will also not allow this). For higher
accuracy values of maybe 10−10–10−12 may be used with larger molecules requiring smaller cutoffs. In cases
where the SCF is almost converged but then fails to finally converge (which is very annoying) decreasing
Thresh and switch to TRAH SCF is recommended. In general, TCut should be around 0.01 ×Thresh in
order to be on the safe side.

• DFT calculations have many good features and in many cases they produce reliable results. In particular if
you study organic molecules it is nevertheless a good idea to check on your DFT results using MP2. MP2 in
the form of RI-MP2 is usually affordable and produces reliable results (in particular for weaker interactions
where DFT is less accurate). In case of a large mismatch between the MP2 and DFT results the alarm rings
— in many such cases MP2 is the better choice, but in others (e.g. for redox processes or transition metal
systems) it is not. Remember that SCS-MP2 (RI-SCS-MP2) and double hybrid functionals will usually
produce more accurate results than MP2 itself.

• Coupled-cluster calculations become more and more feasible and should be used whenever possible. The
LPNO-CCSD, DLPNO-CCSD and DLPNO-CCSD(T) calculations are available for single-point calculations
and provide accurate results. However, a coupled-cluster study does require careful study of basis set effects
because convergence to the basis set limit is very slow. The established basis set extrapolation schemes may
be very helpful here. For open-shell molecules and in particular for transition metals one cannot be careful
enough with the reference. You have to carefully check that the Hartree-Fock calculation converged to the
desired state in order to get coupled-cluster results that are meaningful. Orbital optimized MP2, CASSCF
or DFT orbitals may help but we have often encountered convergence difficulties in the coupled-cluster
equations with such choices.

• Generally speaking, CEPA is often better than CCSD and approaches the quality of CCSD(T). It is, however,
also a little less robust than CC methods because of the less rigorous treatment of the single excitations in
relation to electronic relaxation.

• Don’t forget: “Computers don’t solve problems – people do”. Not denying the importance and desire to
obtain accurate numbers: don’t forget that in the end it is the molecule and its chemistry or spectroscopy that
we want to learn something about. The fact that you may be able to compute one or the other number a little
more accurate doesn’t mean that this helps us understanding the physics and chemistry of our target system
any better. The danger of getting locked into technicalities and miss the desired insight is real!

8.3 Converging SCF Calculations

Despite all efforts you may still find molecules where SCF convergence is poor. These are almost invariably related
to open-shell situations and the answer is almost always to provide “better” starting orbitals. Here is my standard
strategy to deal with this (assuming a DFT calculation):

• Perform a small basis set (SV) calculation in using the LSD or BP functional and RI approximation with a
cheap auxiliary basis set. Set Convergence=Loose and MaxIter=200 or so. The key point is to use a
large damping factor and damp until the DIIS comes into a domain of convergence. This is accomplished
by SlowConv or even VerySlowConv. If you have an even more pathological case you may need to set
DampFac larger and DampErr smaller than chosen by these defaults. This calculation is quite crude and may
take many cycles to converge. It will however be rather quick in terms of wall clock time. If the DIIS gets
stuck at some error 0.001 or so the SOSCF (or even better TRAH) could be put in operation from this point on.
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• Use the orbitals of this calculation and GuessMode=CMatrix to start a calculation with the target basis set.
In DFT we normally use a pure GGA functional (e.g. BP86). This calculation normally converges relatively
smoothly.

• Use the target functional, grid etc. to get the final calculation converged. In many cases this should converge
fairly well now.

Here are a few other things that can be tried:

• Try to start from the orbitals of a related closed-shell species. In general closed-shell MO calculations tend
to converge better. You then hope to reach the convergence radius of another converger for the open-shell
case.

• Try to start from the orbitals of a more positive cation. Cation calculations tend to converge better.

• Try to start from a calculation with a smaller basis set. Smaller basis sets converge better. Then you have
the choice of GuessMode=CMatrix or GuessMode=FMatrix which will affect the convergence behavior.

• Use large level shifts. This increases the number of iterations but stabilizes the converger. (shift shift
0.5 erroff 0 end)

• If you are doing DFT calculations try to start from a Hartree-Fock solution for your molecule. HF calcula-
tions tend to converge somewhat better because they have a larger HOMO-LUMO gap (there are of course
exceptions).

• Carefully look at the starting orbitals (Print[P_GuessOrb]=1) and see if they make sense for your
molecule. Perhaps you have to reorder them (using Rotate) to obtain smooth convergence.

• Most of the time the convergence problems come from “unreasonable” structures. Did you make sure that
your coordinates are in the correct units (Angström or Bohrs?) and have been correctly recognized as such
by the program?

• If you have trouble with UHF calculations try ROHF (especially SAHF or CAHF) first and then go to the
UHF calculation.

• Fool around with Guess=Hueckel, PAtom or even HCore.

• It may sometimes be better to converge to an undesired state and then take the orbitals of this state, reorder
them (using Rotate) and try to converge to the desired state.

• Similarly, bad orbitals may be manipulated using the SCF stability analysis (section SCF Stability Analysis)
to provide a new guess.

• Try to start the calculation with a large damping factor (DampFac=0.90; or even larger) and specify a rela-
tively small DIIS error to turn damping off (say DampErr=0.02;). This will increase the number of cycles
but may guide you into a regime were the calculation actually converges.

• The advices above mostly apply to Hartree-Fock and DFT. For CASSCF, the available options and how they
can aid to overcome convergence problems are described in the CASSCF manual section. In many cases
modifying the initial guess or adding a level shift will help. Do not hesitate to use large level-shifts (e.g 2.0
or even 3.0). The manual is accompanied by CASSCF tutorial that goes through many details of the process
including practical advices on convergence. The choice of initial guess is crucial. Some guesses work better
for organic molecules while others excel for transition-metal complexes. The tutorial therefore discusses
various initial guess options available in ORCA.

• If nothing else helps, stop, grab a friend and go to the next pub (you can also send me an unfriendly e-mail
but this will likely not make your calculation converge any quicker; ⌣̈).
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8.4 Choice of Theoretical Method

The array of available functionals makes it perhaps difficult to decide which one should be used. While this
is a matter of ongoing research and, in the end, can only be answered by experimentation and comparison to
experimental results or high-level ab initio calculations, I may attempt to give some guidelines.

The simplest density functionals (and in general the least accurate) are the local functionals (Functional=LSD).
Although several variants of the local DFT exist in ORCA there is little to choose among them — they give more
or less the same result.

The gradient corrected functionals are (very slightly) more expensive because the gradient of the electron density at
each point in space must be computed, but they are also significantly more accurate for structures and energetics of
molecules. The various gradient corrected functionals (GGA functionals) are generally similar in their behavior.
The BP functional is probably the most widely used in transition metal chemistry. The BLYP, PBE or PW91
functionals may also be considered. PWP has been shown to be rather good for hyperfine coupling predictions of
light nuclei in radicals. In addition, since no Hartree-Fock exchange is used you have the ability to speed up the
calculation by a factor of 4–40 if the RI approximation is employed. This approximation is really advisable for the
LSD and GGA functionals since it leads to very little or no loss in accuracy while giving large speedups. It is, in
fact, automatically chosen to be operative when you use pure functionals.

In addition, meta-GGAs (TPSS) are available in ORCA and may provide superior results for certain properties
compared to standard GGAs. They are somewhat but not much more expensive to evaluate than standard GGAs.

For many properties (but not necessarily for geometries), more accurate results are usually given by the hybrid
density functionals that incorporate part of the HF exchange. The computational effort for these is higher than for
the GGA functionals because the HF exchange needs to be computed exactly. Very large speedups result if this is
done via the RIJCOSX approximation. Nevertheless for energetics, properties and for predictions of charge and
spin densities the hybrids appear to be the best choice. The prototype functional of this kind is B3LYP, which has
been very widely used throughout chemistry and is successful for a wide range of molecular properties. Other
hybrids have been less well tested but maybe a good choice in specific situations, for example the PBE0 functional
has been advertised for NMR chemical shift predictions and other properties. From my personal experience I can
also recommend PBE0 and PWP1 as two functionals that give good predictions for EPR g-values and hyperfine
couplings. The TPSSh meta-GGA hybrid is also very succesful in this area.1

Together with DFT, it is often observed that the atom-pairwise dispersion correction of Stefan Grimme (DFT-D3,
and especially the newer DFT-D4) substantially improves the results at no extra cost.

Don’t forget that in present days the MP2 method becomes affordable for molecules of significant size and there
are quite a number of instances where MP2 (and particularly SCS-MP2) will do significantly better than DFT even
if it takes a little longer (the RI approximation is also highly recommended here). The perturbatively corrected
functionals (B2PLYP) may also be a very good choice for many problems (at comparable cost to MP2; note that
even for large molecules with more than 1000 basis functions the MP2 correction only takes about 10-20% of the
time required for the preceding SCF calculation if the RI approximation is invoked. For even larger molecules one
has the option of speeding up the MP2 part even further by the DLPNO approximation).

Beyond DFT and (SCS-)MP2 there are coupled-cluster methods and their implementation in ORCA is efficient.
With the local pair natural orbital methods you can even study molecules of substantial size and with appealing
turnaround times.

When to go to multireference methods is a more complicated question. Typically, this will be the case if multiplets
are desired, pure spin functions for systems with several unpaired electrons, in bond breaking situations or for
certain classes of excited states (loosely speaking: whenever there are weakly interacting electrons in the system).
However, whenever you decide to do so, please be aware that this require substantial insight into the physics and
chemistry of the problem at hand. An uneducated use of CASSCF or MRCI/MRPT method likely yields numbers
that are nonsensical and that at tremendous computational cost. Here, there is no substitute for experience (and
patience ⌣̈).

1 Some researchers like to adjust the amount of Hartree-Fock exchange according to their needs or what they think is “better” than the
standard. This increases the semiempirical character of the calculations and may represent fixes that only work for a given class of compounds
and/or properties while worsening the results for others. With this caveat in mind it is one of the things that you are free to try if you like it.
However, we do not recommend it since it will deteriorate the comparability of your results with those of other workers the vast majority of
which use standard functionals. An alternative to changing the amount of HF exchange could be to simply construct a linear regression for a
number of known cases and then use the linear regression.
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DETAILED CHANGE LOG

A.1 Changes ORCA 6.0.1

A.1.1 Fixed

DFT

• Crash when XCFun functional was overwritten with LibXC.

• Hessian fixed for DFT GGA, NoRI, RKS.

• VV10 Hessian is blocked even if invoked with CALC_HESS=TRUE and similar.

• Wrong orbitals for non-self-consistent DFT-NL calculations (wB97M-V, wB97X-V, B97M-V).

• X_WR2SCAN:

– Exchange can now be specified individually in the %method block.

– Fixed crashes when second derivatives are requested.

– TRAH is now disabled per default when using X_WR2SCAN.

– If second derivatives are requested, will now automatically switch to numerical second derivatives.

– Added appropriate warnings for the above changes.

• Fixed PBEh-3c gCP parameters for Krypton and Lithium to be consistent with Grimme’s stand-alone.

• gCP is now fixed (and extended) for r2SCAN-3c up to Z=103.

• Remove restriction to COSX for wB97X-3c .

TD-DFT

• Ground state gradient for TDDFT calculations with sgradlist was wrong.

• DCORR 2/3 with DoSCS giving wrong results in parallel.

• (D)-Correction not available for full TDDFT.

• Fix for memory estimates for Hessian/TDDFT when running without COSX.

• FollowIRoot was not supposed to do anything if the overlap was to small, was still updating.

• Fixed interface to BHP22 solver in CIS.
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MP2

• Crash in conventional U-MP2.

• Parallel crash in RI-MP2 density.

• Crash in (RI-)MP2 gradient with SMD.

• Crash in (RI-)MP2 density with PGC and RIJK.

• MP2+CPCM gradient was wrong.

• Crash in NearIR + B2PLYP.

• Bug with MP2 gradient in property file.

MDCI

• SemiCore was not applied correctly if ECP is present.

• ECP-related crashes.

• Fixed redundant integral generation for specific problems.

• Restored old CITrafos to address reported performance issues.

• Added missing 4th-order doubles term in (T) for RKS reference (already present in UKS-(T), RKS-DLPNO-
(T), and UKS-DLPNO-(T) and zero for RHF/UHF reference).

• UHF CIS/STEOM calculation with UseCISUpdate is set to false.

• RHF STEOM: TD-DFT initial guess.

AutoCI

• Fixed large stack allocation, e.g., in MRCC.

• Fixed runtime behavior for !Moread Noiter (falsely reporting “not converged”).

• Fixed !UseSym falsely aborting.

• AutoCI gradients: abort at start of a calculation when RI is requested instead of after coupled cluster itera-
tions.

CASSCF/NEVPT2/QD-NEVPT2

• Issue running LR over SA-CASSCF solution.

• Incorrect setting of gauge origin in CASSCF QDPT led to misleading output and in some cases complained
about not being able to find densities for the origin evaluation.

• Canonicalize the inactive and virtual spaces of AVAS guesses, to avoid spurious warnings about core orbitals
in the following CASSCF calculation.

• AVAS: fixed wrong number of occupied orbitals in case no occupied orbitals should have been selected.

• TRAH-CASSCF: compute generalized Fock matrix which is needed for the CASSCF nuclear gradient.

• Fixed redundant generation of coupling coefficients in the CI guess.

• Fixed ABS/CD spectra in calculation with !UseSym and QD-NEVPT2: The wrong densities were picked
for the CASSCF transition moments.

• Fixed ABS/CD when the NEVPT/QD-NEVPT2 ground state differs from CASSCF. Respecitve transition
were missing.
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• Fixed MCD spectra not using transition densities from QD-NEVPT2 for the flag
DoFullSemiclassical=true.

• Updated manual: Reported D4TPre are updated to the new default value 1e-12. ORCA 5 used
D4TPre=1e-10.

• Fixed closed-shell case, e.g. CAS(6,3), crashing in NEVPT2.

• Fixed NEVPT2/FIC-NEVPT2 wrong energies or crashing for the Vija class to wrong addressing.

• Fixed ICE densities not stored in density container.

ANISO

• Fixed T and L matrices passed to the single-aniso.

• Fixed wrong number of non-relativistic states passed to single-aniso.

QDPT

• Corrected QDPT transition density for excitations beyond “none”.

• Information added to QDPT AMatrix.

• Issues in QDPT properties in orca_lft have been addressed.

QM/MM

• Speed issue for QMMM optimizations.

• Crystal-QMMM and compound crashed.

• Removed leftover files from QMMM-IRC amd QMMM-NEB.

Relativity

• Crash for F12 + X2C/ZORA/DKH.

• Unnecessary abort in AutoCI gradients with X2C/DKH/ZORA.

• Disabled X2C+GIAO+FiniteNuc (not yet implemented).

• 2nd-order PC correction to DKH gDSO now skipped when fpFWtrafo==false due to numerical instability.

Solvation

• Disabled analytical gradient and Hessian for XTB calculations requesting CPCMX (not implemented).

• FINAL SINGLE POINT ENERGY for calculations requesting CPCMX was wrong.

• Crash for calculations requesting Freq + CPCM + dummy atoms.

• Crash for QM/QM2 calculations with CPCM requesting excited states.

• Crash for multiple XYZ File Scans for DRACO.

• Crash with CPCM + NoIter + Pal + open-shell.

• Fix for GC and CPCM.
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Optimization

• Multi-XYZ optimization crash.

• Random possible break when using GFN-xTB Hessian.

• Random crashes for RECALC_HESS=TRUE.

• COPT was saving wrong Cartesian Hessian under certain conditions, would break.

• Maximum number of angles that can be included is fixed + better error message.

• Analytic Hessian as initial Hessian option crashed with IRC.

• Crash in NEB-TS with subsequent Hessian, caused by change of number of parallel processes for NEB (max
32).

• NEB parallelization (will - again - automatically start in parallel, if enough processes are available).

GOAT

• GOAT/DOCKER/SOLVATOR now running on Windows.

• WorkerRandomStart fixed and working as intended.

• -REACT and -EXPLORE were (by mistake) not included sqrt(NFrag) to number of opts.

• Missing timings for GOAT.

DOCKER

• Abort if all final optimizations fail, was ending normally.

• Do not switch to COPT if constraints are given.

Stability analysis

• Stability analysis + closed-shell systems + post-processing (Hirshfeld, NBO, . . . ).

• SkipSecondSTAB was still checking for energy differences between steps. Now will move on regardless.

orca_2json

• Exported relativistic integrals were wrong in, HMO and angular momentum were missing.

• Choice of origin corrected.

• Empty [] and [""] are no longer crashing but disabling the options.

• Invalid property JSON syntax in the following cases:

– multiple geometries (e.g. optimizations);

– some jobs with multiple properties of the same kind;

– CIPSI energies;

– MDCI EOM energies;

– XTB jobs;

– energy extrapolation.
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orca_mapspc

• XAS/XES broadening functions satisfy FWHM.

• Adjusted .stk files normalization to report band integrals.

Compound

• MORead with same type and number of atoms but different arrangement.

• Bugs in statistical functions.

Miscellaneous

• SOMF(1X) parallel bug in semi-numeric Coulomb.

• Dummy/ghost atoms lead to crash in Hessian (partial fix).

• Fixed bug of Fermi smearing calculations of two-electron systems.

• Hangup in leanscf_aftermath when using F12 and ECPs.

• Issues in RIXSSOC, XESSOC spectra in ROCIS have been addressed.

• Issues in computing RI-SSC Integrals have been addressed. This property is now turned on in CASSCF,
LFT and MRCI modules.

• Fixed a crash in MD and L-OPT when the input file name was “orca”.

• Default COSX algorithm is set to AUTO everywhere, as originally intended.

• Disable frozen-core approximation when no frozen-core electrons are present.

• orca_vib was not able to read hess file from AnFreq run.

• For very small systems restart Hessian could crash.

• Small deviations between the Guess CI Matrix and the Sigma Vector in GS-ROCIS.

• DCD-CAS: Removed left-over files.

• Uncontracted MRCI: Fixed partial general contraction calls in the MRCI integral transformation (crashed
before).

• Crash for geometry optimization followed by a vibrational frequency calculation with fixed point group Ci.

• Removal of posix_memalign, due to glibc/kernel bug.

• NBO communication fixed.

• Fixes a crash in the integral transformation.

• Crash in orca_vpot due to missing prescreening matrix.

A.1.2 Improvements

Output

• Print all orbital energies for !PrintMOs and !LargePrint.

• Removed redundant warning when using gCP for elements Z > 36 (Kr).

• Added citations for wr2SCAN and DFT-D4 extension.

• Better printing of the spin coupling situation of the states resulting from GS-ROCIS calculations.

• Prepended a counter to irrep labels when printing vibrational frequencies.
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orca_2json

• Citations added to json output file.

• Absolute path in basename possible.

orca_mapspc

• Added support for VCD, XASSOCV and XESSOCV spectrum processing.

Symmetry

• Ensured correctness of gradient cleanup, geometry optimizations with fixed point groups and calculations
of vibrational frequencies (for point groups with real irreps using pure Hartree-Fock).

• Ensured correctness of the petite-list algorithm for SCF energy and gradient.

Compound

• Implemented automatic knowledge of basenames.

• Added GOAT interface.

Miscellaneous

• Added ASCII checker to input file.

• Add the possibility to read multi-XYZ files with no ‘>’.

• QDPT in CASSCF now uses the magnetic origin as defined in %eprnmr (if not set, defaults to CenterOfNuc-
Charge for backwards compatibility).

• Reduced disk usage and optimized performance for CASSCF (transition) densities in density container.

• Keep topology in initial IDPP path generation.

• Add CIS Gradient in property file.

A.2 Changes ORCA 6.0.0

A.2.1 SCF and Infrastructure

• Significant improvements to the SOSCF solver to make it more robust, preventing huge steps that break the
SCF. Overall improvements on the DIIS solvers.

• Due to the SCF updates, the AutoTRAH is now not so often needed and will start now only from above 50
cycles (AutoTRAHIter).

• Improvements to the memory handling of TD-DFT, CP-SCF and the Hessian
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A.2.2 Basis sets

• def-TZVP and ma-def-TZVP pseudo-potential basis sets for the actinides (Z = 89, Ac - 103, Lr)

• Lehtola’s hydrogenic gaussian basis set family (HGBS) including polarized (HGBSP) and augmented
(AHGBS, AHGBSP) variants for all elements up to Oganesson (Z = 118)

• def2-SVPD, def2-TZVPD, def2-TZVPPD, def2-QZVPD, def2-QZVPPD basis sets for lanthanoids

• vDZP Grimme’s double-zeta valence basis set

• !MINIX now correctly activates the corresponding ECP

• Added user-specified L-limit to AutoAux AutoAuxLLimit

• Fixed segfault in dhf-ECP

• Fix for DelECP in %coords

• Added ReadFragBasis keywords read fragment-specific basis sets from a file

A.2.3 Solvation

• New charge correction / compensation algorithm (corrected charges printed in an additional file)

• C-PCM/B scheme for QM/MM calculations

• DDCOSMO and CPCM/X available for XTB calculations and QM/MM calculations

• Generalization of names within all solvation models (C-PCM/SMD/ALPB/DDCOSMO/CPCM-X)

• New discretization scheme for the cavity (C-PCM) based on a constant number of charges per unit of area

A.2.4 DFT

• Allow LibXC functional customization via external parameters

• Simple input keywords added for some LibXC functionals

• Added wB97M(2) functional parameters: must be used with wB97M-V orbitals in a two-step job (compound
script available)

• D4 for elements 87 (Fr) - 103 (Lr)

• r2SCAN-3c extension to elements 87 (Fr) - 103 (Lr)

• Simple input keyword for functionals with revised D4 parameters by Grimme (wB97X-D4rev, wB97M-
D4rev)

• New hybrid functionals: r2SCANh, r2SCAN0, r2SCAN50, wr2SCAN, wB97X-3c

• New double-hybrid functionals: Pr2SCAN50, Pr2SCAN69, wPr2SCAN50, kPr2SCAN50

• Simple input keywords for 2021 variants of revDSD-PBEP86-D4 and revDOD-PBEP86-D4

• Bugfixes for LibXC combined *_xc_* functionals

• Fixed crash for D4 + ghost atoms
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A.2.5 Excited states

• Analytical gradient for meta-GGA functionals

• Small bugfix to spin-adapted triplets and NACMEs.

• The FolllowIRoot for excited state optimization uses now a much more robust algorithm.

A.2.6 Relativity

• Enabled NumGrad with relativistic methods

• Second order DKH picture-change correction of contact density

• Minor fixes in DKH picture-change corrections of magnetic properties

• Picture change corrections are activated automatically

A.2.7 Multiscale

• Reading PDB files for 10k+ atoms with HETATMs now possible

• Enabled correct FlipSpin behavior with QMMM

• More efficient MM Module

• Implemented wall potential

A.2.8 Coupled cluster / DLPNO

• Implemented energy ordering for PNO generation

• Added semicore treatment for DLPNO

• Enable DLPNO-CCSD(T) calculations to run DLPNO-CCSD unrelaxed densities

A.2.9 MP2

• Corrected memory estimates and batching in response and gradient

• Removed the slow and limited analytic (RI-)MP2 Hessian code

• Removed non-default Gamma-in-core option for RI-MP2 response

• Disabled single-precision calculations

• Disabled SemiDirect option in AO-MP2

• Enabled range-separated DHDFT gradients with RIJDX

A.2.10 NEB

• Improved IDPP initial path

• More efficient GFN-xTB runs for NEB
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A.2.11 COSX

• Improvements to numerical integration grids, both for DFT and COSX

• Faster grid step

• Improved performance and accuracy in COSX, also for the gradient and Hessian

A.2.12 Properties

• NMR spin-spin coupling:

– Added SpinSpinElemPairs and SpinSpinAtomPairs keywords to limit which couplings are com-
puted

– Reduced the number of CP-SCF perturbations necessary via a stochastic selection

– DSO term was transposed.

– Off-diagonal PSO elements had the wrong sign

– Efficiency improvement: solve SD/FC CP-SCF equations in restricted mode for RHF, instead of always
using UHF

• Optimized numeric integration for HFC gauge correction

• Removed RITRAFO option for CP-SCF

• Switched to tau=Dobson as default handling of the kinetic energy density in meta-GGA magnetic properties
with GIAOs

A.2.13 Hessian

• Improvements to the Hessian to avoid accumulation on numerical noise and reduce the number of spurious
negative frequencies.

A.2.14 Geometry Optimization

• Several improvements to the geometry optimization, making is much more stable. Complete redesign of the
Cartesian optimizer (!COPT), making it quick enough to be used together with faster methods.

• Fallbacks in the geometry optimization in case something fails, e.g. if the internal coordinates are unaccept-
able.

• Arbitrary spherical, ellipsoidal or box-like wall potentials can be added, which will reflect on the energy and
gradients and can be used during geometry optimization.

A.2.15 Miscellaneous

• CHELPG charges that reproduce the ESP together with the molecular dipole moment

• Fixed issues with constraints in multi-step jobs

• Molden output: store ECP info in [Pseudo] block, set point charge atomic number to 0, handling of ghost
atoms

• Made the ExtOpt interface easier to use

• Store energy from NEB and IRC in the XYZ file
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PUBLICATIONS RELATED TO ORCA

The generic references for ORCA are:

• Frank Neese. The orca program system. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2(1):73–78, 2012.
doi:http://doi.wiley.com/10.1002/wcms.81.

• Frank Neese. Software update: the orca program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol.
Sci., 8(1):e1327, 2018. doi:http://doi.wiley.com/10.1002/wcms.1327.

• Frank Neese, Frank Wennmohs, Ute Becker, and Christoph Riplinger. The orca quantum chemistry program
package. J. Chem. Phys., 152(22):224108, 2020. doi:https://aip.scitation.org/doi/10.1063/5.0004608.

Please do not only cite the above generic reference, but also cite in addition the original papers that report the de-
velopment and implementation of the methods you have used in your studies! The following publications describe
functionality implemented in . We would highly appreciate if you cite them when you use the program.

B.1 Method development

B.1.1 2017

1. Achintya Kumar Dutta, Frank Neese, and Róbert Izsák. A simple scheme for calculating approximate transi-
tion moments within the equation of motion expectation value formalism. J. Chem. Phys., 146(21):214111,
2017.

2. Achintya Kumar Dutta, Marcel Nooijen, Frank Neese, and Róbert Izsák. Automatic active space selection
for the similarity transformed equations of motion coupled cluster method. J. Chem. Phys., 146(7):074103,
2017.

3. Stefan Grimme, Christoph Bannwarth, Sebastian Dohm, Andreas Hansen, Jana Pisarek, Philipp Pracht,
Jakob Seibert, and Frank Neese. Fully automated quantum-chemistry-based computation of Spin–Spin-
Coupled nuclear magnetic resonance spectra. Angew. Chem. Int. Ed., 56(46):14763–14769, 2017.
doi:10.1002/anie.201708266.

4. Yang Guo, Kantharuban Sivalingam, Edward F. Valeev, and Frank Neese. Explicitly correlated N-
electron valence state perturbation theory (NEVPT2-F12). J. Chem. Phys., 147(6):064110, 08 2017.
doi:10.1063/1.4996560.

5. L .M. J. Huntington, M. Krupička, F. Neese, and R. Izsák. Similarity transformed equation of motion
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